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Abstract. We prove a conditional theorem on the positivity of the Lyapunov exponent for

a Schrödinger cocycle over a skew-shift base with a cosine potential and the golden ratio

as frequency. For coupling below 1, which is the threshold for Herman’s subharmonicity

trick, we formulate three conditions on the Lyapunov exponent in a finite but large volume

and on the associated large-deviation estimates at that scale. Our main results demonstrate

that these finite-size conditions imply the positivity of the infinite-volume Lyapunov

exponent. This paper shows that it is possible to make the techniques developed for the

study of Schrödinger operators with deterministic potentials, based on large-deviation

estimates and the avalanche principle, effective.
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1. Introduction

The study of Lyapunov exponents occupies a central role in ergodic theory and dynamical

systems. They arise in a multitude of distinct settings, such as diffeomorphisms on

a manifold, chaotic dynamics in nonlinear systems as exhibited by the standard map,

cocycles defined over some base, and the theory of localization. Perhaps the most

fundamental question about Lyapunov exponents relates to their simplicity; or, more

quantitatively, to the gaps between them. In the case of SL2(R) cocycles this amounts

to the question of positivity of the top Lyapunov exponent. Another much studied property
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of these exponents concerns their continuity relative to external parameters. For a beautiful

introduction to this field see the textbook [Via].

This paper studies Schrödinger cocycles

(x, v) ∈ X × R2 7→ (T x, Aλ(x, E)v)

Aλ(x, E)=
[
λ f (x)− E −1

1 0

]
∈ SL2(R)

where (X, µ, T ) is some ergodic system, λ, E ∈ R and f : X → R is measurable. These

cocycles arise in the spectral analysis of the operators

(Hλ,xψ)n = ψn+1 + ψn−1 + λ f (T n x)ψn, n ∈ Z.

Indeed, solutions of Hλ,xψ = Eψ are given by
(
ψn+1

ψn

)
= Mn(x; λ, E)

(
ψ1

ψ0

)
, (1.1)

Mn(x; λ, E)=
1∏

j=n

Aλ(T
j x, E), n ≥ 1.

The growth of solutions to (1.1) µ-almost everywhere in x is governed by the Lyapunov

exponent

L(λ, E)= lim
n→∞

n−1

∫

X

log ‖Mn(x; λ, E)‖ µ(dx)

which always exists by subadditivity. By unimodularity of the matrices, L(λ, E)≥ 0. The

main issue is then to determine strict positivity. We remark that by classical ergodic theory

(Fürstenberg–Kesten theorem, Kingman’s subadditive ergodic theorem [Via]),

n−1 log ‖Mn(x; λ, E)‖ → L(λ, E) µ-almost surely

as n → ∞. Fürstenberg’s theorem [Fur], shows that L > 0 for all λ, E for T the

Bernoulli shift and µ a non-trivial probability distribution. Herman’s subharmonicity

argument [Her], which is recalled in §6, shows that L(λ, E)≥ log λ > 0 if λ > 1,

X = T, f (x)= 2 cos(2πx), and T x = x + ω a rotation (for general analytic f and

large λ; see [SorSpe]). On the other hand, one has L(λ, E)= 0 for all 0< λ < 1 and

E ∈ spec(Hλ,x ). The latter is the spectrum of the Harper or almost Mathieu operator

(Hλ,xψ)n = ψn+1 + ψn−1 + 2λ cos(2π(x + nω))ψn, n ∈ Z,

which does not depend on x (assuming ω irrational). In particular, L(λ, 0)= 0;

cf. [BelSim, Dam].

In contrast to the Harper operator, its analog over the skew-shift base is conjectured

to exhibit positive Lyapunov exponents for all λ > 0 and E . To be specific, let X = T2,

T (x, y)= (x + y, y + ω), where ω is irrational (or Diophantine). Iterating T yields

Mn(x, y; λ, E)=
1∏

j=n

[
2λ f (x + j y + j ( j − 1)ω/2, y + jω)− E −1

1 0

]
. (1.2)

The presence of j2ω/2 in these matrices appears to be the origin of the conjectured

exponential growth of the norm of these matrices for all E (assuming ∂x f (x, y) 6≡ 0,
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with f analytic). In fact, the distribution of the fractional parts of { j2ω}N
j=1 is known

to be ‘random’ in some sense as N → ∞ for generic ω; see the Poissonian conjecture

in [RudSarZah], as well as [MarStr, Hea]. Note that this is in stark contrast to the

distribution of { jω}N
j=1.

However, not only is this randomness property in and of itself delicate (see some

negative results to this effect in [RudSarZah]), but also how to use it in the context of (1.2)

is entirely unclear. As far as rigorous results are concerned, Bourgain [Bou2] proved that

for all λ > 0 there exists a set of ω ∈ T with positive measure (which decreases to 0 as

λ→ 0), so that the operator

(Hψ)n = ψn+1 + ψn−1 + λ cos(2πn(n − 1)ω/2)ψn

exhibits point spectrum whose closure has positive measure. This was the first result of its

kind which showed that for small λ the skew shift leads to completely different behavior

than the shift, that is, potentials cos(nω). Bourgain [Bou3] also showed that for small

λ > 0, and most energies, the Lyapunov exponent is positive if 0< ω < ω0(λ) (which

decreases to 0 as λ→ 0). A quantitative version of Bourgain’s result was obtained later

by Krüger in [Kru2]. These two results are proved by viewing the skew-shift model as

a perturbation of Harper’s model, hence require the smallness of ω. For any irrational ω,

Krüger [Kru1] proved positivity of the Lyapunov exponent for skew shift on Td with d

sufficiently large, for small λ > 0, and most energies.

In this paper we present an effective multi-scale machinery aiming at positivity of the

Lyapunov exponent for the matrices

Mn(x, y; λ, E)=
1∏

j=n

[
2λ cos(2π(x + j y + j ( j − 1)ω/2))− E −1

1 0

]
(1.3)

uniformly in E , and in the range 0< λ≤ 1. We fix ω to be the golden ratio. By the

aforementioned estimate by Herman, one has L(λ, E)≥ log λ > 0 for λ > 1. So only

λ≤ 1 is of interest here. The basis of our analysis is the inductive argument

from [BouGolSch], which established Anderson localization for large λ for the skew-

shift model, at the expense of removing a small set (in measure) of frequencies ω and

phases (x, y) (the largeness of λ depended on the smallness of the measure of excluded

parameters). The proof in [BouGolSch] is not effective, and it was not possible to

explicitly determine the size of admissible λ in relation to the other parameters.

To formulate our main results, recall the finite-volume Lyapunov exponents

L N (λ, E) :=
∫

T2

1

N
log ‖MN (x, y; λ, E)‖ dx dy,

and their limits L = limN→∞ L N . We quantify the failure of the Fürstenberg–Kesten

theorem via the level sets

BN :=
{
(x, y) ∈ T2 :

∣∣∣∣
1

N
log ‖MN (x, y; λ, E)‖ − L N (λ, E)

∣∣∣∣>
1

10
L N (λ, E)

}
.

The machinery developed in this paper establishes a method for checking the positivity

of the Lyapunov exponent L(λ, E) by verifying information on a finite, initial scale.
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We could have formulated a very general ‘finite-size criterion’ which establishes

L(λ, E) > 0 under appropriate assumptions on the initial scale and for appropriate values

of various other parameters. Instead, we have opted to present three representative

theorems that can be obtained from the machinery developed in this paper by making

specific choices.

These representative theorems differ by the precise assumptions (i)–(iii) made at the

initial scale. We comment on this further after the first theorem. Moreover, the various

other parameters appearing in our proof are identical in all three cases. These parameters

are only chosen in the final part of the proof, §9, so they can easily be modified.

For a Borel set, | · | denotes the Lebesgue measure.

THEOREM 1.1. Consider the skew-shift cocycle given by (1.3). Let ω be the golden ratio

and let λ ∈ [1/2, 1]. Let N0 := 2 × 1037. Assume that for some energy E ∈ [−2 − 2λ, 2 +
2λ] the following inequalities hold:

(i) L N0
(λ, E)≥ 2 × 10−4;

(ii) L N0
(λ, E)− L2N0

(λ, E)≤ L N0
(λ, E)/8;

(iii) max (|BN0
|, |B2N0

|)≤ N−21
0 .

Then we have

L(λ, E)≥ 1
2

L N0
(λ, E) > 0.

Before we give the two alternative theorems, we comment on conditions (i)–(iii).

Remark 1.2.

(i) First, one might expect that L(λ, E) > cλ2 holds for small λ, by analogy with the

Figotin–Pastur asymptotics in the random case. Numerical experimentation suggests

that is indeed the case for our model with c > 10−2 (with a generous margin of

error). Therefore, we would expect to have L N0
(λ, E)≥ 2 × 10−3. Condition (i)

was chosen to allow for an even wider margin. We remark that we can lower the

number 2 × 10−4 to basically any positive constant, at the expense of increasing N0.

(ii) Condition (ii) is known to hold if the Lyapunov exponent is positive and N0 is large

enough. Indeed, it follows from the methods in [GolSch] that

L N0
(λ, E)− L2N0

(λ, E)≤ cL N0
(λ, E)/N0

with some absolute constant c ∼ 1; see §8 below for the details. Given the size of

N0, condition (ii) is indeed asking for very little.

(iii) Finally, condition (iii) is some weak form of a large-deviation estimate as

in [BouGol, GolSch, BouGolSch]. In fact, analogy with these references suggests

that a bound of the form |BN |< exp(−N 1/10) should hold for large N (and perhaps

a much stronger bound, say with N 1/2 or larger). For (iii) to hold in this case

would then require N > 8 · 1031, which is within our range. It is important to

note that condition (iii) differs strongly from (i) and (ii). Indeed, while the latter

conditions are intimately related to the L > 0, (iii) is not. For the rotation with

Diophantine frequency dynamics it is known that the large-deviation estimates hold

a priori, that is, without any reference to the positivity of the Lyapunov exponent;

see [BouGol, GolSch, Bou1]. For the skew shift, as well as for the Bernoulli shift,
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however, such a priori derivations are currently not known. Rather, we rely on an

inductive procedure that uses lower bounds on Ln , the Lyapunov exponents in finite

volume.

We now state two further representative theorems. These alternative finite-size criteria

both involve much smaller initial scales N0, at the price of having a more restrictive

assumption (iii) on the measure of the set BN0
.

THEOREM 1.3. Consider the skew-shift cocycle given by (1.3). Let ω be the golden ratio

and let λ ∈ [1/2, 1]. Let N0 := 3 × 105. Assume that for some energy E ∈ [−2 − 2λ, 2 +
2λ] the following inequalities hold:

(i) L N0
(λ, E)≥ 2 × 10−4;

(ii) L N0
(λ, E)− L2N0

(λ, E)≤ L N0
(λ, E)/8;

(iii) max (|BN0
|, |B2N0

|)≤ N−141
0 .

Then we have

L(λ, E)≥ 1
2

L N0
(λ, E) > 0.

The upper bound in assumption (iii) is more restrictive than in Theorem 1.3.

Importantly, it is still polynomial in nature. Hence, in view of Remark 1.2(iii), it may

hold depending on the precise kind of exponential decay that is presumably exhibited by

the true |BN |.
In the next representative result, we strengthen assumption (i) somewhat (in a way that

is compatible with the numerics described in Remark 1.2(i) above). This allows us to

reduce the initial scale even further, to the value N0 = 3 × 104, which may be amenable to

numerical investigation.

THEOREM 1.4. Consider the skew-shift cocycle given by (1.3). Let ω be the golden ratio

and let λ ∈ [1/2, 1]. Let N0 := 3 × 104. Assume that for some energy E ∈ [−2 − 2λ, 2 +
2λ] the following inequalities hold:

(i) L N0
(λ, E)≥ 2 × 10−3;

(ii) L N0
(λ, E)− L2N0

(λ, E)≤ L N0
(λ, E)/8;

(iii) max (|BN0
|, |B2N0

|)≤ N−165
0 .

Then we have

L(λ, E)≥ 1
2

L N0
(λ, E) > 0.

Regarding assumption (iii), the comment made after Theorem 1.3 still applies. In

particular, the relatively small value of N0 in this result demonstrates the importance

of the problem of finding an analytical proof of (iii). Indeed, (i) and (ii) are accessible

numerically by a Figotin–Pastur expansion, for example, but it seems completely

unreasonable to ask for a computer-assisted proof of (iii).

The restriction λ ∈ [1/2, 1] was chosen for convenience. In fact, our methods apply

to any given interval of the form [λ0, 1], λ0 > 0, albeit with increasing N0 as λ0 → 0.

Similarly, the golden ratio was chosen for simplicity. One can replace it by a class of

Diophantine frequencies obeying an explicit Diophantine condition.

It remains to be seen what the true range of applicability of our methods is, and to

what extent they can also be refined. It may be possible to verify assumptions (i) and (ii)
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of Theorem 1.4 numerically. However, the measure estimates (iii) would seem the most

delicate to check reliably.

The methods in this paper are an adaptation of those in [GolSch, BouGolSch, Bou1].

One of our motivations was to obtain an effective rendition of the techniques based on

harmonic analysis (subharmonic functions, Riesz representation theorem, John–Nirenberg

type estimates for bounded mean oscillation functions) in combination with linear algebra

and the geometry of matrix products (‘avalanche principle’ [GolSch]). This had never been

attempted before, but we show that it is possible to do so.

2. Effective Riesz representation

It is of fundamental importance to the entire method to make the underlying potential

theory effective. To this end it is most convenient to remain on the disk since other

geometries will lead to complicated Green functions. The disk will suffice for our purposes,

thanks to a variant of Herman’s regularization [Her], which we present in §6.

Definition 2.1. Given R > 0, we write DR for the open disk of radius R around the origin

in C. Let z = re(φ). We write Pz(θ) for the Poisson kernel

Pz(θ) := 1 − r2

1 − 2r cos (2π(φ − θ))+ r2
.

The following constants will be used throughout, with 1< R2 < R1 < R:

B0(R, R1, R2) := 1

2 log(R/R1)

(
R1 + R2

R1 − R2

)
×





log R if R2 − R2
1 > R,

log

(
R2

R2 − R2
1

)
if R2 − R2

1 < R.

(2.1)

B1(R, R1, R2) := B0(R, R1, R2)
8R2

R2
2 − 1

,

B2(R, R1, R2) := B0(R, R1, R2)

×
16π(R2

2 − 1)

√
16R2

2 −
(√

R4
2 + 34R2

2 + 1 − 1 − R2
2

)2

(3R2
2 + 3 −

√
R4

2 + 34R2
2 + 1)2

as well as

B3(R, R1, R2) :=
√

5B2(R, R1, R2)+ 10π

log R/R1
. (2.2)

The main result of this section is the following Riesz representation theorem for

subharmonic functions. The essential feature here are the explicitly computable constants.

Recall that a subharmonic function in some domain �⊂ C is an upper semicontinuous

function u :�→ R ∪ {−∞} which satisfies the sub-mean value property in �.

THEOREM 2.2. Let 1< R2 < R1 < R and let v : DR → R ∪ {−∞} be a subharmonic

function satisfying

v(z)≤ B, v(0)= m. (2.3)

Then, for all w ∈ DR1
, we have the Riesz representation

v(w)=
∫

DR1

log |z − w|µ(dz)+ h(w), (2.4)
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where:

(i) µ is a positive measure satisfying the bound

µ(DR1
)≤ B − m

log(R/R1)
; (2.5)

(ii) h is harmonic on DR1
and satisfies the following bounds

min
c∈R

max
|w|≤R2

|h(w)− c| ≤ B0(R, R1, R2)(B − m),

∣∣∣∣
dk

dϕk
h(e(ϕ))

∣∣∣∣ ≤ Bk(R, R1, R2)(B − m), k = 1, 2. (2.6)

The proof of this theorem will occupy the rest of this section.

Proof of Theorem 2.2. The basic idea of the proof is that the equation µ= (1/2π)1v

holds in the distributional sense, with µ a positive measure. Without loss of generality,

we may assume that v is smooth. If this is not the case, we convolve v with a radial

non-negative mollifier. The sub-mean property then guarantees monotone convergence.

We skip this technical detail, and commence with some basic potential theory for smooth

functions.

2.1. Riesz representation. Rescaling the unit disk yields the Green function on any disk.

LEMMA 2.3. (Green’s function for the disk) The function G : DR × DR → R given by

G(z, w) := 1

2π
log

∣∣∣∣
R(z − w)

R2 − zw

∣∣∣∣
satisfies 1zG(z, w)= δw and G(z, w)= 0 when |z| = R.

Proof. To see this, notice that G(z, w)= G1(z/R, w/R) where

G1(z, w) := 1

2π
log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
is the Green function of the unit disk. �

Let w ∈ DR1
. By Green’s second identity for the domain DR , we have

v(w)−
∫

DR

G(z, w)1v(z) Vol(dz)=
∫

∂DR

v(z)
∂G

∂nz

(z, w)σ (dz),

where Vol is the standard volume measure and σ is the (unnormalized) arclength measure

on the circle ∂DR . Since v is smooth and subharmonic, 1v is a non-negative, continuous

function; call it 2πµ. Therefore

v(w)=
∫

DR

2πG(z, w)µ(dz)+ h0(w), (2.7)

where

h0(w) :=
∫

∂DR

v(z)
∂G

∂nz

(z, w)σ (dz). (2.8)

By Lemma 2.3, we then have Riesz representation with the functions

v(w)=
∫

DR1

log |z − w|µ(dz)+ h(w), (2.9)
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where

h(w) :=
∫

DR\DR1

log

∣∣∣∣
R(z − w)

R2 − zw

∣∣∣∣µ(dz)+
∫

DR1

log

∣∣∣∣
R

R2 − zw

∣∣∣∣µ(dz)+ h0(w). (2.10)

LEMMA 2.4. h(w) is harmonic in DR1
.

Proof. Write w = re2π iϕ . The first and second terms in (2.10) are harmonic because they

are real parts of analytic functions on DR1
. For the third term, recall that (∂G/∂nz)(z, w)

is the Poisson kernel, whence

h0(w)=
∫ 1

0

v(Re(θ))Pr/R(ϕ − θ) dθ. (2.11)

The Poisson kernel is harmonic in all of DR and this proves the lemma. �

2.2. Control of the Riesz mass.

LEMMA 2.5. We have the following bound on the Riesz mass:

µ(DR1
)≤ B − m

log(R/R1)
. (2.12)

Proof. Taking w = 0 in (2.7), we see that

(log R/R1)µ(DR1
)≤

∫

DR

log
R

|z|µ(dz)= h0(0)− v(0)≤ B − m,

in which we used

h0(0)≤ B, (2.13)

which comes from the maximum principle and the fact that h0(w) is the harmonic function

on DR with boundary values v(∂DR) by (2.11). �

2.3. Control of the harmonic part. We have the following estimate for the harmonic

part.

LEMMA 2.6. Let 1< R2 < R1 < R. Then

min
c∈R

max
|w|≤R2

|h(w)− c| ≤ B0(R, R1, R2)(B − m),

with constant B0(R, R1, R2) given by (2.1).

Proof. We will first prove an upper bound and then use Harnack’s inequality to conclude

a lower bound. From (2.10), and G(z, w)≤ 0 on DR × DR ,

h(w)≤
∫

DR1

log

∣∣∣∣
R

R2 − zw

∣∣∣∣µ(dz)+ h0(w).

From (2.13), we infer that for all w ∈ DR1
,

h(w)≤ log

∣∣∣∣
R

R2 − R2
1

∣∣∣∣µ(DR1
)+ B.

Now we distinguish cases. On the one hand, if R < R2 − R2
1 , then the logarithm is negative

and (2.14) implies

h(w)≤ B.
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On the other hand, if R > R2 − R2
1 , then we use Lemma 2.5 to obtain

h(w) ≤ 1

log R/R1

(
B log

R2

R1(R2 − R2
1)

− m log
R

R2 − R2
1

)

= m log R − B log R1

log R/R1
+

log R2/(R2 − R2
1)

log R/R1
(B − m).

Combining the two cases, we arrive at the upper bound

h(w)≤ α, α :=





B if R2 − R2
1 > R,

m log R − B log R1

log R/R1

+
log R2/(R2 − R2

1)

log R/R1
(B − m) if R2 − R2

1 < R.

(2.14)

Consider the non-negative harmonic function α − h(w) on DR1
. By Harnack’s inequality,

α − h(w)≤ R1 + |w|
R1 − |w| (α − h(0)),

which implies the lower bound

h(w)≥ R1 + |w|
R1 − |w|h(0)− 2|w|

R1 − |w|α. (2.15)

By (2.9) with w = 0 and (2.5), we have

h(0)= v(0)−
∫

DR1

log |z|µ(dz)≥ m − log R1

log R/R1
(B − m).

