
Plant functional traits and climate influence drought
intensification and land–atmosphere feedbacks
William R. L. Anderegga,1, Anna T. Trugmana, David R. Bowlinga, Guido Salvuccib, and Samuel E. Tuttlec

aSchool of Biological Sciences, University of Utah, Salt Lake City, UT 84112; bDepartment of Earth and Environment, Boston University, Boston, MA 02215;
and cDepartment of Geology and Geography, Mount Holyoke College, South Hadley, MA 01075

Edited by Benjamin D. Santer, Lawrence Livermore National Laboratory, Livermore, CA, and approved May 31, 2019 (received for review March 19, 2019)

The fluxes of energy, water, and carbon from terrestrial ecosys-
tems influence the atmosphere. Land–atmosphere feedbacks can
intensify extreme climate events like severe droughts and heat-
waves because low soil moisture decreases both evaporation and
plant transpiration and increases local temperature. Here, we com-
bine data from a network of temperate and boreal eddy covari-
ance towers, satellite data, plant trait datasets, and a mechanistic
vegetation model to diagnose the controls of soil moisture feed-
backs to drought. We find that climate and plant functional traits,
particularly those related to maximum leaf gas exchange rate and
water transport through the plant hydraulic continuum, jointly
affect drought intensification. Our results reveal that plant phys-
iological traits directly affect drought intensification and indicate
that inclusion of plant hydraulic transport mechanisms in models
may be critical for accurately simulating land–atmosphere feed-
backs and climate extremes under climate change.

climate change | extreme events | functional diversity | plant hydraulics |
vegetation model

Earth’s land surface affects the atmosphere through exchanges
of energy, water, and carbon (1, 2). A rapidly growing liter-

ature has documented extensive soil moisture feedbacks to
subsequent precipitation and temperature in regions across the
globe (2–7). These soil moisture feedbacks are critical land–
atmosphere interactions in a changing climate because they likely
play a strong role in drought intensification, heatwaves, and cli-
mate extremes (5, 8). For example, the number of hot days in
many regions is strongly associated with preceding precipitation
deficits (8) and droughts that occur with elevated temperatures,
often called “hot droughts,” can be particularly damaging to
ecosystems (9). Earth system models capture some of the central
physical processes, such as latent and sensible heat fluxes and their
drivers. Given this mechanistic strength, earth system models have
been used extensively to quantify soil moisture feedbacks by
running different scenarios with differing soil moisture boundary
conditions and predicting how different boundary conditions af-
fect water and energy fluxes (2, 10, 11). However, the represen-
tation of plant transpiration in earth system models during
drought is notably coarse and could lead to large uncertainties in
simulations of soil moisture feedbacks (12–14). Thus, to under-
stand and predict the spatial patterns and impacts of future cli-
mate extremes, it will be crucial to represent the effects of
vegetation processes on soil moisture feedbacks because vegeta-
tion feedbacks may mediate drought intensification (10, 15).
The influence of soil moisture on land–atmosphere interac-

tions and drought intensification involves complex and multi-
scale dynamics of energy partitioning and circulation. A rich
theoretical literature has predicted that soil moisture feedbacks
should be more prominent in soil-moisture-limited (e.g., gener-
ally hotter and drier) rather than in energy-limited (e.g., solar
radiation) regions (2). In addition, the influence of soil moisture
on plant transpiration, which is the dominant component of la-
tent heat (LH) fluxes in vegetated areas (e.g., forests) and plays a
critical role in rewetting the convective boundary layer for the
generation of condensation and precipitation, is critically im-
portant for land–atmosphere interactions (2). A prominent soil

moisture feedback occurs when decreasing soil moisture sup-
presses plant transpiration, which drives declines in LH fluxes
and increases in sensible heat (SH) fluxes, local air temperature
(T), and vapor pressure deficit (VPD) (2). These soil moisture
feedbacks can drive “drought intensification” where the declines
in soil moisture lead to increasingly severe conditions for other
components/drivers of drought, such as higher VPD, and can be
quantified as the correlation between antecedent soil moisture
and subsequent T/VPD/SH. The centrality of transpiration in
surface energy exchange indicates that plant physiology and
physiological traits, in addition to vegetation type and structure,
may play a critical role in soil moisture feedbacks (13, 16, 17).
The 2003 European heat wave provides preliminary evidence for
trait-based effects on soil moisture feedbacks, as different land
cover types, including differing forest composition, were associ-
ated with local temperature anomalies (18–20).

