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Abstract

What role does the study of natural language play in the task of developing a unified theory and common model of cognition?
Language is perhaps the most complex behaviour that humans exhibit, and, as such, is one of the most difficult problems for
understanding human cognition. Linguistic theory can both inform and be informed by unified models of cognition. We discuss
(1) how computational models of human cognition can provide insight into how humans produce and comprehend language and
(2) how the problem of modelling language processing raises questions and creates challenges for widely used computational
models of cognition. Evidence from the literature suggests that behavioural phenomena, such as recency and priming effects, and
cognitive constraints, such as working memory limits, affect how language is produced by humans in ways that can be predicted by
computational cognitive models. But just as computational models can provide new insights into language, language can serve as
a test for these models. For example, simulating language learning requires the use of more powerful machine learning techniques,
such as deep learning and vector symbolic architectures, and language comprehension requires a capacity for on-the-fly situational
model construction. In sum, language plays an important role in both shaping the development of a common model of the mind,
and, in turn, the theoretical understanding of language stands to benefit greatly from the development of a common model.
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1. Introduction

When attempting to construct a computational model of human cognition as a whole, what role does the study of
natural language play in the building of that model? Language is perhaps the most complex behaviour that humans
exhibit, and, as such, is one of the most difficult problems for understanding human cognition.
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Language thus serves as an important test for the project of producing a theory and model of all of human cognition.
Language tests such a model in two ways: (1) by providing strong constraints that a model of cognition must satisfy,
and (2) by providing a complex behavioural domain for evaluating predictions of the model. In short, psycholinguistic
theory can both (1) inform and (2) be informed by models of cognition.

Cognitive architectures are computational implementations of theories of human cognition as a whole. By that
we mean that cognitive architectures computationally specify the constraints and performance consequences placed
by a theory on cognitive processes. Language and cognitive architectures impose strong constraints on each other.
Language rules out cognitive architectures that are insufficiently powerful to accommodate the problem of language
processing, and the domain-general processes of cognitive architectures, in turn, make strong claims about how lan-
guage can be acquired and produced. To illustrate this relationship, in what follows, we provides examples of both
how language theory informs and can be informed by theories and models of cognition.

2. Cognition informs language

If we understand language as a behaviour produced, at least in part, by cognitive processes that are not specific to
language, theoretical insights from other domains of psychological research can inform our understanding of language.

2.1. Recency and priming

One example is the recency effect, the finding that more recent information is more easily remembered [10]. Early
computational models of the recency effect postulated that the effect was caused by older information being displaced
from a short-term memory system with limited information capacity [2]. However, later experimental work ruled out
this account [3, 26], suggesting instead that the recency effect is a memory phenomenon that occurs irrespective of
the span of time over which learning occurs. For example, when people try to remember where they parked their car
every morning for the past two weeks, it is easier to recall more recent parking locations than those further in the past
[8]. Given that the recency effect appears over both short and long-term learning, one would expect the recency effect
to be observable in the learning of language.

Language data does, in fact, show evidence of both short and long-term recency effects. The ACT-R cognitive
architecture [1] can model these effects. ACT-R posits that the recency effect is a product of the declarative memory
system. Items in declarative memory have an activation that is a function of both how frequently and recently the item
has been encountered. Items with higher activation are easier to retrieve from memory.

Using ACT-R as a model, Cole and Reitter [5] find that, in conversation, people are faster at speaking when using
words with a higher activation in declarative memory (i.e., words that have been more frequently and recently used).
Similarly, Cole, Ghafurian, and Reitter [6] conduct an analysis of social media data and find that new words (e.g., new
brand names or slang) are adopted in online discussion and spread through online communities at a rate that can be
understood in terms of the ACT-R activation of the word (i.e., as a function of the frequency and recency of the word).

Priming effects in grammar decisions can also be modeled by the retrieval dynamics of ACT-R’s declarative mem-
ory [25]. The declarative memory can be used to store syntactic rules. These rules are more easily retrieved if used
recently or frequently or when cued by associated semantic material retained in working memory. ACT-R explains a
pattern of short and long-term syntactic priming effects that had previously been difficult to reconcile [25].

In this manner, cognitive architectures can inform our understanding of language processes, such as how new words
are adopted into the language, or the dynamics of word choice and grammatical choice in conversation.