Together with (2.15), this yields

h(w)≥ R1 + |w|
R1 − |w|

m log R − B log R1

log R/R1
− 2|w|

R1 − |w|α. (2.16)

Based on (2.14) and (2.16), we obtain

min
c∈R

max
|w|≤R2

|h(w)− c|

≤ 1

2

(
α − min

|w|≤R2

(
R1 + |w|
R1 − |w|

m log R − B log R1

log R/R1
− 2|w|

R1 − |w|α
))

= 1

2
max

|w|≤R2

(
R1 + |w|
R1 − |w|

)(
α − m log R − B log R1

log R/R1

)

= 1

2

(
R1 + R2

R1 − R2

)(
α − m log R − B log R1

log R/R1

)

= B0(R, R1, R2)(B − m).

This proves Lemma 2.6. �

LEMMA 2.7. For k = 1, 2, we have
∣∣∣∣

dk

dϕk
h(e2π iϕ)

∣∣∣∣ ≤ Bk(R, R1, R2)(B − m)

with constants B1, B2 given by (2.1).
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Proof. Since h is harmonic in DR1
, we have that for any constant c,

h(e2π iϕ)− c =
∫ 1

0

(h(R2e2π iθ )− c)P1/R2
(ϕ − θ) dθ.

We take a derivative in ϕ and estimate h using Lemma 2.6. This gives
∣∣∣∣

d

dϕ
h(e2π iϕ)

∣∣∣∣ ≤
(

min
c∈R

max
|w|≤R2

|h(w)− c|
) ∫ 1

0

∣∣∣∣
∂

∂ϕ
P1/R2

(ϕ − θ)

∣∣∣∣ dθ

≤ B0(R, R1, R2)(B − m)

∫ 1

0

∣∣∣∣
∂

∂θ
P1/R2

(θ)

∣∣∣∣ dθ.

We recall that

P1/R2
(θ)=

R2
2 − 1

R2
2 − 2R2 cos(2πθ)+ 1

and therefore
∂

∂θ
P1/R2

(θ)= −
4πR2(R

2
2 − 1) sin (2πθ)

(R2
2 − 2R2 cos (2πθ)+ 1)2

.

Since sin(2πθ) changes sign at θ = 1/2, we conclude that
∫ 1

0

∣∣∣∣
∂

∂θ
P1/R2

(θ − ϕ)

∣∣∣∣ dθ = −
∫ 1/2

0

∂

∂θ
P1/R2

(θ) dθ +
∫ 1

1/2

∂

∂θ
P1/R2

(θ) dθ

= 2P1/R2
(0)− 2P1/R2

(1/2)

= 8R2

R2
2 − 1

.

This proves the claim for k = 1.

For the second derivative, we argue similarly. We have
∣∣∣∣

d2

dϕ2
h(e2π iϕ)

∣∣∣∣ ≤ B0(R, R1, R2)(B − m)

∫ 1

0

∣∣∣∣
∂2

∂θ2
P1/R2

(θ)

∣∣∣∣ dθ,

where

∂2

∂θ2
P1/R2

(θ)=
−8π2 R2(R

2
2 − 1)(2R2 cos2 (2πθ)+ (R2

2 + 1) cos (2πθ)− 4R2)

(R2
2 − 2R2 cos (2πθ)+ 1)3

.

By symmetry, we may restrict our attention to θ ∈ [0, 1/2] from now on. On that interval,

the function (∂2/∂θ2)P1/R2
has exactly one zero. Its location (call it θ0 ∈ [0, 1/2]) is given

by

θ0 = 1

2π
arccos

(√
R4

2 + 34R2
2 + 1 − (R2

2 + 1)

4R2

)
. (2.17)

It is easy to see that (∂2/∂θ2)P1/R2
is negative on [0, θ0), and hence positive on (θ0, 1/2].

Therefore
∫ 1

0

∣∣∣∣
∂2

∂θ2
P1/R2

(θ)

∣∣∣∣ dθ = −2

∫ θ0

0

∂2

∂θ2
P1/R2

(θ) dθ + 2

∫ 1/2

θ0

∂2

∂θ2
P1/R2

(θ) dθ

= 2
∂

∂θ
P1/R2

(0)− 4
∂

∂θ
P1/R2

(θ0)+ 2
∂

∂θ
P1/R2

(1/2)

=
16πR2(R

2
2 − 1) sin (2πθ0)

(R2
2 − 2R2 cos (2πθ0)+ 1)2

,
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since (∂/∂θ)P1/R2
(0)= (∂/∂θ)P1/R2

(1/2)= 0. When we evaluate the last expression

using the definition (2.17) of θ0, we obtain the quantity

16π(R2
2 − 1)

√
16R2

2 − (1 + R2
2 −

√
R4

2 + 34R2
2 + 1)

2

(
√

R4
2 + 34R2

2 + 1 − 3R2
2 − 3)2

.

This proves the claim for k = 2. �

3. T1 splitting lemma

For any f ∈ L1(T), let 〈 f 〉 =
∫
T

f (x) dx . For a function f on C, let us denote f (e(x)) by

f (x) for simplicity. For a Borel set U , let |U | be its Lebesgue measure.

LEMMA 3.1. Let v be as in Theorem 2.2. Assume that for some constant c,

v(x)= v1(x)+ v0(x)+ c (3.1)

with ‖v1‖L1(T) < ε1 and ‖v0‖L∞(T) < ε0. Then we have

∫

T

exp

(
π

4
δ−1

0 |v(x)− c|
)

dx ≤ C0,

δ0 := 9
2
ε0 + 2B3(R, R1, R2)

√
ε1(B − m),

C0 := 2
√

2 exp

(
π

[
17

144
+ B1

16B2
3

])
,

(3.2)

with constants given by Definition 2.1.

As a corollary of the exponential integrability, we have the following estimate on the

level sets from Markov’s inequality.

COROLLARY 3.2. For any ε2 > 0, we have

|{x ∈ T : |v(x)|> ε2}| ≤ 2
√

2 exp

(
π

4

[
17

144
+ B1

16B2
3

− ε2δ
−1
0

])

with δ0 as in (3.2).

Note that this level set estimate is only useful if ε2 � ε0 and ε2
2 � ε1(B − m).

Proof of Lemma 3.1. For simplicity, we will denote B3(R, R1, R2) by B3 throughout the

proof. We will first show the following special form of the Riesz representation, valid only

on the unit circle. The idea is simply to reflect the part of the disk outside the circle back

inside it.

LEMMA 3.3. Let 1< R2 < R1 < R and v be defined as in Theorem 2.2. Then there exist

a positive measure µ̃ and a harmonic function h̃ on DR such that

v(e(ϕ))=
∫

D1

log |z − e(ϕ)|µ̃(dz)+ h̃(e(ϕ)), (3.3)

with the estimate

µ̃(D1)≤ B − m

log R/R1
, (3.4)
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and h̃ satisfies the bound in Lemma 2.6 on the circle as well as
∣∣∣∣

dk

dϕk
h̃(e(ϕ))

∣∣∣∣ ≤ Bk(R, R1, R2)(B − m), k = 1, 2, (3.5)

where B1, B2 are the same constants as those in Theorem 2.2.

Proof. By Theorem 2.2, we have

v(w)=
∫

DR1

log |z − w|µ(dz)+ h(w), (3.6)

with µ(DR1
)≤ (B − m)/(log R/R1), and |(dk/dϕk)h(e(ϕ))| ≤ Bk(R, R1, R2)(B − m),

k = 1, 2.

Let us define µ∗ by reflection, that is,

µ∗(E)= µ(E∗), (3.7)

where

E∗ = {z−1 : z ∈ E}
for any measurable set E ⊂ C. Then for any |w| = 1,

∫

DR1

log |z − w| µ(dz)

=
∫

D1

log |z − w|µ(dz)+
∫

DR1
\D1

log |z − w|µ(dz)

=
∫

D1

log |z − w|µ(dz)+
∫

DR1
\D1

log |w − z−1|µ(dz)+
∫

DR1
\D1

log |z|µ(dz)

=
∫

D1

log |z − w|µ(dz)+
∫

D1\D1/R1

log |w − z|µ∗(dz)+
∫

DR1
\D1

log |z|µ(dz)

=
∫

D1

log |z − w|µ̃(dz)+
∫

DR1
\D1

log |z|µ(dz), (3.8)

where, for any E ⊂ D1,

µ̃(E)= µ(E)+ µ∗(E ∩ (D1\D1/R1
))= µ(E)+ µ(E∗ ∩ (DR1

\D1)). (3.9)

By (3.9), it is clear that we have the following estimate for µ̃:

µ̃(D1)= µ(DR1
)≤ B − m

log(R/R1)
. (3.10)

By (3.6) and (3.8), we have for |w| = 1,

v(w)=
∫

D1

log |z − w|µ̃(dz)+ h(w)+
∫

DR1
\D1

log |z|µ(dz), (3.11)

in which the third term is a constant. Let us take h̃ = h +
∫

DR1
\D1

log |z| µ(dz). Since h̃

only differs from h by a constant, the estimates on the derivatives still hold. �

The Riesz representation (3.3) allows us to give upper bounds on the parameters ε0 and

ε1 in Lemma 3.1 in terms of B − m. This will be relevant in the proof of that lemma.
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COROLLARY 3.4. We may always assume in Lemma 3.1 that

ε0 ≤ B0(R, R1, R2)(B − m), ε1 ≤ 13

20

B − m

log(R/R1)
. (3.12)

Alternatively, we can assume that ε0 = 0 and

ε1 =
(

B0(R, R1, R2)+ 13

20 log(R/R1)

)
(B − m). (3.13)

Proof. In view of (3.3) we set

v0(ϕ) := h̃(e(ϕ)), v1(ϕ)=
∫

D1

log |z − e(ϕ)|µ̃(dz).

Then ε0 is the constant from Lemma 2.6 and we claim that

ε1 := ‖log |1 − e(ϕ)|‖L1
ϕ
‖µ̃‖

is an admissible choice. Indeed,

‖v1‖L1(T) ≤
∫

D1

‖log |z − e(ϕ)|‖L1(Tϕ)
µ̃(dz)

=
∫

D1

‖log ||z| − e(ϕ)|‖L1(Tϕ)
µ̃(dz)

≤ max
0≤r≤1

‖log |r − e(ϕ)|‖L1(Tϕ)
‖µ̃‖.

Set h(r) := ‖log |r − e(ϕ)|‖L1(Tϕ)
with 0 ≤ r ≤ 1. In order to establish the claim, it

suffices to verify that h(r) is non-decreasing. First,
∫ 1

0

log |r − e(ϕ)| dϕ =
∫ 1

0

log |1 − re(ϕ)| dϕ = 0

since log |1 − rζ | is harmonic in ζ for |ζ |< 1 and any fixed 0 ≤ r ≤ 1. Therefore, if 0<

r < 1 and 0< ϕ0(r) <
1
2

is the unique solution of |r − e(ϕ0)| = 1, then

h(r)= 2

∫ 1−ϕ0(r)

ϕ0(r)

log |r − e(ϕ)| dϕ =
∫ 1−ϕ0(r)

ϕ0(r)

log(1 + r2 − 2r cos(2πϕ)) dϕ.

Consequently,

h′(r)=
∫ 1−ϕ0(r)

ϕ0(r)

2(r − cos(2πϕ))

1 + r2 − 2r cos(2πϕ)
dϕ

≥
∫ 1−ϕ0(r)

ϕ0(r)

r

1 + r2 − 2r cos(2πϕ)
dϕ ≥ 0.

In the second line we used that on the domain of integration

|r − e(ϕ)|2 = 1 + r2 − 2r cos(2πϕ)≥ 1,

whence 2r − 2 cos(2πϕ)≥ r . Therefore, indeed h(r)≤ h(1), justifying our choice of ε1

above. Finally,

h(1)= ‖log |1 − e(ϕ)|‖L1
ϕ

= −2

∫ 1

0

min(log |1 − e(ϕ)|, 0) dϕ

= −2

∫ 1/6

−1/6

log |1 − e(ϕ)| dϕ = −4

∫ 1/6

0

log(2 sin(πϕ)) dϕ < 13/20

and ‖µ̃‖ is controlled by (3.4). �
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Definition 3.5. Henceforth we impose the condition that

289

(
B0(R, R1, R2)+ 13

20 log R/R1

)
< B2

3 (R, R1, R2), (3.14)

where the constants are those from Definition 2.1.

Returning to the proof of Lemma 3.1, we denote the first term in (3.3) by u, namely,

u(x)=
∫

D1

log |z − e(x)| µ̃(dz). (3.15)

Then v = u + h̃. For any f ∈ L1(T) with 〈 f 〉 = 0, the anti-derivative D−1 f is uniquely

defined as the absolutely continuous function

(D−1 f )(t)=
∫ t

0

f (x) dx + m( f ), 〈D−1 f 〉 = 0, (3.16)

for arbitrary t ∈ T. The constant m( f ) is chosen to ensure the vanishing mean. For en(x)=
exp(2π inx), one has D−1(en)= (2π in)−1en for all n 6= 0, whereas D−1e0 = 0. In the

distributional sense, D−1 also applies to (complex) measures. For example, with δ0 now

being the Dirac delta,

D−1(δ0 − 1)(x)= −(x + 1
2
)1[−1/2<x<0](x)+ ( 1

2
− x)1[0<x<1/2](x).

For any z = |z|e(y) ∈ D1, one has the elementary relation

d

dx
log |e(x)− z| = 2π |z|sin (2π(x − y))

1 − 2|z|cos(2π(x − y))+ |z|2
= πQz(x)

= π(H[Pz])(x), (3.17)

where H denotes the Hilbert transform and Qz is the standard notation for the conjugate

function of the Poisson kernel. In particular,

log |e(x)− z| = π(D−1
H[Pz])(x) (3.18)

holds for any z ∈ D1. We thus have

u(x)= (D−1
H[ν])(x), (3.19)

where
dν

dx
(x)= π

∫

D1

Pz(x)µ̃(dz)

is a positive measure, with

ν(T)= πµ̃(D1). (3.20)

Set

ε := 1

B3

√
ε1

B − m
, (3.21)

and define Jε(x) := (1/2ε)1[−ε,ε](x) to be the box kernel. Because of the upper bound

in (3.13) on ε1 and (3.14), one has

ε1 ≤
(

B0(R, R1, R2)+ 13

20 log R/R1

)
(B − m) <

B2
3

289
(B − m),
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which ensures that ε < 1
17

. We will use this smallness property for the remainder of the

proof. For example, it guarantees that Jε is in fact well defined on the circle (less than 1
2

is

enough here, but below we will need this sharper bound). Then

v = v − Jε ∗ v + Jε ∗ v1 + Jε ∗ v0

= (u − Jε ∗ u)+ (h̃ − Jε ∗ h̃)+ Jε ∗ v1 + Jε ∗ v0.

The last three terms have small L∞ norms, in the sense that




‖Jε ∗ v1‖L∞(T) ≤ ‖Jε‖L∞(T)‖v1‖L1(T) <
ε1

2ε
= B3

2

√
ε1(B − m),

‖Jε ∗ v0‖L∞(T) ≤ ‖Jε‖L1(T)‖v0‖L∞(T) < ε0,

‖h̃ − Jε ∗ h̃‖L∞(T) ≤ ε

2
‖h̃′‖L∞(T) ≤ 1

2
εB1(B − m)= B1

2B3

√
ε1(B − m).

Hence

|(u − Jε ∗ u)(x)| ≥ |v(x)− C | − ε0 −
(

B3

2
+ B1

2B3

)√
ε1(B − m). (3.22)

By (3.19), we have

(u − Jε ∗ u)(x) = (D−1
H[ν − Jε ∗ ν])(x)

= H[D−1(ν − Jε ∗ ν)](x). (3.23)

Next, we control the pointwise size of the term in brackets in (3.23). Since the Hilbert

transform eliminates constants, the integration constant in (3.16) drops out.

LEMMA 3.6. Modulo additive constants, the function D−1(ν − Jε ∗ ν) satisfies

‖D−1(ν − Jε ∗ ν)‖L∞(T) ≤ 9
2
ε0 + 2B3

√
ε1(B − m). (3.24)

Proof. We begin with the observation that (recall ν is a positive measure)

|(ν − Jε ∗ ν)([a, b])| =
∣∣∣∣
∫

T

(1[a,b] − 1[a,b] ∗ Jε)(x)ν(dx)

∣∣∣∣
≤ sup
θ∈T

ν([θ − ε, θ + ε]), (3.25)

uniformly in [a, b] ⊂ T. If b − a ≥ 2ε, then on the one hand,

|(1[a,b] − 1[a,b] ∗ Jε)(x)| ≤ 1
2
(1[a−ε,a+ε] + 1[b−ε,b+ε])(x).

On the other hand, if b − a < 2ε then by translation invariance it suffices to consider the

symmetric expression

f (x) := 1[−d,d] − 1[−d,d] ∗ Jε, 2d = b − a, d < ε.

For any 0< d < ε/2 this function satisfies

| f | ≤ d

ε
1(−ε−d,ε+d) +

(
1 − 2d

ε

)
1[−d,d]

≤ d

ε
1(−ε−d,ε−d] + d

ε
1(ε−d,2ε−d) +

(
1 − 2d

ε

)
1(−ε,ε)
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whereas for ε/2< d < ε one has

| f | ≤ 1
2
1(−ε−d,ε+d) ≤ 1

2
1(−ε−d,ε−d] + 1

2
1(ε−d,3ε−d).

In either case (3.25) holds.

It therefore suffices to estimate supθ∈T ν([θ − ε, θ + ε]). Next, we define an atom τ ′ in

the Hardy space H1(T) as follows:

τ ′(x)=





(x − (a − 3ε))/ε2, a − 3ε ≤ x ≤ a − 2ε,

((a − ε)− x)/ε2, a − 2ε ≤ x ≤ a − ε,

((a + ε)− x)/ε2, a + ε ≤ x ≤ a + 2ε,

(x − (a + 3ε))/ε2, a + 2ε ≤ x ≤ a + 3ε,

0 otherwise.

(3.26)

Note that this is well defined on the circle since ε < 1
6

. By construction, 〈τ ′〉 = 0. Set

τ(x) :=
∫ x

a−1/2 τ
′(t) dt . Moreover, τ ≥ 0, 〈τ 〉 = 4ε, and τ(x)= 1 on [a − ε, a + ε]. Thus

ν([a − ε, a + ε])≤
∫

T

τ(x)ν(dx)= 〈τ, ν〉. (3.27)

Let us consider

|(τ − 〈τ 〉, ν)|

=
∣∣∣∣
(

d

dx
H[τ ], D−1

H[ν]
)∣∣∣∣ = |(H[τ ′], u)|

= |(H[τ ′], v − h̃)| = |(H[τ ′], v0 + v1 − h̃)|
≤ |(H[τ ′], v0)| + |(H[τ ′], v1)| + |(τ,H[h̃′])|
≤ ‖H[τ ′]‖L1(T)‖v0‖L∞(T) + ‖H[τ ′]‖L∞(T)‖v1‖L1(T) + ‖τ‖L1(T)‖H[h̃′]‖L∞(T)

≤ ε0‖H[τ ′]‖L1(T) + ε1‖H[τ ′]‖L∞(T) + 2ε

∥∥∥∥
d2

dx2
h̃

∥∥∥∥
L∞(T)

. (3.28)

In the last line, we used the following lemma on the third term.

LEMMA 3.7. For any f ∈ C1(T) one has ‖H[ f ]‖∞ ≤ 1
2
‖ f ′‖∞.

Proof. Since sin(πx)≥ 2x for all 0< x ≤ 1
2

, one has

‖H[ f ]‖∞ = sup
y∈T

∣∣∣∣
∫

T

f (x)− f (y)

sin(π(x − y))
cos(π(x − y)) dx

∣∣∣∣ ≤ 1

2
‖ f ′‖∞

as claimed. �

In order to bound the the other terms in the last line of (3.28) we prove two lemmas.

LEMMA 3.8. Let τ ′ be defined by (3.26) and assume that 0< ε ≤ 1
17

. Then we have

‖H[τ ′]‖L1(T) ≤ 9
2
. (3.29)

Remark 3.9. The upper bound 1
17

is a particular choice which we have found to be

convenient in the last section of the paper. A more restrictive assumption on ε will

slightly improve the bound; for example, assuming ε < 1
36

yields the value 4.2 for 9
2
. Such

improvements are mainly due to the lower bound in (3.40) approaching π as ε → 0.
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Proof. By translation symmetry, we may assume a = 0. We let 0< ε ≤ 1
17

and I =
[−rε, rε] with r = 3.6> 3. Notice that rε < 1

2
. We decompose ‖H[τ ′]‖L1(T) into the two

parts

‖H[τ ′]‖L1(T) = ‖H[τ ′]‖L1(I ) + ‖H[τ ′]‖L1(I c).

By Cauchy–Schwarz and the fact that the Hilbert transform is an isometry on L2(T), we

have

‖H[τ ′]‖L1(I ) ≤
√

|I |‖H[τ ′]‖L2(I ) ≤
√

|I |‖τ ′‖L2(I ) = 2
√

2√
3

√
r .