First principles and physiological modeling studies predict,
and observational studies have confirmed, that plant functional
traits mediate the magnitude of water fluxes and how water
fluxes change in response to falling soil moisture and increasing
atmospheric vapor pressure deficit. Multiple studies have high-
lighted that plant-level water fluxes are influenced by key plant
traits such as maximum photosynthetic capacity and the vulner-
ability of plant water transport/hydraulic tissues to increasing
water stress (21–23). Variation in water fluxes due to species
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composition and a diversity in trait strategies is apparent at the
whole forest ecosystem scale as well (24). Thus, plant traits that
govern leaf gas exchange and plant hydraulic transport could
potentially influence drought intensification and mediate future
climate extremes. For example, communities of plants with traits
that cause rapid depletion of soil moisture, such as high photo-
synthetic and hydraulic transport rates, could lead to a stronger
drought intensification feedback. However, the extent to which
plant functional traits influence soil moisture feedbacks, and which
functional traits are most important, remains largely unknown.
Here, we examine the soil moisture feedbacks to drought in-

tensification—diagnosed as the correlations between antecedent
soil moisture and subsequent T, VPD, or SH (SI Appendix, Fig.
S1). We use a network of 40 eddy covariance towers in temperate
and boreal forests, multiple datasets of plant functional traits, a
mechanistic vegetation model, and a recent satellite-derived
quantification of soil moisture feedbacks to ask: 1) How does
the strength of feedbacks between soil moisture and T, VPD, or
SH vary across climate gradients in temperate and boreal for-
ests? 2) To what degree do differences in climate and/or plant
functional traits mediate drought intensification? 3) Which plant
functional traits emerge as potentially important for land–
surface feedbacks affecting drought intensification? 4) Does plant
diversity, as a proxy for trait diversity, explain spatial patterns of
continental-scale soil moisture–precipitation feedbacks?

Results and Discussion
We found substantial variability in soil moisture feedbacks across
flux sites in the temperate and boreal forests, with strong vari-
ation in the temporal correlations between previous soil mois-
ture and subsequent temperature, VPD, and sensible heat flux

during the growing season (Fig. 1 and SI Appendix, Fig. S1).
However, the signs and magnitudes of feedbacks were generally
consistent within a given site across different time scales and
meteorological response variables. This site-specific consistency
of feedbacks is largely expected given the lack of large changes in
vegetation composition or structure at individual sites. Positive
feedbacks of drought intensification—negative correlations be-
tween soil moisture and subsequent T/VPD/SH—were observed
in all biomes, but were more prevalent at warmer sites (Fig. 1).
In this scenario, low soil moisture could feed back to increase
T/VPD/SH, which further increases the evaporative demand and
further decreases soil moisture. Negative feedbacks, where de-
creasing soil moisture preceded decreasing T/VPD/SH, were
predominantly observed at cooler sites. These patterns were
robust across a diversity of time-integration windows ranging
from 1 to 14 d and to the method used to define the plant-active/
growing season across sites (Fig. 1 and SI Appendix, Figs. S1–S3).
Climate and plant functional traits explained between 54%

and 67% of the observed cross-site patterns in drought in-
tensification feedbacks (Fig. 2). Using a suite of model selection
algorithms and variance decomposition, we determined that
climate and traits jointly explained about half of this variation;
climate alone explained about 33% and traits alone about 17%
(Fig. 2A). Mean annual temperature (MAT) of the site was the
most important climate variable. For functional traits, we ex-
amined the community-weighted mean and SD in maximum
photosynthetic rate (Amax), specific leaf area (SLA), wood
density, water potential at 50% loss of branch hydraulic con-
ductivity (P50), minimum water potential (PsiM), and hydraulic
safety margin, which capture a range of key resource acquisition
and water transport strategies (SI Appendix, Table S2). Of these
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Fig. 1. Substantial differences in land–atmosphere
feedbacks are present across 40 temperate and bo-
real forest flux-tower sites. Pearson correlation co-
efficient between soil moisture in a previous period
(1-, 7-, or 14-d average, indicated in green at top of
each column; see SI Appendix, Fig. S1) and temper-
ature, VPD, or SH in a subsequent period (1-, 7-, or
14-d average, indicated in purple at top of 3-column
groups). All factorial combinations of averaging pe-
riods yield 9 columns per variable. Each flux site is a
row (for full names, see SI Appendix, Table S1) and
are organized from coldest MAT (Top) to warmest
(Bottom). Colors indicate the sign (positive/negative)
and color/sizes of dots indicate the strength of the
correlation. Averaging windows without enough
data are shaded in gray.
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traits, the community-weighted mean Amax and SD of P50 were
among the most critical (Fig. 2B and SI Appendix, Fig. S4). While
traits were less important in the combined Akaike Information
Criterion (AIC) weight across all models (SI Appendix, Fig. S4),
a result that is consistent with the variance decomposition
analysis (Fig. 2A), they nevertheless were important predictors
and displayed similar magnitudes in their standardized effect as
mean annual temperature (Fig. 2B).
Extensive previous research has documented the impacts of

