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Abstract. We prove a conditional theorem on the positivity of the Lyapunov exponent for
a Schrodinger cocycle over a skew-shift base with a cosine potential and the golden ratio
as frequency. For coupling below 1, which is the threshold for Herman’s subharmonicity
trick, we formulate three conditions on the Lyapunov exponent in a finite but large volume
and on the associated large-deviation estimates at that scale. Our main results demonstrate
that these finite-size conditions imply the positivity of the infinite-volume Lyapunov
exponent. This paper shows that it is possible to make the techniques developed for the
study of Schrodinger operators with deterministic potentials, based on large-deviation
estimates and the avalanche principle, effective.
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1. Introduction

The study of Lyapunov exponents occupies a central role in ergodic theory and dynamical
systems. They arise in a multitude of distinct settings, such as diffeomorphisms on
a manifold, chaotic dynamics in nonlinear systems as exhibited by the standard map,
cocycles defined over some base, and the theory of localization. Perhaps the most
fundamental question about Lyapunov exponents relates to their simplicity; or, more
quantitatively, to the gaps between them. In the case of SL;(R) cocycles this amounts
to the question of positivity of the top Lyapunov exponent. Another much studied property
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of these exponents concerns their continuity relative to external parameters. For a beautiful
introduction to this field see the textbook [Via].
This paper studies Schrédinger cocycles
(x,v) € X x R? > (Tx, Ay (x, E)v)

Af(x)—E —1

A)\(x,E)=|: 1 0

i| e SLr(R)

where (X, u, T) is some ergodic system, A, E € R and f : X — R is measurable. These
cocycles arise in the spectral analysis of the operators

(H)»,xw)n =Yu41 +Vn_1 + )Lf(Tnx)llfn’ nez.
Indeed, solutions of H) ¥ = E are given by

Ynt1 ]
=M,(x; A, E , 1.1
( Y ) 8 )<1lf0) (b
1
M, (x: A, E):HAA(zj, E), n>1.
j=n

The growth of solutions to (1.1) u-almost everywhere in x is governed by the Lyapunov
exponent

L}, E):nlggon—lf log || My, (x; &, E)|| t(dx)
X

which always exists by subadditivity. By unimodularity of the matrices, L(A, E) > 0. The
main issue is then to determine strict positivity. We remark that by classical ergodic theory
(Fiirstenberg—Kesten theorem, Kingman’s subadditive ergodic theorem [Vial]),

n! log || M, (x; A, E)|| > L(A, E) p-almost surely

as n — oo. Fiirstenberg’s theorem [Fur], shows that L >0 for all A, E for T the
Bernoulli shift and p a non-trivial probability distribution. Herman’s subharmonicity
argument [Her], which is recalled in §6, shows that L(A, E) >logA >0 if A > 1,
X=T, f(x)=2cos(2rx), and Tx =x + w a rotation (for general analytic f and
large A; see [SorSpe]). On the other hand, one has L(A, E) =0 for all 0 <X < 1 and
E € spec(H, x). The latter is the spectrum of the Harper or almost Mathieu operator

(Hyx¥)n = Yng1 + ¥n—1 + 21 cosQ2r(x + nw)Yn, n e,

which does not depend on x (assuming @ irrational). In particular, L(A, 0) =0;
cf. [BelSim, Dam].

In contrast to the Harper operator, its analog over the skew-shift base is conjectured
to exhibit positive Lyapunov exponents for all A > 0 and E. To be specific, let X = T2,
T(x,y)=(x+y,y-+ w), where w is irrational (or Diophantine). Iterating T yields

(1.2)

1 : . .
M,,(x,y;k,E):l_[|:2)\f(x+]y+](] —1l)w/2,y+ja))—E —Oli|

j=n

The presence of j2w/2 in these matrices appears to be the origin of the conjectured
exponential growth of the norm of these matrices for all E (assuming oy f (x, y) #0,
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with f analytic). In fact, the distribution of the fractional parts of {j 2“’}?;1 is known
to be ‘random’ in some sense as N — oo for generic w; see the Poissonian conjecture
in [RudSarZah], as well as [MarStr, Hea]. Note that this is in stark contrast to the
distribution of {jw} 7:1.

However, not only is this randomness property in and of itself delicate (see some
negative results to this effect in [RudSarZah]), but also how to use it in the context of (1.2)
is entirely unclear. As far as rigorous results are concerned, Bourgain [Bou2] proved that
for all A > 0 there exists a set of w € T with positive measure (which decreases to 0 as
A — 0), so that the operator

(HY)n = Yng1 + Yn—1 + 2 cosQrn(n — Dw/2) Y,

exhibits point spectrum whose closure has positive measure. This was the first result of its
kind which showed that for small XA the skew shift leads to completely different behavior
than the shift, that is, potentials cos(nw). Bourgain [Bou3] also showed that for small
A > 0, and most energies, the Lyapunov exponent is positive if 0 < w < wp(X) (which
decreases to 0 as A — 0). A quantitative version of Bourgain’s result was obtained later
by Kriiger in [Kru2]. These two results are proved by viewing the skew-shift model as
a perturbation of Harper’s model, hence require the smallness of w. For any irrational w,
Kriiger [Krul] proved positivity of the Lyapunov exponent for skew shift on T¢ with d
sufficiently large, for small A > 0, and most energies.

In this paper we present an effective multi-scale machinery aiming at positivity of the
Lyapunov exponent for the matrices

1 . .
My(x. yi b E) = 1—[ |:2A cos (2 (x +jy+1](] —Dw/2)) — E —Oli| (13)

J=n

uniformly in E, and in the range 0 <A < 1. We fix o to be the golden ratio. By the
aforementioned estimate by Herman, one has L(A, E) >logXA >0 for A > 1. So only
A <1 is of interest here. The basis of our analysis is the inductive argument
from [BouGolSch], which established Anderson localization for large A for the skew-
shift model, at the expense of removing a small set (in measure) of frequencies w and
phases (x, y) (the largeness of A depended on the smallness of the measure of excluded
parameters). The proof in [BouGolSch] is not effective, and it was not possible to
explicitly determine the size of admissible A in relation to the other parameters.

To formulate our main results, recall the finite-volume Lyapunov exponents

1
Ly(x, E) :=/ — log [[My(x, y; A, E)|l dx dy,
T N

and their limits L =limy_, o Ly. We quantify the failure of the Fiirstenberg—Kesten
theorem via the level sets

1
By = {(x, y) e T?: ‘N log My (x, y; A, E)|| = Ln(X, E)

1
— Ly, E)¢.
> 10 N ( )}

The machinery developed in this paper establishes a method for checking the positivity
of the Lyapunov exponent L(A, E) by verifying information on a finite, initial scale.
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We could have formulated a very general ‘finite-size criterion’ which establishes
L (X, E) > 0 under appropriate assumptions on the initial scale and for appropriate values
of various other parameters. Instead, we have opted to present three representative
theorems that can be obtained from the machinery developed in this paper by making
specific choices.

These representative theorems differ by the precise assumptions (i)—(iii) made at the
initial scale. We comment on this further after the first theorem. Moreover, the various
other parameters appearing in our proof are identical in all three cases. These parameters
are only chosen in the final part of the proof, §9, so they can easily be modified.

For a Borel set, | - | denotes the Lebesgue measure.

THEOREM 1.1. Consider the skew-shift cocycle given by (1.3). Let w be the golden ratio
andlet A € [1/2, 1]. Let Ny :=2 x 1037, Assume that for some energy E € [-2 — 2A, 2 +
2)] the following inequalities hold:
(i) Ly, E)y=2x107%
(i) LnyOn E) = Lang(h, E) < Ly (b E)/8;
(iii) max (1By,l. |Baw, ) < Ny 2"
Then we have
L(:, E) > 1Ly, (%, E) > 0.

Before we give the two alternative theorems, we comment on conditions (i)—(iii).

Remark 1.2.

(i)  First, one might expect that L(x, E) > cA? holds for small A, by analogy with the
Figotin—Pastur asymptotics in the random case. Numerical experimentation suggests
that is indeed the case for our model with ¢ > 1072 (with a generous margin of
error). Therefore, we would expect to have Ly,(A, E) > 2 x 10~3. Condition (i)
was chosen to allow for an even wider margin. We remark that we can lower the
number 2 x 10™* to basically any positive constant, at the expense of increasing Nj.

(i) Condition (ii) is known to hold if the Lyapunov exponent is positive and Ny is large
enough. Indeed, it follows from the methods in [GolSch] that

LN()()\'v E) - LZN()()‘-a E) = CLNQ()"5 E)/NO

with some absolute constant ¢ ~ 1; see §8 below for the details. Given the size of
No, condition (ii) is indeed asking for very little.

(iii) Finally, condition (iii) is some weak form of a large-deviation estimate as
in [BouGol, GolSch, BouGolSch]. In fact, analogy with these references suggests
that a bound of the form |By| < exp(—N /1) should hold for large N (and perhaps
a much stronger bound, say with N'/2 or larger). For (iii) to hold in this case
would then require N > 8- 103!, which is within our range. It is important to
note that condition (iii) differs strongly from (i) and (ii). Indeed, while the latter
conditions are intimately related to the L > 0, (iii) is not. For the rotation with
Diophantine frequency dynamics it is known that the large-deviation estimates hold
a priori, that is, without any reference to the positivity of the Lyapunov exponent;
see [BouGol, GolSch, Boul]. For the skew shift, as well as for the Bernoulli shift,
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however, such a priori derivations are currently not known. Rather, we rely on an
inductive procedure that uses lower bounds on L, the Lyapunov exponents in finite
volume.

We now state two further representative theorems. These alternative finite-size criteria
both involve much smaller initial scales Ny, at the price of having a more restrictive
assumption (iii) on the measure of the set By,,.

THEOREM 1.3. Consider the skew-shift cocycle given by (1.3). Let w be the golden ratio
and let A € [1/2, 1]. Let Np:=3 x 10°. Assume that for some energy E € [-2 — 2\, 2 +
2A] the following inequalities hold:
(i) Ly, E)y>2x107%
(i) Lwg(h E) — Lawg(h, E) < Liyg (1, E)/8:
(iii) max (|Bnl, 1Baw, ) < Ny ',
Then we have
L(\, E) > Ly, (A, E) > 0.

The upper bound in assumption (iii) is more restrictive than in Theorem 1.3.
Importantly, it is still polynomial in nature. Hence, in view of Remark 1.2(iii), it may
hold depending on the precise kind of exponential decay that is presumably exhibited by
the true |By]|.

In the next representative result, we strengthen assumption (i) somewhat (in a way that
is compatible with the numerics described in Remark 1.2(i) above). This allows us to
reduce the initial scale even further, to the value No =3 x 10*, which may be amenable to
numerical investigation.

THEOREM 1.4. Consider the skew-shift cocycle given by (1.3). Let w be the golden ratio
and let A € [1/2, 1]. Let No := 3 x 10*. Assume that for some energy E € [-2 — 2A, 2 +
2)] the following inequalities hold:
(i) Ly,(h E)>2x1073;
(i) Lo E) = Loy (h E) < Ly (1, E)/8;
(i) max (IByyl, [Baw, ) < Ny ',
Then we have
L(., E)> 3Ly, (A, E) > 0.

Regarding assumption (iii), the comment made after Theorem 1.3 still applies. In
particular, the relatively small value of Ny in this result demonstrates the importance
of the problem of finding an analytical proof of (iii). Indeed, (i) and (ii) are accessible
numerically by a Figotin—Pastur expansion, for example, but it seems completely
unreasonable to ask for a computer-assisted proof of (iii).

The restriction A € [1/2, 1] was chosen for convenience. In fact, our methods apply
to any given interval of the form [Ag, 1], A9 > O, albeit with increasing Ny as 1o — O.
Similarly, the golden ratio was chosen for simplicity. One can replace it by a class of
Diophantine frequencies obeying an explicit Diophantine condition.

It remains to be seen what the true range of applicability of our methods is, and to
what extent they can also be refined. It may be possible to verify assumptions (i) and (ii)
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of Theorem 1.4 numerically. However, the measure estimates (iii) would seem the most
delicate to check reliably.

The methods in this paper are an adaptation of those in [GolSch, BouGolSch, Boul].
One of our motivations was to obtain an effective rendition of the techniques based on
harmonic analysis (subharmonic functions, Riesz representation theorem, John—-Nirenberg
type estimates for bounded mean oscillation functions) in combination with linear algebra
and the geometry of matrix products (‘avalanche principle’ [GolSch]). This had never been
attempted before, but we show that it is possible to do so.

2. Effective Riesz representation

It is of fundamental importance to the entire method to make the underlying potential
theory effective. To this end it is most convenient to remain on the disk since other
geometries will lead to complicated Green functions. The disk will suffice for our purposes,
thanks to a variant of Herman’s regularization [Her], which we present in §6.

Definition 2.1. Given R > 0, we write Dg for the open disk of radius R around the origin

in C. Let z = re(¢). We write P,(6) for the Poisson kernel

1—r2

1 —2r cos Qa(¢p —0)) +r?’
The following constants will be used throughout, with 1 < R, < R} < R:

P.(0) :=

e p2 P2
Bo(R. Ry, Ry 1 Ri+ R ) log R 2 if R“ — R{ > R,
O AL = 5 l0g(R/R) \ Ry — Ra 1og<ﬁ> if R”2 — R2 <R,
R? — R?
@.1)
8R»

Bi(R, R1, R2) := Bo(R, Ry, Ry) ———,
R2-1

By(R, R1, Ry) := Bo(R, Ry, R2)

167 (R3 — 1)\/16R§ ~(JRY+34R2+1—1-R})
X
(B3R5 +3 — \/R} +34R3 + 1)

107
B3(R, R{, Ry) := |5B2(R, R, R —_— 2.2
3( 1, R2) \/ 2( 1, Ro) + log R/ R (2.2)

The main result of this section is the following Riesz representation theorem for
subharmonic functions. The essential feature here are the explicitly computable constants.
Recall that a subharmonic function in some domain © C C is an upper semicontinuous
function u : Q2 — R U {—o0} which satisfies the sub-mean value property in 2.

as well as

THEOREM 2.2. Let 1 < Ry < Ry < R and let v: Dgr — R U {—00} be a subharmonic
function satisfying
v(z) < B, v(0)=m. (2.3)

Then, for all w € Dg,, we have the Riesz representation

v(w) =/ log [z — w|u(dz) + h(w), (2.4)

Dg,
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where:
(1)  w is a positive measure satisfying the bound
B—m
Dp)<——m; 2.5
u( R')_log(R/Rl) (2.5)
(ii)  h is harmonic on D, and satisfies the following bounds
min max |h(w) —c| < Bo(R, Ry, R2)(B —m),
ceR |w|<Ry
dk
d—q)kh(d(ﬂ)) < Bi(R, Ri, R))(B—m), k=1,2. (2.6)

The proof of this theorem will occupy the rest of this section.

Proof of Theorem 2.2. The basic idea of the proof is that the equation u = (1/27)Av
holds in the distributional sense, with p a positive measure. Without loss of generality,
we may assume that v is smooth. If this is not the case, we convolve v with a radial
non-negative mollifier. The sub-mean property then guarantees monotone convergence.
We skip this technical detail, and commence with some basic potential theory for smooth
functions.

2.1. Riesz representation. Rescaling the unit disk yields the Green function on any disk.

LEMMA 2.3. (Green’s function for the disk) The function G : Dg x D — R given by
R(z —w)

R?—zw

satisfies A;G(z, w) = 8y and G(z, w) =0 when |z| = R.

1
G(z, w) = 7 log

Proof. To see this, notice that G(z, w) = G1(z/R, w/R) where

1 z—w
Gi(z, w) = glog =

is the Green function of the unit disk. O

Let w € Dg,. By Green’s second identity for the domain D, we have

v(w) —/ G(z, w)Av(z) Vol(dz) =/
Dg

aDg

G
v(2) — (2, w)o (dz),
on;

where Vol is the standard volume measure and o is the (unnormalized) arclength measure
on the circle d Dg. Since v is smooth and subharmonic, Av is a non-negative, continuous
function; call it 27 . Therefore

vw) = [ 206G wi@) + how, @)
Dpr
where
oG
ho(w) = / v(z) —(z, w)o (dz). (2.8)
dDg anZ
By Lemma 2.3, we then have Riesz representation with the functions

v(w) = / log |z — w|u(dz) + h(w), (2.9)
DR1
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where

h(w) := / log
DRr\Dg,

LEMMA 2.4. h(w) is harmonic in Dg,.

R
r‘ﬂ(dz) + ho(w). (2.10)

R(z—w
%‘u(dzw [ gt —
R* —zw Dg, w

Proof. Write w = re?™¢. The first and second terms in (2.10) are harmonic because they
are real parts of analytic functions on D, . For the third term, recall that (dG/9n;)(z, w)
is the Poisson kernel, whence

1
ho(w):/O v(Re(0)) Pr/r (¢ — 0) d6. @2.11)

The Poisson kernel is harmonic in all of Dy and this proves the lemma. O

2.2.  Control of the Riesz mass.

LEMMA 2.5. We have the following bound on the Riesz mass:

(Dgy) < — =" 2.12)
PR = Yog(R/RY) '
Proof. Taking w =0 1in (2.7), we see that
R
(log R/R)(Dg,) < / log (=) = ho(0) = v(0) < B —m.