In the remainder of the proof, we bound ‖H[τ ′]‖L1(I c). By symmetry, we have

‖H[τ ′]‖L1(I c) = 2‖H[τ ′]‖L1([rε,1/2]). Hence, it suffices to consider the interval [rε, 1
2
].

For all x ∈ [rε, 1/2], we have

|H[τ ′](x)| =
∣∣∣∣
∫

supp τ ′
τ ′(y) cot(π(x − y)) dy

∣∣∣∣

=
∣∣∣∣
∫

supp τ ′
τ ′(y)(cot(π(x − y))− cot(πx)) dy

∣∣∣∣

=
∣∣∣∣
∫

supp τ ′
τ ′(y)

sin(πy)

sin(π(x − y)) sin(πx)
dy

∣∣∣∣

≤
∫

supp τ ′
|τ ′(y)| |sin(πy)|

sin(π(x − y)) sin(πx)
dy. (3.30)

Here we used that x − y ∈ [(r − 3)ε, 1
2

+ 3ε] ⊂ [0, 1]. To estimate this expression further,

we decompose supp τ ′ into the four intervals

I1 := [2ε, 3ε], I2 := [ε, 2ε], I3 := [−2ε,−ε], I4 := [−3ε,−2ε].
We write ρ j (x) ∈ I j for the point in I j that is nearest to x in the toroidal distance, that is,

‖x − ρ j (x)‖T = distT(x, I j ). (That point is not unique if x is ‘antipodal’ to the center of

I j ; in this case we define ρ j as the right endpoint of I j for definiteness.) Notice that ρ j (x)

is constant for j ∈ {1, 2} with

ρ1(x)= ρ1,1 := 3ε, ρ2(x)= ρ2,1 := 2ε, (3.31)

and piecewise constant for j ∈ {3, 4}, that is,

ρ j (x)=
{
ρ j,1 if x ∈ [0, t j ],
ρ j,2 if x ∈ (t j ,

1
2
].

Specifically, we have

ρ3(x)=





−ε if x ∈
[

0,
1

2
− 3ε

2

]
,

−2ε if x ∈
(

1

2
− 3ε

2
,

1

2

]
,

ρ4(x)=





−2ε if x ∈
[

0,
1

2
− 5ε

2

]
,

−3ε if x ∈
(

1

2
− 5ε

2
,

1

2

]
.

(3.32)
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From (3.30) and |sin(πy)| ≤ π |y|, we obtain

|H[τ ′](x)| ≤ π

4∑

j=1

1

sin(π(x − ρ j (x))) sin(πx)

∫

I j

|τ ′(y)||y| dy.

We integrate both sides over x ∈ [rε, 1
2
] and find

‖H[τ ′]‖L1([rε,1/2]) ≤ π

4∑

j=1

f j (ε)

∫

I j

|τ ′(y)||y| dy, (3.33)

where we introduced the notation

f j (ε) :=
∫ 1/2

rε

1

sin(π(x − ρ j (x))) sin(πx)
dx,

for j ∈ {1, 2, 3, 4}. The following lemma gives a bound on these integrals.

LEMMA 3.10. For j ∈ {1, 2}, we have

f j (ε)≤ 1

2.98πρ j,1
log

(
1 + π

2.98

ρ j,1

rε − ρ j,1

)
, (3.34)

and for j ∈ {3, 4}, we have

f j (ε)≤ 2

5π |ρ j,1|
log

(
1 + 2π

5

|ρ j,1|
rε

)
+ 0.21. (3.35)

We postpone the proof of Lemma 3.10 for now. To continue the proof of Lemma 3.8,

recall (3.33). We perform the integration in y and find

∫

I1

|τ ′(y)||y| dy =
∫

I4

|τ ′(y)||y| dy = 7ε

6
,

∫

I2

|τ ′(y)||y| dy =
∫

I3

|τ ′(y)||y| dy = 5ε

6
.

(3.36)

Then we apply Lemma 3.10 and recall Definitions (3.31) and (3.32) of ρ j,1. This gives

‖H[τ ′]‖L1([rε,1/2]) ≤ π

4∑

j=1

f j (ε)|τ ′(y)||y| dy

≤ 1

17.88

(
7

3
log

(
1 + π

2.98

3

r − 3

)
+ 5

2
log

(
1 + π

2.98

2

r − 2

))

+ 1

15

(
5 log

(
1 + 2π

5

1

r

)
+ 7

2
log

(
1 + 2π

5

2

r

))
+ (0.42)πε. (3.37)

Notice that (0.42)πε < 0.08. We write ν(r) for the expression in the last line. Altogether,

we have shown that

‖H[τ ′]‖L1(T) ≤ 2
√

2√
3

√
r + 2ν(r) < 4.5.
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In the second step, we evaluated the expression at r = 3.6. This proves the main claim of

Lemma 3.8. �

It remains to give the proof of Lemma 3.10.

Proof of Lemma 3.10. We begin by observing that

d

dx

(
1

sin x ′ log

(
sin(x − x ′)

sin(x)

))
= 1

sin x sin(x − x ′)
, (3.38)

whenever x, x ′ are such that the logarithm is well defined.

Let j ∈ {1, 2}, which implies that ρ j (x)= ρ j,1 > 0. By (3.38) and sin, cos ≤ 1, we have

f j (ε) = 1

π sin(πρ j,1)

[
log

(
sin(π(x − ρ j,1))

sin(πx)

)]x=1/2

x=rε

≤ 1

π sin(πρ j,1)
log

(
sin(πrε)

sin(π(rε − ρ j,1))

)

≤ 1

π sin(πρ j,1)
log

(
1 + sin(πρ j,1)

sin(π(rε − ρ j,1))

)
. (3.39)

Next, we estimate the sines by linear functions. While the upper bound sin(πx)≤ πx is

valid for all x (and is sharp for small x), a linear lower bound on sin(πx) depends directly

on the allowed range of x values. This is conveniently expressed via the quotient

inf
x∈[0,3ε]

sin(πx)

x
= sin(3πε)

3ε
> 2.98.

In the last step, we used that ε < 1
17

. We may verify that all the arguments of sin(π ·) in the

last line of (3.39) are located in the interval [0, 3ε]. Therefore

f j (ε) ≤ 1

π sin(πρ j,1)
log

(
1 + sin(πρ j,1)

sin(π(rε − ρ j,1))

)

≤ 1

2.98πρ j,1
log

(
1 + π

2.98

ρ j,1

rε − ρ j,1

)
.

This proves (3.34).

Next, let j ∈ {3, 4}, so that ρ j,1, ρ j,2 < 0. We have rε < t j by our assumptions on r, ε,

and (3.38) yields

f j (ε) ≤ 1

π sin(πρ j,1)

[
log

(
sin(π(x − ρ j,1))

sin(πx)

)]x=t j

x=rε

+
(

1

2
− t j

)
max

x∈(t j ,1/2]

1

sin(π(x − ρ j,2)) sin(πx)
.

The second term is an error term (it vanishes as ε → 0). Indeed, recalling the definition of

t j and ρ j,2 from (3.32), we see that for j ∈ {3, 4},
(

1

2
− t j

)
1

sin(π( 1
2

− ρ j,2)) sin(π t j )
≤ 5ε

2 cos2(3πε)
≤ 5ε

2(1 − 9
2
π2ε2)2

≤ 0.21,
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where the last estimate used that ε ≤ 1
17

. Therefore, we have
∫ 1/2

rε

1

sin(π(x − ρ j (x))) sin(πx)
dx

≤ 1

π sin(πρ j,1)

[
log

(
sin(π(x − ρ j,1))

sin(πx)

)]x=t j

x=rε

+ 0.21

≤ 1

π sin(π |ρ j,1|)
log

(
sin(π(rε − ρ j,1))

sin(πrε)

)
+ 0.21

≤ 2

5π |ρ j,1|
log

(
1 + 2π

5

|ρ j,1|
rε

)
+ 0.21.

In the second step, we used that 0 ≤ t j < t j − ρ j,1 ≤ 1
2

and monotonicity properties of sin.

In the last step, we used cos ≤ 1 and

inf
x∈[0,(r+2)ε]

sin(πx)

x
= sin(π(r + 2)ε)

(r + 2)ε
>

5

2
. (3.40)

This bound holds because (r + 2)ε < 1
3
, which may be verified from r = 3.6 and

ε ≤ 1
17

. This shows (3.35) and concludes the proof of Lemma 3.10, and hence also of

Lemma 3.8. �

Next, we control the pointwise size of H[τ ′].

LEMMA 3.11. We have

‖H[τ ′]‖L∞(T) ≤ 5

2ε
.

Proof. By translation invariance, we can set a = 0. Let us first consider∫

supp(τ ′)
τ ′(x) cot π(x − y) dy.

If x /∈ supp(τ ′), then
∫

supp(τ ′) τ
′(x) cot π(x − y) dy = 0. Thus, we can assume without

loss of generality that x ∈ [−3ε,−ε]. On the one hand,∣∣∣∣
∫

[ε,3ε]
τ ′(x) cot π(x − y) dy

∣∣∣∣ ≤ 2ε|τ ′(x)| sup
y∈[ε,3ε]

|cot π(x − y)|

≤ 2 sup
u∈[2ε,6ε]

|cot(πu)| ≤ 2 cot (2πε)≤ 1

2ε
,

since 6επ ≤ π − 2πε and sin(2πε)≥ 4ε (recall that ε < 1
8

). On the other hand, for the

negative support of τ ′, we can further assume by symmetry that x ∈ [−3ε,−2ε]. Thus,∣∣∣∣
∫

[−3ε,−ε]
τ ′(x) cot π(x − y) dy

∣∣∣∣

=
∣∣∣∣τ

′(x)
∫ −ε

2x+3ε

cot π(y − x) dy

∣∣∣∣ =
∣∣∣∣τ

′(x)
∫ −ε−x

x+3ε

cot (πy) dy

∣∣∣∣

= 1

ε2
(x + 3ε)

∫ −ε−x

x+3ε

1

2y
dy = 1

ε

x + 3ε

2ε
log

(
2ε

x + 3ε
− 1

)

≤ 1

ε
sup

t∈[0,1/2]
t log

(
1

t
− 1

)
<

1

4ε
. (3.41)
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Hence, overall we have

∣∣∣∣
∫

supp(τ ′)
τ ′(x) cot π(x − y) dy

∣∣∣∣<
3

4ε
. (3.42)

Now let us consider, with x ∈ [−3ε,−ε],
∣∣∣∣H[τ ′](x)−

∫

supp(τ ′)
τ ′(x) cot π(x − y) dy

∣∣∣∣

=
∣∣∣∣
∫

supp(τ ′)
(τ ′(y)− τ ′(x)) cot π(x − y) dy

∣∣∣∣

≤
∫ −ε

−3ε

∣∣∣∣
τ ′(y)− τ ′(x)

sin π(y − x)

∣∣∣∣ dy +
∫ 3ε

ε

|τ ′(y)| + |τ ′(x)|
|sin π(y − x)| dy

≤
∫ −ε

−3ε

|x − y|ε−2

2|x − y| dy +
(

1

4
+ 1

2
log 2

)
ε−1 ≤ 1.6

ε
. (3.43)

In summary,

‖H[τ ′]‖L∞(T) <
5

2ε
(3.44)

as claimed. �

Combining (3.20), (3.27), (3.28) with Lemmas 2.5, 3.8 and 3.11, we have

(τ, ν)≤ 9

2
ε0 + 5

ε1

2ε
+ 2εB2(B − m)+ 〈τ 〉ν(T)

≤ 9

2
ε0 + 5

ε1

2ε
+ ε

(
2B2 + 4π

log R/R1

)
(B − m)

= 9

2
ε0 + 2B3

√
ε1(B − m).

Note that our choice (3.21) of ε minimizes the contribution of ε1. Finally, (3.25) concludes

the proof of Lemma 3.6. �

In order to prove the exponential integrability of v − c, and thus complete the proof

of Lemma 3.1, we invoke the following classical result about the Hilbert transform of

bounded functions on the circle; see, for example, [Kat].

LEMMA 3.12. Let f be a real-valued function on T such that | f | ≤ 1. Then for any 0 ≤
α < 1

2
π , ∫

T

eα|H[ f ](x)| dx ≤ 2

cos α
= 2 sec α.

Applying Lemma 3.12 to f = (D−1(ν − Jε ∗ ν))/‖(D−1(ν − Jε ∗ ν))‖L∞(T), by

(3.23), we have ∫

T

exp(β|(u − Jε ∗ u)(x)|) dx ≤ 2sec α, (3.45)
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where α = β( 9
2
ε0 + 2B3

√
ε1(B − m)) < π/2. Taking α = π/4 in (3.45), then (3.22)

yields (absorbing the constant c into v for simpicity)

∫

T

exp

(
π |v(x)|

18ε0 + 8B3

√
ε1(B − m)

)
dx

≤ 2
√

2 exp

(
πε0 + π(B3 + B1/B3)

√
ε1(B − m)/2

18ε0 + 8B3

√
ε1(B − m)

)

≤ 2
√

2 exp

(
π

[
17

144
+ B1

16B2
3

])
, (3.46)

which concludes the proof of Lemma 3.1. �

We conclude this section with an important decay estimate on the Fourier coefficients

of the subharmonic function v. This lemma will be used in §7.

LEMMA 3.13. Let v be as in Theorem 2.2. Then the Fourier coefficients of v satisfy

|v̂(k)| ≤ C(R, R1, R2)

|k| (B − m) for any k 6= 0,

in which

C(R, R1, R2)= 1

2 log R/R1
+ 1

2π
B1(R, R1, R2). (3.47)

Proof. For any k 6= 0, we have

|v̂(k)| =
∣∣∣∣
∫

T

(u(x)+ h̃(x))e−2π ikx dx

∣∣∣∣ ≤ 1

2π |k| (|û
′(k)| + |̂̃h′(k)|). (3.48)

By Lemma 3.3, we have |h̃′(x)| ≤ B1(R, R1, R2)(B − m), hence

|̂̃h′(k)| ≤ B1(R, R1, R2)(B − m). (3.49)

By (3.19), (3.20) and Theorem 2.2, we have

|û′(k)| = |Ĥ[ν](k)| = |ν̂(k)| ≤ πµ̃(D1)≤ π(B − m)

log R/R1
. (3.50)

In view of (3.48), (3.49) and (3.50) we infer that

|v̂(k)| ≤ 1

2π |k|

(
B1(R, R1, R2)(B − m)+ π(B − m)

log R/R1

)
,

as claimed. �

4. T2 splitting lemma

Our applications to the skew-shift dynamics on T2 require a version of the splitting lemma

in two variables. First, we formalize the class of plurisubharmonic functions that we will

be working with.
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Definition 4.1. Let v(z, w) be a continuous plurisubharmonic function on DR × DR ,

satisfying the following estimates for R > 1:





v(z, w)≤ B4(R) for all (z, w) ∈ DR × ∂D1, and v(0, e(y))≥ m4 for all y ∈ T,

v(z, w)≤ B5(R) for all (z, w) ∈ ∂D1 × DR, and v(e(x), 0)≥ m5 for all x ∈ T,

|v(e(x), e(y))| ≤ B6 for all (x, y) ∈ T2.

(4.1)

For a function f defined on a polydisk in C2 which contains T2, let us denote f (e(x), e(y))

by f (x, y) for simplicity. In particular, we will write v(x, y) on T2. The average is denoted

by 〈 f 〉
T2 :=

∫
T2 f (x, y) dx dy.

Below, we will analyze a particular Schrödinger cocycle over a skew-shift base, and

we will specify the constants in Definitions 2.1 and 4.1. But for now we develop more

analytical machinery with these constants as parameters. Recall that for a Borel set U , the

Lebesgue measure will be written as |U |.

LEMMA 4.2. Let v be as in Definition 4.1, and assume (3.14). Let 0< r < 1, 0< ε1 and

0< ε0 < ε3 < ε2. Assume

v(x, y)= v0(x, y)+ v1(x, y)+ 〈v〉
T2 ,

where ‖v0‖L∞(T2) < ε0 and ‖v1‖L1(T2) < ε1. Then

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε2}| < 2(2C0)

1/2 exp

(
− π

8δ
(1)
0

ε3

)

+ C0 exp

(
− π

4δ
(2)
0

ε2

)

in which B3 = B3(R, R1, R2) are defined as in (2.2), C0 in (3.2), and

δ
(1)
0 := 9

2
ε0 + 2B3

√
εr

1(B4 − m4),

δ
(2)
0 := 9

2
ε3 + 4B3

√
B6

√
ε1−r

1 (B5 − m5).

(4.2)

Proof. Fix 0< r < 1. Let

A1 :=
{

y ∈ T :
∫

T

|v1(x, y)| dx < εr
1

}
. (4.3)

By Markov’s inequality, we have

|Ac
1|< ε1−r

1 . (4.4)

For any fixed y ∈ A1, we have ‖v0(·, y)‖L∞(T) < ε0 and ‖v1(·, y)‖L1(T) < ε
r
1. Applying

Lemma 3.1 in the x variable, we then have
∫

T

exp

(
π

4δ
(1)
0

|v(x, y)− 〈v〉
T2 |

)
dx ≤ C0.

Integrating over y ∈ A1 and interchanging the integrations yields
∫

T

∫

A1

exp

(
π

4δ
(1)
0

|v(x, y)− 〈v〉
T2 |

)
dy dx ≤ C0. (4.5)
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For γ > 0, let us define

A2 :=
{

x ∈ T :
∫

A1

exp

(
π

4 δ
(1)
0

|v(x, y)− 〈v〉
T2 |

)
dy ≤ C0 γ

−1

}
. (4.6)

By Markov’s inequality,

|Ac
2|< γ. (4.7)

For x ∈ A2 and ε3 > ε0, let us define

A3 := {y ∈ A1 : |v(x, y)− 〈v〉
T2 |< ε3}. (4.8)

Again, by Markov’s inequality,

|Ac
3|< C0γ

−1 exp

(
− πε3

4 δ
(1)
0

)
. (4.9)

Thus for x ∈ A2, {y ∈ T : |v(x, y)− 〈v〉|> ε3} ⊆ Ac
1 ∪ Ac

3, with the measure estimate

|{y ∈ T : |v(x, y)− 〈v〉
T2 |> ε3}| ≤ ε1−r

1 + C0γ
−1 exp

(
− πε3

4δ
(1)
0

)
. (4.10)

Here we divide the argument into two different cases, depending on which term on the

right-hand side dominates.

Case 1: ε1−r
1 < C0γ

−1 exp(−πε3/4 δ
(1)
0 ). Then (4.10) directly implies that for any

x ∈ A2,

|{y ∈ T : |v(x, y)− 〈v〉
T2 |> ε3}| ≤ 2C0γ

−1 exp

(
− πε3

4δ
(1)
0

)
. (4.11)

Together with (4.7), we conclude that

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε3}| ≤ γ + 2C0γ

−1 exp

(
− πε3

4δ
(1)
0

)
. (4.12)

Case 2: ε1−r
1 ≥ C0γ

−1 exp(−πε3/4 δ
(1)
0 ). Then for any x ∈ A2,

|{y ∈ T : |v(x, y)− 〈v〉
T2 |> ε3}| ≤ 2ε1−r

1 . (4.13)

For x ∈ A2, let

ṽx,0(y)= (v(x, y)− 〈v〉
T2)1{y∈T:|v(x,y)−〈v〉

T2 |≤ε3},

ṽx,1(y)= (v(x, y)− 〈v〉
T2)1{y∈T:|v(x,y)−〈v〉

T2 |>ε3}.
(4.14)

Then (4.13) implies, assuming x ∈ A2,

v(x, y)= ṽx,0(y)+ ṽx,1(y)+ 〈v〉
T2 ,

‖ṽx,0(·)‖L∞(T) ≤ ε3,

‖ṽx,1(·)‖L1(T) ≤ 2ε1−r
1 ‖v(x, ·)− 〈v〉

T2‖L∞(T) ≤ 4B6 ε
1−r
1 .

(4.15)

Applying Corollary 3.2 in the y variable, we obtain that for any x ∈ A2 and any ε2 > ε3,

|{y ∈ T : |v(x, y)− 〈v〉
T2 |> ε2}| ≤ C0 exp

(
− πε2

4δ
(2)
0

)
. (4.16)
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Together with (4.7), we then get

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε2}| ≤ γ + C0 exp

(
− πε2

4δ
(2)
0

)
. (4.17)

Finally, we choose γ to equalize the terms in (4.12):

γ = (2C0)
1/2 exp

(
− πε3

8 δ
(1)
0

)
.