2.2. Forgetting and semantics

Insights from computational models of cognition have also informed our understanding of the semantics of lan-
guage. While linguistics has long postulated that the meaning of words can be derived from their use in language
[11], computational cognitive models provide a domain-general mechanism for this process. According to Hintzman
[14], human memory operates by laying down memory traces of specific events. However, retrieval from memory is
always a lossy reconstruction of these events, created by combining information from a lifetime of interrelated events.
As a result, memory inherently generalizes, abstracts, and infers prototypes from across instances of an experience.
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Language thus serves as an important test for the project of producing a theory and model of all of human cognition.
Language tests such a model in two ways: (1) by providing strong constraints that a model of cognition must satisfy,
and (2) by providing a complex behavioural domain for evaluating predictions of the model. In short, psycholinguistic
theory can both (1) inform and (2) be informed by models of cognition.

Cognitive architectures are computational implementations of theories of human cognition as a whole. By that
we mean that cognitive architectures computationally specify the constraints and performance consequences placed
by a theory on cognitive processes. Language and cognitive architectures impose strong constraints on each other.
Language rules out cognitive architectures that are insufficiently powerful to accommodate the problem of language
processing, and the domain-general processes of cognitive architectures, in turn, make strong claims about how lan-
guage can be acquired and produced. To illustrate this relationship, in what follows, we provides examples of both
how language theory informs and can be informed by theories and models of cognition.

2. Cognition informs language

If we understand language as a behaviour produced, at least in part, by cognitive processes that are not specific to
language, theoretical insights from other domains of psychological research can inform our understanding of language.

2.1. Recency and priming

One example is the recency effect, the finding that more recent information is more easily remembered [10]. Early
computational models of the recency effect postulated that the effect was caused by older information being displaced
from a short-term memory system with limited information capacity [2]. However, later experimental work ruled out
this account [3, 26], suggesting instead that the recency effect is a memory phenomenon that occurs irrespective of
the span of time over which learning occurs. For example, when people try to remember where they parked their car
every morning for the past two weeks, it is easier to recall more recent parking locations than those further in the past
[8]. Given that the recency effect appears over both short and long-term learning, one would expect the recency effect
to be observable in the learning of language.

Language data does, in fact, show evidence of both short and long-term recency effects. The ACT-R cognitive
architecture [1] can model these effects. ACT-R posits that the recency effect is a product of the declarative memory
system. Items in declarative memory have an activation that is a function of both how frequently and recently the item
has been encountered. Items with higher activation are easier to retrieve from memory.

Using ACT-R as a model, Cole and Reitter [5] find that, in conversation, people are faster at speaking when using
words with a higher activation in declarative memory (i.e., words that have been more frequently and recently used).
Similarly, Cole, Ghafurian, and Reitter [6] conduct an analysis of social media data and find that new words (e.g., new
brand names or slang) are adopted in online discussion and spread through online communities at a rate that can be
understood in terms of the ACT-R activation of the word (i.e., as a function of the frequency and recency of the word).

Priming effects in grammar decisions can also be modeled by the retrieval dynamics of ACT-R’s declarative mem-
ory [25]. The declarative memory can be used to store syntactic rules. These rules are more easily retrieved if used
recently or frequently or when cued by associated semantic material retained in working memory. ACT-R explains a
pattern of short and long-term syntactic priming effects that had previously been difficult to reconcile [25].

In this manner, cognitive architectures can inform our understanding of language processes, such as how new words
are adopted into the language, or the dynamics of word choice and grammatical choice in conversation.

2.2. Forgetting and semantics

Insights from computational models of cognition have also informed our understanding of the semantics of lan-
guage. While linguistics has long postulated that the meaning of words can be derived from their use in language
[11], computational cognitive models provide a domain-general mechanism for this process. According to Hintzman
[14], human memory operates by laying down memory traces of specific events. However, retrieval from memory is
always a lossy reconstruction of these events, created by combining information from a lifetime of interrelated events.
As a result, memory inherently generalizes, abstracts, and infers prototypes from across instances of an experience.
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Applying such a memory system to language results in a system that naturally infers the meaning of a word from
across multiple instances of the word’s use.

Hintzman [14] models the process by which memories of instances become memories of prototypes using the
MINERVA model, which, in turn, served as inspiration for the BEAGLE model of distributional semantics [17].
Building upon BEAGLE and evidence from research in human memory, Kelly, Reitter, and West [20] propose that
human memory has the capacity to recursively generalize, allowing it to infer arbitrarily abstract relationships. Kelly,
Reitter, and West find evidence that this capacity to infer abstract relationships aids in the ability to learn syntactic or
part-of-speech relationships between words.

2.3. Working memory and cognitive constraints

Cognitive architectures can also impose constraints, such as working memory limits, which can help us understand
how properties of language emerge from our cognitive limitations and why language is produced and parsed differently
by different individuals [7].