Dpg

in which we used
ho(0) < B, 2.13)

which comes from the maximum principle and the fact that ¢ (w) is the harmonic function
on Dp with boundary values v(d Dg) by (2.11). O

2.3. Control of the harmonic part. We have the following estimate for the harmonic
part.

LEMMA 2.6. Let1 < Ry < Ry < R. Then

min max |h(w) —c| < Bo(R, Ry, R2)(B —m),
ceR |w|<Ry

with constant Bo(R, Ry, R») given by (2.1).

Proof. We will first prove an upper bound and then use Harnack’s inequality to conclude
a lower bound. From (2.10), and G(z, w) <0on Dg x Dg,

h(w) 5/ log
DR1

From (2.13), we infer that for all w € Dg,,

R
m’ﬂ(d@ + ho(w).

h(w) SIOg‘ wu(Dg,) + B.

R?— R?
Now we distinguish cases. On the one hand, if R < R? — R%, then the logarithm is negative
and (2.14) implies

h(w) < B.
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On the other hand, if R > R? — Rlz, then we use Lemma 2.5 to obtain
2
h(w) < —— ———— —mlog ————
(w) = logR/Rl( Ri(R2—R?) ng—Rf)
logR — Blog Ry log R*/(R*> - R?
_ mlog og Ry | log /( 1)(B_m)‘
log R/ R, log R/Ry

Combining the two cases, we arrive at the upper bound

B log

B if R”2 — R? > R,
mlog R — B log Ry
hw)<a, «a:= log R/R; (2.14)
log R?/(R? — R?)
log R/ R,
Consider the non-negative harmonic function « — 4(w) on Dg,. By Harnack’s inequality,

o —hw) = 22 o,
Ry — |w|

(B—m) if R>—R? <R.

which implies the lower bound

R 2
hw) > R1+|w|h(o) |w|
|

- a. 2.15)
[w] Ry — |w|

By (2.9) with w = 0 and (2.5), we have
h(O):v(O)—/ log |z|u(dz) > m — 1Og—Rl(B—m).
Dg, log R/R,
Together with (2.15), this yields
hw) > Ry + |w|mlog R — Blog Ry _ 2|w| o (2.16)
R — |w] log R/ R, R — |w]

Based on (2.14) and (2.16), we obtain

min max |h(w) — c|
ceR |w|<R;

1 . R{ + |w| mlog R — Blog Ry 2|w|
< —|o — min - o
2 lwl<kRy\ Ry — |w| log R/R; Ry — |w]

1 R1 + |w] mlog R — B log R
=—max | ——— J|a —
2 lwl<Ra\ Ry — |w] log R/ R,
1(R1+R2)< mlogR—BlogRl)
— (LT (=

“2\R - R, log R/R;

= By(R, Ry, R))(B — m).

This proves Lemma 2.6. O

LEMMA 2.7. Fork =1, 2, we have

k
i
with constants By, By given by (2.1).

h(e*™%)| < Br(R, Ry, R2)(B — m)
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Proof. Since h is harmonic in Dg,, we have that for any constant c,

1
B(ei9) — ¢ = / (h(Rae™%) — ) P11, (¢ — 6) d.
0

We take a derivative in ¢ and estimate 4 using Lemma 2.6. This gives

1
< (mln max |h(w) —cl)
ceR |w|<Ry 0

1 d
—P R 0)| db.
20 1/ 2( )‘

‘ih(eZTH'gO)
dg

0
—P —0)|do
50 1/R, (@ )‘

< By(R, Ry,

‘We recall that
R;—1

R — 2R, cos(270) + 1

Py/g,(0) =
and therefore
47 Ry(R3 — 1) sin 270)
90 (Rg — 2R cos (2770) + 1)2°

Since sin(270) changes sign at @ = 1/2, we conclude that

i

Py, (0) =

0
—P 60—
50 /R, (0 — ¢)

1/2 9 1 P
do = — —P 0) do —P 0) do
/0 29 1/R, (0) +/1/2 99 1/R,(0)

=2Py/g,(0) — 2P/, (1/2)
_ 8R;
=——.
Ry —1
This proves the claim for k = 1.
For the second derivative, we argue similarly. We have

2
‘d - h(e 271!90) < Bo(R, Ry, 392 Pl/Rz(Q)‘ do,
where
92 B e @)= —872Ry(R3 — 1)(2R; cos? (210) + (R3 + 1) cos (2m0) — 4Ry)
302 VR (R3 — 2Ry cos (270) + 1)3 '

By symmetry, we may restrict our attention to 8 € [0, 1/2] from now on. On that interval,
the function (92 / 962) P /R, has exactly one zero. Its location (call it 6y € [0, 1/2]) is given

by
VR +34R: +1 - (R3+ 1)
4R, ’

It is easy to see that (82/892)P1/R2 is negative on [0, 8y), and hence positive on (g, 1/2].
Therefore

i

1
O = — arccos(
2

(2.17)

32
962

b 2 12 52
-2 — P 0)do + 2 — P 0) do
/0 FY) 1/R,(60) dO + / 542 1/R, ()

Pl/RZ(Q)' do

0 8 0
2—P 0 — P 6 2—
PY: 1/R, (0) — 89 1/R, (60) + 29

167 Ry(R; — 1) sin (276)
"~ (R? — 2Ry cos (2mbp) + 1)?’

P1/r,(1/2)
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since (9/960)Py/g,(0) =(3/06) P1/g,(1/2) =0. When we evaluate the last expression
using the definition (2.17) of 8y, we obtain the quantity

167 (RZ — DV16R2 — (1 + R2 — V/R% + 34R2 + 1)
(VR} +34R} +1— 3R] — 3)?
This proves the claim for k = 2. O
3. T splitting lemma

For any f € LY(T), let (fy= fT f(x) dx. For a function f on C, let us denote f(e(x)) by
f (x) for simplicity. For a Borel set U, let |U| be its Lebesgue measure.

LEMMA 3.1. Let v be as in Theorem 2.2. Assume that for some constant c,
v(x) =vi(x) +vo(x) +c (3.1

with ||v1||L1(T) < &1 and ||vgl| Leo(T) < £0. Then we have

f exp(zéo_lw(x) - c|) dx < Cy,
T 4

8o 1= % g0 + 2B3(R, Ry, Ro)v/e1(B —m), (3.2)

17 By
Co:=2v2 — ,
0 exP(”[lM * 16332])

with constants given by Definition 2.1.

As a corollary of the exponential integrability, we have the following estimate on the
level sets from Markov’s inequality.

COROLLARY 3.2. For any &, > 0, we have

T ]7 Bl —1
Hx eT:|vx)| > el < 2«/56xp<z|:m + TB% — &8, D
with 8¢ as in (3.2).

Note that this level set estimate is only useful if £, > ¢¢ and 8% > £1(B — m).

Proof of Lemma 3.1. For simplicity, we will denote B3(R, Rj, Ry) by B3 throughout the
proof. We will first show the following special form of the Riesz representation, valid only
on the unit circle. The idea is simply to reflect the part of the disk outside the circle back
inside it.

LEMMA 3.3. Let 1 < R> < R; < R and v be defined as in Theorem 2.2. Then there exist
a positive measure [i and a harmonic function h on Dg such that

v(e(p)) = /F log |z — e(g)|i(dz) + h(e(p)), (3-3)
with the estimate
~(D_) < B;m (3.4)
U = og R/RY '
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and h satisfies the bound in Lemma 2.6 on the circle as well as

k

dr -
Wh(e(w))

where By, By are the same constants as those in Theorem 2.2.

< Bi(R, R, Rp)(B—m), k=1,2, 3.5)

Proof. By Theorem 2.2, we have
v(w) = / log |z — w|u(dz) + h(w), (3.6)
Dg,

with y(Dg,) < (B —m)/(log R/Ry), and |(d* /dg*)h(e(9))] < Bk(R, R1, R2)(B —m),
k=1,2.
Let us define u* by reflection, that is,

W (E) = w(E™), (3.7)

where L
E*={z"l:z€E)}

for any measurable set £ C C. Then for any |w| =1,
/ log |z — w| u(dz)
D,
= /710g |z — wln(dz) ~|—/ _ log |z — wlu(dz)
D Dg \Di

= [ togle—win@d + [ toglw—Tuw@+ [ toglluda)
Dy Dg\D1 Dg\D1

= /710g lz — w|u(dz) +/ log |w — z|u*(dz) +/ _ loglz|u(dz)
Dy Di\Di/r, R

D 1\D1
= /f log |z — wlfi(dz) + / _log [zlp(d2), (3.8)
D, DRI\DI
where, for any £ C D_l,
i(E) = u(E) + *(E N (D1\D1,g,)) = u(E) + w(E* N (Dg,\D1)). (3.9)
By (3.9), it is clear that we have the following estimate for ji:
i(DD) = u(Dg,) < (3.10)
PPV PR = Jog R/ R '
By (3.6) and (3.8), we have for |w| =1,
v(w) = /710g |z — wli(dz) + h(w) +/ _logzlu(dz), (3.11)
D Dg\Dy

in which the third term is a constant. Let us take # = h + f D \Dy log |z| mu(dz). Since h
1

only differs from & by a constant, the estimates on the derivatives still hold. O

The Riesz representation (3.3) allows us to give upper bounds on the parameters &g and
&1 in Lemma 3.1 in terms of B — m. This will be relevant in the proof of that lemma.
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COROLLARY 3.4. We may always assume in Lemma 3.1 that
13 B—m

< Bo(R, Ry, Ry)(B — s <. 3.12
g0 < Bo( 1, Ro)( m), & 20 Toz(R/R1) (3.12)
Alternatively, we can assume that g = 0 and
13
= | Bo(R, R, R ——— |(B — . 3.13
&1 ( o( 1 2)+2010g(R/R1))( m) (3.13)

Proof. In view of (3.3) we set

v(p) :=hie(@), vi(p)= ] log |z — e(¢)|i(dz).

Dy
Then g is the constant from Lemma 2.6 and we claim that
e1:= [llog [1 —e(@)lll 1 I
is an admissible choice. Indeed,

lvy ”L](T) =< /7 [log |z — e(¢)|||Ll('J1"W)/:L(dZ)
D

= /17 og |Iz] — e(@)li1 (T, (dz)
1

< 1 _ ~ )
< nax logr = e@llz1,) 12

Set h(r) :=|log|r — ‘3(§0)|||L1(’£r¢) with 0 <r < 1. In order to establish the claim, it
suffices to verify that 4 (r) is non-decreasing. First,

1 1
/0 log Ir — e(@)| d¢=/0 log |1  re(¢)] dg = 0

since log |1 — r¢| is harmonic in ¢ for |[¢| < | and any fixed O < r < 1. Therefore, if 0 <
r<land0 < gy(r) < % is the unique solution of [r — e(gp)| = 1, then

1—go(r) 1—go(r)
h(r) = 2/ log |r —e(p)|dyp = / log(1 + r2 —2r cos(2r)) de.
@o(r) wo(r)

Consequently,

W) = /‘W) 2(r — cos(2m )
o) 14712 —=2rcosmrp)

I=go(r) r
- | S dg = 0.
20(r) 14 7% —2rcosQmy)

In the second line we used that on the domain of integration
Ir —e(@)|* =1+ r* = 2r cos2mg) > 1,

whence 2r — 2 cos(2m¢) > r. Therefore, indeed h(r) < h(1), justifying our choice of &
above. Finally,

1
h(1) = |llog [1 —e(@)lll, = —2/0 min(log |1 — e(p)l, 0) dg

1/6 1/6
= —2/ log |l —e(p)|dp = —4/ log(2 sin(wrg)) dp < 13/20
~1/6 0

and || x| is controlled by (3.4). O
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Definition 3.5. Henceforth we impose the condition that

289(BO<R, R, Ry) + ) < B3(R, Ry, Ro), (3.14)

20log R/R;
where the constants are those from Definition 2.1.

Returning to the proof of Lemma 3.1, we denote the first term in (3.3) by u, namely,
u(x) = /710g |z —e(x)] it(dz). (3.15)
D

Then v = u + h. For any f e L'(T) with (f) =0, the anti-derivative D~! f is uniquely
defined as the absolutely continuous function

t
(D_lf)(t)=/0 f@)ydx +m(f), (D7'f)=0, (3.16)

for arbitrary ¢ € T. The constant m( f) is chosen to ensure the vanishing mean. For ¢, (x) =
exp(2rinx), one has D~ '(e,) = (2win)~ e, for all n # 0, whereas D~ 'eg = 0. In the
distributional sense, D! also applies to (complex) measures. For example, with 8y now
being the Dirac delta,

D718 — D) = —(x + DLi—1/2<x<01x) + (5 — X)) Ljocx<1/21(x).

For any z = |z]e(y) € D1, one has the elementary relation

i log [e(x) — 2| = 27 |z|sin 2w (x — y))
dx 1 —2|z]cos2m(x — y)) + |z|?
=nQ.(x)
= m(H[P.])(x), (3.17)

where H denotes the Hilbert transform and Q. is the standard notation for the conjugate
function of the Poisson kernel. In particular,

log le(x) — z| = m (D~ "H[ P,])(x) (3.18)
holds for any z € D;. We thus have
u(x) = (D1 (), (3.19)

where

dv ~
Cw=n [ P
X D
is a positive measure, with
v(T) =m (D). (3.20)
Set
1 €1
€:= — ,
B3V B—m
and define Je(x) := (1/2€)1|—c ¢ (x) to be the box kernel. Because of the upper bound
in (3.13) on &1 and (3.14), one has

(3.21)

13 B}
<(Bo(R, Ri. R)) + ——— ) (B — 23 B —m).
81_( o( 1 2)+2010gR/R1>( m)<289( m)
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which ensures that € < % We will use this smallness property for the remainder of the
proof. For example, it guarantees that J¢ is in fact well defined on the circle (less than % is
enough here, but below we will need this sharper bound). Then

v=v—Jexv+ Jcxvy + Jcx1g
=w—Jcsku)+ (h— Jexh) + Je *v1 + Je * vo.

The last three terms have small L® norms, in the sense that

€1 B3
I Je * villLeemy < ellLoeemyllvillpiery < %=V €1(B —m),
Il Je * vollzoo(my < el 1y llvollLee(r) < €0,
~ ~ € - 1 B
lh — Je * hllLoo(ry < = 1A' | Loo(T) < 5631(3 —m) = 2—33\/81(3 —m).

Hence

By B
(= J. % w)(x)| > |v(x) — C| — &9 — (73 + ﬁ)dalw —m). (3.22)

By (3.19), we have

(u—Jexu)(x) = (D "Hv — J. xv])(x)
=HID (v — J. x v)](x). (3.23)

Next, we control the pointwise size of the term in brackets in (3.23). Since the Hilbert
transform eliminates constants, the integration constant in (3.16) drops out.

LEMMA 3.6. Modulo additive constants, the function D' (v — J, % v) satisfies
1D~ (v = Je # )l Loom) < 380 + 2B3y/e1(B — m). (3.24)

Proof. We begin with the observation that (recall v is a positive measure)

|(v = Jexv)([a, bD| =

/T(]l[a,b] — La.p1 % Jo)(x)v(dx)

= Sup v([e — €, 0 + 6])1 (3'25)
0eT

uniformly in [a, b] C T. If b — a > 2¢, then on the one hand,

|(Lia,p1 — Dby * JO@)| < A Lja—e.ate] + Lip—e prep) (X).

On the other hand, if b — a < 2¢ then by translation invariance it suffices to consider the
symmetric expression

f)=1_gaq — Li—ga1 ¥ Je. 2d=b—a,d<e.

For any 0 < d < €/2 this function satisfies

d 2d
[fI1 <=L ederay+ 1= — ) L—a.a
€ €

d d 2d
= E]l(—e—d,e—d] + E]l(e—d,k—d) +(1- ? ]l(—é,é)
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whereas for €/2 < d < € one has

1fl < A cemdiera) < 3L (—e—de—a) + 3L (e—d 3e—a)-

In either case (3.25) holds.
It therefore suffices to estimate supg V([0 — €, 6 + €]). Next, we define an atom 7’ in
the Hardy space H!(T) as follows:

(x—(a—3e))/62, a—3e<x<a-2e,
((a—e)—x)/ez, a—2e<x<a-—e,

T(x)={(a+e)—x)/e?, a+e<x=<a+?2e (3.26)
(x—(a+36))/62, a+2e<x<a-+3e,
0 otherwise.