aridity or vegetation presence versus absence, such as defores-
tation, on surface energy fluxes (2, 7, 25–29). Here, we demon-
strate that plant physiological characteristics are important for
land–atmosphere interactions beyond simply vegetation pres-
ence/absence or structure. We further show that plant functional
traits, particularly those related to maximum carbon uptake and
water transport, significantly influence soil moisture feedbacks
across a diversity of temperate and boreal biomes. Using a hy-
draulic trait-based forest model (21), we performed several
sensitivity tests to explore the potential mechanisms that un-
derlie plant trait-mediated soil moisture feedbacks (SI Appendix,
Methods). We found that higher community-weighted mean
Amax increased the maximum transpiration/LH fluxes during
wet periods, led to faster soil moisture drawdown and sharper
declines in LH fluxes during dry periods, and yielded a stronger
drought intensification feedback (SI Appendix, Fig. S5 A–C),
consistent with the cross-site regression coefficient for Amax in
Fig. 2B. Higher diversity of species’ stem hydraulic vulnerability
traits (P50 values) in an ecosystem, a hydraulic trait thought to
capture drought tolerance through the water potentials that can
be tolerated in the xylem (30), tended to decrease LH fluxes in
wetter periods but sustain LH fluxes much longer during a dry-
down, leading to weaker drought intensification feedbacks. Re-
sults from the mechanistic vegetation model analysis are consistent

with the cross-site trait-based patterns in Fig. 2B (SI Appendix,
Fig. S5 G–I). Overall, the combination of community-weighted
average Amax and diversity in P50 is consistent with the soil
moisture–drought intensification feedback framework, although
further research is needed to fully understand the detailed
processes and mechanisms.
The statistical and model selection procedures performed here

identify important and explanatory variables, but have several
limitations and uncertainties. The multivariate models demon-
strate statistical linkages, which in complex situations such as the
analyses here are often not straightforward to interpret. The
statistical linkages between site climate and trait metrics can
reveal patterns and associations, but are subject to uncertainties
in the input variables (e.g., scaling individual species’ traits to
whole communities, appropriate climate variables and uncer-
tainties in using gridded climate datasets), output variables (e.g.,
quantification of feedbacks), and their statistical connections
(e.g., unaccounted-for confounding variables). In particular, more
work is needed using ecosystem-level experiments and process-
based land surface model simulations to examine the processes
and mechanisms through which community-level plant traits might
directly affect feedbacks.
We next examined if plant diversity mediated regional-scale

soil moisture feedbacks and drought intensifications. A recently
published rigorous quantification of the soil moisture–precipitation
feedback over the continental United States observed stark dif-
ferences between the western and eastern United States (Fig. 3 A
and B) (6). As a preliminary exploration, we tested if the in-
teraction between tree species diversity and local climate might
explain spatial patterns in these feedbacks. We consider only
woody-plant-dominated grid cells and included grid cell leaf area
index (LAI) as a covariate to account for vegetation structure
differences across sites. We used tree species richness as a pre-
dictor variable because community-weighted trait maps are not
available for our primary functional traits at these scales. Tree
species richness and LAI explained 36% and 57% of the spatial
variation in soil moisture feedbacks (P < 0.00001 for both
feedback estimates; Fig. 3). All else equal (e.g., accounting for
mean soil moisture), regions with lower tree diversity tended to
show stronger signals of drought intensification; i.e., that below
average soil moisture anomalies were associated with decreased
probabilities of subsequent precipitation. This finding was robust
to accounting for the effect of spatial variations in average soil
moisture across the United States (SI Appendix, Methods). Fur-
thermore, we observed a significant interaction between richness
and LAI that indicated a saturation of the effect of species
richness on soil moisture feedbacks at high LAI values (Fig. 3D
and SI Appendix, Fig. S6).
Our results demonstrate that plant functional diversity can