3. Language informs cognition

Language can also play an important role in informing the development of cognitive architectures. Language
processing is a hard problem, or rather, a collection of hard problems. Developing a system that can learn language
from experience as a child does, analyze language into its component parts, comprehend language when spoken or
written, and produce natural-sounding sentences, is, to say the least, a significant technical challenge.

3.1. Language acquisition

Any computational architecture that implements a complete theory of human cognition needs to have a memory
system sufficiently powerful that it can account for how language is acquired and utilized by the mind. For example,
the ACT-R architecture’s declarative memory stores everything it encounters without loss of information. This presents
two problems for language modelling, one practical and one theoretical:

(1) Language learning happens over the course of decades of experience as the human brain acquires a vast wealth
of data in both spoken and written form. This poses a practical problem for ACT-R. ACT-R estimates the human
response time for recall from declarative memory as a non-linear function of the activation of the stored data. However,
the actual time taken by the ACT-R software to compute a recall scales linearly with the amount of data stored. Storing
a lifetime of data in the ACT-R declarative memory is intractable given the current implementation of the ACT-R
software.

(2) ACT-R lacks the capacity to infer and generalize from instances of language experience in the way that humans
do when producing or comprehending novel utterances.

Thus modelling language acquisition forces us to adopt a cognitive architecture that uses a lossy memory model
capable of generalization. Possible candidates include vector symbolic memory, which can replicate the behaviour of
the ACT-R declarative memory but is scalable to language learning [19], and neural network models.

3.2. Language production

Some models of language production use declarative memory [25], typically instantiated as a collection of pro-
totypes or exemplars, while other models use implicit learning, typically instantiated in a connectionist architecture
[4].

According to ACT-R theory [1], newly acquired knowledge is added to declarative memory. If that knowledge is
accessed sufficiently frequently, it is later added to procedural memory as a condition-action rule through the process
of routinization.

Thus, ACT-R predicts that language representations start out stored in declarative memory as detailed, flexible,
and compositional constructions (i.e., what are referred to as “analytical” constructions in diachronic linguistics).
However, as these representations are used, larger constructions are acquired and stored. According to Reitter, Keller,
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and Moore’s [25] ACT-R model of syntactic priming, the ability to process larger, more complex constructions is
facilitated by syntactic rules stored in declarative memory. ACT-R allows for routinization of such rules into procedural
memory for faster processing.

Assuming a single, unified architecture, Chang, Dell, and Bock’s neural network model of sentence production
can be understood as a realization of routinized language processing in procedural memory. The ACT-R model, by
contrast, requires routinization to make plausible predictions about the timing of grammatical encoding in language
production. Given ACT-R’s assumptions of the timescale under which declarative memory operates, making fine-
grained grammatical decisions that involve many retrievals from declarative memory would be unrealistically slow.

Note that one prediction from the ACT-R account of grammatical encoding is that syntactic priming does not occur
for routinized constructions, as priming occurs only in declarative memory. This prediction is borne out empirically:
it is difficult to detect syntactic priming in humans for high frequency syntactic constructions [18]. However, the exact
dynamics of the ACT-R routinization process in the domain of language processing (i.e., the transfer of language
knowledge from declarative to procedural memory) has not been validated against experimental data.

The choice between high-dimensional neural models of memory versus ACT-R leaves us with a trade-off between
(in the case of neural models) a black box that fits large-scale data better and (in the case of ACT-R) transparent
representations that can be interpreted by the scientist but account for large-scale language data less well. Models that
use vector-symbolic architectures [12], such as BEAGLE [17, 20], provide a middle ground of systems that are more
interpretable than conventional neural networks and more scalable the traditional symbolic models like ACT-R [19].

3.3. Bilingualism

Bilingual speakers pose a challenge for cognitive modelling. Bilinguals can be observed to code-switch at oppor-
tune times within a sentence, from one language into another. Such code-switching plausibly interacts with the way
language is stored and processed, providing a behavioural window into the compressed, shared structural and lexical
representations of several languages [24]. A plausible approach to modelling code-switching is deep neural networks,
which can represent linguistic information in high-dimensional spaces and can be trained on large-scale language
data.

3.4. Prediction and surprisal

Generally, the success and widespread use of neural language models as an engineering solution to predict, for
example, words within a sequence of words [22, 23], is a strong argument to examine them as possible plausible cog-
nitive models. It is widely recognized that expectations guide language processing [13, 21], which is observable, for
example, in eye-tracking [9]. A language user’s surprisal can be observed in response to novel information contained
in a sentence, and sensitivity to information density in language is evident from behaviour [15, 27].