Note that this is well defined on the circle since € < %. By construction, (t’) =0. Set
T(x) = f;—1/2 ©/(t) dt. Moreover, T > 0, (t) =4¢,and T(x) = 1 on [a — €, a + €]. Thus

v(la—e€,a+€]) < / T(xX)v(dx) = (1, V). (3.27)
Let us consider '
l(x — (1), v)
= ‘(%H[t], D‘H[v]>‘ = |(H[7'], w)|
=|(HIx'], v — )| = |(H[], vo + vi — )]

|(HI'], vo)| + [(HIz'], vi)| + |(z, HIA'))|

|H[T/]||LI(T)||U0||L°°(T) + ||H[T,]||L°°(11‘)||U1 ||L1(T) + ||T||L1(T)||H[’~1/]||L°°(T)
d’ -
—h
dx?

A

IA

A

ol HIT M L1 ¢ry + e llHIT I oo (r) + 2€ (3.28)

Loo(T)
In the last line, we used the following lemma on the third term.

LEMMA 3.7. Forany f € C'(T) one has |H[ f1lloo < 21/ lo-

Proof. Since sin(wx) > 2x forall 0 < x < 1 one has

S = f»)

IHLf oo = sup ST — )

yeT

cos(m(x —y))dx

1 /
=51 Moo

as claimed. O
In order to bound the the other terms in the last line of (3.28) we prove two lemmas.
LEMMA 3.8. Let t/ be defined by (3.26) and assume that 0 < € < % Then we have

I r) < 5. (3.29)

Remark 3.9. The upper bound 11—7 is a particular choice which we have found to be

convenient in the last section of the paper. A more restrictive assumption on € will
slightly improve the bound; for example, assuming € < % yields the value 4.2 for %. Such
improvements are mainly due to the lower bound in (3.40) approaching 7 as € — 0.
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Proof. By translation symmetry, we may assume a =0. We let 0 < ¢ < % and [ =
[—re, re] with r = 3.6 > 3. Notice that re < % We decompose ||"H,[1:’]||L1(T) into the two
parts
IHIT Wy = IHIT ULy + IHIT WL ey

By Cauchy—Schwarz and the fact that the Hilbert transform is an isometry on L2(T), we
have S

24/2

||H[T/]||L1(1) <V |1|||H[T/]||L2([) <+ |I|||T/||L2(1) = fﬁ

In the remainder of the proof, we bound |H[z']| Li(ey- By symmetry, we have
IH I M 1 zey = 20HIT U L1 (re,1/2))- Hence, it suffices to consider the interval [re, %].
For all x € [re, 1/2], we have

[H[T'1(x)| = / T'(y) cot(m (x — y)) dy‘
supp v/

= / T’ (y)(cot(mr (x — y)) — cot(x)) dy’
supp v/

_ / ( sin(y) J ‘

oo T SinG (= y) sinGra) @

/ I’ ()] Isin(ry)| dy. (3.30)
supp 7/

IA

sin(w (x — y)) sin(mwx)

Here we used that x — y € [(r — 3)e, % + 3¢] C [0, 1]. To estimate this expression further,
we decompose supp 7’ into the four intervals

I :=1[2¢,3¢], Ip:=|€, 2], Iz:=[-2¢€, —€], I3:=[-3¢, —2¢€].

We write p;(x) € I; for the point in [; that is nearest to x in the toroidal distance, that is,
lx — pj(x)|lT = distT(x, I;). (That point is not unique if x is ‘antipodal’ to the center of
1;; in this case we define p; as the right endpoint of /; for definiteness.) Notice that p; (x)
is constant for j € {1, 2} with

p1(x) =p11:=3¢€, p2(x) =p2,1:=2€, (3.31)

and piecewise constant for j € {3, 4}, that is,

pj1 it x €10, ¢],
pix)y=1""" ¢
Pj2 ifx (tj, j]'
Specifically, we have
F o 3
—e ifxe ,———6 ,
(x) = TEEE
P30 = _ 1 3¢ 1]
—2¢ ifxe|l=——, |,
2 2 2] (3.32)
) [ 1 5€]] ’
—2¢ ifxe|0, - ——]|,
(0= PR
pat) = e e (L5 1]
—3e i ==, =
*S\27 2 2]
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From (3.30) and |sin(rry)| < 7 |y|, we obtain

1

sin(m (x — p;j(x))) sin(wx)

|H[r](x)|<nZ / <’ Wyl dy.

We integrate both sides over x € [re, %] and find

IHIT W L (e 1oy S 7 Z fj(e)/ [’ Iyl dy, (3.33)

j=1
where we introduced the notation

12 1
fite):= / : o)

e sin(mw(x — p;j(x))) sin(wx)

for j € {1, 2, 3, 4}. The following lemma gives a bound on these integrals.

LEMMA 3.10. For j € {1, 2}, we have

1 4 Pj.1
()< ——log 142 _PiL_) 3.34
51 = 5 S8 °g< + .98re—pj,1> (3.34)
and for j € {3, 4}, we have
2
file) < og( 1+ 2212011y g1 (3.35)
5= 5o 5 e

We postpone the proof of Lemma 3.10 for now. To continue the proof of Lemma 3.8,
recall (3.33). We perform the integration in y and find

! / 76

/ |z (y)ll}’ldy:/ [T’ WMyl dy = <

h s Ny (3.36)

/ Ir/(y)llyldyzf Ir/(y)llyldyZE
b I

Then we apply Lemma 3.10 and recall Definitions (3.31) and (3.32) of p; 1. This gives

||7'[[‘L'/]||Ll ([re,1/21) =7 Z fj(6)|T (Y)||y| dy
j=1

e b (Thogf1e =23 510 P
=7788\3 %%\ T 2087 _3 VT 208,

1 1\ 7 272
+ —<5 1og<1 + ——) +3 1og<1 + ?—>> +(0.42)me.  (3.37)
r r

Notice that (0.42)re < 0.08. We write v(r) for the expression in the last line. Altogether,
we have shown that

242
”H[T,]”LI(T) < %\/;—{' 2\)(7') <4.5.
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In the second step, we evaluated the expression at » = 3.6. This proves the main claim of
Lemma 3.8. O
It remains to give the proof of Lemma 3.10.

Proof of Lemma 3.10. We begin by observing that

d 1 i —x' 1
-\ = log sm(‘x ) = (3.38)
dx \ sin x’ sin(x) sin x sin(x — x’)

whenever x, x’ are such that the logarithm is well defined.
Let j € {1, 2}, which implies that p; (x) = p; 1 > 0. By (3.38) and sin, cos < 1, we have

o sin(r(x — ;1))\ =2
=g sin(pj.1) [ Og( sin(7x) )]

X=re

1 ( sin(mre) )
< — log( —
7 sin(p; 1) sin(zw(re — p;j 1))
| 10g<1 M)
7 sin(wpj1) sin(r(re — pj,1))

IA

(3.39)

Next, we estimate the sines by linear functions. While the upper bound sin(rx) < mx is
valid for all x (and is sharp for small x), a linear lower bound on sin(7rx) depends directly
on the allowed range of x values. This is conveniently expressed via the quotient

. inG3
sin(rx) _ sin(3me) =208,

x€[0,3€] X 3¢

In the last step, we used that € < % We may verify that all the arguments of sin(;r-) in the
last line of (3.39) are located in the interval [0, 3€]. Therefore

[ — log<1 —Sin(ﬂpj’l) )
7 sin(rpj 1) sin(w (re — p;,1))
1 .
< — log(l + —L)
2.98mp; 1 298 re —pj1

fite) <

This proves (3.34).
Next, let j € {3, 4}, so that p; 1, pj2 < 0. We have re < t; by our assumptions on r, €,
and (3.38) yields

| 1 sin(r (x — 0;,1)) =
file) < 7 sin(p;.1) [ og( sin(mrx) )]

X=re

1
+lz—¢ max - - .
2 xe(tj,1/2] sin(w (x — pj2)) sin(mwx)
The second term is an error term (it vanishes as € — 0). Indeed, recalling the definition of
tj and p; > from (3.32), we see that for j € {3, 4},
1 1 hi3 h13
57l 1 . = 2 = 0 2.0y2 =
2 sin(7r (5 — p;j.2)) sin(re;) — 2cos=(3mwe) T 2(1 — F7w2e?)

0.21,
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where the last estimate used that € < % Therefore, we have

1/2 1
/ : - dx
re  SIN(T(x — pj(x))) sin(wx)

: i x=t;
<! [1og<sm(n.(x_p“))ﬂ " 1021
7 sin(wp; 1) sin(7r x)

X=re
< ’ og sm(nFre —pPj1)
7 sin(|pj 1) sin(wre)

2 .
log<1 + = ij,1|> +0.21.
5 re

>+0.21

=

Smlpj1l

In the second step, we used that 0 <t; <t; — pj 1 < % and monotonicity properties of sin.
In the last step, we used cos < 1 and
sin(mx)  sin(@w(r +2)e) 5

= —. 3.40
xE[O,l(r;-i-Z)e] X (r+2)e >2 ( )

This bound holds because (r +2)e < 1, which may be verified from r =3.6 and

€< % This shows (3.35) and concludes the proof of Lemma 3.10, and hence also of

Lemma 3.8. O
Next, we control the pointwise size of H[t'].

LEMMA 3.11. We have

5
/
[} < —,
IHIz M Loeo(T) < e

Proof. By translation invariance, we can set a = 0. Let us first consider
/ ' (x) cotmw(x — y) dy.
supp(t’)

If x ¢ supp(t’), then fsupp(r,) 7/(x) cotw(x — y) dy = 0. Thus, we can assume without
loss of generality that x € [—3¢, —e]. On the one hand,

‘/ T/(x) cotw(x — y) dy| < 2¢|t’(x)|] sup |cotm(x — )
[e,3€]

yvele,3€]

1
<2 sup |cot(mu)| <2cot(2mwe) < —,
uel2e,6el 2e

since 6er < — 2me and sin(2we) > 4e (recall that € < %). On the other hand, for the
negative support of 7/, we can further assume by symmetry that x € [—3¢, —2¢]. Thus,

‘/ '(x) cotm(x — y) dy
[—3¢,—€]

—€ —€—X
=[7'(x) cotw(y — x) dy‘ =[7'(x) cot (ry) dy‘
2x+43€ x+3e

1( +30) | 4 1x+3e1 2¢ i
= — (X € e = — (0] —

€2 i3e 2 YT e e B\ +3e
1 1 1

< - sup tlog|-—-1)<—. (3.41)

€ 1€[0,1/2] t de
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Hence, overall we have

3 (3.42)
< —. .
4de

f '(x) cotm(x — y) dy
supp(t’)

Now let us consider, with x € [—3¢, —¢],

"H[r’](x) — / /(x) cot w(x — y) dy’
supp(’)

/ (T'(y) = '(x)) cot(x — y) dy’
supp(t’)

—€| / ’ 3e 1 1
5/ T(y) — T (x) f It (y)l+|r(X)|d
—3e €

sinw(y — x) [sin T (y — x)|
—€ -2
|'x - )’|6 1 1 -1 16
< —d -+ —log2 < —. 3.43
—Le -y DT \aTEr) =T G4
In summary,
5
Ht' | oo — 3.44
IHIT M Le(m) < e (3.44)
as claimed. O

Combining (3.20), (3.27), (3.28) with Lemmas 2.5, 3.8 and 3.11, we have

9
(T, v) < Seo + 52—2 +2¢B>(B — m) + (t)v(T)

9
<—80+5§—1+6<232+ —m)
€

-2
9
= 580 + 2B3ye1(B — m).

Note that our choice (3.21) of € minimizes the contribution of 1. Finally, (3.25) concludes
the proof of Lemma 3.6. O

4
—— )(B
log R/Ry

In order to prove the exponential integrability of v — ¢, and thus complete the proof
of Lemma 3.1, we invoke the following classical result about the Hilbert transform of
bounded functions on the circle; see, for example, [Kat].

LEMMA 3.12. Let f be a real-valued function on T such that | f| < 1. Then for any 0 <
1
a <57,

=2seca.

/ea\H[f](X)l dx <
T T cosa

Applying Lemma 3.12 to f = (D' — Jg * v))/||(D_1(v — Je % V))|lLo(T), by
(3.23), we have

/ exp(Bl(u — Je xu)(x)|) dx < 2sec «, (3.45)
T
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where a = ﬂ(%eo + 2B34/€1(B —m)) < /2. Taking o =m/4 in (3.45), then (3.22)
yields (absorbing the constant ¢ into v for simpicity)

fexp< |v(x)| )dx
T 18e¢ + 8B3+/e1(B — m)

meo + (B3 + Bi/B3)V/e1(B—m)/2
< 2V2 exp
18eg 4+ 8B3+/e1(B — m)
17 Bl
<2 3.46
which concludes the proof of Lemma 3.1. O

We conclude this section with an important decay estimate on the Fourier coefficients
of the subharmonic function v. This lemma will be used in §7.
LEMMA 3.13. Let v be as in Theorem 2.2. Then the Fourier coefficients of v satisfy

A C(R, Ry, Ro)
[v(k)| < T(B —m) foranyk #0,
in which

1 1
C(R, R, R _ BRR,R 3.47
( 1, Ry) = Jlog R/R; + 1( 1, Ry). (3.47)

Proof. For any k # 0, we have

(@ ()] + 1H K))). (3.48)

15(k)| = ‘ fT ((x) 4 h(x))e 2k gx| < T

By Lemma 3.3, we have |ﬁ’(x)| < Bi(R, Ry, Ry)(B — m), hence
|h'(k)| < Bi(R, Ry, R2)(B — m). (3.49)
By (3.19), (3.20) and Theorem 2.2, we have

(B —m)
' (k)] = [HIVI(K)| = |5(K)| < wi(Dy) < Tog R/R, " (3.50)

In view of (3.48), (3.49) and (3.50) we infer that

1 B —
00| < 5 (BI(R Ry, R)(B — m>+u),

k| log R/Ri

as claimed. O

4. T2 splitting lemma

Our applications to the skew-shift dynamics on T? require a version of the splitting lemma
in two variables. First, we formalize the class of plurisubharmonic functions that we will
be working with.
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Definition 4.1. Let v(z, w) be a continuous plurisubharmonic function on Dg x Dg,
satisfying the following estimates for R > 1:

v(z, w) < B4(R) forall (z, w) € Dg x dD1, and v(0, e(y)) > my4 forall y € T,
v(z, w) < B5(R) forall (z, w) € 9Dy x Dg, and v(e(x), 0) >ms forall x € T,
lv(e(x), e(y))| < Bg forall (x, y) € T.
4.1)
For a function f defined on a polydisk in C? which contains T2, let us denote f (e(x), e(y))
by f(x, y) for simplicity. In particular, we will write v(x, y) on T2. The average is denoted

by (f)r2 == sz fx, y)dxdy.

Below, we will analyze a particular Schrodinger cocycle over a skew-shift base, and
we will specify the constants in Definitions 2.1 and 4.1. But for now we develop more
analytical machinery with these constants as parameters. Recall that for a Borel set U, the
Lebesgue measure will be written as |U|.

LEMMA 4.2. Let v be as in Definition 4.1, and assume (3.14). Let 0 <r < 1, 0 < &1 and
0 < gy < &3 < &. Assume

v(x, y) =vo(x, y) +vi(x, y) + (v)p2,

where ||vol| oo (12) < €0 and ||vi | p1(12) < €1. Then

T
(G ) € T2 2 fo(x, y) = {v)pe| > £2}] < 2(2Cp)'/2 GXP(—W%)
0

b4
+ Co exp <——82)
152

in which Bz = B3(R, R1, R») are defined as in (2.2), Cq in (3.2), and

80" = 3e0 + 2B3,/&] (By — my),

4.2)
5 := &3+ 4B3y/Boy ) " (Bs — ms).
Proof. Fix0 <r < 1. Let
Al = {yeT:/ |v1(x,y)|dx<8§}. 4.3)
T
By Markov’s inequality, we have
|AS] <" 4.4)

For any fixed y € A1, we have [[vo(-, Y)llo(m) < €0 and [[vi (-, )|l 1) < €]. Applying
Lemma 3.1 in the x variable, we then have

T
exp<—|v(x, y) — (v) 2|) dx < Cy.
/qr 45" B

Integrating over y € A and interchanging the integrations yields

// exp<%|v(x,y)—(v)qrz|> dy dx < Co. 4.5)
T JA, 45,
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For y > 0, let us define
b4 _
Ay = {x eT: / exp(Tlv(x, y) — <U>'ﬂ‘2|) dy<Coy 1}~ (4.6)
A 44,

By Markov’s inequality,

|AS| < y. 4.7)
For x € A, and &3 > &g, let us define

Az :={y e A :|v(x, y) — (V)| < &3} (4.8)

Again, by Markov’s inequality,
1AS] < Coy ! exp(—n—g::) 4.9)
455"
Thus for x € Az, {y € T: [v(x, y) — (v)| > &3} € A{ U A§, with the measure estimate
e
Hy eT:|v(x,y) — (v)p2| > &3} < si_r + Coy_1 exp<—48—(13)>. 4.10)
0

Here we divide the argument into two different cases, depending on which term on the
right-hand side dominates.