influence drought intensification and climate extremes. Current
land surface models likely capture many of the key climate ef-
fects on soil moisture feedbacks, but do not represent the effects
of decreasing soil moisture on transpiration with mechanistic
fidelity, potentially adding substantial uncertainty to carbon cycle
feedbacks (12). Our findings emphasize that simulating diversity
in plant hydraulic transport and its mechanistic effects on sto-
matal conductance (e.g., refs. 13 and 21) in land surface models
may be crucial for capturing drought intensification and climate
extremes because this would provide a mechanistic linkage be-
tween soil moisture and plant transpiration. Fortunately, large-
scale hydraulic-enabled models are actively being developed (31,
32). This improved simulation of soil moisture feedbacks, including
diversity in plant hydraulic strategies, will be critical for providing
rigorous predictions of climate extremes and climate impacts.

Methods
Eddy Covariance Site Data. We used the tier 1 (publicly available) eddy co-
variance data from the recently released FLUXNET2015 dataset. This contains
data from >200 eddy covariance sites from around the world with energy,
water, and carbon fluxes and meteorological data and has undergone a
standardized set of quality control and gap filling (33). We used the daily
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Fig. 2. Climate and plant functional traits both influence land–atmosphere
feedbacks and affect drought intensification. Groupings show the feedbacks
between soil moisture (SM) and Temp, VPD or SH. (A) Variance explained by the
full model (white), variance jointly explained by climate and traits in variance
decomposition (tan), explained by climate alone (yellow) and by traits alone
(green). (B) Standardized variable coefficients across all models for MAT and
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Appendix, Table S2 for trait names.
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data for all analyses here, as our goal was to quantify multiday to multiweek
soil moisture feedbacks. Sites that met the following criteria were included
in our analyses: 1) forest sites, 2) no disturbance within 10 y before the onset
of eddy covariance measurements, 3) on-site soil moisture measurements,
and 4) available plant functional trait data for at least 2 functional traits for
80% of the tree community (see below). This led to a final list of 40 sites and
352 site years across 4 forest biomes—deciduous broadleaf forest, evergreen
needleaf forest, mixed forest, and evergreen broadleaf forest—which were
almost entirely in temperate and boreal regions (SI Appendix, Table S1).

Trait and Climate Data. Based on an extensive review of the literature and
publications from individual eddy covariance sites, we compiled lists of the
dominant tree species present in the footprint of each tower and, where
possible, the relative abundance of these species. Abundance datawere available
for around 60% of sites. We then compiled the functional traits for species
present in these sites, drawing on the Global Wood Density Database (34) for
wood density data, the dataset presented in ref. 35 for light-saturated maxi-
mum photosynthetic rate and SLA, and the Xylem Functional Traits dataset (36)
for data on the water potential at 50% loss of stem hydraulic conductivity and
the hydraulic safety margin. These traits influence a diversity of important plant
functions, including maximum gas exchange rate and the vulnerability of water
transport to drought conditions. Furthermore, these traits are actively being
incorporated into next-generation land surface models (13, 31, 32, 37) and thus
their importance for drought intensification is useful to test. At each site, we
calculated the community-weighted (i.e., composition weighted) trait mean and
SD for each trait with values for more than 80% of the plant community. The
mean provides an estimate of the average plant strategy in the ecosystem and
the SD provides insight into the diversity of strategies/traits present.

In addition, we compiled the reported age of the canopy trees and the
mean annual temperature and mean annual precipitation reported as
metadata in the FLUXNET2015 dataset for each site as important climate
variables that might influence cross-site patterns. We used the site latitude
and longitude to extract the growing season (defined here as June–August
for northern hemisphere and December–February for southern hemisphere)
temperature and precipitation from Climatic Research Unit data (38) for the
1980–2008 period. We further extracted annual and growing season po-
tential evapotranspiration (PET) for each site (averaged over the 1980–2008
period) from the Sheffield dataset (39) and included site mean annual PET,
mean growing season PET, mean annual precipitation minus mean annual
PET, and mean growing season precipitation minus mean growing season
PET as potential climate predictor variables. Growing season temperature
was also predictive of feedbacks, but was less strongly correlated with
feedbacks than MAT (SI Appendix, Fig. S7) and thus was not included in the
final models. See SI Appendix, Table S2 for all predictor variables.