Then the estimate of case 1, namely (4.12), yields

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε2}|

≤ |{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε3}|

≤ 2(2C0)
1/2 exp

(
− πε3

8δ
(1)
0

)
. (4.18)

The estimate of case 2, namely (4.17), becomes

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε2}|

≤ (2C0)
1/2 exp

(
− πε3

8δ
(1)
0

)
+ C0 exp

(
− πε2

4δ
(2)
0

)
. (4.19)

Combining (4.18) with (4.19), we conclude that

|{(x, y) ∈ T2 : |v(x, y)− 〈v〉
T2 |> ε2}|

≤ 2(2C0)
1/2 exp

(
− πε3

8δ
(1)
0

)
+ C0 exp

(
− πε2

4δ
(2)
0

)
,

as claimed. �

5. Avalanche principle

The avalanche principle (AP) is a device to compare the logarithm of the norm of a long

product An An−1 · · · A2 A1 of matrices to the sum of the logarithms of the norms of shorter

sections of the product. In the original formulation from [GolSch] for SL2(R)matrices the

length of the chain was limited depending on the norms of the individual matrices A j . The

same restriction applied to the extension of the AP to SLd(R) matrices in [Sch]. Later,

Duarte and Klein [DuaKle] found a different proof of the AP which does not impose

any restriction on the length of the chain. Even though the older version [GolSch] would

suffice for our purposes, we present the argument from [DuaKle] with explicit constants.

(These are not provided in [DuaKle].)

Thus, this section is devoted to making the constants in [DuaKle2, Ch. 2] effective

(we mostly follow [DuaKle2] instead of [DuaKle] for the sake of simplicity). We use

the same notation as [DuaKle2], which we first recall. Although we only need the results

for SL2(R) matrices in this paper, we aim to prove more general results which are of

independent interest.

Let GLd(R) be the general linear group of real d × d matrices.
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Definition 5.1. Given matrices g0, g1, . . . , gn−1 ∈ GLd(R), the expansion rift is the ratio

ρ(g0, g1, . . . , gn−1) := ‖gn−1 · · · g1g0‖
‖gn−1‖ · · · ‖g1‖‖g0‖

∈ (0, 1].

Given g ∈ GLd(R), let

s1(g)≥ s2(g)≥ · · · ≥ sd(g) > 0

denote the sorted singular values of g. The first singular value, s1(g), is the operator norm

s1(g)= max
x∈Rd\{0}

‖gx‖
‖x‖ := ‖g‖.

The last singular value of g is the least expansion factor of g, regarded as a linear

transformation, and it can be characterized by

sd(g)= min
x∈Rd\{0}

‖gx‖
‖x‖ = ‖g−1‖−1.

Definition 5.2. The gap (or the singular gap) of g ∈ GLd(R) is the ratio between its first

and second singular values.

gr(g) := s1(g)

s2(g)
.

Remark 5.3. If g ∈ SL2(R), then gr(g)= ‖g‖2.

Let P(Rd) denote the projective space. Points in P(Rd) are equivalence classes x̂ of

non-zero vectors x ∈ Rd . We consider the projective distance δ : P(Rd)× P(Rd)→ [0, 1],

δ(x̂, ŷ) := sin (∠(x, y)),

where ∠ is the length of the arc connecting x and y.

Definition 5.4. Given g ∈ GLd(R) such that gr(g) > 1, the most expanding direction of

g is the singular direction v̂ ∈ P(Rd) associated with the first singular value s1(g) of g.

Let v(g) be any of the two unit vector representatives of the projective point v̂(g). We set

v̂
∗(g) := v̂(g∗) and v

∗(g) := v(g∗).

Any matrix g ∈ GLd(R) maps the most expanding direction of g to the most expanding

direction of g∗, multiplying vectors by the factor s1(g)= ‖g‖:

gv(g)= ±s1(g)v
∗(g).

The matrix g also induces a projective map ĝ : P(Rd)→ P(Rd), ĝ(x̂) := ĝx , for which

one has

ĝ(v̂(g))= v̂
∗(g) and ĝ∗(v̂∗(g))= v̂(g).

THEOREM 5.5. Let n ≥ 1 and 0< ε ≤ 1
10

. Given 0< κ ≤ 1
10
ε2 and g0, g1, . . . , gn−1 ∈

GLd(R), if

(G) gr(gi )≥ κ−1 for j = 0, 1, . . . , n − 1,

(A) ρ(g j−1, g j )≥ ε for j = 1, 2, . . . , n − 1,

then, writing g j := g j−1 · · · g1g0, we have:

(i) max {δ(v̂(gn), v̂(g0)), δ(v̂
∗(gn), v̂∗(gn−1))} ≤ 3κε−1;

(ii) e−5nκ/ε2 ≤ (ρ(g0, g1, . . . , gn−1))/(ρ(g0, g1) · · · ρ(gn−2, gn−1))≤ e11nκ/ε2
.
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The proof follows the general line of argumentation in [DuaKle2], keeping track of the

effective constants throughout.

Staging the proof. The projective distance δ : P(Rd)× P(Rd)→ [0, 1] determines a

complementary angle function α : P(Rd)× P(Rd)→ [0, 1], defined by

α(x̂, ŷ) := |cos(∠(x, y))|.

Let us also introduce the algebraic operation

a ⊕ b := a + b − ab.

For properties of a ⊕ b, one may refer to [DuaKle2, Proposition 2.1].

LEMMA 5.6. Given g ∈ GLd(R) with gr(g) > 1, x̂ ∈ P(Rd) and a unit vector x ∈ x̂ ,

writing α = α(x̂, v̂(g)) we have the following statements.

(a) α ≤ ‖gx‖/‖x‖ ≤
√
α2 ⊕ gr(g)−2.

(b) δ(ĝ(x̂), v̂∗(g))≤ α−1 gr(g)−1δ(x̂, v̂(g)).

(c) The restriction of the map ĝ : P(Rd)→ P(Rd) to the disk

{x̂ ∈ P(Rd) : δ(x̂, v̂(g))≤ r}

has Lipschitz constant at most (π(r +
√

1 − r2))/(2 gr(g)(1 − r2)) with respect to

the δ-metric.

Proof. The factor π/2 in the Lipschitz constant is already explicit in [DuaKle2, proof of

Lemma 2.2]. �

COROLLARY 5.7. Given g ∈ GLd(R) such that gr(g)≥ κ−1, define

6ε := {x̂ ∈ P(Rd) : α(x̂, v̂(g))≥ ε} = B(v̂(g),
√

1 − ε2).

Given a point x̂ ∈6ε:
(a) δ(ĝ(x̂), ĝ(v̂(g)))≤ κε−1δ(x̂, v̂(g));

(b) the map ĝ|6ε → P(Rd) has Lipschitz constant at most (
√

2π/2)κε−2.

Proof. Inequality (a) follows directly from (b) of Lemma 5.6. Statement (b) follows from

(c) of Lemma 5.6 and the fact that ε +
√

1 − ε2 ≤
√

2. �

Definition 5.8. Given g, g′ ∈ GLd(R) with gr(g), g(g′) > 1, we define their lower angle

as

α(g, g′) := α(v̂∗(g), v̂(g′)).

The upper angle between g and g′ is

β(g, g′) :=
√

gr(g)−2 ⊕ α(g, g′)2 ⊕ gr(g′)−2.

LEMMA 5.9. Given g, g′ ∈ GLd(R), if gr(g), gr(g′) > 1, then

α(g, g′)≤ ρ(g, g′)≤ β(g, g′).

This lemma has the following immediate corollary. It shows how assumptions (G) and

(A) in Theorem 5.5 will be used.
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COROLLARY 5.10. Given g, g′ ∈ GLd(R), if gr(g), gr(g′)≥ κ−1 and ρ(g, g′)≥ ε, then

δ(v̂∗(g), v̂(g′))≤

√
1 − ε2

1 + 2(κ2/ε2)
.

We recall that g j := g j−1 · · · g1g0.

LEMMA 5.11. If gr(g j ) > 1 for j = 0, 1, . . . , n − 1, and gr(g j ) > 1 for j = 1, 2, . . . , n,

then
n−1∏

j=1

α(g j , g j )≤ ρ(g0, g1, . . . , gn−1)≤
n−1∏

j=1

β(g j , g j ).

Proof of Theorem 5.5. To simplify the notation, we will write c0 = 1
10

, v̂ j := v̂(g j ) and

v̂
∗
j := v̂

∗(g j ) for j = 0, 1, . . . , n − 1. We also let

g j = g∗
2n−1− j , v̂ j = v̂

∗
2n−1− j and v̂

∗
j = v̂2n−1− j for j = n, n + 1, . . . , 2n − 1.

For each i = 0, 1, . . . , 2n − 1 and j = 0, 1, . . . , 2n − i , set

v̂
j
i := ĝi+ j−1 · · · ĝi+1ĝi v̂i .

In terms of the notation above, we have ̂(gn)∗gn(v̂(g0))= v̂
2n
0 and v̂0 = v̂

1
2n−1.

By assumption (A), we have ρ(g j−1, g j )≥ ε for 1 ≤ j ≤ n − 1. Hence for n + 1 ≤
j ≤ 2n − 1,

ρ(g j−1, g j )= ρ(g∗
2n− j , g∗

2n− j−1)= ρ(g2n− j−1, g2n− j )≥ ε. (5.1)

Clearly, we also have

ρ(gn−1, gn)= ρ(gn−1, g∗
n−1)=

‖g∗
n−1gn−1‖
‖gn−1‖2

= 1. (5.2)

Therefore combining assumption (A) with (5.1) and (5.2), we have

ρ(g j−1, g j )≥ ε, for j = 1, 2, . . . , 2n − 1. (5.3)

We begin with the proof of statement (i). We will prove δ(v̂(gn), v̂(g0))≤ 3κε−1. The

other bound can be proved in exactly the same way.

First, we will show that for ε̃ = tε, t = 2/3, we have the following lemma.

LEMMA 5.12. For any 1 ≤ j ≤ 2n − 1,

ĝ j−1(B(v̂ j−1,
√

1 − ε̃2))⊆ B(v̂ j ,
√

1 − ε̃2).

Proof. Taking any x̂ ∈ B(v̂ j−1,
√

1 − ε̃2), we have

δ(x̂, v̂ j−1)= sin(∠(x̂, v̂ j−1))≤
√

1 − ε̃2.

By (a) of Corollary 5.7,

δ(ĝ j−1 x̂, ĝ j−1v̂ j−1)= δ(ĝ j−1 x̂, v̂1
j−1) = sin(∠(ĝ j−1 x̂, v̂1

j−1))

≤ κε̃−1
√

1 − ε̃2 ≤ c0ε

t

√
1 − t2ε2. (5.4)
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By (5.3) and Corollary 5.10, we have

δ(v̂∗(g j−1), v̂(g j ))= δ(v̂1
j−1, v̂ j ) = sin(∠(v̂1

j−1, v̂ j ))

≤

√
1 − ε2

1 + 2(κ2/ε2)
≤

√
1 − ε2

1 + 2c2
0ε

2
. (5.5)

Let θ1 = ∠(ĝ j−1 x̂, v̂1
j−1) and θ2 = ∠(v̂1

j−1, v̂ j ). Then

δ(ĝ j−1 x̂, v̂ j ) ≤ |cos θ1|sin θ2 + sin θ1|cos θ2|
=

√
1 − sin2 θ1 sin θ2 + sin θ1

√
1 − sin2 θ2 := f (sin θ1, sin θ2). (5.6)

With f (x, y)= y
√

1 − x2 + x
√

1 − y2, it is easy to see that both ∂ f/∂x and ∂ f/∂y have

the same sign as
√

1 − x2
√

1 − y2 − xy. Thus both ∂ f/∂x and ∂ f/∂y are positive if x2 +
y2 < 1.

By (5.4) and (5.5), we have

sin2 θ1 + sin2 θ2 ≤
c2

0ε
2

t2
(1 − t2ε2)+ 1 − ε2

1 + 2c2
0ε

2
< 1. (5.7)

Here it is enough to have that for ε̃ = tε,

c2
0

t2
+ c2

0ε
2 < 1.

Then (5.6) implies

δ(ĝ j−1 x̂, v̂ j ) ≤ f

(
c0ε

t

√
1 − t2ε2,

√
1 − ε2

1 + 2c2
0ε

2

)

<

(
1 −

c2
0ε

2

2t2
(1 − t2ε2)

)(
1 − ε2

2 + 4c2
0ε

2

)
+ c0ε

2

t

(
1 −

c2
0ε

2

2

)

<
√

1 − t2ε2 =
√

1 − ε̃2. (5.8)

(By our choice of c0 = 1
10

and t = 2
3

, the ε2 coefficients of (5.8) correspond to − 9
800

−
1
2

+ 3
20
<− 2

9
.) �

This lemma has the following intermediate corollary.

COROLLARY 5.13. For any 1 ≤ j ≤ 2n − 1 and 1 ≤ m ≤ 2n − j − 1, we have

ĝ j+m−1 · · · ĝ j ĝ j−1 B(v̂ j−1,
√

1 − ε̃2)⊆ B(v̂ j+m,
√

1 − ε̃2).

Next, let us show the following lemma.

LEMMA 5.14. For any 0 ≤ j ≤ 2n − 1, for any x̂ ∈ B(v̂ j ,
√

1 − ε̃2),

δ(ĝ2n−1 · · · ĝ j+2ĝ j x̂, v̂
2n− j
j )≤ κε̃−1

(√
2π

2
κε̃−2

)2n− j−1

.
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Proof. By Corollary 5.13, for any 0 ≤ m ≤ 2n − j − 1, we have that both the elements

ĝ j+m−1 · · · ĝ j+1ĝ j x̂ and v̂
m
j belong to B(v̂ j+m,

√
1 − ε̃2). Hence by (a) of Corollary 5.7,

we have that for m = 0,

δ(ĝ j x̂, v̂1
j )= δ(ĝ j x̂, ĝ j v̂ j )≤ κε̃−1δ(x̂, v̂ j ) < κε̃

−1. (5.9)

For 1 ≤ m ≤ 2n − j − 1, by (b) of Corollary 5.7, we have

δ(ĝ j+m ĝ j+m−1 · · · ĝ j+1ĝ j x̂, v̂m+1
j ) = δ(ĝ j+m ĝ j+m−1 · · · ĝ j+1ĝ j x̂, ĝ j+m v̂

m
j )

≤
√

2π

2
κε̃−2δ(ĝ j+m−1 · · · ĝ j+1ĝ j x̂, v̂m

j ). (5.10)

Inequalities (5.9) and (5.10) imply that

δ(ĝ2n−1 · · · ĝ j+2ĝ j x̂, v̂
2n− j
j )≤ κε̃−1

(√
2π

2
κε̃−2

)2n− j−1

, (5.11)

as desired. �

In particular, combining Corollary 5.13 with Lemma 5.14, we have the following

corollary.

COROLLARY 5.15. For any 1 ≤ j ≤ 2n − 1,

δ(v̂
2n− j+1
j−1 , v̂

2n− j
j )≤ κε̃−1

(√
2π

2
κε̃−2

)2n− j−1

.

Next, we will show the following lemma.

LEMMA 5.16. For any x̂ ∈ B(v̂0,
√

1 − ε̃2), we have

δ( ̂(gn)∗gn x̂, v̂0)≤ 3κε−1, δ(v̂2n
0 , v̂

1
2n−1)≤ 3κε−1.

Proof. By Corollary 5.15, we have

δ(v̂2n
0 , v̂

1
2n−1)≤

2n−1∑

j=1

δ(v̂
2n− j+1
j−1 , v̂

2n− j
j )≤ κε̃−1

2n−2∑

j=0

(√
2π

2
κε̃−2

) j

. (5.12)

By Lemma 5.14,

δ(ĝ2n−1 · · · ĝ1ĝ0 x̂, v̂2n
0 )≤ κε̃−1

(√
2π

2
κε̃−2

)2n−1

. (5.13)

Hence, combining (5.12) with (5.13), we conclude that

δ( ̂(gn)∗gn x̂, v̂(g0)) ≤ κε̃−1
2n−1∑

j=0

(√
2π

2
κε̃−2

) j

≤ κε̃−1

1 − (
√

2π/2)κε̃−2
≤ 1

t − (πc0/
√

2t)
κε−1 < 3κε−1. �

We are now ready to give the proof of Theorem 5.5.
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Proof of Theorem 5.5(i). Lemma 5.16 shows that ̂(gn)∗gn maps the ball B(v̂0,
√

1 − ε̃2)

into itself. By Corollary 5.7, it has contracting Lipschitz factor less than or equal

to ((
√

2π/2)κε̃−2)2n � 1. Therefore the map ̂(gn)∗gn has a unique fixed point in

B(v̂0,
√

1 − ε̃2); call it x∗. Lemma 5.16 implies that

δ(x∗, v̂(g0)) < 3κε−1. (5.14)

The claim will follow once we prove that x∗ = v̂(gn). Since v̂(gn) is a fixed point of
̂(gn)∗gn , it suffices to prove that v̂(gn) ∈ B(v̂0,

√
1 − ε̃2). (Notice that ̂(gn)∗gn has several

fixed points, one for every eigenvalue of (gn)∗gn .)

Let δ∗ := δ(v̂(gn), x∗). We will show that δ∗ = 0. For any unit vector v, we have

|〈v(gn), v〉| = 1

(s1(gn))2
|〈(gn)∗gn

v(gn), v〉| ≤
∣∣∣∣
〈
v(gn),

(gn)∗gnv

|(gn)∗gnv|

〉∣∣∣∣,

where we used that |(gn)∗gnv| ≤ (s1(g
n))2. This lifts to a relation on projective space:

δ(v̂(gn), ̂(gn)∗gn v̂)≤ δ(v̂(gn), v̂). (5.15)

We apply this with v̂ = v̂∗ as the ‘halfway point’ between v̂(gn) and x∗, that is, v̂∗ satisfies

δ(v̂(gn), v̂∗)= δ(x∗, v̂∗)= δ∗
2
.

(This v̂∗ can be constructed by following the arc that connects v̂(gn) with x∗, assuming

that v(gn) 6= x∗.)

Notice that v̂∗ ∈ B(v̂0,
√

1 − ε̃2) because (5.14) gives

δ(v̂0, v̂∗)≤ δ(v̂0, x∗)+ δ∗
2

≤ 3κ

ε
+ δ∗

2
≤ 3ε

10
+ 1

2
<

√
1 − ε̃2.

Recall that ̂(gn)∗gn maps the ball B(v̂0,
√

1 − ε̃2) into itself with Lipschitz factor less than

or equal to L0 := ((
√

2π/2)κε̃−2)2n � 1. Since ̂(gn)∗gn x∗ = x∗, we have

δ( ̂(gn)∗gn v̂∗, x∗)≤ L0δ(v̂∗, x∗)= L0
δ∗
2
.

We combine this bound and (5.15) with v̂ = v̂∗, to conclude that

δ∗ = δ(v̂(gn), x∗)≤ δ(v̂(gn), ̂(gn)∗gn v̂∗)+ δ( ̂(gn)∗gn v̂∗, x∗)≤
(

1 + L0

2

)
δ∗.

Since L0 < 1, this implies δ∗ = 0, that is, x∗ = v̂(gn). Consequently, (5.14) reads

δ(v̂(gn), v̂(g0))≤ 3κε−1 as claimed in (i) of Theorem 5.5. The other bound in (i) can

be proved in exactly the same way. �

Proof of Theorem 5.5(ii). By Lemma 5.11, we have

n−1∏

j=1

α(g j , g j )

β(g j−1, g j )
≤ ρ(g0, . . . , gn−1)∏n−1

j=1 ρ(g j−1, g j )
≤

n−1∏

j=1

β(g j , g j )

α(g j−1, g j )
. (5.16)

We will show that the factors

α(g j , g j )

β(g j−1, g j )
and

β(g j , g j )

α(g j−1, g j )
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are very close to 1, with logarithms of order κε−2. From conclusion (i), applied to the

sequence of matrices g0, g1, . . . , g j−1, we have

max{δ(v̂∗(g j ), v̂∗(g j−1)), δ(v̂(g
j ), v̂(g0))} ≤ 3κε−1 (5.17)

for all 1 ≤ j ≤ n. From (5.17), we deduce that

∣∣∣∣log
α(g j , g j )

α(g j−1, g j )

∣∣∣∣ ≤ |α(g j , g j )− α(g j−1, g j )|
min{α(g j , g j ), α(g j−1, g j )}

≤ δ(v̂∗(g j ), v̂∗(g j−1))

min{α(g j , g j ), α(g j−1, g j )}
≤ 3κε−1

min{α(g j , g j ), α(g j−1, g j )}
.