1

Case I: 8117’ < Coy~ ' exp(—me3/4 8(()1)). Then (4.10) directly implies that for any

X € Ap,
—1 TE3
{y € T:lv(x, y) = (v)p2| > e3}] =2Coy ™ exp ) (4.11)
0

Together with (4.7), we conclude that

_ TTES
(6, 3) € T2 o, ¥) = (V)2 > £3) < 7 +2Coy ™! exp(—m). (4.12)
0

Uexp(—me3/4 3(()1)). Then for any x € A,

Case 2: 8114 >Coy~
{y € T:u(x, y) — (v)p| > e3} < 2¢; . (4.13)
For x € A, let

ﬁx,O(y) = (v(x, y) - (v)Tz)]l{yeT:|v(x,y)—(v)T2|§S3}a (414)

Ur,1(9) = (0(x, ¥) = (V)2 LyeT o, y)—(v) g [>e3)-

Then (4.13) implies, assuming x € A,

v(x, ¥) = Ux,0(y) + Ux,1(y) + (v)p2,
10x,0() oo () < €3, (4.15)
156,11 ry < 287, ) = (g llzoeem < 4Be ey "
Applying Corollary 3.2 in the y variable, we obtain that for any x € A, and any & > €3,

e
Iy € T: Ju(x, y) = (vhpa| > 2}l < Co exp(—%—(;)- (4.16)
0
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Together with (4.7), we then get

TE
(6, 1) € T2 v, y) = (V)2 > &2} S ¥ + Co exp(—%—é)) (4.17)
0

Finally, we choose y to equalize the terms in (4.12):

y = (2Co)'? exp(— m&).
88

Then the estimate of case 1, namely (4.12), yields

{(x, ) € T : [u(x, y) — (V)| > &2}
< H(x, y) € T Ju(x, y) — (v)p2| > &3}

< 202C)"? exp<—”—‘913>. (4.18)
0

The estimate of case 2, namely (4.17), becomes

{(x, ) € T : ulx, y) = (v)g2] > &2}

< (2Cy) '~ exp - + Cp exp - ) 4.19)
88 45,

Combining (4.18) with (4.19), we conclude that

H(x, y) € T : Ju(x, y) — (V)| > &2}

172 TTE3 TE
< 2(2Cp) '~ exp T + Co exp —— )
88 45,

as claimed. O

5. Avalanche principle

The avalanche principle (AP) is a device to compare the logarithm of the norm of a long
product A, A,_1 - - - A2 A1 of matrices to the sum of the logarithms of the norms of shorter
sections of the product. In the original formulation from [GolSch] for SL,(R) matrices the
length of the chain was limited depending on the norms of the individual matrices A ;. The
same restriction applied to the extension of the AP to SL;(R) matrices in [Sch]. Later,
Duarte and Klein [DuaKle] found a different proof of the AP which does not impose
any restriction on the length of the chain. Even though the older version [GolSch] would
suffice for our purposes, we present the argument from [DuaKle] with explicit constants.
(These are not provided in [DuaKle].)

Thus, this section is devoted to making the constants in [DuaKle2, Ch. 2] effective
(we mostly follow [DuaKle2] instead of [DuaKle] for the sake of simplicity). We use
the same notation as [DuaKle2], which we first recall. Although we only need the results
for SL(R) matrices in this paper, we aim to prove more general results which are of
independent interest.

Let GL;(R) be the general linear group of real d x d matrices.
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Definition 5.1. Given matrices go, g1, - - - » 8n—1 € GL4(R), the expansion rift is the ratio
llgn—1- - g18oll
P(80: 81 -1 gn1) = — € (0, 1].
lgn—1ll - - - lig1llllgoll

Given g € GL4(R), let
51(8) = 52(g) = --- = 54(g) >0

denote the sorted singular values of g. The first singular value, s1(g), is the operator norm

llgxll
s1(g) = max :
xeRA\(0} [|x]]

= llgll-

The last singular value of g is the least expansion factor of g, regarded as a linear
transformation, and it can be characterized by

llgxI

min =g "
xeRN{0} lx]]

sd(g) =

Definition 5.2. The gap (or the singular gap) of g € GL4(R) is the ratio between its first
and second singular values.
_s1(8)

~ s(g)’
Remark 5.3. If g € SLo(R), then gr(g) = ||g||>.

gr(g) :

Let P(RY) denote the projective space. Points in P(R?) are equivalence classes X of
non-zero vectors x € R¢. We consider the projective distance § : P(R?) x P(RY) — [0, 1],

8(%, §) :=sin (L(x, y)),
where Z is the length of the arc connecting x and y.

Definition 5.4. Given g € GL;(R) such that gr(g) > 1, the most expanding direction of
g is the singular direction o € P(R?) associated with the first singular value s1(g) of g.
Let v(g) be any of the two unit vector representatives of the projective point 8(g). We set
0*(g) :=0(g*) and v*(g) :=v(g").

Any matrix g € GL;(R) maps the most expanding direction of g to the most expanding
direction of g*, multiplying vectors by the factor s1(g) = ||g|l:

gu(g) = %s51(8)v*(g).

The matrix g also induces a projective map g : P(R?Y) — P(RY), g(%) := g, for which
one has
§(0(g) =0"(g) and g*(v"(g)) =0(g).

THEOREM 5.5. Letn>1and 0 <e < 11—0 Given 0 <k < L2 and 80,815 ---58n—1€

10
GL4(R), if
G) gr(g) =k forj=0,1,...,n—1,
(A) p(gj-1.8) =€forj=1,2,....n—1,
then, writing g/ :=g;_1 - - - g180, we have:
() max (8(5(g"), 5(20)), 8(6*(8"), 8*(ga_1))} < e~
(i1) e—SnK/ez < (0080, €1 - - -+ 8n—1))/(0(20, 1) - - - P(gn2, gn_1)) < 6‘llm(/GZ.
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The proof follows the general line of argumentation in [DuaKle2], keeping track of the
effective constants throughout.
Staging the proof. The projective distance & :P(R?) x P(RY) — [0, 1] determines a
complementary angle function « : P(R?) x P(RY) — [0, 1], defined by

a(x, §) = |cos(L(x, y)I.
Let us also introduce the algebraic operation
a®b:=a+b—ab.

For properties of a @ b, one may refer to [DuaKle2, Proposition 2.1].

LEMMA 5.6. Given g € GLy(R) with gr(g) > 1, £ € P(RY) and a unit vector x € %,
writing @ = a (X, 0(g)) we have the following statements.

@ a<lgxll/lx] < va?® gr(g)>
(b) 8(8(%), 8*(9)) <! gr(e)'8(%, B(2)).
(¢c) The restriction of the map g : P(R?) — P(R?) o the disk
(£ e P(RY): 8(%, 6(2) <7}
has Lipschitz constant at most (m(r + /1 —r2))/(2 gr(g)(1 — r2)) with respect to

the §-metric.

Proof. The factor 7 /2 in the Lipschitz constant is already explicit in [DuaKle2, proof of
Lemma 2.2]. g

COROLLARY 5.7. Given g € GLy(R) such that gr(g) > k! define

T = {f e P(RY) (%, 5(g)) > €} = B(6(g), V1 — €2).

Given a point X € Ze:
@ 88X, g(6(g))) <ke 18(%, 6(g));
(b) the map gls, — P(R?) has Lipschitz constant at most (ﬁrr/Z)xe‘z.

Proof. Inequality (a) follows directly from (b) of Lemma 5.6. Statement (b) follows from
(c) of Lemma 5.6 and the fact that € + +/1 — €2 < V2. O

Definition 5.8. Given g, g’ € GLy(R) with gr(g), g(g’) > 1, we define their lower angle
as

a(g, &) =a(d(g), b(g").
The upper angle between g and g’ is

B(g. g) = \/gr(g)*2 S alg, g)? ®er(g) 2
LEMMA 5.9. Given g, g’ € GLy(R), if gr(g), gr(g’) > 1, then
a(g, &) <p(g. &)< B g).

This lemma has the following immediate corollary. It shows how assumptions (G) and
(A) in Theorem 5.5 will be used.
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COROLLARY 5.10. Given g, g’ € GLy(R), if gr(g), gr(g’) = k' and p(g, g') > €, then

€2

8(07(g), v(g")) < \/1 RETIN

We recall that g/ := gj—1"""8180-

LEMMA 5.11. Ifgr(gj) > 1for j=0,1,...,n—1, andgr(gj)> lforj=1,2,...,n

then
n—1 n—1

[T’ ¢)) <pg0. 810 - gn) < [ | Bl&7. g))-

j=1 J=1

Proof of Theorem 5.5. To simplify the notation, we will write co = %, bj:=0(g;) and

6’;::6*(gj)forj=0,1,...,n—1.Wealsolet
8 =8&y_1—j» V=03 4y ; and 0} =03-1-; forj=nn+1,...,2n—1
Foreachi=0,1,...,2n—1and j=0,1,...,2n —1i,set

0] == &itj1- - &it18ibi.
In terms of the notation above, we have (gT)%” (0(g0)) = ﬁ%” and by = 6%}1_1.

By assumption (A), we have p(gj—1, gj) > € for 1 <j <n—1. Hence forn +1<
Jj<2n-—1,

P(gj—1:8)) = P(&rn_js &y j—1) = P(82n—j—1, §on—j) = €. .1
Clearly, we also have
g, _18n—1ll
P(8nt. gn) = P(gn-1. 8)_) = ——12— = (5.2)
lgn—1ll
Therefore combining assumption (A) with (5.1) and (5.2), we have
p(gj-1,8j)>¢€, forj=1,2,...,2n— 1. (5.3)

We begin with the proof of statement (i). We will prove §(b(g"), 8(go)) < 3ke~!. The
other bound can be proved in exactly the same way.
First, we will show that for € =r¢, t =2/3, we have the following lemma.

LEMMA 5.12. Forany 1 < j <2n—1,
gi1(B(Bj_1, V1 - ) S B(;, V1 - &)
Proof. Taking any & € B(b;_1, v/1 — &), we have
5%, 6;_1) =sin(£(%, §;_1)) < /1 — &2,
By (a) of Corollary 5.7,

8(8j-1%, 8j-10;-1) =8(8j1%, b)) = sin(£(gj1%, 6}_))

i W< %x/l “2e2 (54)
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By (5.3) and Corollary 5.10, we have

8(6%(gj-1), B(g;) =8(8}_y, 8;) = sin(L(B}_y, 6;))

€2 €2
</1-— < [1—-——— (55
= 14+ 2(k2/€2) ~ 1+ 2ce? =

Let 0 = Z(gj-1%, 8} ) and 6y = Z(8]_,, ;). Then

j-r

8(gj—1X, 6;) < |cos 6 sin 6, + sin O;|cos 62|
=1 —sin? 6, sin 6, + sinO1y/1 — sin? 6, := f(sin 6y, sin ).  (5.6)

With f(x, y) = y/T —x2 +x/1 — y2, it is easy to see that both 3f/dx and 9f/dy have
the same sign as +/1 — x2/1 — y2 — xy. Thus both 3f/dx and df/dy are positive if x> +
y2 < 1.

By (5.4) and (5.5), we have

C262 62
sin?0) +sin” 0y < L —(1—r?e) +1 - ———— < 1. (5.7)
t 1+ 2¢ge?

Here it is enough to have that for € = te,
C
0 2.2
t_2 =+ C06 < 1

Then (5.6) implies

P U’)<f( Lo ! 1+2c32
2 2.2
<(1-gra-ra)(- ) (-
2+4c06 t 2

<\/1—t2€2=\/1—52. (5.8)

(By our choice of ¢y = % and t = % the €2 coefficients of (5.8) correspond to —% —
1 2

This lemma has the following intermediate corollary.
COROLLARY 5.13. Forany 1 < j<2n—1land1 <m <2n — j — 1, we have
gj—i—m—l T gjgj—lB(ﬁj—la vVI1-— gz) - B(6j+m» vV1-— €2)

Next, let us show the following lemma.

LEMMA 5.14. Forany0 < j <2n — 1, forany % € B(b;, V1 — €?),

2n—j—1
N A A A A2n—) (N2
3(8an—1 "'gj+Zng,an 7y <ké I(T/ce 2) )
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Proof. By Corollary 5.13, for any 0 <m <2n — j — 1, we have that both the elements
j+m—1 -~ &j+18;% and 0"} belong to B(b;1m, v'1 — €%). Hence by (a) of Corollary 5.7,
we have that for m =0,

8(8jR,0}) =08(2,%, 2;0)) <k&™'8(%, b)) <w& . (5.9)
For 1 <m <2n — j — 1, by (b) of Corollary 5.7, we have

~ ~ A A m+1 A A A A A A A
8(8j+m&j+m—1-- g]+lg X, t’j ) =8(gj+m&j+m—1---8j+18;X, gj.,_mt)';')

=

KE78(@jtm—1 -+ &j+187%, B). (5.10)

Inequalities (5.9) and (5.10) imply that

2n—j—1
A A A oA A2n—j (V2
5(g2n—1"'gj+2gjx»njn 7y <«keé I(TKG 2) , (5.11)
as desired. O

In particular, combining Corollary 5.13 with Lemma 5.14, we have the following
corollary.

COROLLARY 5.15. Forany 1 < j <2n — 1,
R 2 n=j-1
867 65 Y) < k! (—*/; K€_2> :

Next, we will show the following lemma.

LEMMA 5.16. For any % € B(bg, ~/1 — €2), we have
5((g")*g"%, bo) <3ce™!, 862", B), ) <3ce L.

Proof. By Corollary 5.15, we have

2n—1 2n—2 j
8O3, Bh, )< Y 8T 6T <we! Z( ) . (5.12)

Jj=1 Jj=

By Lemma 5.14,

R o . \/_JT - 2n—1
8(8an—1 - - £180%, B") < k€ 1( 2) . (5.13)

Hence, combining (5.12) with (5.13), we conclude that

2n—1
5((g")*g"%. B(g0)) < k& Z(f” 2)

j=0
~7] 1
< Ke < e b < 3ke!
T 1= (V27 /2)kéE2 T 1 — (weo/N/2t)

We are now ready to give the proof of Theorem 5.5.
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Proof of Theorem 5.5(i). Lemma 5.16 shows that (g/")*\g” maps the ball B(bg, +/1 — €2)
into itself. By Corollary 5.7, it has contracting Lipschitz factor less than or equal
to ((v2m/2)ké2)?" « 1. Therefore the map (g/")*\g” has a unique fixed point in
B(0g, V1 — €2); call it x,. Lemma 5.16 implies that

8(xy, 0(g0)) < 3ke™ . (5.14)

The claim will follow once we prove that x, = 6(g"). Since 8(g") is a fixed point of
(g”)* n, it suffices to prove that 0(g") € B(bg, ~/1 — €2). (Notice that (%*\" has several
fixed points, one for every eigenvalue of (g")*g".)

Let 8, := 8(b(g"), xx). We will show that 8, = 0. For any unit vector v, we have

1 (g")*g"v
[(o(g"), v)| = ———=((g")"g"v(g"), v)| < <n( "), —————|,
§ Ga(gmz ¢ 8T £ Tgmrgnl
where we used that |(g")*g"v| < (s1(¢"))2. This lifts to a relation on projective space:
8(0(g"), (g")*g"0) <8(b(g"), D). (5.15)

We apply this with = 9, as the ‘halfway point’ between 0(g") and x,, that is, D, satisfies
e b
3(0(g"), Vs) = 8(xs, V) = 5

(This , can be constructed by following the arc that connects 8(g") with x,, assuming
that v(g") # x4.)
Notice that v, € B(bg, v/ 1 — €2) because (5.14) gives

A a « 1) 3k § 3¢ 1 —~
6<uO,v*>sa(no,x*)+§5—+ < t-o<V1-&
€

Recall that (g/")*\g” maps the ball B(6g, +/1 — €2) into itself with Lipschitz factor less than
orequal to Ly := (V27 /2)k€2)2" « 1. Since (g")*g"xx = x4, We have

. . B
8((gM)* gDy, X4) < Lo8 (D, Xx4) = Lo%-

We combine this bound and (5.15) with 0 = v, to conclude that
n R —_— —_— L
8 = 8(0(g"), x4) <8(0(g"), (8")*8"0s) + 8((8)*g" Dy, X)) < (1 + 70)5*.