Soil Moisture Feedback Methods. We restricted our data to the plant-active
season using 2 different methods. In both, we removed all data where a
quality flag indicated that a measurement of soil moisture, temperature,
vapor pressure deficit, or sensible heat may have been flawed. We further
verified this by plotting annual time courses of all variables for all sites to
ensure that all data were within reasonable bounds. In the first method, we
implemented a daily average temperature threshold of 15 °C for temperate
and 10 °C for boreal sites and further removed 1 wk on either end of each
plant-active season. In the second method, we implemented the cross-site
method proposed by Gu et al. (40) and considered a growing season to be
between the “stabilization day” and “downturn day” of annual GPP (via the
nighttime partitioning method) time series. These methods yielded largely
similar results (Fig. 1 and SI Appendix, Fig. S2), and thus we present the
temperature threshold (first) method in the main text.

We followed a number of previous studies in estimating the strength of
soil moisture feedbacks and drought intensification as the correlation be-
tween previous soil moisture and subsequent T, VPD, or SH (3, 8, 41, 42).
Quantifying land surface feedbacks is inherently challenging because 1)
observational data are typically at much smaller spatial scales (e.g., an eddy
covariance footprint) than the relevant atmospheric processes, 2) effects
may arise from autocorrelation of dependent variables (e.g., synoptic pat-
terns in precipitation), and 3) lagged correlations among variables may not
mean causation (2, 42). Challenge 1 is largely unavoidable for site-level
analyses where plant trait data are available, but we believe our approach
is still reasonable for several reasons. First, this limitation has not precluded
the detection of likely soil moisture feedbacks in previous studies (3, 43).
Second, inferring feedbacks from site-level data are reasonable if the sites
are representative of broader regional vegetation types (thereby capturing
the main mechanisms for regional-scale feedbacks), which is largely the case
of our focal flux towers. Finally, we analyze broader continental-scale
datasets as well, which show a consistent pattern with flux-tower data
(Fig. 3). In addition, soil depth or properties such as soil texture, rooting
depth, and belowground plant or mycorrhizal traits could all influence land–
atmosphere interactions, but were not considered here due to a lack of
available data. Challenge 2 is a much larger problem for the detection of soil
moisture–precipitation feedbacks, and analyses focusing on soil moisture–
temperature are likely to be more robust than soil moisture–precipitation
feedbacks (2, 42). This is because soil moisture–temperature feedbacks are
directly influenced by surface radiation budgets (e.g., Bowen ratio), are less
likely to be driven by an external variable (e.g., sea surface temperatures),
and are less influenced by statistical challenges of precipitation persistence
(2). We further aimed to minimize the problems of challenge 2 by using an
array of time windows and removing seasonal patterns in variables (see
below). Challenge 3 is an important caveat in all soil moisture feedback
analyses, and causality can only be fully prescribed with mechanistic model

Fig. 3. Tree species richness patterns are associated
with soil moisture–precipitation feedbacks. A and B
are the quantification of the “dry” soil moisture–
precipitation feedback from ref. 6 using 2 different
satellite soil moisture datasets where values below 1
denote low soil moisture associated with lower
probability of subsequent rainfall and above 1 low
soil moisture associated with higher probability of
subsequent rainfall. (C) Tree species richness (no.
species). (D) The relationship between the soil
moisture feedback map in A and tree species rich-
ness from (C) with the blue line showing the best fit
generalized additive model (deviance explained =
51%) and 95% confidence intervals.
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simulations that vary soil moisture boundary conditions, something that
cannot be done with observational datasets. However, some statistical
techniques assess “predictive causality” (e.g., Granger causality), which is
more rigorous than simple correlation, and is used for the satellite-based
feedbacks assessed here (6).