(5.18)

We estimate the minimum as follows, using (5.17) and Corollary 5.10:

min{α(g j , g j ), α(g j−1, g j )} ≥ α(g j−1, g j )− |α(g j , g j )− α(g j−1, g j )|
≥ α(g j−1, g j )− 3κε−1

≥ ε√
1 + 2 κ

2

ε2

− 3
κ

ε

≥ 2ε

3
. (5.19)

In the last step, we used κ/ε ≤ ε/10. Returning to (5.18), we have shown

∣∣∣∣log
α(g j , g j )

α(g j−1, g j )

∣∣∣∣ ≤ 9

2

κ

ε2
. (5.20)

From the definition of the upper angle β and Corollary 5.10, we also have

∣∣∣∣log
β(g j−1, g j )

α(g j−1, g j )

∣∣∣∣ ≤ log

√
1 + 2

κ2

α(g j−1, g j )
≤ log

√

1 + 2
κ2

ε2
≤ κ2

ε2
. (5.21)

Hence (5.20) and (5.21) yield

∣∣∣∣log
α(g j , g j )

β(g j−1, g j )

∣∣∣∣ ≤ 9

2

κ

ε2
+ κ2

ε2
< 5

κ

ε2
.

Together with (5.16), this implies the lower bound in (ii), that is,

e−5nκ/ε2 ≤ ρ(g0, g1, . . . , gn−1)

ρ(g0, g1) · · · ρ(gn−2, gn−1)
.

For the upper bound, we argue similarly. The only difference occurs in the analog of

(5.21), that is, the estimate of ∣∣∣∣log
β(g j , g j )

α(g j , g j )

∣∣∣∣.

To bound this quantity, we need to control the gap ratio (gr(g j ))−1. This control is

provided by the following lemma.

LEMMA 5.17. We have (gr(g j ))−1 ≤ κ ′ := 20(κ/ε).
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We postpone the proof of the lemma for now. It gives

∣∣∣∣log
β(g j , g j )

α(g j , g j )

∣∣∣∣ ≤ log

√
1 + 2

(κ ′)2

α(g j , g j )
≤ 600

κ2

ε3
.

In the second step, we used that α(g j , g j )≥ 2ε/3 by (5.19). Recalling (5.20), one has

∣∣∣∣log
β(g j , g j )

α(g j−1, g j )

∣∣∣∣ ≤ 9

2

κ

ε2
+ 600

κ2

ε3
< 11

κ

ε2
.

In the last estimate, we used that 600κ/ε ≤ 60ε ≤ 6.

By (5.16), this proves the upper bound in (ii), that is,

ρ(g0, g1, . . . , gn−1)

ρ(g0, g1) · · · ρ(gn−2, gn−1)
≤ e11nκ/ε2

.

It remains to prove Lemma 5.17. For this part, we follow [DuaKle, p. 71] and make the

constants precise. From [DuaKle, Proposition 2.28], we see that

(gr(g j ))−1 = ‖(Dĝ j )
v̂(g j )‖.

Where (Dĝ j )
v̂(g j ) is the derivative of ĝ j : P(Rd)→ P(Rd), evaluated at v̂(g j ). The norm

of this derivative is bounded by the Lipschitz constant in a neighborhood of v̂(g j ). Since

the Lipschitz constant is at most L j , with L := (
√

2π/2)κε̃−2, everywhere on the ball

B(v̂0,
√

1 − ε̃2), we immediately obtain the bound (gr(g j ))−1 ≤ L j . However, this is not

good enough for our purposes (note that L is an order-one quantity in general).

We may improve the estimate as follows. Applying statement (i) of the theorem with

n = j , we obtain that

δ(v̂(g j ), v̂(g0)) < 3
κ

ε
.

Now, a calculation based on [DuaKle, Proposition 2.28] shows that

‖(Dĝ0)v̂(g j ) − (Dĝ0)v̂(g0)
‖ ≤ 12π

κ

ε

and therefore

‖(Dĝ0)v̂(g j )‖ ≤ ‖(Dĝ0)v̂(g0)
‖ + 12π

κ

ε
= gr(g0)

−1 + 12π
κ

ε
≤ κ + 12π

κ

ε

≤
(

12π + 1

10

)
κ

ε
.

Finally, we apply the chain rule and estimate the derivative of the product g j−1 . . . g1 by

its Lipschitz constant L j−1, which satisfies L j−1 ≤ L ≤ 9π/40
√

2 for j ≥ 2. Therefore,

(gr(g j ))−1 = ‖(Dĝ j )
v̂(g j )‖ ≤ ‖(Dĝ j−1 . . . ĝ1)v̂(g j )g‖‖(Dĝ0)v̂(g j )‖

≤ L

(
12π + 1

10

)
κ

ε
< 20

κ

ε
.

This proves Lemma 5.17 and hence completes the proof of Theorem 5.5. �
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6. Herman’s regularization

6.1. Monodromy matrices. One has T n
ω (x, y)= (x + ny + (n(n − 1)/2)ω, y + nω)

for any positive integer n, where T is the skew shift with frequency ω. Denote the

projection of T2 onto the first coordinate by P , that is, P(x, y)= x .

We consider the Schrödinger operator

(Hλ,ω,x,yψ)n = ψn+1 + ψn−1 + 2λ cos (2πP(T n
ω (x, y)))ψn

with λ > 0. This equation has the cocycle reformulation
(
ψn+1

ψn

)
=

(
E − 2λ cos (2πP(T n

ω (x, y))) −1

1 0

) (
ψn

ψn−1

)

=: M(λ, E; T n
ω (x, y))

(
ψn

ψn−1

)
. (6.1)

Define the transfer matrices Mn(λ, E; x, y) to be

Mn(λ, E; x, y)=





1∏

j=n

M(λ, E; T j
ω (x, y)), n ≥ 1,

Id, n = 0,

(M−n(λ, E; T n+1
ω (x, y)))−1, n < 0.

(6.2)

Then (
ψn+1

ψn

)
= Mn(E; x, y)

(
ψ1

ψ0

)
.

The following function on T2 plays a fundamental role in our analysis:

un(λ, E; x, y) := 1

n
log ‖Mn(λ, E; x, y)‖

= 1

n
log

∥∥∥∥
1∏

j=n

(
E − λe2π i(x+ j y+( j ( j−1)/2)ω) − λe−2π i(x+ j y+( j ( j−1)/2)ω) −1

1 0

)∥∥∥∥.

(6.3)

Let z = e2π i x , w = e2π iy, a = eπ iω, as well as

Aλ(λ, E, z, w, a) :=
(

Ezw − λz2w2a − λa −zw

zw 0

)
. (6.4)

Then for (z, w) ∈ ∂D1 × ∂D1,

un(λ, E; x, y) = 1

n
log

∥∥∥∥∥∥

1∏

j=n

(
E − λzw j a j ( j−1) − λz−1w− j a j ( j−1) −1

1 0

)∥∥∥∥∥∥

= 1

n
log

∥∥∥∥∥∥

1∏

j=n

(
Ezw j − λz2w2 j a j ( j−1) − λa j ( j−1) −zw j

zw j 0

)∥∥∥∥∥∥

= 1

n
log

∥∥∥∥
1∏

j=n

Aλ(E, z, w j , a j ( j−1))

∥∥∥∥

=: vn(λ, E; z, w). (6.5)
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Note that vn(λ, E; z, w) is a plurisubharmonic function on C2. Herman’s regularization

refers to the transition from the first to the second line in (6.5), which removes the

singularities z−1 and w−1. Note that

vn(λ, E; 0, w)= vn(λ, E; z, 0)= log λ. (6.6)

For simplicity, we will write A instead of Aλ, since λwill be a fixed parameter within some

range. As a general rule for the arguments of the matrix function A, the complex variables

z, w will belong to some disk DR , whereas |a| = 1 and E will be real-valued within some

range. We will also keep 0< λ < 1.

6.2. Explicit bounds on the monodromy matrices. As a first step towards obtaining the

explicit constants in Definitions 2.1 and 4.1 we prove the following bounds on vn .

LEMMA 6.1. Let 0< λ < 1 and R3 ≥ 1. Define

U (λ, R3) := 1

2
log

((
λ

(
1 + 1

R2
3

)2

+ 2

R3

)2

+ 2

R2
3

)
. (6.7)

Then for any E with |E | ≤ 2 + 2λ, vn(λ, E, z, w) from (6.5) satisfies the following

estimates:

• for any w ∈ ∂D1,

vn(λ, E; z, w)≤ 2 log R3 + U (λ, R3) for all z ∈ DR3
, and

vn(λ, E; 0, w)= log λ; (6.8)

• for any (z, w) ∈ ∂D1 × DR3
, we have upper bound

vn(λ, E; z, w)≤ (n + 1) log R3 + U (λ, R3), (6.9)

and we also have vn(λ, E; z, 0)= log λ for any z ∈ ∂D1;

• for any (z, w) ∈ ∂D1 × ∂D1,

|vn(λ, E; z, w)| ≤ U (λ, 1). (6.10)

Remark 6.2. Let us note that

4U (λ, 1)≥ 2 log 6> 1. (6.11)

Proof. Clearly (6.10) follows from (6.8) with R3 = 1. We will use that for any complex-

valued matrix

‖A‖2 = ‖A∗ A‖ ≤ Tr(A∗ A).

For A as in (6.4) this means that

‖A(E, z, w, a)‖2 ≤ |Ezw − λz2w2a − λā|2 + 2|z|2|w|2

≤ (|E ||zw| + λ|zw|2 + λ)2 + 2|z|2|w|2,
whence

|vn(E; z, w)| ≤ 1

n

2n∑

j=1

log ‖A(E, z, w j , a j ( j−1))‖

≤ 1

2n

n∑

j=1

log((λ(|z|2|w|2 j + 1)+ |E ||z||w| j )2 + 2|z|2|w|2 j ). (6.12)
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For w ∈ ∂D1 and |z| ≤ R3, (6.12) yields

|vn(E; z, w)| ≤ 1

2n

n∑

j=1

log((λ(R2
3 + 1)+ |E |R3)

2 + 2R2
3)

≤ 2 log R3 + 1

2
log

((
λ

(
1 + 1

R2
3

)
+ 2 + 2λ

R3

)2

+ 2

R2
3

)

= 2 log R3 + U (λ, R3). (6.13)

This proves (6.8).

Next, we turn to (6.9). For z ∈ ∂D1 and |w| ≤ R3, (6.12) yields

|vn(E; z, w)| ≤ 1

2n

n∑

j=1

log((λ(R
2 j

3 + 1)+ |E |R j

3 )
2 + 2R

2 j

3 )

≤ (n + 1) log R3 + 1

2n

n∑

j=1

log

((
λ

(
1 + 1

R
2 j

3

)
+ (2 + 2λ)

1

R
j

3

)2

+ 2

R
2 j

3

)
.

Note that the summands are maximized at j = 1, which gives us the constant 2U (λ, R3).

Hence, in total

|vn(E; z, w)| ≤ (n + 1) log R3 + U (λ, R3),

as claimed. �

7. Long sums of skew-shift functions

In this section we establish a key large-deviation estimate on the ergodic averages of a

plurisubharmonic function, as defined above, over a long skew-shift orbit. The argument

is based on [BouGolSch, Lemma 2.6], but deviates from that reference in ways which

are essential for our purposes. The precise dependence on all parameters is made explicit

and effective. This leads to a somewhat cumbersome formulation which is, however,

absolutely necessary for the main application. We wish to point out one technical feature

of our version of this argument, namely that we only use a trivial bound on the number-

theoretic divisor function; see the constant C∗ below. We have found this to lead to the best

constants. We also remark that significant gains in the following proposition would lead

to dramatic improvements in the inductive machinery that we use to control the Lyapunov

exponent; cf. the next two sections. At this point, however, it is not clear how to obtain

such gains.

Recall that the constant B1(R, R1, R2) is as in (2.1), B3(R, R1, R2) is as in (2.2), and

B4(R), B5(R), m4, m5 are as in (8.8). In the following we will write B1, B3, B4, B5 and

omit the dependence on the radii.

PROPOSITION 7.1. Let ω = (
√

5 − 1)/2 be the golden ratio. Let v be defined as in

the beginning of §4, let C = C(R, R1, R2) be the constant as in (3.47), and impose

Definition 3.5. Let δ ∈ (0, 1/2) and δ2, δ3 > 0 be constants. Assume:

(i) C(B5 − m5)≤ K δ;

(ii) K ≥ 38;

(iii) exp (4(log K )δ2)≥ K + 1;
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(iv) 21K −(9/10)+(9/5)δ(log K )9/10+(9/5)δ2 + 4C(B4 − m4)≤ K δ(log K )δ2 .

Then for any positive parameter C2 > 0, we have

∣∣∣∣
{
(x, y) ∈ T2 :

∣∣∣∣
1

K

K∑

k=1

v ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣> ε4

}∣∣∣∣

≤ 2
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε−1
5

])

+
√

2(C(B4 − m4))
−1 K 1/5−2δ/5(log K )−1/5−2δ2/5 exp(−2(log K )δ2),

where
ε4 = C2 K −1/10+δ/5(log K )1/10+δ2/5+δ3 ,

ε5 = C−1
2 (472.5 + 3.2B3(B4 − m4)

√
C)(log K )−δ3 .

(7.1)

Before proving Proposition 7.1, we will review some background of continued

fractions.

7.1. Continued fractions. Each ω ∈ [0, 1) has the unique expansion

ω = 1

a1 + 1

a2+ 1

a3+ 1
···

, (7.2)

where ai ∈ N+. We will denote this expansion by ω = [a1, a2, . . .]. If ω ∈ Q, the

expansion is finite, while it is infinite for irrational ω.

Let ω ∈ [0, 1)\Q, and let
pn

qn

= 1

a1 + 1

a2+ 1

···+ 1
an

(7.3)

be the continued fraction approximants of ω. These approximants satisfy the following

three properties:

qn+1 = an+1qn + qn−1 with q0 := 1; (7.4)

‖kω‖T ≥ ‖qnω‖T for any qn ≤ |k|< qn+1; (7.5)

1

qn+1 + qn

≤ ‖qnω‖T ≤ 1

qn+1
. (7.6)

We are primarily interested in is the golden ratio ω = (
√

5 − 1)/2. It is well known

that ω has continued fraction expansion with ai ≡ 1 for any i ≥ 1. Then by (7.4), we have

qn+1 = qn + qn−1 with q0 = q1 = 1. Hence for any n ≥ 0, qn+1 ≤ 2qn . Then by (7.5) and

(7.6), we have the following property of the golden ratio.

PROPOSITION 7.2. The golden ratio satisfies

‖kω‖T ≥ 1

3|k| for any k 6= 0. (7.7)

The optimal bound here is ((
√

5 + 1)/2)+, but the constant 3 is sufficient. We will use

the following corollary of (7.7) repeatedly.
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COROLLARY 7.3. The golden ratio satisfies the following two properties.

• If ` is a positive integer such that ‖`ω‖T ≤ σ , then `≥ 1/(3σ).

• If `, ˜̀ are two distinct positive integers such that max (‖`ω‖T, ‖ ˜̀ω‖T)≤ σ , then |`−
˜̀| ≥ 1/(6σ).

In order to control small divisors we will rely on the following two lemmas.

LEMMA 7.4. For θ ∈ R, we have
∣∣∣∣sin

(
π

2
θ

)∣∣∣∣ ≥ ‖θ‖T. (7.8)

Proof. If θ ∈ Z + 1
2

, |sin((π/2)θ)| = sin(π/4) > 1
2

= ‖θ‖T.

If θ /∈ Z + 1
2
, then there exists a unique k ∈ Z such that θ = k + ‖θ‖T (if θ ∈ [k, k +

1
2
)), or θ = k − ‖θ‖T (if θ ∈ (k − 1

2
, k)). If k is an even number, then |sin((π/2)θ)| =

sin ((π/2)‖θ‖T)≥ ‖θ‖T, in which we used sin x ≥ (2/π)x for 0 ≤ x ≤ π/2. If k is odd,

then |sin((π/2)θ)| = cos ((π/2)‖θ‖T)≥ cos (π/4) > 1
2

≥ ‖θ‖T. �

We will also use the following two estimates.

LEMMA 7.5. For any positive integer R,

∣∣∣∣
R∑

k=1

e(k`ω)

∣∣∣∣ ≤ min

(
R,

2

2 sin (π‖`ω‖T)

)
≤ min

(
R,

1

2‖`ω‖T

)
(7.9)

and ∣∣∣∣
R∑

k=1

e

(
1

2
k`ω

)∣∣∣∣ ≤ min

(
R,

1

‖`ω‖T

)
. (7.10)

Proof. For θ /∈ Z, we have

∣∣∣∣
R∑

k=1

e(kθ)

∣∣∣∣ = min

(
R,

∣∣∣∣
e(θ)− e((k + 1)θ)

1 − e(θ)

∣∣∣∣
)

≤ min

(
R,

1

|sin(πθ)|

)
.

Then (7.9) follows from taking θ = `ω, and using sin (πx)≥ 2x for 0 ≤ x ≤ 1
2
. Inequality

(7.10) follows from taking θ = 1
2
`ω and employing (7.8). �

7.2. Proof of Proposition 7.1. Let v̂(`, y) and v̂(x, `) denote the Fourier coefficients

relative to the first and second variables, respectively, and by v̂(`1, `2) we mean the

Fourier transform in both variables. For simplicity, let us omit the dependence of

C(R, R1, R2), B3(R, R1, R2) on the radii.

First, we note the following estimate as a corollary of Lemma 3.13.

COROLLARY 7.6. For any ` 6= 0, we have

sup
x∈T

|v̂(x, `)| ≤ C

|`| (B5 − m5),

sup
y∈T

|v̂(`, y)| ≤ C

|`| (B4 − m4),

(7.11)
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and (∑

`1∈Z
|v̂(`1, `2)|2

)1/2

≤ C

|`2|
(B5 − m5) for any `2 6= 0,

(∑

`2∈Z
|v̂(`1, `2)|2

)1/2

≤ C

|`1|
(B4 − m4) for any `1 6= 0.

(7.12)

Proof. Note that (7.11) follows directly from Lemma 3.13. On the other hand,

(∑

`1∈Z
|v̂(`1, `2)|2

)1/2

= ‖v̂(·, `2)‖L2(T) ≤ sup
x∈T

|v̂(x, `2)|.

Hence, (7.12) reduces to (7.11). �

With some positive integer p1 to be determined, let

v(x, y) =
∑

|`1|≤p1

v̂(`1, y)e(`1x)+
∑

|`1|>p1

v̂(`1, y)e(`1x)

=: v1(x, y)+ ṽ1(x, y), (7.13)

where v1 and ṽ1 are the low- and high-frequency parts, respectively.

By Corollary 7.6,

sup
y∈T

‖ṽ1(·, y)‖L1(T) ≤
( ∑

|`1|>p1

sup
y∈T

|v̂(`1, y)|2
)1/2

≤ C5

( ∑

|`1|>p1

1

`2
1

)1/2

(B4 − m4)

≤
√

2C(B4 − m4)p
−1/2
1 . (7.14)

Next, we further decompose v1 into low- and high-frequency parts in the y variable.

With some positive integer p2 to be determined, let

v1(x, y) =
∑

|`1|≤p1
|`2|>p2

v̂(`1, `2)e(`1x + `2 y)+
∑

|`1|≤p1
|`2|≤p2

v̂(`1, `2)e(`1x + `2 y)

=: v2(x, y)+ v3(x, y). (7.15)

By Corollary 7.6, we have

‖v2(x, y)‖L1(T2) ≤ ‖v2(x, y)‖L2(T2) =
( ∑

|`1|≤p1,|`2|>p2

|v̂(`1, `2)|2
)1/2

≤
( ∑

`1∈Z, |`2|>p2

|v̂(`1, `2)|2
)1/2

≤
( ∑

|`2|>p2

C2

`2
2

(B5 − m5)
2

)1/2

<
√

2C(B5 − m5)p
−1/2
2 . (7.16)
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Hence, by Markov’s inequality,

∣∣∣∣
{

y ∈ T : 1

K

∫

T

∣∣∣∣
K∑

k=1

v2 ◦ T k
ω (x, y)

∣∣∣∣ dx > t

}∣∣∣∣ ≤
√

2C(B5 − m5)p
−1/2
2 t−1. (7.17)

We denote the set on the left-hand side of (7.17) by A(t).

Now let us consider v3, which will lead to small-divisor problems. By Corollary 7.6 and

the fact that v̂(0, 0)= 〈v〉, separating the cases `1 = 0, `2 = 0, and `1`2 6= 0 yields

sup
(x,y)∈T2

∣∣∣∣
1

K

K∑

k=1

v3 ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣

≤ 1

K

∑

|`1|≤p1
|`2|≤p2

|`1|+|`2|6=0

|v̂(`1, `2)|
∣∣∣∣

K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣

≤ C(B5 − m5)

K

∑

1≤|`2|≤p2

1

|`2|

∣∣∣∣
K∑

k=1

e(`2kω)

∣∣∣∣

+ C(B4 − m4)

K

∑

1≤|`1|≤p1

1

|`1|

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

))∣∣∣∣

+ 1

K

∑

1≤|`2|≤p2

∑

1≤|`1|≤p1

|v̂(`1, `2)|
∣∣∣∣

K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣.