Since Ly < 1, this implies 8, =0, that is, x, =0(g"). Consequently, (5.14) reads
8(6(g"), 8(g0)) <3ke~! as claimed in (i) of Theorem 5.5. The other bound in (i) can
be proved in exactly the same way. O

Proof of Theorem 5.5(ii). By Lemma 5.11, we have

n—1 i -

1 gj J
H a(g’, gj) < pr(lgi(i,...,gn D 1_[ Blgl g
j=1 B(gj-1.8j) [T/ p(gj-1. 8)) algj-1. &)

‘We will show that the factors

(5.16)
j=1

algl, gj) X Bg'. &)
B(gj-1,8)) algj-1,&j)
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are very close to 1, with logarithms of order xe—2. From conclusion (i), applied to the
sequence of matrices go, g1, ..., &j—1, We have

max{8(6*(g/), 6*(g;-1)), 8(B(g”), 6(g0))} < ke (5.17)

forall 1 < j <n.From (5.17), we deduce that

'lo alg’, gj) (g7, gj) — (gj—1. &)l
al(gj-1,g;)| — min{a(g/, gj), a(gj-1, g;)}
(6 (g)), °(gj-1))  _ 3we”!
~ minfa(g/, ), a(gj—1, &)} ~ min{a(g/, g;), a(gj—1. &)}
(5.18)
We estimate the minimum as follows, using (5.17) and Corollary 5.10:
min{a(g’, gj), a(gj1, g))} = a(gj-1. &) — la(g’, gj) —a(gj1, g))l
> a(gj-1. 8j) — ke
> ; — 35
Jr+285 €
€
> % (5.19)
=5 .
In the last step, we used « /e < €/10. Returning to (5.18), we have shown
j, . 9
’log el 8) | == (5.20)
Ol(gj_l, gj) 2¢€

From the definition of the upper angle 8 and Corollary 5.10, we also have

2 2 2
<log [14+2—— <log [1+25 < 5. (5.21)
a(gj-1, &j) € €

Hence (5.20) and (5.21) yield

’l B(gj-1,8))
0 —_—
algj-1, &j)

J o 9 2
‘1 o8l g) | 9k Kk 5K
Bgj-1.8))|~ 2¢€ € €

Together with (5.16), this implies the lower bound in (ii), that is,

675n/(/e2 < P (805 815 - - - s n—1) ‘
p(go, &1) + - P(&n—2, n—1)
For the upper bound, we argue similarly. The only difference occurs in the analog of
(5.21), that is, the estimate of

To bound this quantity, we need to control the gap ratio (gr(g/))~'. This control is
provided by the following lemma.

LEMMA 5.17. We have (gr(g/))~! < «’ :=20(x /¢).
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We postpone the proof of the lemma for now. It gives

n2 2
<log [1 42— <6005
€

'lo B, &) - ' -
a(g’, gj)

algl, gj)

In the second step, we used that ar(g/, gj) > 2¢/3 by (5.19). Recalling (5.20), one has

‘1 B(g’. &)
Og _—
algj-1, &j)

2K L0021 X
Z— — <1l—.
—2¢2 €3 €?

In the last estimate, we used that 600« /e < 60¢ < 6.
By (5.16), this proves the upper bound in (ii), that is,

p(80, 815 -+ &n—1) < ine/e
0 (8o, &1) - - - p(gn—2, &n—1)

It remains to prove Lemma 5.17. For this part, we follow [DuaKle, p. 71] and make the
constants precise. From [DuaKle, Proposition 2.28], we see that

(zr(g)) ™" = 1(Dg)g e -

Where (Dg/\j)ﬁ(gj) is the derivative of g/ : P(R?) — P(R?), evaluated at (g/). The norm
of this derivative is bounded by the Lipschitz constant in a neighborhood of 6(g/). Since
the Lipschitz constant is at most L7, with L := («/571 /2)/<E_2, everywhere on the ball
B(bg, ~/1 — €2), we immediately obtain the bound (gr(g/))~! < LJ. However, this is not
good enough for our purposes (note that L is an order-one quantity in general).

We may improve the estimate as follows. Applying statement (i) of the theorem with
n = j, we obtain that

A il oA K
§(0(g7), v(g0)) < 3;
Now, a calculation based on [DuaKle, Proposition 2.28] shows that
- N K
(D80 (gi) — (D80 (gl = 1271;
and therefore

~ ~ K _ K K
I1(D€0)ae) | = 11(DE0)a(gy) Il + 127 — = gr(g0) b+ 127~ <K+ 127~

< (127 + 1\«
T+ —)-.
- 10/ €

Finally, we apply the chain rule and estimate the derivative of the product g; 1 ... g1 by
its Lipschitz constant L/~!, which satisfies L/~! < L < 97 /40+/2 for j > 2. Therefore,

(er(g )™ = 1(DgNgeill < IDEj—1 - 8D)oeh &I(DE0) (i |

1
<127 + — )5 <20%.
10/ € €

This proves Lemma 5.17 and hence completes the proof of Theorem 5.5. O
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6. Herman’s regularization
6.1. Monodromy matrices. One has T)(x,y)=(x+ny+ n®n —1)/2)w, y + nw)
for any positive integer n, where T is the skew shift with frequency w. Denote the
projection of T? onto the first coordinate by P, that is, P (x, y) = x.

We consider the Schrédinger operator

(Hk,a),x,yl//)n = Yut1 + Yn—1 + 2X cos (ZJTP(TS(X, W) Vn

with A > 0. This equation has the cocycle reformulation

(%H) _ (E—2)» cos 2 P(T5(x, y))) —1) ( Un )

Yn 1 0 Yn—1
R . n ‘(//l’t
=M@, E; T, (x,y)) : (6.1
Iﬂnf]
Define the transfer matrices M, (A, E; x, y) to be
1

[T M. E; T)x, ), n>1,
M,(A, E; x,y)=qJ=n (6.2)

Id, n=0,

(M_,On, E; TH (x, y)) ™!, <.

Ynt1) _ _ (1

The following function on T? plays a fundamental role in our analysis:

Then

1
u,(A, E; x,y):= - log | M, (X, E; x, )|

1 L E 3 e2mi iyt GG =D/Dw) _ 3 2wyt GG-D/De)
= — log l_[
n . 1 0
J:n
(6.3)
Let z = &2™i% = 2TV g = ™% as well as
Ezw — Az%w?a —a —
A E, z,w, a) = ( o arwrd m Al Zw) (6.4)
w 0

Then for (z, w) € 0D; x D1,

| E—azwiaiU=D _—ly=i giu-b  _q
un(h, E; x,y) = ~log H( | 0

=n

~

1 L (Ezwl — az2waiU=D _qiG=0  _ i
~log | ]] j
n w 0

j=n

1
— log
n .

Jj=n

=:v,(A, E; z, w). (6.5)

1
[ a2 w0050
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Note that v, (A, E; z, w) is a plurisubharmonic function on C2. Herman’s regularization
refers to the transition from the first to the second line in (6.5), which removes the
singularities z~! and w~!. Note that

va(A, E; 0, w) =v,(A, E; z,0) =log A. (6.6)

For simplicity, we will write A instead of A;, since A will be a fixed parameter within some
range. As a general rule for the arguments of the matrix function A, the complex variables
z, w will belong to some disk Dg, whereas |a| = 1 and E will be real-valued within some
range. We will also keep 0 < A < 1.

6.2. Explicit bounds on the monodromy matrices.  As a first step towards obtaining the
explicit constants in Definitions 2.1 and 4.1 we prove the following bounds on vj,.

LEMMA 6.1. Let 0 < A < 1 and Rz > 1. Define

! 1\ 2)\* 2

3
Then for any E with |E| <2+ 2A, v,(X, E, z, w) from (6.5) satisfies the following
estimates:
e foranyw € dD,

vp(A, E; z, w) <2log R3 + U (), R3) forallzeD_Ie}, and
v (X, E; 0, w) =log A; (6.8)
e forany (z, w) € 9D X D_R3, we have upper bound
vp(A, E; z, w) <(n+1)log R3 + U(A, R3), (6.9)

and we also have v, (A, E; z, 0) =log A for any z € dD1;
e forany (z,w)€ dDy x dDy,

v (X, E; z, w)| S UK, ). (6.10)
Remark 6.2. Let us note that

4U(X, 1) >21log6 > 1. (6.11)
Proof. Clearly (6.10) follows from (6.8) with R3 = 1. We will use that for any complex-

valued matrix
IAlI? = [|A*All < Tr(A*A).

For A as in (6.4) this means that
IAE, z, w, @)|> < |Ezw — Az2w?a — Aal*> + 2|z*|w/?

< (|El|zw]| + Alzw]? + 1) + 2|z} |w/?,

whence
1 2n
on(Es 2, w)| < = Y log [|A(E, z. w/, a/U™D)|

n
j=1

1 & , . _

=5, Zlog((/\(lzlzlwlzf + 1)+ |E|zllw])? + 21z 2 w|¥).  (6.12)

n

j=1
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For w € 9D and |z| < R3, (6.12) yields

1 . 2 2 2
lon (B3 2, w)] < leog«we3 +1) + |E|R3)* + 2R3)
J=

<21 R+11 M1+ ! +2+2A 2+ 2
) ~1lo — —
= g K3 2 g R% R3 R%

= 2log R3 + U(X, R3). (6.13)

This proves (6.8).
Next, we turn to (6.9). For z € 9D and |w| < R3, (6.12) yields

1 & . . .
[un(Es 2. w)| < 7 3 " log(u(Ry + 1) +1EIRD +2R3)
j=1

< 1)log R 1 ”] Al l ! 2421 Ly 2
< (n+1)log 3—1—%205; +ﬁ + @2+ )F + =5 )
J:

3 3 RS

Note that the summands are maximized at j = 1, which gives us the constant 2U (A, R3).
Hence, in total
v (E; z, w)| < (n+ 1) log R3 + U (A, R3),

as claimed. O

7. Long sums of skew-shift functions
In this section we establish a key large-deviation estimate on the ergodic averages of a
plurisubharmonic function, as defined above, over a long skew-shift orbit. The argument
is based on [BouGolSch, Lemma 2.6], but deviates from that reference in ways which
are essential for our purposes. The precise dependence on all parameters is made explicit
and effective. This leads to a somewhat cumbersome formulation which is, however,
absolutely necessary for the main application. We wish to point out one technical feature
of our version of this argument, namely that we only use a trivial bound on the number-
theoretic divisor function; see the constant C* below. We have found this to lead to the best
constants. We also remark that significant gains in the following proposition would lead
to dramatic improvements in the inductive machinery that we use to control the Lyapunov
exponent; cf. the next two sections. At this point, however, it is not clear how to obtain
such gains.

Recall that the constant B{(R, Ri, Ry) is as in (2.1), B3(R, R, Ry) is as in (2.2), and
B4(R), Bs(R), m4, ms are as in (8.8). In the following we will write By, B3, B4, Bs and
omit the dependence on the radii.

PROPOSITION 7.1. Let w = (v/5 — 1)/2 be the golden ratio. Let v be defined as in
the beginning of §4, let C = C(R, R, Ry) be the constant as in (3.47), and impose
Definition 3.5. Let § € (0, 1/2) and 85, 83 > 0 be constants. Assume:

(i) C(Bs—ms)<K°

(i) K =38;

(iii) exp (4(log K)®2) > K + 1;
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(v) 21K~O/10+0/3)8 (100 K)9/10+0O/% 1 AC(By — m4) < K% (log K)%2.
Then for any positive parameter Co > 0, we have
> 84}

K
H(x,y)e’]l‘z:‘% ZvoTcﬁ(x,y)— (v)
k=1

|17 B] _
= 2\/§CXP<2|:3—6 + m — &5 11|>
3

+V2(C(By — ma)) " K725 (log K)~1/3722/5 exp(—2(log K)™),

where
g4 = CoK ~V/103/5 (100 ) 1/10+52/5+55

7.1
es=C; ' (472.5 + 3.2B3(Bs — ma)v/C)(log K) ™%, 7.1)

Before proving Proposition 7.1, we will review some background of continued
fractions.

7.1. Continued fractions. Each w € [0, 1) has the unique expansion

1

a1
1

a+
a3+

w =

(7.2)

where a; € N;. We will denote this expansion by w = [a, a2, ...]. If w €Q, the
expansion is finite, while it is infinite for irrational w.

Let w € [0, 1)\@Q, and let

Pn 1
pa e —— =
ar+ IL

be the continued fraction approximants of w. These approximants satisfy the following
three properties:

Gn+1 = ant1qn +qn—1 Withgo:=1; (7.4)
lkollT > llgnw|lT for any g, < |k| < gn+1; (7.5)

< llignoliT < (7.6)

Gn+1 + Gn dn+1

We are primarily interested in is the golden ratio w = (v/5 — 1)/2. It is well known
that w has continued fraction expansion with a; = 1 for any i > 1. Then by (7.4), we have
qn+1 = qn + gn—1 With go = g1 = 1. Hence for any n > 0, g,,4+1 < 2¢,. Then by (7.5) and
(7.6), we have the following property of the golden ratio.

PROPOSITION 7.2. The golden ratio satisfies

1
kol > £ for any k 0. (7.7)

The optimal bound here is (V5+1) /2)+, but the constant 3 is sufficient. We will use
the following corollary of (7.7) repeatedly.
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COROLLARY 7.3. The golden ratio satisfies the following two properties.

o [f{ is a positive integer such that ||[Lw|T < o, then £ > 1/(30).

o If¢, ? are two distinct positive integers such that max (||fw||T, IwlT) <o, then |€ —
€= 1/(60).

In order to control small divisors we will rely on the following two lemmas.

T
sin (—9)
2

Proof. If 0 € Z + % [sin((7r/2)0)| = sin(;wr /4) > % =|6|l.

Ifo¢7Z+ %, then there exists a unique k € Z such that 6 =k + ||@||T (if 6 € [k, k +
), or @ =k —||0]lr (if 6 € (k — 5, k)). If k is an even number, then [sin((7/2)0)| =
sin ((w/2)]10]IT) = 110]|T, in which we used sin x > (2/7)x for 0 <x <m /2. If k is odd,
then [sin((r/2)0)| = cos ((r/2)[|0]|T) = cos (/4) > 5 > ||| o

LEMMA 7.4. For 6 € R, we have

> 101l (7.8)

We will also use the following two estimates.

LEMMA 7.5. For any positive integer R,

R

2 1
Ze(km) < min <R, —> < min (R, ) (7.9)
— 2sin (x|€wllr) 2]l
and
R 1
el =ktw )| <min ( R, —— ). (7.10)
,; (2 )' ( ||m||qr>

Proof. For 6 ¢ 7, we have

R

Z e(k@)‘ = min <R,

k=1

e(0) —e((k + 1)9)') < min <R 1 >
1 —e(0) - " Isin(w0)| )’

Then (7.9) follows from taking 6 = fw, and using sin (wx) > 2x for0 < x < % Inequality
(7.10) follows from taking 6 = %Ea) and employing (7.8). O

7.2. Proof of Proposition 7.1.  Let 0(¢, y) and 0(x, £) denote the Fourier coefficients
relative to the first and second variables, respectively, and by (£, £2) we mean the
Fourier transform in both variables. For simplicity, let us omit the dependence of
C(R, Ry, R2), B3(R, Ry, Ry) on the radii.

First, we note the following estimate as a corollary of Lemma 3.13.

COROLLARY 7.6. For any £ # 0, we have

. C
sup |9(x, £)| < —(Bs — ms),
xeT 14
C (7.11)
sup [0(€, y)| < — (B4 — ma),
yeT ]
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and
1/2 C
(Z 1D(e1, zmz) < g5 Bs —ms) forany&270,
€L
' (7.12)
1/2 C
(Z |f’(51,fz)|2) SW(B4—m4) for any £1 #0.
ez !
Proof. Note that (7.11) follows directly from Lemma 3.13. On the other hand,
1/2
(Z j(er, zz)|2) = I19C. &)l 2x < sup B, &2)].
0€7 xeT
Hence, (7.12) reduces to (7.11). O
With some positive integer p; to be determined, let
v(x,y) = Y L yeix)+ Y Dl ye(trx)
[€1l=p1 [€11>p1
= vi(x,y) +01(x, y), (7.13)
where v; and v; are the low- and high-frequency parts, respectively.
By Corollary 7.6,
1/2
sup 151 ¢, Vllpiery < ( > sup i, y)|2>
yel ler]>pr V€T
1\ /2
< Cs( Z —2> (B4 —my)
14
[e1>py "1
< V2C(By —ma)p; 2. (7.14)

Next, we further decompose v into low- and high-frequency parts in the y variable.
With some positive integer p> to be determined, let

Gy = 3 0. E)etix +y) + Y. (. L)e(Erx + L)

[€1|1<p1 [€1]=p1
[€2]>p2 [€21<p2
=t va(x, y) +v3(x, y). (7.15)

By Corollary 7.6, we have

1/2
||vz<x,y)||mrz)s||v2(x,y>||Lz(Tz)=( > |ﬁ(e1,ez>|2>

[€11=p1,l€2]>p2

1/2 C? 1/2
5( > |ﬁ(z1,zz)|2> s(Z Z—Z(Bs—m5)2>

t€Z, [t]>pa le2]>p2 2
< 2C(Bs —ms)p, 2. (7.16)
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Hence, by Markov’s inequality,

|

We denote the set on the left-hand side of (7.17) by A(¢).

dx>t}

<V2C(Bs —ms)py, 7. (1.17)

Now let us consider vz, which will lead to small-divisor problems. By Corollary 7.6 and
the fact that 0(0, 0) = (v), separating the cases £; =0, £, = 0, and £;£, # 0 yields

K
1
sup | — Z v3 0 T(i‘(x, y) — (v)
(x,)€T? =1
1 K k(k — Do
=% Z [v(£y, £2)] Z€(€1<ky + T) +K2ka))‘
[€11<p1 k=1
[€21<p2
[€11+1€21#0
C(Bs — ms) a
= — — e(ﬂzka))‘
1 MZ |2
<l&21=p2 k=1
K
C(By — my) 1 k(k — Do
—_— — Lilk _
s R U CCEs)|
1=<|€11=p1 k=1
K
1 n k(k — Dw
te 2 > i o) Ze<€1<ky+ T) +€2kw>‘.
1<|€2|<p2 1=I€11<p1 k=1

(7.18)

We now separately consider the sums appearing on the previous three lines. First,

K

S i=— Z w—l'Ze(ﬁzkw)'.