SI Appendix, Fig. S1 presents an illustration of how we quantified feed-
backs by showing the calculation from a given day i at a given site. Within
each growing season at each eddy covariance site, we first calculated all
nonoverlapping 1-, 7-, and 14-d averages for T, VPD, and SH. From each
period, we then calculated the preceding 1-, 7-, and 14-d period averages for
soil moisture. Where preceding soil moisture data were not within the plant-
active season, those dates were dropped from the analysis (for example, day
2 of a growing season would have a value for the preceding 1-d period, but
not the preceding 7- or 14-d period, and thus would not be included in those
analyses). In the case of data gaps, a majority of days with data were re-
quired to be included. The 3 time periods of dependent variables
(T, VPD, SH) and 3 time periods of the independent variable (preceding soil
moisture) led to 9 combinations over which we calculated Pearson correla-
tion coefficients, where negative correlations indicate “drought intensifi-
cation” because declines in soil moisture are correlated with subsequent
increases in T/VPD/SH. We used this suite of different time periods to 1)
ensure that the patterns in drought intensification that we observed were
robust to different methods, and 2) to capture effects at longer time-
scales where autocorrelation of T, VPD, and SH are much lower (44). In ad-
dition, we calculated these correlations after removing a seasonal pattern
from all variables via fitting a quadratic regression for each year and per-
forming the correlations on the residuals for a random subset of 10 flux
sites. The feedback correlations on the deseasonalized data were quite
similar to the correlations used in Fig. 1 (R2 = 0.65, P < 0.001), indicating that
seasonal or synoptic patterns are not likely behind site differences. Because
the correlations were quite consistent across different time period combi-
nations (e.g., Fig. 1), we averaged all 9 time period combinations to yield an
average feedback strength for each site for the model selection analyses.

Model Selection. We performed model selection to determine the most im-
portant predictors in cross-site patterns of soil moisture feedbacks. See SI
Appendix, Table S2 for all predictor variables. Because multivariate analyses
can be confounded by collinear predictor variables, we first removed col-
linear predictors following previously published methods (45) by calculating
the pairwise Pearson correlation coefficients among all predictor variables.
Whenever 2 predictor variables exhibited a correlation of >0.5, each was
then compared against the dependent variable and the predictor with the
lowest correlation with the dependent variable was dropped. The final
model set included 6 predictor variables and was consistent across all 3 de-
pendent variables: mean annual temperature, community age, and community-
weighted traits of: mean maximum photosynthetic rates (Amax.m), SD of the
water potential at 50% loss of stem hydraulic conductivity (P50.sd), SD of
maximum photosynthetic rates (Amax.sd), and mean minimum water po-
tential experienced (PsiM.m).

We then used the model selection technique of “all possible models” that
calculates all potential combinations of predictor variables and ranks them
by Akaike Information Criterion (46). This approach is considered superior to
and more robust than stepwise techniques and has been used in soil mois-
ture feedback analyses previously (6). From this extensive family of models,
we then calculated the standardized variable coefficients, Akaike variable
weights, and the prevalence of each variable in the top models (defined as
all models within 3 AIC of the best model). No single model emerged as the
most parsimonious model (e.g., <−3 AIC from another model), and thus
presenting the Akaike variable weights and prevalence of variables in
the top models provides a holistic picture of the importance of each
predictor variable.

Finally, we performed variance decomposition on themost complexmodel
within the top models for each model selection analysis (i.e., soil moisture-T,
soil moisture-VPD, or soil moisture-SH). This model had the form:

Feedback  ∼ β1MAT   +   β2Amax.m  +   β3P50.sd [1]

Variance decomposition allowed us to directly quantify the amount of var-
iance explained by the full model (all predictor variables), climate (i.e., mean
annual temperature) alone, traits alone, and climate and traits jointly. This
was done by calculating the semipartial correlation—the correlation of 2
variables (e.g., Feedback∼MAT) with variation from all other variables re-
moved only from the dependent variable (e.g., removing the variation of
Amax.m and P50.sd from Feedback above). This was done separately for
climate (MAT alone) and traits (Amax.m and P50.sd) to calculate the R2 from

each semipartial correlation and the remaining R2 is considered the variance
explained by the joint variables (i.e., shared between the 2 sets of variables).
See SI Appendix, Methods for mechanistic simulations of trait differences in
a hydraulic model.