(7.18)

We now separately consider the sums appearing on the previous three lines. First,

S1 := 1

K

∑

1≤|`2|≤p2

1

|`2|

∣∣∣∣
K∑

k=1

e(`2kω)

∣∣∣∣.

Second, by Cauchy–Schwarz,

K −1
∑

1≤|`1|≤p1

1

|`1|

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

))∣∣∣∣

≤ K −1

( ∑

1≤|`1|≤p1

1

`2
1

)1/2( ∑

1≤|`1|≤p1

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

))∣∣∣∣
2)1/2

≤ 2K −1

( ∑

1≤|`1|≤p1

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

))∣∣∣∣
2)1/2

=: S2. (7.19)
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And, finally,

K −1
∑

1≤|`2|≤p2

∑

1≤|`1|≤p1

|v̂(`1, `2)|
∣∣∣∣

K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣

≤ K −1
∑

1≤|`2|≤p2

( ∑

1≤|`1|≤p1

|v̂(`1, `2)|2
)1/2

×
( ∑

1≤|`1|≤p1

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣
2)1/2

≤ C(B5 − m5)K
−1

∑

1≤|`2|≤p2

1

|`2|

×
( ∑

1≤|`1|≤p1

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣
2)1/2

=: C(B5 − m5)S3.

Returning to (7.18), we conclude that

sup
(x,y)∈T2

∣∣∣∣
1

K

K∑

k=1

v3 ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣

≤ C(B5 − m5)S1 + C(B4 − m4)S2 + C(B5 − m5)S3. (7.20)

7.2.1. Estimate of S1. Applying (7.9) to S1, we infer that

S1 < 2
∑

1≤`2≤p2

1

`2
min

(
1,

1

2K‖`2ω‖T

)

= 2
∑

1≤`2≤p2

1{`2:‖`2ω‖T≤1/2K }
1

`2

+ 2

2 j ≤2K∑

j=1

∑

1≤`2≤p2

1{`2:2 j−1/2K<‖`2ω‖T≤2 j /2K }
1

`2
min

(
1,

1

2K‖`2ω‖T

)

=: S1,1 + S1,2. (7.21)

Estimate of S1,1.

S1,1 = 2
∑

1≤`2≤p2

1{`2:‖`2ω‖T≤1/2K }
1

`2
. (7.22)

By Corollary 7.3, if, for some `≥ 1, ‖`ω‖T ≤ 1/2K , then

`≥ 2
3

K . (7.23)

Moreover, if, for some distinct `, ˜̀ ≥ 1, max (‖`ω‖T, ‖ ˜̀ω‖T)≤ 1/2K , then

|`− ˜̀| ≥ 1
3

K . (7.24)
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By (7.22), (7.23) and (7.24), we have

S1,1 ≤ 2

b3p2/K c−1∑

`=1

3

`+ 1

1

K
<

6

K
log

3p2

K
. (7.25)

For this estimate, and from this point on, we assume that p2 ≥ K .

Estimate of S1,2.

S1,2 ≤ 1

K

2 j ≤2K∑

j=1

∑

1≤`2≤p2

1{`2:2 j−1/2K<‖`2ω‖T≤2 j /2K }
1

`2‖`2ω‖T

≤ 2

2 j ≤2K∑

j=1

∑

1≤`2≤p2

1{`2:2 j−1/2K<‖`2ω‖T≤2 j /2K }
1

2 j−1`2

. (7.26)

By Corollary 7.3, if, for some `≥ 1, ‖`ω‖T ≤ 2 j/2K , then we have

`≥ 2

2 j 3
K . (7.27)

Moreover, if, for some distinct `, ˜̀ ≥ 1, max (‖`ω‖T, ‖ ˜̀ω‖T)≤ 2 j/2K , then

|`− ˜̀| ≥ 1

2 j 3
K . (7.28)

By (7.26), (7.27) and (7.28), we have

S1,2 ≤ 2

2 j ≤2K∑

j=1

b2 j 3p2/K c−1∑

`=1

6

`+ 1

1

K

≤ 12

K

2 j ≤2K∑

j=1

log
2 j 3p2

K

≤ 12

K

(
log 2

2
(log2 K + 1)2 + (log2 K + 1) log

3p2

K

)
. (7.29)

Putting (7.21), (7.25) and (7.29) together, we have

S1 ≤ 6

K

(
log 2(log2 K + 2)2 + (2 log2 K + 3) log

3p2

K

)
. (7.30)

Henceforth we assume p2 ≥ K > 23, which allows us to simplify (7.30) into

S1 ≤ 26
log K

K
log p2. (7.31)
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7.2.2. Estimate of S2 and S3. In order to estimate S2 and S3, we use the well-known

method of Weyl differencing; cf., for example, [Mon]. As a first step,

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣
2

=
( K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

))

×
( K∑

j=1

e

(
−`1

(
j y + j ( j − 1)ω

2

)
− `2 jω

))

=
K∑

j,k=1

e

(
`1

((
y − ω

2

)
(k − j)+ ω

2
(k2 − j2)

)
+ `2ω(k − j)

)
.

Let `= k + j and m = k − j , hence `≡ m (mod 2). Let us denote by 1e the indicator

function of even numbers, and by 1o the indicator function of odd numbers; that is,

1e( j)= 1o( j + 1)=
{

1 if j is even,

0 if j is odd.

Then

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣
2

=
K−1∑

m=1−K

2K−|m|∑

`=2+|m|
1e(m)1e(`)e

(
`1m

(
y + (`− 1)ω

2

)
+ `2mω

)

+
K−1∑

m=1−K

2K−|m|∑

`=2+|m|
1o(m)1o(`)e

(
`1m

(
y + (`− 1)ω

2

)
+ `2mω

)
, (7.32)

in which, by (7.9), with m = 2m̃ and `= 2 ˜̀,
∣∣∣∣

K−1∑

m=1−K

2K−|m|∑

`=2+|m|
1e(m)1e(`)e

(
`1m

(
y + (`− 1)ω

2

)
+ `2mω

)∣∣∣∣

=
∣∣∣∣

b(K−1)/2c∑

m̃=−b K−1
2 c

K−|m̃|∑

˜̀=1+|m̃|

e

(
`1m̃

(
2y + (2 ˜̀ − 1)ω

)
+ 2`2m̃ω

)∣∣∣∣

≤ K + 2

b(K−1)/2c∑

m̃=1

min

(
K − 2m̃,

1

2‖2`1m̃ω‖T

)

≤ K + 2K

b(K−1)/2c∑

m̃=1

min

(
1,

1

2K‖2`1m̃ω‖T

)
, (7.33)
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and with m = 2m̃ − 1, `= 2 ˜̀ − 1,

∣∣∣∣
K−1∑

m=1−K

2K−|m|∑

`=2+|m|
1o(m)1o(`)e

(
`1m

(
y + (`− 1)ω

2

)
+ `2mω

)∣∣∣∣

≤ 2

K−1∑

m=1

∣∣∣∣
2K−|m|∑

`=2+|m|
1o(m)1o(`)e

(
`1m

(
y + (`− 1)ω

2

)
+ `2mω

)∣∣∣∣, (7.34)

which is further equal to

2

bK/2c∑

m̃=1

∣∣∣∣
K−m̃+1∑

˜̀=m̃+1

e(`1(2m̃ − 1)(y + ˜̀ω)+ `2(2m̃ − 1)ω)

∣∣∣∣

≤ 2

bK/2c∑

m̃=1

min

(
K − 2m̃ + 1,

1

2‖2`1m̃ω‖T

)

≤ 2K

bK/2c∑

m̃=1

min

(
1,

1

2K‖2`1m̃ω‖T

)
.

Plugging the estimates of (7.33) and (7.34) into (7.32) yields

∣∣∣∣
K∑

k=1

e

(
`1

(
ky + k(k − 1)ω

2

)
+ `2kω

)∣∣∣∣
2

≤ K + 4K

bK/2c∑

m=1

min

(
1,

1

2K‖2`1m̃ω‖T

)
.

Hence we have

S2 ≤ 2

K

(
2p1 K + 4K

∑

1≤|`1|≤p1

bK/2c∑

m=1

min

(
1,

1

2K‖2`1mω‖T

))1/2

≤ 2

K

(
2p1 K + 8K

p1∑

`1=1

bK/2c∑

m=1

min

(
1,

1

2K‖2`1mω‖T

))1/2

≤ 2

K

(
2p1 K + 8K C∗

p1 K

p1 K∑

j=1

min

(
1,

1

2K‖ jω‖T

))1/2

, (7.35)

and similarly,

S3 ≤ 2

K
(log (p2)+ 1)

(
2p1 K + 8K C∗

p1 K

p1 K∑

j=1

min

(
1,

1

2K‖ jω‖T

))1/2

. (7.36)

The constant C∗
p1 K comes from over-counting.

Next, we will need to bound C∗
p1 K and

∑p1 K

j=1 min (1, 1/(2K‖ jω‖T)) separately.

Estimate of C∗
p1 K . We first note the following simple bound on C∗

p1 K :

C∗
p1 K ≤ min(p1, τ

∗(p1 K )), (7.37)

where τ ∗(p1 K ) := max1≤n≤p1 K τ(n) with τ(n) be the divisor function of n. Standard

divisor bound yields the following estimates.
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LEMMA 7.7.

τ ∗(p1 K )≤
{
(p1 K )1.066 02/(log log(p1 K )),

C(ε)(p1 K )ε .
(7.38)

The second inequality above holds for any integer p1 K ≥ 1 with explicit constants C( 1
2
)=

2 and C( 1
8
)= 42 000. It also holds for p1 K ≤ 327 680 000 with constant C( 1

50
)= 702.

Combining (7.37) with Lemma 7.7, we have that for any 0 ≤ α ≤ 1,

C∗
p1 K ≤ (C(ε))α(p1 K )αε p1−α

1 . (7.39)

We will only use the case where α = 0, but we keep this as a reference for the sake of

completeness.

Estimate of
∑p1 K

`=1 min (1, 1/(2K‖`ω‖T)).
In analogy with (7.21), we will split the term

∑p1 K

`=1 min (1, 1/(2K‖`ω‖T)) appearing

in (7.36) as follows:

p1 K∑

`=1

min

(
1,

1

2K‖`ω‖T

)

=
p1 K∑

`=1

1{`:‖`ω‖T<1/2K } +
2 j<2K∑

j=1

p1 K∑

`=1

1{`:2 j−1/2K≤‖`ω‖T< 2 j

2K
}

1

2K‖`ω‖T

≤
p1 K∑

`=1

1{`:‖`ω‖T<1/2K } +
2 j<2K∑

j=1

p1 K∑

`=1

1{`:2 j−1/2K≤‖`ω‖T<2 j /2K }
1

2 j−1

=: S4 + S5. (7.40)

By Corollary 7.3, if, for some `≥ 1, ‖`ω‖T < 2 j/2K , then

`≥ 2

2 j 3
K . (7.41)

By Corollary 7.3, if, for some distinct `, ˜̀ ≥ 1, max (‖`ω‖T, ‖ ˜̀ω‖T) < 2 j/K , then

|`− ˜̀| ≥ 1

2 j 3
K . (7.42)

Combining (7.41) with (7.42), we have

S4 ≤ 3p1 (7.43)

and

S5 ≤
2 j<2K∑

j=1

6p1 ≤ 6(log2 K + 1)p1. (7.44)

In view of (7.35), (7.36), (7.40), (7.43) and (7.44) together, one has

S2 <
2

K
(2p1 K + 24p1 K C∗

p1 K (2 log2 K + 3))1/2

< 8
√

3(C∗
p1 K )

1/2 p
1/2
1 K −1/2(log2 K + 2)1/2

< 20(C∗
p1 K )

1/2 p
1/2
1 K −1/2(log K )1/2 for K ≥ 23, (7.45)
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and

S3 < 8
√

3(C∗
p1 K )

1/2(log (p2)+ 1)p
1/2
1 K −1/2(log2 K + 2)1/2

< 25(log p2)(C
∗
p1 K )

1/2 p
1/2
1 K −1/2(log K )1/2 for p2 ≥ K ≥ 38. (7.46)

7.2.3. Combining S1, S2, S3. Taking p1 = bK δ1c and p2 = be4(log K )δ2 c, the estimate

of S1, namely (7.31), becomes

S1 < 105K −1(log K )δ2+1. (7.47)

Recall from the foregoing that we impose the conditions K ≥ 38 and exp(4(log K )δ2)≥
K + 1; note that these are our assumptions (ii) and (iii). The estimate of S2, (7.45),

becomes

S2 < 20(C∗
K 1+δ1 )

1/2 K −(1−δ1)/2(log K )1/2. (7.48)

The estimate of S3, (7.46), becomes

S3 < 100(C∗
K 1+δ1 )

1/2 K −(1−δ1)/2(log K )δ2+1/2. (7.49)

Combining (7.47), (7.48), (7.49), (7.20) with our assumption (i) that C(B5 − m5)≤ K δ

yields

sup
(x,y)∈T2

∣∣∣∣
1

K

K∑

k=1

v3 ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣

< 105K −1+δ(log K )δ2+1 + 20C(B4 − m4)(C
∗
K 1+δ1 )

1/2 K −(1−δ1)/2(log K )1/2

+ 100(C∗
K 1+δ1 )

1/2 K −(1−δ1)/2+δ(log K )δ2+1/2. (7.50)

By (7.39), with α = 0, we have

sup
(x,y)∈T2

∣∣∣∣
1

K

K∑

k=1

v3 ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣

< 105K −1+δ(log K )δ2+1 + 20C(B4 − m4)K
−(1−2δ1)/2(log K )1/2

+ 100K −(1−2δ1)/2+δ(log K )δ2+1/2.

By condition (iv) in our statement of the proposition, we have

21K −1/2+δ−δ1(log K )δ2+1/2 + 4C(B4 − m4)≤ K δ(log K )δ2 ,

which implies

sup
(x,y)∈T2

∣∣∣∣
1

K

K∑

k=1

v3 ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣< 105K −(1−2δ1)/2+δ(log K )δ2+1/2 =: ε0. (7.51)

Let

t = C(B4 − m4)K
−(1/2)δ1 (7.52)

in (7.17). Then for any y /∈ A(t), with (7.14) we have

∥∥∥∥
1

K

K∑

k=1

(ṽ1 + v2) ◦ T k
ω (·, y)

∥∥∥∥
L1(T)

≤
√

2C(B4 − m4)K
−(1/2)δ1 + t

= (
√

2 + 1)C(B4 − m4)K
−(1/2)δ1 =: ε1. (7.53)
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Recall that v = ṽ1 + v2 + v3. For any fixed y /∈ A(t), consider the subharmonic

function

vy(z) := 1

K

K∑

k=1

v ◦ T k
ω (z, y) with z ∈ DR .

This subharmonic function will satisfy the bounds

vy(z)≤ B4 for all z ∈ DR and vy(0)≥ m4.

By (7.51) and (7.53), we know vy(x)− 〈v〉 can be decomposed into two parts, one with

small L∞ norm ε0, the other with small L1 norm ε1. We will choose δ1 such that ε0 ∼ √
ε1,

in the sense that

K −(1−2δ1)/2+δ(log K )δ2+1/2 = K −(1/4)δ1 , (7.54)

which yields

K δ1 = K 2/5−4δ/5

(log K )2/5+4δ2/5
with 0< δ1 <

2

5
− 4δ

5
. (7.55)

Then

ε0 ≤ 105K −1/10+δ/5(log K )1/10+δ2/5 (7.56)

and

ε1 = (
√

2 + 1)C(B4 − m4)K
−1/5+2δ/5(log K )1/5+2δ2/5. (7.57)

Applying Corollary 3.2 to vy − 〈v〉, we obtain that for

ε4 = C2 K −1/10+δ/5(log K )1/10+δ2/5+δ3 (7.58)

with some constant C2 > 0,

sup
y /∈A(t)

∣∣∣∣
{

x ∈ T :
∣∣∣∣

1

K

K∑

k=1

v ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣> ε4

}∣∣∣∣

≤ 2
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε2δ
−1
0

])
, (7.59)

where

δ0 =
(

472.5 + 2B3(B4 − m4)

√
(
√

2 + 1)C
)

K −1/10+δ/5(log K )1/10+δ2/5,

and hence

ε4δ
−1
0 = C2

(
472.5 + 2B3(B4 − m4)

√
(
√

2 + 1)C
)−1

(log K )δ3

≥ C2

(
472.5 + 3.2B3(B4 − m4)

√
C

)−1
(log K )δ3 =: ε−1

5 .
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Inequality (7.59), together with (7.52) and (7.17), implies

∣∣∣∣
{
(x, y) ∈ T2 :

∣∣∣∣
1

K

K∑

k=1

v ◦ T k
ω (x, y)− 〈v〉

∣∣∣∣> ε4

}∣∣∣∣

≤ 2
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε−1
5

])
+ |A(t)|

≤ 2
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε−1
5

])

+
√

2(C(B4 − m4))
−1 K 1/5−2δ/5(log K )−1/5−2δ2/5 exp (−2(log K )δ2),

as claimed.

8. Multi-scale estimates

In this section we commence with the inductive arguments in our multi-scale Lyapunov

exponent machinery. In analogy with [GolSch, Bou1], we proceed by combining the large-

deviation estimates with the avalanche principle. We begin with the basic induction step,

which provides a lower bound for the Lyapunov exponent at a large scale from information

on the Lyapunov exponents at smaller scales, in combination with level-set estimates. In

Proposition 8.4, which is the main result of this section, we will also invoke the quantitative

control on the Birkhoff averages over the skew shift from the previous section in order to

derive large-deviation estimates at the larger scale.

The following subsection will serve as an abstract multi-scale scheme to provide a lower

bound on the (maximal) Lyapunov exponent, assuming large-deviation estimates. In our

application to the skew shift, the large-deviation estimates will come from Proposition 7.1;

see §8.2.

8.1. Abstract multi-scale scheme.

8.1.1. Lyapunov exponent. Let (X, µ, S) be an ergodic dynamical system. A linear

cocycle over (X, µ, S) is a skew-product map

FA : X × Rd → X × Rd ,

given by

X × Rd 3 (x, v)→ (Sx, A(x)v) ∈ X × Rd ,

where

A : X → SLd(R)

is a measurable function.

The forward iterates Fn
A of a linear cocycle FA are given by Fn

A(x, v)= (Sn x, Mn(x)v),

where

Mn(x) := A(Sn−1x) · · · A(Sx)A(x), n ∈ N.

A linear cocycle A is said to be µ-integrable if
∫

X

log ‖A(x)‖ dµ <+∞.
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Due to the fact that norms are submultiplicative with respect to matrix products, the

sequence of functions log ‖A(n)(x)‖ are subadditive. The Fürstenberg–Kesten theorem (or

Kingman’s ergodic theorem) implies that for a µ-integrable linear cocycle, the µ-almost

everywhere limit

L(A) := lim
n→∞

1

n
log ‖Mn(x)‖

exists and is called the (maximal) Lyapunov exponent of A. Moreover,

L(A) := lim
n→∞

∫

X

1

n
log ‖Mn(x)‖µ(dx)= inf

n≥1

∫

X

1

n
log ‖Mn(x)‖µ(dx).

We point out the since A ∈ SLd(R), we have ‖Mn(x)‖ ≥ 1, hence L(A)≥ 0.

8.1.2. Inductive scheme. Let us denote

Ln(A) :=
∫

X

1

n
log ‖Mn(x)‖ dµ(x).

For simplicity, we may omit the dependence of L(A), Ln(A) on A, and simply write L

and Ln .

Let us further assume that there exists a constant C3 > 0, such that

1

n
log ‖Mn(x)‖ ≤ C3 <+∞, (8.1)

for µ-almost every x , uniformly in n. We point out that in our application to the skew-shift

model, C3 can be taken as U (λ, 1); see (6.5) and (6.10).

Definition 8.1. In our multi-scale scheme, we quantify the failure of the Fürstenberg–

Kesten theorem via the sets

Bn :=
{

x ∈ X :
∣∣∣∣
1

n
log ‖Mn(x)‖ − Ln

∣∣∣∣>
1

10
Ln

}
.

The lemma below shows how to inductively obtain estimates of L N at a larger scale N ,

based on information at a smaller scale n. The key ingredient is the avalanche principle,

Theorem 5.5.

LEMMA 8.2. Let n, N/n ∈ N be positive integers, and δ ∈ (0, 1/2). Let C3 be as in (8.1).

Assume the following three conditions:

(a) nLn ≥ 7;

(b) Ln − L2n ≤ 1
8

Ln;

(c) max (µ(Bn), µ(B2n))≤ N−12/5+4δ/5.

Then we have

L N ≥ Ln −
(

2 − 2n

N

)
(Ln − L2n)− 11

n
e−(1/2)nLn − 8C3 N−7/5+4δ/5 (8.2)

and

L N − L2N ≤ n

N
(Ln − L2n)+ 22

n
e−(1/2)nLn + 24C3 N−7/5+4δ/5. (8.3)
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8.1.3. Multi-scale scheme. The following lemma shows how information on a

sequence of larger and larger scales determines the limit L .