1<[t2|=p2 2D

Second, by Cauchy—Schwarz,

)]

K—IZ%

I=|é1l=p1

K

1z k(k — Do
=2 ) (2 Bl 5)
I<li|<pr 1 I=[ly|=p1 k=1

< 2K~ < 3 ée(&( —k(kgl)w>>2

L<|€11<p1

2)1/2

12
) = 5. (7.19)

~
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And, finally,

K70 T b, )

K
k(k—1
Z e(ﬁl (ky + %) + Eﬂca))‘
1<|6|<p2 1= |=p1 k=1

12
<K' ) ( > |ﬁ(el,£z)|2>

1<|62|<p> 1<|41|<171

( > Z <€1<ky+@)+ﬂzkw)

1<[¢1|<p1 k=1

1
<C(Bs —ms)K ™! —
’ MZ 2]
<|62|=<p2
K k(k — D
x ( > Ze<e1(ky+ T) +E2ka))
1<|¢1<py k=1
=: C(B5s — m5)S3.

2)1/2

2>1/2

Returning to (7.18), we conclude that

sup
(x,y)eT?

< C(Bs —m5)S1 + C(Bs — my4)S» + C(Bs — ms)S3. (7.20)

1 K
— Y w30 Th(x,y) — (v)
=1

7.2.1. Estimate of S1.  Applying (7.9) to S1, we infer that

1
S1 <2 1n< —)
Z 52 2K [L2ollT

1<t<p;
1
=2 Y Tl It2olr=1/2K) 5
1<t<p>
2/<2K 1 1
2 1 I, ———
+ 2; 1 > lea- 2K <lltllr=21 2K} g min < ZKllﬁzwllqr)
J <L<p
=:51.1+ 812 (7.21)
Estimate of S11.
1
Sii=2 Y 1l le20lr=1/2K) 5 (7.22)
1<t<p;
By Corollary 7.3, if, for some ¢ > 1, ||[£w|T < 1/2K, then
(> %K. (7.23)

Moreover, if, for some distinct £, £ > 1, max (|£w||T, [[o|T) < 1/2K, then

It — 0> 1K. (7.24)
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By (7.22), (7.23) and (7.24), we have

S
Sy <2 2 Zeg 22 7.25
=2 R TR (7:25)

For this estimate, and from this point on, we assume that p> > K.

Estimate of S1 2.

1 2/ <2K 1
S12 < X ]1{@2:21‘*1/2K<||£zw|hr§2f/21<}gz||gza)||T
Jj=1 1<t=<p>
2J <2K 1
<2 Z ]1{62:2/'*1/2K<|Il2w|h1‘§2j/2K}2j—lg2' (7.26)

(> —K. (7.27)
Moreover, if, for some distinct £, £ > 1, max (|w|/T, [[€w|T) <2/ /2K, then

_ 1
6 —0|>—K. (7.28)
273

By (7.26), (7.27) and (7.28), we have

2/ <2K (2/3p2/K|—1

6 1
2520 L G

j=1 =1
1223 i3,
< — log
K “ K
j=1
<12 (loe2 e K1)+ (log, K + 1) log 22 (7.29)
— 0 0 og — |. .
=% 2 g2 g2 g K
Putting (7.21), (7.25) and (7.29) together, we have
6 2 31’2
S < e log 2(log, K +2)° + (21log, K + 3) log Sk (7.30)

Henceforth we assume p; > K > 23, which allows us to simplify (7.30) into

log K

S1 <26
K

log p». (7.31)
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7.2.2. Estimate of S and S3. In order to estimate S> and S3, we use the well-known
method of Weyl differencing; cf., for example, [Mon]. As a first step,

K

Z e(ﬁl (ky + @) + Ezka)>

k=1

2

K

- (5o 512 )
(Ze(alo e 57 o)

Let { =k+ j and m =k — j, hence £ =m (mod 2). Let us denote by 1, the indicator
function of even numbers, and by 1, the indicator function of odd numbers; that is,

L) =1, + 1) = 1 if j is even,
)=l o if jis odd.
Then

2

K k(k — Do
> e<£1 (ky + T) + Ezkw>

k=1

K—1 2K—|m|

- Do
Z Z 1,(m)1, (E)e(ﬁlm(y+ 5 )+e2mw>

m=1—K {=2+|m|
K—1 2K—|m]|

+ o) Y L, (@e(zlm(w( _21) >+zzmw), (7.32)

m=1—K £=2+|m|

in which, by (7.9), with m = 2/ and £ = 2¢,

—1 2K—|m|

Z Z 1.(m)1, (Z)e<51m< ¢ —zl)a)) —i—szw)’

m=1—K ¢=2+m|
L(K=1)/2] K—|m|
> e<z]m(2y + 2l — l)a)) + zzzn”w))‘
i=—| EZL | i=1+rm)|
L(K—1)/2] 1
< K+2 Z rmn(K 2m, m)

m=1

L(K—1)/2] .
< K+2K > min(l-——— (7.33)
- "2K |20 mollT )’

m=1
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and withm =2m — 1, £ =20 — 1,
K—1 2K—|m|

¢ - o
Z Z Jlo(m)ilo(ﬁ)e<€1m<y + T) + Ezma))‘

m=1—K £=2+|m|
K—1,2K—|m]|

<2> | ¥ ]lo(m)llg(ﬁ)e<€1m<y + @) +£2mw)

m=1"£=2+|m|

. (739

which is further equal to
LK /2] K —+1

2 Z Z e(01 (2 — 1) (y + Lw) + £ (20 — l)a))‘
m=1"f=41
LK /2]

1
<2 min K—2n~1+1,—~)
; ( 202t melr

LK /2] 1

< 2K E min | I, ————|.
e 2K|2twiolr
m=

Plugging the estimates of (7.33) and (7.34) into (7.32) yields

K 2 LK /2]

k(k — Dw . 1
21| k _ Uk <K +4K l, ——— ).
;_f( ‘( T2 >+ ? “’) SKHaK ) mm( 2K||2elmw||qr>

m=1
Hence we have

LK /2]

) 1 1/2
Sy < =(2piK + 4K i\l e el
) < K( piK + > 2 mm( 2K||2E1mw||1r>>

1<[¢1|<p; m=1

2 p1 LK/2) 1 1/2
< —|2p1K +8K i l, ——
= K( PEESK D, D mm( ’ 2K||2elmw||qr>>
£1=1 m=1
) p1K 1 1/2
< Z(2p1K +8KC* min <1, —)) , (7.35)
K( me ; 2K jolr
and similarly,
2 K 1 1/2
S3 < —(log (p2) + 1)(2p1K +8KC} ¢ Z min (1, —)) . (7.36)
- K b1 = 2K | jollT

The constant C;l x comes from over-counting.
Next, we will need to bound C:;IK and Zflzlf min (1, 1/2K || jow|T)) separately.
Estimate of C;] - We first note the following simple bound on C; K
Cp x <min(p1, T (p1K)), (7.37)

where 7%(p1K) 1= maxj<,<p, k T(n) with 7(n) be the divisor function of n. Standard
divisor bound yields the following estimates.
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LEMMA 7.7.
(pl K)1.066 02/(log 10g(p|K))’

Ce(p1K)*.

The second inequality above holds for any integer p1 K > 1 with explicit constants C (%) =
2 and C(%) =42 000. It also holds for p1 K < 327 680 000 with constant C(Sl_()) =702.

™ (p1K) < { (7.38)

Combining (7.37) with Lemma 7.7, we have that forany 0 <« <1,
Chx < (CE)*(p1K)*p~*. (7.39)

We will only use the case where o = 0, but we keep this as a reference for the sake of
completeness.

Estimate of Y"P'X min (1, 1/Q2K ||[€wl|1)).

In analogy with (7.21), we will split the term ZPIK min (1, 1/2K ||[€w|T)) appearing
in (7.36) as follows:

K 1
$ w1 k)
2K €|l

=1
mkK 2/ <2K ;1K 1
= 1 S
; (E:ltalr<1/2K) + 2; Z (02771 2K <|twlir < 35) 2K [€allT
J =1
piK 2/ <2k p1K 1
= Z Lie:jewlir<1/2ky + Z Z ]l{E:Zj’l/2K§||Ew\|'n‘<2f/2K}F
=1 j=1 =1
=: 84+ Ss. (7.40)
By Corollary 7.3, if, for some € > 1, ||[fw|T < 2j/2K, then
2
{>—K. (7.41)
273
By Corollary 7.3, if, for some distinct ¢, 7> 1, max (LT, |{o|T) < 2/ /K, then
1
16 -0 > K. (7.42)
2J3
Combining (7.41) with (7.42), we have
S4 <3pi (7.43)
and
2J <2K
Ss< Y 6p1 <6(logy K + 1)pi. (7.44)
j=1

In view of (7.35), (7.36), (7.40), (7.43) and (7.44) together, one has
S < ZQpiK +24p1K C* (2 log, K +3))1/2
2< £ @p p1K Cp, g (2log, )

< 8V3(CE ) 2P K P (log, K +2)17
<20(C, )2 p P K2 (log K)'? for K > 23, (7.45)
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and
S35 < 8v/3(C3 )P (log (p2) + Dpy P K~ (log, K +2)'/
< 25(log p2)(C}5, )2 p 2K~ (log K)'/? for py = K =38, (7.46)

7.2.3. Combining Sy, S», S3. Taking p1 = |K® | and py = |*1°2 K | the estimate
of S1, namely (7.31), becomes
S; < 105K ~'(log K)?*1. (7.47)

Recall from the foregoing that we impose the conditions K > 38 and exp(4(log K )92y >
K + 1; note that these are our assumptions (ii) and (iii). The estimate of S, (7.45),
becomes

Sy < 20(C%115) P K102 (log K2, (7.48)
The estimate of S3, (7.46), becomes
S3 < 100(C%145) 2K =07202 (log K)2H1/2, (7.49)

Combining (7.47), (7.48), (7.49), (7.20) with our assumption (i) that C(Bs — ms) < K°
yields

K

1

e » 3o Th(x. y) = (v)
k=1

sup
(x,y)eT2
< 105K " (log K)2*! +20C(By — ma)(C¥ 15, )12k =1=00/2(1og K)1/?
+100(C% 15, YW/2 K= 1=00/248 (199 g)2F1/2, (7.50)

By (7.39), with « = 0, we have

sup
(x,y)eT?

< 105K " (log K)?2*! 4+ 20C (Bsy — my) K~ 72072 (1og K)1/?
4 100K—(1—251)/2+5(10g K)2+12,

K

1

< 2w o Ty — ()
k=1

By condition (iv) in our statement of the proposition, we have
21K 124001 (1og K)2H1/2 1 4C(By — m4) < K®(log K)*,

which implies

sup < 105K ~U=200/248 (o9 )2 H1/2 —: ¢ (7.51)

(x,y)€T?
Let

K

1

e > 3o Th(x.y) = (v)
k=1

t = C(By — ma) K ~1/201 (7.52)
in (7.17). Then for any y ¢ A(t), with (7.14) we have
< V2C(Bs —my K~V 14
LI(T)

= (24 1)CBs —my) K~V = ¢, (7.53)

K
1 &
H? > (@1 +v2) o T y)
k=1
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Recall that v =1v; + vy + v3. For any fixed y ¢ A(¢), consider the subharmonic

function
K

1
vy(@) 1= o Y woTk(z.y) withze Dp.
k=1

This subharmonic function will satisfy the bounds
vy(z) < By forallze Dg  and vy (0) > my.
By (7.51) and (7.53), we know vy (x) — (v) can be decomposed into two parts, one with

small L norm &g, the other with small L! norm ;. We will choose §; such that &0 ~ /€1,
in the sense that

K—(=280/248 (og g)D2+1/2 = g—(1/401 (7.54)
which yields
w_ KPP ith0 <5 <22 7.55
_W wit <1<§—?. (7.55)
Then
£ < 105K*1/10+5/5(log K)1/10+82/5 (7.56)
and
e1 = (V2 + 1)C(By — mg) K132/ (1og K) /328215, (7.57)

Applying Corollary 3.2 to vy, — (v), we obtain that for
g4 = C2K—1/10+3/5(10g K)l/10+52/5+33 (758)

with some constant C, > 0,

- o)

K
1 k
{xeT.‘E;voTw(x,Y)—W)

sup
yEA()
|17 B] —1
<2V2 o) [ Y , 7.59
< eXp<4[36+4B32 €28, ]) (7.59)

where

80 = (472.5 + 2B3(By — ma)y (V2 + 1)C ) K~1/108/3 log K)!/ 1045215,

and hence

—1
84561 =C (472.5 + 2B3(Bg — my) (ﬁ+ ])C) (log K)SS

-1
> c2(472.5 +3.2B3(Bs — m4)x/5) (log K)* =t 5.
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Inequality (7.59), together with (7.52) and (7.17), implies

>84}

H(x,y)e']l‘2:

| X
—Zvoch(x,y)—(v)
Kk]

< 2V2exp|=| =+ — — At
< GXP<4[36+4B32 &5 D+| Q]
x| 17 Bl -1
< 2V2 Sl 4= -
= ‘/_e"p<4[36+4332 s D
+ V2(C(By — ma)) T K72 (log K) 71372205 exp (—2(log K)™),
as claimed.

8. Multi-scale estimates

In this section we commence with the inductive arguments in our multi-scale Lyapunov
exponent machinery. In analogy with [GolSch, Boul], we proceed by combining the large-
deviation estimates with the avalanche principle. We begin with the basic induction step,
which provides a lower bound for the Lyapunov exponent at a large scale from information
on the Lyapunov exponents at smaller scales, in combination with level-set estimates. In
Proposition 8.4, which is the main result of this section, we will also invoke the quantitative
control on the Birkhoff averages over the skew shift from the previous section in order to
derive large-deviation estimates at the larger scale.

The following subsection will serve as an abstract multi-scale scheme to provide a lower
bound on the (maximal) Lyapunov exponent, assuming large-deviation estimates. In our
application to the skew shift, the large-deviation estimates will come from Proposition 7.1;
see §8.2.

8.1. Abstract multi-scale scheme.

8.1.1. Lyapunov exponent. Let (X, u, S) be an ergodic dynamical system. A linear
cocycle over (X, u, §) is a skew-product map

FA:XX]Rd—>Xx]Rd,

given by
X xRY> (x,v) = (Sx, A(x)v) € X x Rd,
where
A: X — SL;(R)

is a measurable function.
The forward iterates F\ of a linear cocycle Fy are givenby F} (x, v) = (8"x, M, (x)v),
where
M,(x) = A(S"flx) -+ A(Sx)A(x), neN.

A linear cocycle A is said to be p-integrable if

/ log |[A(x)|| dp < +o0.
X
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Due to the fact that norms are submultiplicative with respect to matrix products, the
sequence of functions log || A™ (x)|| are subadditive. The Fiirstenberg—Kesten theorem (or
Kingman’s ergodic theorem) implies that for a p-integrable linear cocycle, the p-almost
everywhere limit

1
L(A):= lim —log [|My(x)]
n—o0o n
exists and is called the (maximal) Lyapunov exponent of A. Moreover,
. 1 . 1
L(A):= lim / — log || My (x)|lu(dx) = inf / — log | M (x)[|(dx).
n—>oo [y n n>1Jx n
We point out the since A € SL;(R), we have | M, (x)|| > 1, hence L(A) > 0.

8.1.2. Inductive scheme. Let us denote

1
Ln(A) 1=/X - log | My ()l dju(x).

For simplicity, we may omit the dependence of L(A), L,(A) on A, and simply write L
and L,,.
Let us further assume that there exists a constant C3 > 0, such that

1
p log [[M,(x)| < C3 < 400, (8.1)

for p-almost every x, uniformly in n. We point out that in our application to the skew-shift
model, C3 can be taken as U (A, 1); see (6.5) and (6.10).

Definition 8.1. In our multi-scale scheme, we quantify the failure of the Fiirstenberg—
Kesten theorem via the sets

1
B, = {x ex: '; log 1M, ()]l = Ly

! L
> — .
10"
The lemma below shows how to inductively obtain estimates of Ly at a larger scale N,

based on information at a smaller scale n. The key ingredient is the avalanche principle,
Theorem 5.5.