Continental US Soil Moisture Feedback Analysis. The analysis of Tuttle and
Salvucci (ref. 6; results shown in their figure 1A and B) identified the causal
influence of soil moisture on the occurrence of next-day precipitation. Pre-
cipitation is often autocorrelated, with precipitation events occurring in
clusters over timescales of weeks, months, or years. This autocorrelation may
be due to local (e.g., soil moisture feedbacks) or far-field influences (e.g.,
synoptic weather patterns, sea surface temperatures). No matter the cause
of the autocorrelation in precipitation, this signal will be passed on to soil
moisture, due to the direct coupling between the two (i.e., when it rains, soil
moisture increases). Therefore, any lagged correlation between soil moisture
and subsequent precipitation will be contaminated by autocorrelation in
precipitation, regardless of the cause (47).

To isolate the effect of soil moisture on the occurrence of next day pre-
cipitation, Tuttle and Salvucci (6) used generalized linear modeling (specif-
ically, probit regression) within a Granger causality framework. Precipitation
occurrence (a binary variable: rain vs. no rain) was modeled as a function of
sinusoids that represented various modes of interannual variability and
seasonality, and up to 4 d of past precipitation (see ref. 6 for details). For
each given location, models with all possible combinations of the indepen-
dent variables were separately evaluated against observed precipitation
(i.e., “all possible models” or “all possible regressions”), and the model with
the combination of independent variables that yielded the lowest AIC was
chosen as the best “restricted” model for that given location. Then, a similar
probit regression model was evaluated, with 1-d lagged, seasonal soil mois-
ture anomaly as the independent variable (along with 4 d of lagged atmo-
spheric pressure) and the residual precipitation occurrence from the
“restricted” model as the dependent variable. This second, “unrestricted”
model tested whether or not soil moisture exerted a statistically significant
influence on next-day precipitation occurrence, after accounting for season-
ality, interannual variability, and precipitation persistence. The ratio of the
predicted precipitation probability from the models with and without soil
moisture as an independent variable provided a quantification of the impact
of soil moisture on the occurrence of next-day precipitation (i.e., results
shown in ref. 17, Fig. 1 A and B). The precipitation data used in Tuttle &
Salvucci (2016) are from the North American Land Data Assimilation System,
Phase 2 (48). 2 soil moisture datasets derived from Advanced Microwave
Scanning Radiometer for the Earth Observing System satellite observations
ref. 49 in Fig. 1A; ref. 50 in Fig. 1B) were evaluated against the precipitation
data. The analysis was restricted to the contiguous United States from June
2002 to June 2011 and to months without freezing air temperatures.

Because community-weighted trait maps are not currently available for
our key traits at continental scales, we used a tree species richness map for the
continental United States (51). In addition, we drew upon a biome map (52),
gridded monthly soil moisture data from the Global Land Data Assimilation
System (53), and gridded data of leaf area index from Moderate Resolution
Imaging Spectroradiometer from July 2005 (54), which was chosen to rep-
resent the peak growing season in the continental United States, and central
in time for our analysis in the soil moisture feedback datasets. We included these
ancillary datasets either as masks or covariates in our analyses (see below).

For each of the 2 estimates of soil moisture–precipitation feedback, we
restricted our analyses to only grid cells dominated with woody vegetation
(cover types 1–9) and removed grid cells with values of 1 (no statistically
significant feedback, which constituted 38% of woody vegetation grid cells).
We then performed a multivariate ordinary least squares regression of the
feedback as a function of species richness, average leaf area index, and their
interaction term, which was the model that had the lowest AIC. We tested for
spatial autocorrelation in our data with a Moran’s I test (55), which was not
significant. Given the saturation of the feedback at higher values of richness, we
further fit a generalized additive model with feedback as a function of richness.

To ensure that our results were not driven by a correlation of average soil
moisture with the soil moisture feedback estimates, we also ran analyses
where we first regressed the soil moisture feedback against average soil
moisture from 1989 to 2008 and then used the residuals of this regression
against tree species richness, which was still significant (R2 = 0.19, P < 0.00001).

Statistics. All statistics and analyses were conducted in the R computing
environment. Specifically, we used the dredge function in the MuMIn (56)
package for model selection, the ppcor (57) package for variance decom-
position, the nlme (58) package for generalized additive model analyses, and
the RnetCDF (59), raster (60), and rworldmap (61) packages for spatial analyses
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and map plots. We examined all ordinary least squares linear regressions for to
ensure that they met key assumptions using quantile and other diagnostic plots.
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