3.5. Language comprehension

The capacity to produce and comprehend language also tells us about working memory. Working memory must
be sufficiently powerful to accommodate on-the-fly sentence construction and comprehension, while having capacity
limits that reflect human cognitive constraints on sentence complexity [7]. Comprehension implies an ability to track
a working model of whats being described in language by constructing an imaginary environment [16].

3.6. Discretization

Language also seems to imply an analytical process, capable of detecting units of statistical invariance at multiple
levels of analysis: from letters and phonemes to morphemes, words, sentences or phrases, discourse, meaning, et
cetera. These units and levels are discovered by human minds with little guidance. A cognitive architecture capable
of language processing (and more) needs to be equally capable of discovering patterns in the environment at varying
levels of analysis and abstraction.
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interpretable than conventional neural networks and more scalable the traditional symbolic models like ACT-R [19].

3.3. Bilingualism

Bilingual speakers pose a challenge for cognitive modelling. Bilinguals can be observed to code-switch at oppor-
tune times within a sentence, from one language into another. Such code-switching plausibly interacts with the way
language is stored and processed, providing a behavioural window into the compressed, shared structural and lexical
representations of several languages [24]. A plausible approach to modelling code-switching is deep neural networks,
which can represent linguistic information in high-dimensional spaces and can be trained on large-scale language
data.

3.4. Prediction and surprisal

Generally, the success and widespread use of neural language models as an engineering solution to predict, for
example, words within a sequence of words [22, 23], is a strong argument to examine them as possible plausible cog-
nitive models. It is widely recognized that expectations guide language processing [13, 21], which is observable, for
example, in eye-tracking [9]. A language user’s surprisal can be observed in response to novel information contained
in a sentence, and sensitivity to information density in language is evident from behaviour [15, 27].

3.5. Language comprehension

The capacity to produce and comprehend language also tells us about working memory. Working memory must
be sufficiently powerful to accommodate on-the-fly sentence construction and comprehension, while having capacity
limits that reflect human cognitive constraints on sentence complexity [7]. Comprehension implies an ability to track
a working model of whats being described in language by constructing an imaginary environment [16].

3.6. Discretization

Language also seems to imply an analytical process, capable of detecting units of statistical invariance at multiple
levels of analysis: from letters and phonemes to morphemes, words, sentences or phrases, discourse, meaning, et
cetera. These units and levels are discovered by human minds with little guidance. A cognitive architecture capable
of language processing (and more) needs to be equally capable of discovering patterns in the environment at varying
levels of analysis and abstraction.
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4. Conclusion

The project of developing a common, computational model of cognition will play an important role in furthering
the theoretical understanding of how language is acquired, comprehended, and produced by the human mind. Compu-
tational models, developed to explain behaviours such as the recency effect, priming, attentional bottlenecks, learning,
recall, forgetting, and the inference of prototypes from exemplars, have already provided important insights into lan-
guage acquisition, semantics and syntax, and the dynamics of word choice and grammatical structure in language
production. A unified, computational, cognitive model will allow us to model how the systems of the mind interact to
produce human language, giving us new theoretical insight into one of the most complex domains of human behaviour.

But just as psycholinguistic theory stands to benefit from the development of a common model, so too will language
processing play an important role in testing and shaping the common model. The task of modelling language requires
large-scale and long-term learning, as well as the capacity to abstract and generalize from exemplars. These demands
suggest that traditional symbolic models of memory (such as proposed by the ACT-R cognitive architecture [1]) are
insufficient. Neural language models have met with considerable success [23], suggesting that they should be taken
seriously as cognitive models. Likewise, vector symbolic approaches are capable of handling large-scale language
data [20].

The task of modelling language requires answering fundamental questions about the cognitive architecture. How
does the brain allow for language to be processed (both produced and comprehended) so rapidly? Does this speed
entail a central role for a procedural memory system? If so, what is the relative contribution of the declarative and
procedural memories to language processing?

Prediction and surprise have been found to play a central role in language processing. Predictive neural language
models have been highly successful at modelling language production. Is this indicative of a central role for prediction
and surprise in the common model and cognition as a whole?

Language is discretized into phonemes, morphemes, words, sentences, and so on. What are the statistical mecha-
nisms that underlie this process and are these the same mechanisms that underlie the parsing of the environment into
objects?

A unified theory of cognition needs to address these questions, as well as other challenges posed by language pro-
cessing, such as how bilinguals are able to develop cognitive representations that allow for a mapping between different
languages, or how situational models are constructed in real time in working memory during language comprehen-
sion. The task of addressing these questions and challenges will help constrain the space of possible architectures and
guide development towards a truly human-like common model of the mind.
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