LEMMA 8.2. Letn, N/n € N be positive integers, and 5 € (0, 1/2). Let C3 be as in (8.1).
Assume the following three conditions:

(@ nL,>=7;

(b) Ly—Ly= an;

(©)  max (u(By), w(Bay)) < N~I12/5H4/5,
Then we have

2 11
Ly>L,— <2 - ﬁn)(L,, — Loy) — 7e—<1/2>"Ln — 8Cs NS (8

and
22
Ly — Loy < %(Ln ~ Loy + Zoem1/2nln 040y NS, 8.3)
n
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8.1.3. Multi-scale scheme. The following lemma shows how information on a
sequence of larger and larger scales determines the limit L.

LEMMA 8.3. Let § € (0, 1/2) be a constant, and C3 be as in (8.1). Let {Nm}sf:o e N be
a sequence of positive integers, such that 10 < N, /N,,—1 € N for 1 <m. Assume that
the following hold for an integer j > 0 (note that (2)—(4) below are empty conditions for
j=0):

(1) NoLn, =7 and Ly, — Loy, < gLny;

@) XL o/ Nyye= VDNnLlwn < Ly

—7/5+45/5
() oy N TP < (1/1280C5) Ly,
@ max (u(By,), 1Ban,)) < N P foro<m < j — 1.
Then we have the following four estimates for j > 0.

First,

2Ny
Ly; =Ly, —|2— A (Lny — Lang)
J

J
1 B
_ 2:(_6(1/2)N7711LN,,1_1 n 8C3Nm7/5+45/5>
m=1 Nin—1

-1
2N, 22 _ _
B Z<2_Tm> (_e (1/2DNn-1Ly,_, +24C3Nm7/5+45/5), 8.4)
m=1 J

N1
in which 22121 = 2;1:1 =0.
Second,
No
Ly; — Lon; = — (L, — Lany)
J
N, 22 _ _
+ 2 _m<—e (2Nt 4 243N, SM/S), (8.5)
= Nj\Nm-1
m=1
in which Y0 _, :=0.
Third,
Ly, = Law; < gLu;. (8.6)
Fourth,
Loy, > 3Ly, and NjLy, >7. (8.7)

8.2. Application to the skew-shift model. The two cornerstones of the abstract multi-

scale scheme are:

e initial scale Ny estimates, including (1) NoLy, > 7,(2) Ly, — Loy, < %LNO aswell as
(3) large-deviation estimates of u(By,) and u(Bay,);

e large-deviation estimates of (By;) and u(Bay;) for j > 1.

In this subsection, we will present machinery that inductively provides large-deviation

estimates for scales N, j > 1, thus reducing the problem to the initial scale only. The key

ingredients are the avalanche principle and the quantitative control of the ergodic averages

of plurisubharmonic functions over a skew-shift orbit, Proposition 7.1.
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Let us recall some notation from §6. We have u,(A, E;x,y)=
(1/n) log | M, (A, E; x, y)|l, and v, (A, E; z, w) is the complexification of u, from
T2 to C2, as in (6.5). The constant U (%, 1), as in (6.10), is a uniform (in n and E) L*®
upper bound on u, (A, E; x, y). For simplicity, we will omit the dependence of u,(x, y),
vy (z, w), log |M, (x, y)|| and L, on A, E, since A will be fixed, and our estimates are
uniform in E € [—2 — 2A, 2 + 2A]. Recall also from Lemma 6.1 with R3 = R that the
bounds with respect to v,, satisfy

By —mg=2log R+ U, R) —log X,

8.8
B® —m® = (n+1)log R+ U(%, R) —log &, >

Let us finally also recall the constants B3 (R, Ry, R2) asin (2.2), C(R, R;, Ry) asin (3.47),
and Co(R, R1, Ry) is as in (3.2). In the following we will write B3, C, C¢ for simplicity.

PROPOSITION 8.4. Let w = (v/5 — 1)/2 be the golden ratio. Let § € (0, 1/2) and
82, 83,84, C2, C4,C5 >0

be constants. Let n, N € N be positive integers and assume that n divides N. In addition

to conditions (a)—(c) in Lemma 8.2 and Definition 3.5, assume further that the following

properties hold for both N = N and 2N :

I  C(@n+1DlogR+U(, R)—logi) < N?;

(I) N >38;

() exp (4(log N)2) > N + 1;

(IV) 21&—9/10+9/56(10g ]\7)9/10+9/552 +4C(Bs — ma) < N(S(log N)(SQ’.

(V)  2nN"NL, — L) +8U A, HYN7/5+%/5 L 50, HnN—! <
CoN—1/1043/5 (1gg N)1/10+82/5+55

(VI) 2251 exp (—nL,/2) < CZN—I/IO—HS/S(IOg N)1/10+52/5+53’.

(VI 4v2exp(r/4[% + Bi/(4B3) — C2(472.5 + 3.2B3(B4 — m4)+/C) " (log N)%])
< N-1/5+43/5,

(VII) 2v/2(C(By — my)) "' N'/3725/5 (log N)~1/57252/5 exp (=2(log N)*2) <
N-T/5+48/5.

(IX) N> (logR+U(, R)—logx)(log R)~!;

(X)  C4(log N)* > 4;

(XI) Cs(log N)* > Cy.

Then the following holds for both N =N and 2N:

|{(x7 y) c T2 . |v1\~,(x, y) _ L1\7| - C2C5N71/]0+8/5(log N)l/]0+82/5+83+284}|
—71CyC4(log N)%
144C; + 48B3 /2U (A, 1)(Bs — my)(log N)~1/10-62/5-83 >
—CyCs(log N)%
18C2Cy + 96B3U (A, 1),/log R(log N)~1/10-82/5-83 -84 )

< 2(2Cp)'/? exp(

+ Co exp <

Remark 8.5. Note that our conditions (I)~(IV) correspond to (i)—(iv) of Proposition 7.1. In

particular, (I) is (i) of Proposition 7.1 with BS(Z”) — mézn) given in (8.8).
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8.3. Proofs. Before proving Lemma 8.2 and Proposition 8.4, we will first give a quick
proof of Lemma 8.3 based on Lemma 8.2.

Proof of Lemma 8.3. For m > 1, let us denote
—7/5+48/5

am = 1IN, L e PN lny 4 83N,

B = 22N, 1 e WPNnt by 2403 N, TP

Note that in terms of @ and 8, our conditions (2) and (3) in the statement of the lemma
become

LT RV L) ©9)
TS50 No T 1280 Mo T 2560 Mo '
and 4
Y e Pt 2= Dy 5.10)
R TP R P T P T '

Our proof is based on induction on j. Note that, for the induction base case j =0,
inequalities (8.5), (8.6) and (8.7) follow directly from condition (1). Inequality (8.4)
follows from the fact that Ly, — Loy, > 0.

Now let us suppose Lemma 8.3 holds for j = J for some J > 0. Note that conditions
(2)-(4) with j=J 41 already imply those with j=J. Hence, by our inductive
assumption, (8.4)—(8.7) hold for j = J, whence

J J—1

2Ny 2N,
Ly, > Ly, — (2 - N—)(LNO — Long) — ), tm — Z(z - N—’”)ﬂm, 8.11)

J m=1 m=1 J

No N,
m
Ly, = Lan, < 3Ly = Lawy) + mz_l N, b (8.12)
Ly, — Loy, < 5Lw, (8.13)
and

NjLy, >17. (8.14)

Note that (8.13), (8.14) and our condition (4) in the statement of the lemma with m = J
verify the conditions of Lemma 8.2 for n = N; and N = Njy. Therefore Lemma 8.2
implies

2Ny
Ly,yy=Ln, —|2- (Ln; — Lon,) — a4 (8.15)
Njt1
and
Ny
Ly, — Lan,,, <—— Ly, — Lan,) + Bit1. (8.16)
Njti
Plugging (8.12) into (8.16), we obtain
J
Ny Ny Ny,
Ly, —Lan,y, < (LN—LzN)-I-—< —,3>+,31 1
J+1 J+1 Nyii 0 0 Ny mXZ:l N m +
J+1
No Ny,
= ——(Lny, — Lany) + —Bm- (8.17)
Ny 0 0 m2::1 Nyt 8

This proves (8.5) for j = J + 1.
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Plugging (8.11) and (8.12) with j = J + 1 into (8.15), we have

J J-1
2Ny 2Ny,
b 2 b= (25— ) = = 3 (2= 52 )
m=1 m=1
2Ny )( Ny,
—|2- (Lny — 2Lon,) + — — oyl
( NJ.H 0 0 ; ﬂm +
J+1 J
2No 2Ny,
=Ly —[2— Ly, — L — — 8.18
No ( NH])( No — Lang) mz_jlam mz_:]< Mo )ﬁm (8.18)

This proves (8.4) for j = J + 1.
Combining (8.17), (8.18) with the fact that 10 < N, 1/N; for any j > 0 yields

8(Lnyy — Lanyyy) — Ly,

6N J+1 J+1 6N
< —Ly, + <2+ N )(LNO —Long) + ) ot + Z( Ny )ﬁm
J+ m=1 m=1

J+1 J+1

< —LN0+( )(LN0 Lo+ D om+8 Y Bu
m=1 m=1

Using (8.9), (8.10) and the fact that Ly, — Loy, < %LNO, we conclude that
8(LN_[+1 - L2N‘/+1) - LN]+1 S 2560LNO < O (8.19)

This proves (8.6) for j = J + 1.
By (8.18) and the fact that N1 > 10N,, for any m > 0, we have

J+1 J
1
Ly, > Luy — ( )(LN(, Lany) — Z o — (2 - g) Zl Bu-  (820)
= m=
Plugging (8.9) and (8.10) with j = J + 1 into (8.20), and using that Ly, — Ly, < %LNO,
yields

Ly, = 1821830LN0’ (8.21)

which also implies Ny Ly, > 7. Inequality (8.7) with j = J 4 1 then follows from (8.19)
and (8.21), indeed,

7 7. 8143 1
Lony 2 gLNyy = 8 X 12800 LMo = 2 Lo

as desired. O

Proof of Lemma 8.2. Let N = N or 2N. Let us define

N-1 N—n—1

BV = <U szn) u ( U Ssz,,). (8.22)

J=0 j=0

We have the following measure estimates for B by condition (c) of the statement of the
lemma:

2N —n

w(BMy < TR = <2N7THI and  w(BOM) <4NTTAERS 0 (8.23)
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Taking any x ¢ BW ), by our definitions of 3, and B,, we have
N1l > g (8T x)|| = /1O n = (=12 foranyO0<j<N —1,  (8.24)

and
| Man(S7x)|| = e®/ L2 forany0<j<N—n— 1. (8.25)

Hence, forany 0 < j < N —n —1,(8.24) and (8.25) imply that
| M2, (ST )| > exp (20(Loy — L )_ln(L 4Ly ) =ie
My (ST ) | [ My (ST — 7 i g R e

We now need to verify the assumptions of the avalanche principle, Theorem 5.5. First, by
subadditivity of log || M, (x)||, we have L, < L,. This, together with our assumptions (a)
and (b), yields

€ =exp (%an,, — l,j—lnLn) < e~ @/nln < 7145 %, (8.26)

and

P exp (—2nL, + %nL,, + %an,, +4n(Ly — Lap)) < e 1/2nln < =72 < %.

Applying Theorem 5.5 to x ¢ B(N), we conclude that foreach0 <k <n — 1,

1 (N—=2n)/n '
ﬁ ]0g ||MN(Skx)|| + Z ]og ||Mn(Sjn+kx)”
j=1
(N—2n)/n . ] »
= Y log Mo (S| < —ke 2 < ek,
Jj=0

Summing over k € [0, n — 1] and dividing by n, and finally applying the triangle inequality
yields

1 n—1 1 1 N—n—1 1 .
‘;ZrlognMN(Skx)HT D log M8 )]
k=0 N N j=n
N—n—1
2 1 ; 11 _
— % 2 5 loe IMu(s 0l < e/, (8.27)
j=0

Integrating over x € X, and using our definition of C3 (8.1), we infer due to (8.23) that

‘LN W ;2" L, — 2N]; % L] < %e_(l/z)”L" +4C3 (BN
< Hamni, gon-15m905 (3.08)
n
and
Loy + N]; nLn B 2NN— n ol < %e_(l/Z)nLn 1+ 4C3pu(BAV)

< He*“/”“n + 16C3N~T+4/5  (8.29)
n
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From (8.28), we conclude that
2n U _a/ome 75448/
Ly 2Ly = (2= 5 ) (Lo = Lo) — —e” /DM — 805N .
n

This proves (8.2).
Taking the difference between (8.28) and (8.29), we obtain

22
Ly — Loy < _e—(l/2)nLn + 24C3N_7/5+48/5 + %(Ln — Lap).
n
This proves (8.3). O

Proof of Proposition 8.4. This will be a continuation of the proof of Lemma 8.2. Note that
all the constants C3 will be replaced by U (%, 1). Let N be either N or 2N. Let us consider
the first term in (8.27):

1

n—1

1 1

—E — log |Mz(TX(x, y)|| — = log |M 5 (x, y)Il
‘nk=0Ngwa § BN Y

1 n—1
< — Y llog [Mg(TA(x, y)Il — log [ My (x. y)lI]
N =0
1 n—1 .
— > (log [|My(x, y) + log [IM(T) (x. y)I)
N k=0

n—1

S ZZkU(A, 1)

nN =0
U, Dn
N

IA

IA

(8.30)

=

Hence (8.27) leads to

N—n—1
~ Og IM (X, ~ Og 1W 1 (X,
N N y N n y

j=n

) N—n—1

1 .

, (831
N i 2n

< Eef(l/sz,, + U()‘L Dn
n N

which holds for (x, y) ¢ B™. This implies

1 121 ;
— log [My(x, Y+ = Y = log | My (T} (x, )|
N N n

N—1
2 1 ) 11 _ SU((A, Dn
— = ) 5 log [Ma(T] (x. y>)||‘ < UM T R 83
N = N
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Now we apply Proposition 7.1 to v, and vy, with K = N. Note that conditions (I)~(IV)
ensure the applicability of that proposition. Therefore, following (7.1), we define
g4 = CoN~1/1048/5 (1o N)1/10+82/5+83

8 8.33
es=Cy " (472.5 +3.2B3(Bs — m4)JE> (log N)™%. 833

- ea).

For n = n or 2n, denote

Ci :={(x,y)eT2:

.

- Z Vj oTaJ)(x, y) _sz
N i3

Then Proposition 7.1 implies that

|17 B _
max ((Cal. [Can) < 2\/§€Xp<z[% + g ID

+ V2(C(Bs — mg)) " N2/ (1og N) 13728215 exp (—2(log N)®).  (8.34)

Let .
& :=Cy UCoy UBM.

For (x, y) ¢ £, by (8.32) we have that

1
T log IMy (Il + Lo = 2L2

11 S5U(A, 1

< —eW/2nln 4 M +2e4.  (8.35)
n N

Together with (8.28), this implies that for any (x, y) ¢ &,

1
’LS"(JC, y)(; log [| Mg (x, y)Il — L[{/)

L°(T2)

SU(A, 1
o ue. b

11
< ILg + Lo = 2Loy| + —e /200 + 264

2 22 - S5U(, 1
< 2 L= Loy + e WL gy, y-T/sHs UG D,
N n N
=: g. (8.36)
Recall (8.23) states that
IBM| < 2N~T/544/5  and  |BCN)| < 4N—T/5H4/5,
Since § > 0, this clearly leads to
|B(N)| < 17/5-48/5 =1/5+48/5 _ 1 N—T/5+45/5 (8.37)

Combining (8.37) with (8.34), we obtain

1
Le(x, y)(; log [| Mg (x, y)Il — Lﬁ)

L1(T2)
<U(x, 1)|Cy UCay UBMN|

w17 B -
< U, 1){4«/§exp<z|:£ + é _ 851D | 1GNT/5HA/S
3

+ 23/2(C (B4 — m4)) "' N'P72/5 (1og N)~1/37282/5 exp (—2(log N)%} =g.