LEMMA 8.3. Let δ ∈ (0, 1/2) be a constant, and C3 be as in (8.1). Let {Nm}∞m=0 ∈ N be

a sequence of positive integers, such that 10 ≤ Nm/Nm−1 ∈ N for 1 ≤ m. Assume that

the following hold for an integer j ≥ 0 (note that (2)–(4) below are empty conditions for

j = 0):

(1) N0L N0
≥ 7 and L N0

− L2N0
≤ 1

8
L N0

;

(2)
∑ j−1

m=0(1/Nm)e
−(1/2)Nm L Nm < 1

512
L N0

;

(3)
∑ j

m=1 N
−7/5+4δ/5
m < (1/1280C3)L N0

;

(4) max (µ(BNm ), µ(B2Nm ))≤ N
−12/5+4δ/5
m+1 , for 0 ≤ m ≤ j − 1.

Then we have the following four estimates for j ≥ 0.

First,

L N j
≥ L N0

−
(

2 − 2N0

N j

)
(L N0

− L2N0
)

−
j∑

m=1

(
11

Nm−1
e
−(1/2)Nm−1 L Nm−1 + 8C3 N

−7/5+4δ/5
m

)

−
j−1∑

m=1

(
2 − 2Nm

N j

)(
22

Nm−1
e
−(1/2)Nm−1 L Nm−1 + 24C3 N

−7/5+4δ/5
m

)
, (8.4)

in which
∑0

m=1 =
∑−1

m=1 :≡ 0.

Second,

L N j
− L2N j

≤ N0

N j

(L N0
− L2N0

)

+
j∑

m=1

Nm

N j

(
22

Nm−1
e
−(1/2)Nm−1 L Nm−1 + 24C3 N

−7/5+4δ/5
m

)
, (8.5)

in which
∑0

m=1 :≡ 0.

Third,

L N j
− L2N j

≤ 1
8

L N j
. (8.6)

Fourth,

L2N j
≥ 1

2
L N0

and N j L N j
≥ 7. (8.7)

8.2. Application to the skew-shift model. The two cornerstones of the abstract multi-

scale scheme are:

• initial scale N0 estimates, including (1) N0L N0
≥ 7, (2) L N0

− L2N0
≤ 1

8
L N0

as well as

(3) large-deviation estimates of µ(BN0
) and µ(B2N0

);

• large-deviation estimates of µ(BN j
) and µ(B2N j

) for j ≥ 1.

In this subsection, we will present machinery that inductively provides large-deviation

estimates for scales N j , j ≥ 1, thus reducing the problem to the initial scale only. The key

ingredients are the avalanche principle and the quantitative control of the ergodic averages

of plurisubharmonic functions over a skew-shift orbit, Proposition 7.1.
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Let us recall some notation from §6. We have un(λ, E; x, y)=
(1/n) log ‖Mn(λ, E; x, y)‖, and vn(λ, E; z, w) is the complexification of un from

T2 to C2, as in (6.5). The constant U (λ, 1), as in (6.10), is a uniform (in n and E) L∞

upper bound on un(λ, E; x, y). For simplicity, we will omit the dependence of un(x, y),

vn(z, w), log ‖Mn(x, y)‖ and Ln on λ, E , since λ will be fixed, and our estimates are

uniform in E ∈ [−2 − 2λ, 2 + 2λ]. Recall also from Lemma 6.1 with R3 = R that the

bounds with respect to vn satisfy

B4 − m4 = 2 log R + U (λ, R)− log λ,

B
(n)
5 − m

(n)
5 = (n + 1) log R + U (λ, R)− log λ.

(8.8)

Let us finally also recall the constants B3(R, R1, R2) as in (2.2), C(R, R1, R2) as in (3.47),

and C0(R, R1, R2) is as in (3.2). In the following we will write B3, C, C0 for simplicity.

PROPOSITION 8.4. Let ω = (
√

5 − 1)/2 be the golden ratio. Let δ ∈ (0, 1/2) and

δ2, δ3, δ4, C2, C4, C5 > 0

be constants. Let n, N ∈ N be positive integers and assume that n divides N. In addition

to conditions (a)–(c) in Lemma 8.2 and Definition 3.5, assume further that the following

properties hold for both Ñ = N and 2N:

(I) C((2n + 1) log R + U (λ, R)− log λ)≤ Ñ δ;

(II) Ñ ≥ 38;

(III) exp (4(log Ñ )δ2)≥ Ñ + 1;

(IV) 21Ñ−9/10+9/5δ(log Ñ )9/10+9/5δ2 + 4C(B4 − m4)≤ Ñ δ(log Ñ )δ2 ;

(V) 2nÑ−1(Ln − L2n)+ 8U (λ, 1)Ñ−7/5+4δ/5 + 5U (λ, 1)nÑ−1 <

C2 Ñ−1/10+δ/5(log Ñ )1/10+δ2/5+δ3 ;

(VI) 22n−1 exp (−nLn/2) < C2 Ñ−1/10+δ/5(log Ñ )1/10+δ2/5+δ3 ;

(VII) 4
√

2 exp(π/4[ 17
36

+ B1/(4B2
3 )− C2(472.5 + 3.2B3(B4 − m4)

√
C)−1(log Ñ )δ3 ])

≤ Ñ−7/5+4δ/5;

(VIII) 2
√

2(C(B4 − m4))
−1 Ñ 1/5−2δ/5(log Ñ )−1/5−2δ2/5 exp (−2(log Ñ )δ2)≤

Ñ−7/5+4δ/5;

(IX) Ñ > (log R + U (λ, R)− log λ)(log R)−1;

(X) C4(log Ñ )δ4 > 4;

(XI) C5(log Ñ )δ4 > C4.

Then the following holds for both Ñ = N and 2N:

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> C2C5 Ñ−1/10+δ/5(log Ñ )1/10+δ2/5+δ3+2δ4}|

≤ 2(2C0)
1/2 exp

( −πC2C4(log Ñ )δ4

144C2 + 48B3

√
2U (λ, 1)(B4 − m4)(log Ñ )−1/10−δ2/5−δ3

)

+ C0 exp

( −πC2C5(log Ñ )δ4

18C2C4 + 96B3U (λ, 1)
√

log R(log Ñ )−1/10−δ2/5−δ3−δ4

)
.

Remark 8.5. Note that our conditions (I)–(IV) correspond to (i)–(iv) of Proposition 7.1. In

particular, (I) is (i) of Proposition 7.1 with B
(2n)
5 − m

(2n)
5 given in (8.8).
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8.3. Proofs. Before proving Lemma 8.2 and Proposition 8.4, we will first give a quick

proof of Lemma 8.3 based on Lemma 8.2.

Proof of Lemma 8.3. For m ≥ 1, let us denote

αm := 11N−1
m−1e

−(1/2)Nm−1 L Nm−1 + 8C3 N
−7/5+4δ/5
m ,

βm := 22N−1
m−1e

−(1/2)Nm−1 L Nm−1 + 24C3 N
−7/5+4δ/5
m .

Note that in terms of α and β, our conditions (2) and (3) in the statement of the lemma

become
j∑

m=1

αm ≤ 11

512
L N0

+ 8

1280
L N0

= 71

2560
L N0

(8.9)

and
j∑

m=1

βm ≤ 22

512
L N0

+ 24

1280
L N0

= 79

1280
L N0

. (8.10)

Our proof is based on induction on j . Note that, for the induction base case j = 0,

inequalities (8.5), (8.6) and (8.7) follow directly from condition (1). Inequality (8.4)

follows from the fact that L N0
− L2N0

≥ 0.

Now let us suppose Lemma 8.3 holds for j = J for some J ≥ 0. Note that conditions

(2)–(4) with j = J + 1 already imply those with j = J . Hence, by our inductive

assumption, (8.4)–(8.7) hold for j = J , whence

L NJ
≥ L N0

−
(

2 − 2N0

NJ

)
(L N0

− L2N0
)−

J∑

m=1

αm −
J−1∑

m=1

(
2 − 2Nm

NJ

)
βm, (8.11)

L NJ
− L2NJ

≤ N0

NJ

(L N0
− L2N0

)+
J∑

m=1

Nm

NJ

βm, (8.12)

L NJ
− L2NJ

≤ 1
8

L NJ
(8.13)

and

NJ L NJ
≥ 7. (8.14)

Note that (8.13), (8.14) and our condition (4) in the statement of the lemma with m = J

verify the conditions of Lemma 8.2 for n = NJ and N = NJ+1. Therefore Lemma 8.2

implies

L NJ+1
≥ L NJ

−
(

2 − 2NJ

NJ+1

)
(L NJ

− L2NJ
)− αJ+1 (8.15)

and

L NJ+1
− L2NJ+1

≤ NJ

NJ+1
(L NJ

− L2NJ
)+ βJ+1. (8.16)

Plugging (8.12) into (8.16), we obtain

L NJ+1
− L2NJ+1

≤ N0

NJ+1
(L N0

− L2N0
)+ NJ

NJ+1

( J∑

m=1

Nm

NJ

βm

)
+ βJ+1

= N0

NJ+1
(L N0

− L2N0
)+

J+1∑

m=1

Nm

NJ+1
βm . (8.17)

This proves (8.5) for j = J + 1.
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Plugging (8.11) and (8.12) with j = J + 1 into (8.15), we have

L NJ+1
≥ L N0

−
(

2 − 2N0

NJ

)
(L N0

− L2N0
)−

J∑

m=1

αm −
J−1∑

m=1

(
2 − 2Nm

NJ

)
βm

−
(

2 − 2NJ

NJ+1

)(
N0

NJ

(L N0
− 2L2N0

)+
J∑

m=1

Nm

NJ

βm

)
− αJ+1

= L N0
−

(
2 − 2N0

NJ+1

)
(L N0

− L2N0
)−

J+1∑

m=1

αm −
J∑

m=1

(
2 − 2Nm

NJ+1

)
βm . (8.18)

This proves (8.4) for j = J + 1.

Combining (8.17), (8.18) with the fact that 10 ≤ N j+1/N j for any j ≥ 0 yields

8(L NJ+1
− L2NJ+1

)− L NJ+1

≤ −L N0
+

(
2 + 6N0

NJ+1

)
(L N0

− L2N0
)+

J+1∑

m=1

αm +
J+1∑

m=1

(
2 + 6Nm

NJ+1

)
βm

≤ −L N0
+

(
2 + 6

10

)
(L N0

− L2N0
)+

J+1∑

m=1

αm + 8

J+1∑

m=1

βm .

Using (8.9), (8.10) and the fact that L N0
− L2N0

≤ 1
8

L N0
, we conclude that

8(L NJ+1
− L2NJ+1

)− L NJ+1
≤ − 393

2560
L N0

< 0. (8.19)

This proves (8.6) for j = J + 1.

By (8.18) and the fact that Nm+1 ≥ 10Nm for any m ≥ 0, we have

L NJ+1
≥ L N0

−
(

2 − 1

5

)
(L N0

− L2N0
)−

J+1∑

m=1

αm −
(

2 − 1

5

) J∑

m=1

βm . (8.20)

Plugging (8.9) and (8.10) with j = J + 1 into (8.20), and using that L N0
− L2N0

≤ 1
8

L N0
,

yields

L NJ+1
≥ 8143

12 800
L N0

, (8.21)

which also implies NJ L NJ
≥ 7. Inequality (8.7) with j = J + 1 then follows from (8.19)

and (8.21), indeed,

L2NJ+1
≥ 7

8
L NJ+1

≥ 7
8

× 8143
12 800

L N0
≥ 1

2
L N0

,

as desired. �

Proof of Lemma 8.2. Let Ñ = N or 2N . Let us define

B
(Ñ ) :=

(Ñ−1⋃

j=0

S− j
Bn

)
∪

(Ñ−n−1⋃

j=0

S− j
B2n

)
. (8.22)

We have the following measure estimates for B(Ñ ) by condition (c) of the statement of the

lemma:

µ(B(N ))≤ 2N − n

N 12/5−4δ/5
≤ 2N−7/5+4δ/5 and µ(B(2N ))≤ 4N−7/5+4δ/5. (8.23)
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Taking any x /∈ B(Ñ ), by our definitions of Bn and B2n , we have

e(11/10)nLn ≥ ‖Mn(S
j x)‖ ≥ e(9/10)nLn =: κ−1/2 for any 0 ≤ j ≤ Ñ − 1, (8.24)

and

‖M2n(S
j x)‖ ≥ e(9/5)nL2n for any 0 ≤ j ≤ Ñ − n − 1. (8.25)

Hence, for any 0 ≤ j ≤ Ñ − n − 1, (8.24) and (8.25) imply that

‖M2n(S
j x)‖

‖Mn(S j+n x)‖ ‖Mn(S j x)‖ ≥ exp

(
2n(L2n − Ln)− 1

5
n(Ln + L2n)

)
=: ε.

We now need to verify the assumptions of the avalanche principle, Theorem 5.5. First, by

subadditivity of log ‖Mn(x)‖, we have L2n ≤ Ln . This, together with our assumptions (a)

and (b), yields

ε = exp ( 9
5
nL2n − 11

5
nLn)≤ e−(2/5)nLn ≤ e−14/5 < 1

10
, (8.26)

and

κε−2 = exp (−2nLn + 3
5

nLn + 2
5

nL2n + 4n(Ln − L2n))≤ e−(1/2)nLn ≤ e−7/2 < 1
10
.

Applying Theorem 5.5 to x /∈ B(Ñ ), we conclude that for each 0 ≤ k ≤ n − 1,

1

Ñ

∣∣∣∣log ‖M
Ñ
(Sk x)‖ +

(Ñ−2n)/n∑

j=1

log ‖Mn(S
jn+k x)‖

−
(Ñ−2n)/n∑

j=0

log ‖M2n(S
jn+k x)‖

∣∣∣∣ ≤ 11

n
κε−2 ≤ 11

n
e−(1/2)nLn .

Summing over k ∈ [0, n − 1] and dividing by n, and finally applying the triangle inequality

yields

∣∣∣∣
1

n

n−1∑

k=0

1

Ñ
log ‖M

Ñ
(Sk x)‖ + 1

Ñ

Ñ−n−1∑

j=n

1

n
log ‖Mn(S

j x)‖

− 2

Ñ

Ñ−n−1∑

j=0

1

2n
log ‖M2n(S

j x)‖
∣∣∣∣ ≤ 11

n
e−(1/2)nLn . (8.27)

Integrating over x ∈ X , and using our definition of C3 (8.1), we infer due to (8.23) that
∣∣∣∣L N + N − 2n

N
Ln − 2

N − n

N
L2n

∣∣∣∣ ≤ 11

n
e−(1/2)nLn + 4C3µ(B

(N ))

<
11

n
e−(1/2)nLn + 8C3 N−7/5+4δ/5 (8.28)

and ∣∣∣∣L2N + N − n

N
Ln − 2N − n

N
L2n

∣∣∣∣ ≤ 11

n
e−(1/2)nLn + 4C3µ(B

(2N ))

<
11

n
e−(1/2)nLn + 16C3 N−7/5+4δ/5. (8.29)
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From (8.28), we conclude that

L N ≥ Ln −
(

2 − 2n

N

)
(Ln − L2n)− 11

n
e−(1/2)nLn − 8C3 N−7/5+4δ/5.

This proves (8.2).

Taking the difference between (8.28) and (8.29), we obtain

L N − L2N ≤ 22

n
e−(1/2)nLn + 24C3 N−7/5+4δ/5 + n

N
(Ln − L2n).

This proves (8.3). �

Proof of Proposition 8.4. This will be a continuation of the proof of Lemma 8.2. Note that

all the constants C3 will be replaced by U (λ, 1). Let Ñ be either N or 2N . Let us consider

the first term in (8.27):

∣∣∣∣
1

n

n−1∑

k=0

1

Ñ
log ‖M

Ñ
(T k
ω (x, y))‖ − 1

Ñ
log ‖M

Ñ
(x, y)‖

∣∣∣∣

≤ 1

nÑ

n−1∑

k=0

|log ‖M
Ñ
(T k
ω (x, y))‖ − log ‖M

Ñ
(x, y)‖|

≤ 1

nÑ

n−1∑

k=0

(log ‖Mk(x, y)+ log ‖Mk(T
Ñ
ω (x, y))‖)

≤ 1

nÑ

n−1∑

k=0

2kU (λ, 1)

≤ U (λ, 1)n

Ñ
. (8.30)

Hence (8.27) leads to

∣∣∣∣
1

Ñ
log ‖M

Ñ
(x, y)‖ + 1

Ñ

Ñ−n−1∑

j=n

1

n
log ‖Mn(T

j
ω (x, y))‖

− 2

Ñ

Ñ−n−1∑

j=0

1

2n
log ‖M2n(T

j
ω (x, y))‖

∣∣∣∣ ≤ 11

n
e−(1/2)nLn + U (λ, 1)n

Ñ
, (8.31)

which holds for (x, y) /∈ B(Ñ ). This implies

∣∣∣∣
1

Ñ
log ‖M

Ñ
(x, y)‖ + 1

Ñ

Ñ−1∑

j=0

1

n
log ‖Mn(T

j
ω (x, y))‖

− 2

Ñ

Ñ−1∑

j=0

1

2n
log ‖M2n(T

j
ω (x, y))‖

∣∣∣∣ ≤ 11

n
e−(1/2)nLn + 5U (λ, 1)n

Ñ
. (8.32)
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Now we apply Proposition 7.1 to vn and v2n with K = Ñ . Note that conditions (I)–(IV)

ensure the applicability of that proposition. Therefore, following (7.1), we define

ε4 = C2 Ñ−1/10+δ/5(log Ñ )1/10+δ2/5+δ3 ,

ε5 = C−1
2

(
472.5 + 3.2B3(B4 − m4)

√
C

)
(log Ñ )−δ3 .

(8.33)

For ñ = n or 2n, denote

Cñ :=
{
(x, y) ∈ T2 :

∣∣∣∣
1

Ñ

Ñ−1∑

j=0

vñ ◦ T j
ω (x, y)− L ñ

∣∣∣∣> ε4

}
.

Then Proposition 7.1 implies that

max (|Cn|, |C2n|)≤ 2
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε−1
5

])

+
√

2(C(B4 − m4))
−1 Ñ 1/5−2δ/5(log Ñ )−1/5−2δ2/5 exp (−2(log Ñ )δ2). (8.34)

Let

E := Cn ∪ C2n ∪ B
(Ñ ).

For (x, y) /∈ E , by (8.32) we have that∣∣∣∣
1

Ñ
log ‖M

Ñ
(x, y)‖ + Ln − 2L2n

∣∣∣∣ ≤ 11

n
e−(1/2)nLn + 5U (λ, 1)n

Ñ
+ 2ε4. (8.35)

Together with (8.28), this implies that for any (x, y) /∈ E ,∥∥∥∥1Ec (x, y)

(
1

Ñ
log ‖M

Ñ
(x, y)‖ − L

Ñ

)∥∥∥∥
L∞(T2)

≤ |L
Ñ

+ Ln − 2L2n| + 11

n
e−(1/2)nLn + 5U (λ, 1)n

Ñ
+ 2ε4

≤ 2n

Ñ
(Ln − L2n)+ 22

n
e−(1/2)nLn + 8U (λ, 1)Ñ−7/5+4δ/5 + 5U (λ, 1)n

Ñ
+ 2ε4

=: ε0. (8.36)

Recall (8.23) states that

|B(N )|< 2N−7/5+4δ/5 and |B(2N )| ≤ 4N−7/5+4δ/5.

Since δ > 0, this clearly leads to

|B(Ñ )| ≤ 217/5−4δ/5 Ñ−7/5+4δ/5 < 16Ñ−7/5+4δ/5. (8.37)

Combining (8.37) with (8.34), we obtain∥∥∥∥1E (x, y)

(
1

Ñ
log ‖M

Ñ
(x, y)‖ − L

Ñ

)∥∥∥∥
L1(T2)

≤ U (λ, 1)|Cn ∪ C2n ∪ B
(Ñ )|

≤ U (λ, 1)

{
4
√

2 exp

(
π

4

[
17

36
+ B1

4B2
3

− ε−1
5

])
+ 16Ñ−7/5+4δ/5

+ 2
√

2(C(B4 − m4))
−1 Ñ 1/5−2δ/5(log Ñ )−1/5−2δ2/5 exp (−2(log Ñ )δ2)

}
=: ε1.

(8.38)
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By our conditions (V)–(VIII), we have

ε0 ≤ 4ε4,

ε1 ≤ 18U (λ, 1)Ñ−7/5+4δ/5 =: 18U (λ, 1)Ñη.
(8.39)

Indeed, note that the right-hand sides of (V) and (VI) are precisely ε4, which allows us to

bound ε0 by 4ε4. On the other hand, (VII) and (VIII) simply state that the sum of the first

two terms in the braces defining ε1 are bounded by the third term, 2Ñ−7/5+4δ/5.

Let
ε3 := C4ε4(log Ñ )δ4 ,

ε2 := C5ε4(log Ñ )2δ4 ,

r = 1 − 2δ

7 − 4δ
∈ (0, 1).

(8.40)

Our conditions (X) and (XI) ensure that ε0 ≤ 4ε4 < ε3 < ε2. Recall that B4 − m4 and

B
(Ñ )
5 − m

(Ñ )
5 are as in (8.8). Therefore, by our condition (IX) we have

(B
(Ñ )
5 − m

(Ñ )
5 )Ñ−1 < 2 log R. (8.41)

Applying Lemma 4.2 to v
Ñ

, and taking (8.41) into account, we obtain

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> ε2}|

≤ 2(2C0)
1/2 exp

(
−π

(
36ε0 + 16B3

√
εr

1(B4 − m4)

)−1

ε3

)

+ C0 exp

(
−π

(
18ε3 + 16B3

√
U (λ, 1)

√
ε1−r

1 (B
(Ñ )
5 − m

(Ñ )
5 )

)−1

ε2

)

≤ 2(2C0)
1/2 exp

(
−π

(
36ε0 + 16B3

√
εr

1(B4 − m4)

)−1

ε3

)

+ C0 exp

(
−π

(
18ε3 + 16B3

√
U (λ, 1)

√
2ε1−r

1 Ñ log R

)−1

ε2

)
. (8.42)

Note that we changed B6 into U (λ, 1) in this expression. Inserting our estimates of ε0, ε1

(see (8.39)) and choices of ε2, ε3, r (see (8.40)) into (8.42), we arrive at

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> C5ε4(log Ñ )2δ4 }|

≤ 2(2C0)
1/2 exp

( −πC4ε4(log Ñ )δ4

144ε4 + 16B3

√
(18U (λ, 1))r Ñηr (B4 − m4)

)

+ C0 exp

( −πC5ε4(log Ñ )2δ4

18C4ε4(log Ñ )δ4 + 16B3

√
U (λ, 1)

√
2(18U (λ, 1))1−r Ñη(1−r)+1 log R

)
.

Using (6.11), and 0 ≤ r ≤ 1, we estimate

(18U (λ, 1))r ≤ 18U (λ, 1) and (18U (λ, 1))1−r ≤ 18U (λ, 1),
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respectively. Hence we have

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> C5ε4(log Ñ )2δ4}|

≤ 2(2C0)
1/2 exp

( −πC4ε4(log Ñ )δ4

144ε4 + 48B3

√
2U (λ, 1)Ñηr (B4 − m4)

)

+ C0 exp

( −πC5ε4(log Ñ )2δ4

18C4ε4(log Ñ )δ4 + 96B3U (λ, 1)

√
Ñη(1−r)+1 log R

)
.

Plugging in our choice of ε4 (see (8.33)), and noting that the powers of Ñ in numerators

and denominators cancel out due to our choice of r , we infer that

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> C5ε4(log Ñ )2δ4}|

≤ 2(2C0)
1/2 exp

( −πC2C4(log Ñ )1/10+δ2/5+δ3+δ4

144C2(log Ñ )1/10+δ2/5+δ3 + 48B3

√
2U (λ, 1)(B4 − m4)

)

+ C0 exp

( −πC2C5(log Ñ )1/10+δ2/5+δ3+2δ4

18C2C4(log Ñ )1/10+δ2/5+δ3+δ4 + 96B3U (λ, 1)
√

log R

)

= 2(2C0)
1/2 exp

( −πC2C4(log Ñ )δ4

144C2 + 48B3

√
2U (λ, 1)(B4 − m4)(log Ñ )−1/10−δ2/5−δ3

)

+ C0 exp

( −πC2C5(log Ñ )δ4

18C2C4 + 96B3U (λ, 1)
√

log R(log Ñ )−1/10−δ2/5−δ3−δ4

)
,

as desired. �

Readers will note that the constants were chosen in such a way that in the final steps

of the proof only powers of log N remained inside of the exponential. We have found this

to be more efficient over intermediate scales. The following, final, section of this paper

will show how our work up to this point allows for such concrete estimates with specific

numbers.

9. Explicit numbers and proof of Theorem 1.1

Our goal here is to make concrete choices of our parameters so as to arrive at an actual

multi-scale scheme for the skew-shift operator from §6. Let Bn be as in Definition 8.1. The

values below were found to be convenient ones, but clearly many other choices could have

been made.

Definition 9.1. Set

R := 4, R1 := 3, R2 := 2

in Definition 2.1. The coupling constant in (6.1) is required to obey λ ∈ [ 1
2
, 1]. Further, in

Proposition 8.4 set

δ := 1
8
, δ2 := 1, δ3 := 2, δ4 := 3

2
,

as well as

C2 := 203, C4 := 145

π
, C5 := 850

π
.
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By an explicit computation, the condition in Definition 3.5 is satisfied. In fact, one has

B2
3 − 289

(
B0 + 13

20 log(R/R1)

)
> 61> 0.

PROPOSITION 9.2. Let ω = (
√

5 − 1)/2 be the golden ratio, and consider model (6.1)

with λ ∈ [ 1
2
, 1] arbitrary but fixed. Let a ≥ 7 and let n, N be positive integers such that

N ≥ 1012, n divides N, and

1013(n + 1)8 ≤ N ,
N

(log N )92/3
<

1

2

(
203

22
ea/2n

)40/3

. (9.1)

Impose the following conditions:

(a) nLn ≥ a;

(b) Ln − L2n ≤ 1
8

Ln;

(c) max(|Bn|, |B2n|)≤ N−23/10.

Then we have

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> 5.5 × 104 Ñ−3/40(log Ñ )53/10}|

≤ 10 exp(−(log Ñ )3/2) (9.2)

for Ñ = N and 2N.

Remark 9.3. We will choose the constant a = 7 along the inductive multi-scale procedure.

The only exception is the first step of the induction, which goes from the scale N0 to N1,

where for some of our main results we use a larger value of a. This is made possible by

assumption (i) on the Lyapunov exponent at the initial scale and it is the reason behind the

relatively small values of N0 in Theorems 1.3 and 1.4.

Proof. We need to check the hypotheses of Proposition 8.4. We already verified (3.14),

and the conditions of Lemma 8.2 hold by assumption. Let Ñ = N or 2N . The function

[0.5, 1] → R : λ 7→ U (λ, 4)− log λ

is decreasing and positive. Hence

0.5<U (1, 4)≤ U (λ, 4)− log λ≤ U ( 1
2
, 4)− log 1

2
< 1. (9.3)

Further, the constant C in (I) satisfies C < 11.97. So that condition is implied by the

stronger one,

128(4 log(2)n + 2 log(2)+ 1)8 ≤ Ñ ,

which we may further strengthen to

368(n + 1)8 < 1013(n + 1)8 ≤ N ,

which is the left-hand side of (9.1). Condition (II) holds, as does (III) since

exp(4(log Ñ )δ2)= Ñ 4 ≥ Ñ + 1. Condition (IX) is implied by the stronger one,

Ñ >
1 + log R

log R
= 2 log(2)+ 1

2 log(2)
∼ 1.721,
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which clearly holds. In view of (8.8) and (9.3), we have

4 log(2)+ 0.5 ≤ B4 − m4 ≤ 4 log(2)+ 1. (9.4)

Condition (IV) will therefore hold provided

Ñ 1/8 log(Ñ )− 21Ñ−27/40(log(Ñ ))27/10 − 181> 0.

The left-hand side is increasing in Ñ , and one checks by explicit computation that it is

positive if N ≥ 108. So this condition holds as well. Condition (VIII) is implied by the

condition

Ñ−13/10 >
2
√

2

C(4 log(2)+ 0.5)
Ñ−37/20(log(Ñ ))−3/5.

Simplifying this, one obtains the stronger condition,

Ñ 1/5(log(Ñ ))3/5 > 0.08,

which holds provided N ≥ 2. So condition (VIII) holds.

Next, we look at condition (VI). Using the assumed lower bound nLn ≥ a, we find the

condition

22e−a/2 < 203nÑ−3/40(log(Ñ ))23/10.

We recall that Ñ ∈ {N , 2N } and estimate log(Ñ )≥ log(N ). This inequality follows from

the upper bound in (9.1). For condition (VII), one checks that it follows from the slightly

stronger

Ñ−13/10 − 5.66 exp(0.374 − 0.05(log(Ñ ))2) > 0

which holds for Ñ ≥ 1012 (but fails for 1011). Hence we impose the second lower bound

in (9.1). For condition (V), we use

Ln − L2n ≤ 1

8
Ln ≤ U (λ, 1)

8
≤ 1

4
,

and so it suffices to check that

21n

2Ñ
+ 16Ñ−13/10 < 203Ñ−3/40(log(Ñ ))23/10.

Bounding n in terms of N via (9.1) and discarding the log Ñ on the right-hand side reduces

us to
21

2 · 1013/8
· N−7/8 + 16Ñ−13/10 < 203Ñ−3/40.

This holds for all N ≥ 1, so we are done with (V). Finally, we turn to (X) and (XI). Using

N ≥ 1012, they hold provided

C4 ≥ 0.03, C5 ≥ 0.007 · C4.

Our actual values assigned to these constants satisfy

46< C4 < 47, C5 > 270,

and so all conditions of Proposition 8.4 hold.
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As for the conclusion of that proposition, we first compute C2C5 < 5.5 × 104. Thus,

the sizes of the deviations satisfy

C2C5 Ñ−1/10+δ/5(log Ñ )1/10+δ2/5+δ3+2δ4 < 5.5 × 104 Ñ−3/40(log Ñ )53/10,

as stated in (9.2). As for the measure bound, we calculate that

2(2C0)
1/2 + C0 < 10,

U (λ, 1)= 1
2

log ((4λ+ 2)2 + 2)≤ 1
2

log 38.

Thus, in view of (9.4), one has 48B3

√
2U (λ, 1)(B4 − m4) < 11 518, and

144 + 11 518C−1
2 (log Ñ )−23/10 ≤ 144 + 11 518

203
(12 log 10)−23/10 < 145.

Hence the first exponential in the measure bound of Proposition 8.4 contributes less than

exp(−πC4(log Ñ )3/2/145) < exp(−(log Ñ )3/2).

For the second exponential, we have 18C4 < 831, 96B3U (λ, 1)
√

2 log 2< 13 317, and

831 + 13 317C−1
2 (log Ñ )−38/10 ≤ 831 + 13 317

203
(12 log 10)−38/10 < 850.

Hence, the second exponential contributes less than

exp(−πC5(log Ñ )3/2/850) < exp(−(log Ñ )3/2),

and we are done. �

9.1. Proof of Theorem 1.1. Let N0 := 2 × 1037. We define a sequence of scales N j :=
N 9

j−1 for j ≥ 1. In particular, N1 > 5 × 10335. The proof is based on an induction on

scales, where at every step we first apply Lemma 8.3 to control the Lyapunov exponent at

the next scale. Afterwards, we apply Proposition 9.2 to obtain the large-deviation estimate

at the next scale and then we continue the induction.

For later purposes, we note some properties of this choice of scales. The last inequality

is the main reason why we need to choose the scale so that N1 is large.

LEMMA 9.4. Recall that we defined N j+1 := N 9
j with N0 = 2 × 1037. For all j ≥ 1, we

have the following bounds:

1013(N j−1 + 1)8 ≤ N j ,
N j

(log N j )92/3
<

1

2

(
203

22
e7/2 N j−1

)40/3

(9.5)

as well as

10 exp(−(log N j )
3/2)≤ (N 9

j )
−2.3 = N−2.3

j+1 (9.6)

and

5.5 × 104 N j
−3/40(log N j )

53/10 ≤ 1
20

L N0
. (9.7)

Proof. From the definition of the N j , we have

1013(N j−1 + 1)8 ≤ N j < N 13
j−1, (9.8)
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and this implies (9.5). Notice that we have N j ≥ N1 > 5 × 10335 for all j ≥ 1. Then (9.6)

follows from the inequality

10 exp(−(log x)3/2)≤ (x9)−2.3, (9.9)

which holds for all x ≥ 2.06 × 10186. For (9.7), we note that

5.5 × 104x−3/40(log x)53/10 ≤ 10−5 = 1
20

× 2 × 10−4 ≤ 1
20

L N0
,

where the first inequality holds for all x ≥ 10334. This proves the lemma. �

We will inductively apply Lemma 8.3 to j = 1, 2, 3, . . . . We begin with j = 1.

Condition (1) of Lemma 8.3 follows from our assumptions (i) and (ii) and the fact that

N0 = 2 × 1037. Condition (2) with j = 1 is fulfilled since

1

N0
exp

(
−1

2
N0L N0

)
≤ 1

2 × 1037
<

2

512
10−4 ≤ 1

512
L N0

.

For condition (3), recall that N1 > 5 × 10335, δ = 1
8

and C3 = U (λ, 1)≤ 1
2

log 38. Then

we have

N
−13/10
1 < (5 × 10335)−1.3 <

1

320 log 38
10−4 ≤ 1

1280U (λ, 1)
L N0

.

For condition (4),

max (|BN0
|, |B2N0

|)≤ N−21
0 = (N1)

−7/3 ≤ N−2.3
1 . (9.10)

Hence Lemma 8.3 applies to j = 1 and yields

N1L N1
≥ 7, L N1

− L2N1
≤ 1

8
L N1

(9.11)

and

L2N1
≥ 1

2
L N0

. (9.12)

We would like to apply Lemma 8.3 for j = 2. This requires measure estimates for BN1

and B2N1
. To this end, we invoke Proposition 9.2 with n = N0, N = N1 and a = 7. Let us

check that its conditions are satisfied. First, we have (9.1) by applying (9.5) with j = 0.

Moreover, conditions (a)–(c) hold by assumptions (i)–(iii) and (9.10). Hence, we can apply

Proposition 9.2 and obtain that, for Ñ = N1 and 2N1,

|{(x, y) ∈ T2 : |v
Ñ
(x, y)− L

Ñ
|> 5.5 × 104 Ñ−3/40(log Ñ )53/10}|

≤ 10 exp (−(log N1)
2.3)≤ N−2.3

2 .

In the second step, we used (9.6) with j = 1. To turn this into measure estimates for B
Ñ

,

notice that (9.7) and (9.12) imply

5.5 × 104 Ñ−3/40(log Ñ )53/10 ≤ 1
20

L N0
≤ 1

10
L

Ñ
.

Therefore,

max (|BN1
|, |B2N1

|)≤ N−2.3
2 . (9.13)

We have shown how to pass from scale N0 to N1 via Lemma 8.3 and Proposition 9.2, by

using the properties (9.5)–(9.7).
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We can now iterate this procedure. We apply Lemma 8.3 with j = 2. The main input is

the measure estimate (9.13), which verifies condition (4). The remaining conditions hold

by our choice of scales, (9.11), (9.12) and assumptions (i) and (ii). (Notice that the sums

in conditions (2) and (3) are rapidly convergent.) From Lemma 8.3, we obtain estimates

of L N2
and L2N2

, in particular L2N2
≥ 1

2
L N0

. Then Proposition 9.2 yields the measure

estimates for BN2
and B2N2

, which is the key input for Lemma 8.3 with j = 3, etc. We

conclude that, after k steps of this procedure, we have

L2Nk
≥ 1

2
L N0

.

This yields

L ≥ 1
2

L N0
,

by taking k → ∞, and we have proved Theorem 1.1.

9.2. Proof of Theorem 1.3. We follow the general line of argumentation of

Theorem 1.1. The only difference is that in the sequence of scales N j , we take the first

step to be very large. Namely, while N0 = 3 × 105, we define

N1 := 3 × 10334, N j+1 := N 9
j for all j ≥ 1. (9.14)

Notice that for j ≥ 1, the scales N j are essentially the ones used in the proof of

Theorem 1.1 above. Therefore we have the following analog of Lemma 9.4, in which

(9.6) for j = 1 is replaced.

LEMMA 9.5. We have

1013(N0 + 1)8 ≤ N1,
N1

(log N1)92/3
<

1

2

(
203

22
e30 N0

)40/3

. (9.15)

Moreover, for all j ≥ 1, we have the bounds

1013(N j + 1)8 ≤ N j+1,
N j+1

(log N j+1)92/3
<

1

2

(
203

22
e7/2 N j

)40/3

, (9.16)

as well as (9.6) and (9.7).

Except for (9.15), the bounds are only concerned with N j , j ≥ 1, and therefore follow

in the same way as for Lemma 9.5. The new bound (9.15) follows from

(
2

N1

(log N1)92/3

)3/40
1

(203/22)e30
< 29 974< N0.

This establishes Lemma 9.5. As before, we will successively apply Lemma 8.3 and

Proposition 9.2 and iterate. We begin by applying Lemma 8.3 with j = 1. Condition (1) is

immediate from assumption (i) and N0 = 3 × 105; indeed,

N0L N0
≥ 2N010−4 = 60. (9.17)

We can use this inequality to verify condition (2) as well:

1

N0
e−N0 L N0

/2 ≤ 1

3
10−5e−30 < 10−18 <

2

512
10−4 <

L N0

512
. (9.18)
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Condition (3) holds by our choice of N1. Finally, condition (4) holds by assumption (iii):

max (|BN0
|, |B2N0

|)≤ N−141
0 < (3 × 10334)−2.3 = N−2.3

1 . (9.19)

Hence, Lemma 8.3 applies and yields (9.11) and (9.12) as before. Next, we verify

the assumption of Proposition 9.2 with n = N0 and N = N1. The key difference is

that we now take a = 60. This is made possible by (9.17), since it verifies condition

(a) of Proposition 9.2. Condition (b) is immediate from assumption (ii), and condition

(c) was checked in (9.19). The bounds (9.1) hold by (9.15). Therefore, we can apply

Proposition 9.2. Combining the resulting estimate with (9.7) for j = 1, (9.12) and (9.6)

for j = 1, we obtain the measure estimate

max (|BN1
|, |B2N1

|)≤ N−2.3
2 .

At this point, we have moved completely from scale N0 to scale N1 and can follow the

argument from Theorem 1.1 verbatim. In particular, we take a = 7 in every subsequent

application of Proposition 9.2. The only difference is the m = 0 term in condition (2) of

Lemma 8.3, which now involves N0 = 3 × 10−5. By (9.18), we can replace condition (2)

by the stronger bound

j−1∑

m=1

N−1
m e−(1/2)Nm L Nm <

10−4

256
− 10−18,

and this holds by our choice of scales and the estimates (9.12) along the induction (notice

again the rapid convergence of the series). We conclude that

L ≥ 1
2

L N0

and this proves Theorem 1.3.

9.3. Proof of Theorem 1.4. Again, we follow the same steps for a different sequence of

scales. We have N0 = 3 × 104. We define the sequence of scales N j , j ≥ 1, by

N1 := 3 × 10320, N j+1 := N 9
j for all j ≥ 1.

We still have Lemma 9.5 for this choice of scales. Indeed, (9.16) and (9.6) still follow

from the inequalities (9.8) and (9.9) given in the proof of Lemma 9.4. For (9.7), we now

use assumption (i) to find

5.5 × 104x−3/40(log x)53/10 ≤ 10−4 = 1
20

× 2 × 10−3 ≤ 1
20

L N0
,

where the first inequality holds for all x ≥ 10320, so in particular for all N j with j ≥ 1.

Finally, (9.15) follows from

(
2

N1

(log N1)92/3

)3/40
1

(203/22)e30
< 2938< N0.

This establishes Lemma 9.5 for the new choice of scales.

Next we check the hypotheses for Lemma 8.3 with j = 1. Condition (1) is immediate

from assumption (i) and N0 = 3 × 104:

N0L N0
≥ 2N010−3 = 60 (9.20)
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(compare this to (9.17)). Condition (2) holds by

1

N0
e−N0 L N0

/2 ≤ 1

3
10−4e−30 < 10−17 <

2

512
10−3 <

L N0

512
, (9.21)

where we used (9.20). Condition (3) holds by our choice of scales N j , j ≥ 1, and condition

(4) holds by assumption (iii):

max (|BN0
|, |B2N0

|)≤ N−165
0 < (3 × 10320)−2.3 = N−2.3

1 . (9.22)

Therefore we can apply Lemma 8.3 and obtain (9.11) and (9.12). As in the proof of

Theorem 1.3, the first application of Proposition 9.2 utilizes a = 60. This is made possible

by (9.17), since it verifies condition (a) of Proposition 9.2. Now we iterate the argument in

the same way as was done for Theorems 1.1 and 1.3. (Notice that the series in conditions

(2) and (3) of Lemma 8.3 are still rapidly convergent.) The end result is the lower bound

L ≥ 1
2

L N0
,

and Theorem 1.4 is proved.
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[Her] M.-R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples
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