(8.38)
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By our conditions (V)—(VIII), we have

g0 < 4ey,

. N 8.39
g1 < 18U A, HYN /P95 = 18U (A, 1)N. (839)

Indeed, note that the right-hand sides of (V) and (VI) are precisely &4, which allows us to
bound &g by 4e4. On the other hand, (VII) and (VIII) simply state that the sum of the first

two terms in the braces defining ¢ are bounded by the third term, AN TS5,

Let _
g3 1= Caes(log N)™,

&2 := Cse4(log 1\7)2847 (8.40)
172 0
T 7 —48 e

Oug conditi~0ns (X) and (XI) ensure that ey < 4e4 < €3 < &. Recall that By — m4 and
B(N ) m(N )
5 5

are as in (8.8). Therefore, by our condition (IX) we have
BN —m™F! <21og R. (8.41)
Applying Lemma 4.2 to v, and taking (8.41) into account, we obtain
{0, ) € T tug (x, y) = Lgl > 2

—1
< 22C)'/? exp ( <3680 +16B3,/e](Bs — m4)> s3>
= -1
+ Co exp< (18534-1633/(]()»71\/ 1= B(N) gN))) 82)

-1
< 2(2C0)1/2 exp (3680 + 16331/8;(34 — m4)> 83)
-1
+ Co exp <—7‘[<1883 + 16B3/U (A, 1),/28}_’19 log R) 82). (8.42)

Note that we changed Bg into U (A, 1) in this expression. Inserting our estimates of &g, &1
(see (8.39)) and choices of &, €3, r (see (8.40)) into (8.42), we arrive at

[{(r. ) € T2 : Jug (x, y) — L| > Cseg(log N)?4}|

— log N)%
<2002 exp ( 7 Cye4(log N) >
144e4 + 1633\/(18U(A, 1)) N (By — mg)
—7Cse4(log N)2%4
+ Coexp ( nCse4(log N) )

18C4e4(log N)% + 16B3/U (X, 1)\/2(18U(A, )l=rNn(=r+11og R
Using (6.11), and 0 < r < 1, we estimate

(18U (X, 1)) <18U(, 1) and (18U, 1) < 18U, 1),
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respectively. Hence we have

{(x, y) € Tt Jug(x, y) — Lyl > Cses(log N)*}|

—7Cyes(log N)%
<2200 2 exp ( 7w Cse4(log N) )
144¢,4 + 4833\/2U(A, )N (By — my)
—7 Cse4(log N)*
+ Co exp < 7 Cseqllog N) )

18Cy4e4(log N)% 4+ 96B3U (1, 1),/ Nn(1=n+1log R

Plugging in our choice of &4 (see (8.33)), and noting that the powers of N in numerators
and denominators cancel out due to our choice of r, we infer that

{(x, y) € T2 Jug (x, y) — Ll > Cses(log N)?4}|

—71CrCy(log N)I/10+82/5+03484
< 2022 exp< 76 4(log N) )
144C,(log N)1/10+82/5+335 4 48 B3 \/2U (A, 1)(Bs — my)
—7C,Cs(log N)1/10+52/5+53+254
+ Cp exp < ~ )
18C,C4(log N)1/10+52/5+05+84 4+ 96 B3U (A, 1)y/log R
—1C2Cy(log N)
—202Cp)'2 exp( 7C2C4(log N) _ >
144C; + 48B3/ 2U (A, 1)(Bs — my)(log N)—1/10-62/5-83
< —1C2C5(log N)% )
+ Co exp _ ,
18C2C4 + 96B3U (A, 1),/log R(log N)~1/10-62/5-83=64

as desired. O

Readers will note that the constants were chosen in such a way that in the final steps
of the proof only powers of log N remained inside of the exponential. We have found this
to be more efficient over intermediate scales. The following, final, section of this paper
will show how our work up to this point allows for such concrete estimates with specific
numbers.

9. Explicit numbers and proof of Theorem 1.1

Our goal here is to make concrete choices of our parameters so as to arrive at an actual
multi-scale scheme for the skew-shift operator from §6. Let B,, be as in Definition 8.1. The
values below were found to be convenient ones, but clearly many other choices could have
been made.

Definition 9.1. Set
R:=4, R;:=3, Ry:=2

in Definition 2.1. The coupling constant in (6.1) is required to obey A € [%, 1]. Further, in
Proposition 8.4 set

as well as
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By an explicit computation, the condition in Definition 3.5 is satisfied. In fact, one has

13

B?-289(By + ————————
3 ( O 20Tog(R/RY)

>>61>O.

PROPOSITION 9.2. Let w = (\/5 — 1)/2 be the golden ratio, and consider model (6.1)
with A € [%, 1] arbitrary but fixed. Let a > 7 and let n, N be positive integers such that
N > 1012, n divides N, and

N 1,203 40/3
13 8 oo 1205,
10°(n+1)° <N, (log N)o273 < 2( > e n) . 9.1

Impose the following conditions:
(@) nL,>a;
(b) Ly — Loy < gLu;
(©)  max(|By,l, [Bayl) < N~23/10,
Then we have
{(x, y) € Tt Jug(x, y) — Lyl > 5.5 x 10°N 3% (log N)¥/10]
< 10 exp(—(log N)*/?) 9.2)

for N = N and 2N.

Remark 9.3. We will choose the constant a = 7 along the inductive multi-scale procedure.
The only exception is the first step of the induction, which goes from the scale Ny to Ny,
where for some of our main results we use a larger value of a. This is made possible by
assumption (i) on the Lyapunov exponent at the initial scale and it is the reason behind the
relatively small values of Ng in Theorems 1.3 and 1.4.

Proof. We need to check the hypotheses of Proposition 8.4. We already verified (3.14),
and the conditions of Lemma 8.2 hold by assumption. Let N = N or 2N. The function

[05,1] > R:A—> U, 4) —loga
is decreasing and positive. Hence
05<U1,4) <UL, 4 —logh<U(3.4) —logs <1. (9.3)

Further, the constant C in (I) satisfies C < 11.97. So that condition is implied by the
stronger one,
1284 log(2)n 4+ 210g(2) + D < N,

which we may further strengthen to
368 + D <108 + DE < N,

which is the left-hand side of (9.1). Condition (II) holds, as does (III) since
exp(4(log N )92) = N*> N + 1. Condition (IX) is implied by the stronger one,
-~ 1l+logR 2log2)+1
N > =
log R 2log(2)

~1.721,
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which clearly holds. In view of (8.8) and (9.3), we have
41og(2) + 0.5 < B4 —mg4 < 4log(2) + 1. (9.4)
Condition (IV) will therefore hold provided
N'8log(N) — 21N ~27/%1og(N))*"/10 — 181 > 0.

The left-hand side is increasing in N, and one checks by explicit computation that it is
positive if N > 108. So this condition holds as well. Condition (VIII) is implied by the
condition
N-13/10 2V2
C(41log(2) +0.5)

Simplifying this, one obtains the stronger condition,

N=37/20(10g(R1))3/5.

N'3(log(N))* > 0.08,

which holds provided N > 2. So condition (VIII) holds.
Next, we look at condition (VI). Using the assumed lower bound nL, > a, we find the
condition
22¢7/* < 203nN /4 (log(N))*/1*

We recall that N € {N, 2N} and estimate log(ﬁ ) > log(N). This inequality follows from
the upper bound in (9.1). For condition (VII), one checks that it follows from the slightly
stronger

N~=B/10 _ 5,66 exp(0.374 — 0.05(log(N))?) > 0

which holds for N > 10!2 (but fails for 10'"). Hence we impose the second lower bound
in (9.1). For condition (V), we use

1 U1 1
Ln_LangLnf ) EZ,

and so it suffices to check that

21 . i i
2—}5 £ 1681310 2 2035 -3/40 (1og (N)) 210,

Bounding 7 in terms of N via (9.1) and discarding the log N on the right-hand side reduces

us to
21

7.1013/8
This holds for all N > 1, so we are done with (V). Finally, we turn to (X) and (XI). Using
N > 10'2, they hold provided

N8 4 16N~13/10 203N —3/40,

C4>0.03, C5>0.007-Cy.
Our actual values assigned to these constants satisfy
46 < C4 <47, (5> 270,

and so all conditions of Proposition 8.4 hold.
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As for the conclusion of that proposition, we first compute C2Cs < 5.5 x 10*. Thus,
the sizes of the deviations satisfy

CoCs N =1/1049/5 (10g N)!/10+02/5034204 _ 555 10N =3/40 (1og N)T/1°,
as stated in (9.2). As for the measure bound, we calculate that

22Cy)'"%? + ¢y < 10,
U, 1) = 1log (4% +2)* +2) < L log 38.

Thus, in view of (9.4), one has 48 B3,/2U (A, 1)(B4 — m4) < 11 518, and
144 4+ 11 518C; ' (log N) /10 < 144 + 1318 (12 10g 10)~2/10 < 145.
Hence the first exponential in the measure bound of Proposition 8.4 contributes less than
exp(—m C4(log N)*?/145) < exp(—(log N)*/?).
For the second exponential, we have 18C4 < 831,96B3U (A, 1),/21log?2 < 13317, and
831 + 13317C, ' (log N) /10 < 831 + 13317 (12 10g 10) 3¥/10 < 850.
Hence, the second exponential contributes less than
exp(—m Cs(log N)>/?/850) < exp(—(log N)*/?),
and we are done. O
9.1. Proof of Theorem 1.1.  Let Ny :=2 x 1037. We define a sequence of scales Nj:=
N]?_l for j > 1. In particular, Ny > 5 X 10335, The proof is based on an induction on
scales, where at every step we first apply Lemma 8.3 to control the Lyapunov exponent at
the next scale. Afterwards, we apply Proposition 9.2 to obtain the large-deviation estimate
at the next scale and then we continue the induction.

For later purposes, we note some properties of this choice of scales. The last inequality
is the main reason why we need to choose the scale so that N is large.

LEMMA 9.4. Recall that we defined N1 := N? with No =2 x 10%7. For all j=>1, we
have the following bounds:

N; 1203 4073
137, 8 . J =72
105V + DE < Nj, (log N2 = 2( 5 Nj_1> 9.5)
as well as
10 exp(—(log Nj)*?) < (N)) ™ =N (9.6)
and
5.5 x 10°N;73/%(log N;)*/10 < &Ly, (9.7)

Proof. From the definition of the N, we have

108N+ D¥ < N; < N}il, (9.8)
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and this implies (9.5). Notice that we have N; > Ny > 5 x 10°*° for all j > 1. Then (9.6)
follows from the inequality
10 exp(—(log x)*/?) < (x*)723, 9.9)
which holds for all x > 2.06 x 10186, For (9.7), we note that
5.5 x 10%x /% (log x)/10 < 1075 = 45 x 2 x 1074 < L Ly,.

0334

where the first inequality holds for all x > 1 . This proves the lemma. O

We will inductively apply Lemma 8.3 to j=1,2,3,.... We begin with j=1.
Condition (1) of Lemma 8.3 follows from our assumptions (i) and (ii) and the fact that
No =2 x 10%7. Condition (2) with j = 1 is fulfilled since

1 1 1 2 1
— —=—NoL <— < 107*<—Ly
NoeXp( 20 N°)—2x1037<512 =50
For condition (3), recall that N; > 5 x 1033, § = and C3=U(@, 1)< % log 38. Then
we have

_ 1 1
NP (510397183 « 107 < ——— Ly,
320 log 38 1280U (A, 1)
For condition (4),
max (|By,l, [Banol) < Ny 2' = (N)) 773 < N33, (9.10)

Hence Lemma 8.3 applies to j = 1 and yields
NiLny, =7, Ly, — Loy, < %LNI 9.11)
and
Loy, = 3L, 9.12)

We would like to apply Lemma 8.3 for j = 2. This requires measure estimates for By,
and By, . To this end, we invoke Proposition 9.2 with n = No, N = Nj and a = 7. Let us
check that its conditions are satisfied. First, we have (9.1) by applying (9.5) with j =0.
Moreover, conditions (a)—(c) hold by assumptions (i)—(iii) and (9.10). Hence, we can apply
Proposition 9.2 and obtain that, for N=N 1 and 2Ny,

H(x, y) € T2t oz (x, y) — Lyl > 5.5 x 10°N =340 (log N)3¥/10}]
< 10exp (—(log N1)*%) < Ny 22,

In the second step, we used (9.6) with j = 1. To turn this into measure estimates for 53 57
notice that (9.7) and (9.12) imply

5.5 x 10*N = og M)/ < LLy, < &Ly
Therefore,
max (|Bw, |, 1Ban 1) < N2_2-3, (9.13)

We have shown how to pass from scale Ny to Ny via Lemma 8.3 and Proposition 9.2, by
using the properties (9.5)—(9.7).
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We can now iterate this procedure. We apply Lemma 8.3 with j = 2. The main input is
the measure estimate (9.13), which verifies condition (4). The remaining conditions hold
by our choice of scales, (9.11), (9.12) and assumptions (i) and (ii). (Notice that the sums
in conditions (2) and (3) are rapidly convergent.) From Lemma 8.3, we obtain estimates
of Ly, and Loy,, in particular Loy, > %L No- Then Proposition 9.2 yields the measure
estimates for By, and Bay,, which is the key input for Lemma 8.3 with j =3, etc. We
conclude that, after k steps of this procedure, we have

Loy, > 5Ln,.
This yields
1
L > ELN()a

by taking k — oo, and we have proved Theorem 1.1.

9.2. Proof of Theorem 1.3. We follow the general line of argumentation of
Theorem 1.1. The only difference is that in the sequence of scales N;, we take the first
step to be very large. Namely, while Ng = 3 x 10°, we define

Ni:=3x10" Nj:=N] forallj>1. (9.14)

Notice that for j > 1, the scales N; are essentially the ones used in the proof of
Theorem 1.1 above. Therefore we have the following analog of Lemma 9.4, in which
(9.6) for j =1 is replaced.

LEMMA 9.5. We have

Ny 1203 4073
13 8 30

Moreover, for all j > 1, we have the bounds
N; 1 /203 4073
13/a7. 8 ) Jj+1 LAY 7287
10°(Nj +1)" <Nj4q, —(log N/+1)92/3 < 2( e N]> , (9.16)
as well as (9.6) and (9.7).

Except for (9.15), the bounds are only concerned with N;, j > 1, and therefore follow
in the same way as for Lemma 9.5. The new bound (9.15) follows from

N 3/40
2 29974 < Np.
( (log N1>92/3> (203/22)e¥ ~ =
This establishes Lemma 9.5. As before, we will successively apply Lemma 8.3 and
Proposition 9.2 and iterate. We begin by applying Lemma 8.3 with j = 1. Condition (1) is
immediate from assumption (i) and Ng =3 x 10°%; indeed,

NoLy, = 2No10™* = 60. (9.17)

We can use this inequality to verify condition (2) as well:
Le*NOLNo/Z < llO_Se_30 <1071 < ilO_4 < Lo

. (9.18)
No 3 512 512
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Condition (3) holds by our choice of Nj. Finally, condition (4) holds by assumption (iii):
max (|Bpy |, 1Bano) < Ny ™! < (3 x 103723 = N2, (9.19)

Hence, Lemma 8.3 applies and yields (9.11) and (9.12) as before. Next, we verify
the assumption of Proposition 9.2 with n = Ny and N = N;. The key difference is
that we now take a = 60. This is made possible by (9.17), since it verifies condition
(a) of Proposition 9.2. Condition (b) is immediate from assumption (ii), and condition
(c) was checked in (9.19). The bounds (9.1) hold by (9.15). Therefore, we can apply
Proposition 9.2. Combining the resulting estimate with (9.7) for j =1, (9.12) and (9.6)
for j = 1, we obtain the measure estimate

max (|Bw, . 1Ban,|) < N2_2'3‘

At this point, we have moved completely from scale Ny to scale Ni and can follow the
argument from Theorem 1.1 verbatim. In particular, we take a =7 in every subsequent
application of Proposition 9.2. The only difference is the m = 0 term in condition (2) of
Lemma 8.3, which now involves Ny =3 x 107°. By (9.18), we can replace condition (2)
by the stronger bound

= 1 —(1/DNnL 10~ 18
N ‘e~ mENm < —— — 107 °°,
2 No'e = 256
m=1
and this holds by our choice of scales and the estimates (9.12) along the induction (notice

again the rapid convergence of the series). We conclude that
1
L > ELNO

and this proves Theorem 1.3.

9.3. Proof of Theorem 1.4.  Again, we follow the same steps for a different sequence of
scales. We have Ny = 3 x 10*. We define the sequence of scales N;, j > 1, by

Ni:=3x 10320, Njy1:= N? forall j > 1.

We still have Lemma 9.5 for this choice of scales. Indeed, (9.16) and (9.6) still follow
from the inequalities (9.8) and (9.9) given in the proof of Lemma 9.4. For (9.7), we now
use assumption (i) to find

5.5 x 10%x /% (log x)P/10 < 107* = 35 x 2 x 1077 < %Ly,
where the first inequality holds for all x > 10320
Finally, (9.15) follows from

, S0 in particular for all N; with j > 1.

N 3/40
2 2938 < Np.
( (log N1>92/3> (203/22)e = 7700

This establishes Lemma 9.5 for the new choice of scales.
Next we check the hypotheses for Lemma 8.3 with j = 1. Condition (1) is immediate
from assumption (i) and Ng = 3 X 10%:

NoLy, > 2Ng1073 =60 (9.20)
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(compare this to (9.17)). Condition (2) holds by
Le_NOL"’O/2 < 110746730 <107V < i1073 < ﬂ,
No 3 512 512

where we used (9.20). Condition (3) holds by our choice of scales N, j > 1, and condition
(4) holds by assumption (iii):

9.21)

max (|Bw,l, 1Banl) < Ny ' < (3 x 10329)723 = N2, (9.22)

Therefore we can apply Lemma 8.3 and obtain (9.11) and (9.12). As in the proof of
Theorem 1.3, the first application of Proposition 9.2 utilizes a = 60. This is made possible
by (9.17), since it verifies condition (a) of Proposition 9.2. Now we iterate the argument in
the same way as was done for Theorems 1.1 and 1.3. (Notice that the series in conditions
(2) and (3) of Lemma 8.3 are still rapidly convergent.) The end result is the lower bound

1
L = ELNoa

and Theorem 1.4 is proved.
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