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Abstract

Intensive longitudinal designs involving repeated assessments of constructs often face the

problems of nonignorable attrition and selected omission of responses on particular

occasions. However, time series models, such as vector autoregressive (VAR) models, are

often fit to these data without consideration of nonignorable missingness. We introduce a

Bayesian model that simultaneously represents the over-time dependencies in multivariate,

multiple-subject time series data via a VAR model, and possible ignorable and nonignorable

missingness in the data. We provide software code for implementing this model with

application to an empirical data set. Moreover, simulation results comparing the joint

approach with two-step multiple imputation procedures are included to shed light on the

relative strengths and weaknesses of these approaches in practical data analytic scenarios.

Keywords: Intensive longitudinal data, Bayesian vector autoregressive model,

Multiple imputation, Nonignorable missing data
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A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent

Variables and Covariates: Development, Evaluation, and Application to Family Processes

Intensive longitudinal studies have gained popularity in the past two decades as a way

of studying intra-individual change over time, inter-individual differences in

intra-individual change, as well as other determinants of intra- and inter-individual

variations (Baltes and Nesselroade, 1979). Such growth in popularity is facilitated in part

by technological advances such as smartphone and wearable devices, which have provided

enriched opportunities for intensive but relatively unobtrusive data collection in

individuals’ natural environment. Comparing with longitudinal panel data, these data are

able to convey more nuanced information concerning change processes (Bolger and

Laurenceau, 2013; Stone et al., 2008).

One way to model these intensive longitudinal data (ILD) is through vector

autoregressive (VAR) models, which can capture the temporal dependencies amongst

multiple variables. VAR models have long been used in the econometric literature to

forecast the performance of the stock market, macroeconomics trends, and policy change

(for summaries see e.g., Fomby et al., 2013; Qin, 2011). They are also gaining traction in

recent years as a way of examining complex system dynamics in behavioral sciences, such

as patterns of neural interactions in neuroimaging studies (Ding et al., 2006),

intraindividual covariation of behaviors associated with personality models (Hamaker

et al., 2005), daily patterns of emotional states and substance use among young adults in

recovery (Zheng et al., 2013), dyadic interactions and coordinations between parent-child

or partners (Chow et al., 2010a; Ram et al., 2014; Thomas and Martin, 1976), the different

forms of concordance of a person’s physiological responding to emotional stimuli (Bulteel

et al., 2014), and network models of causal interplay between psychopathology symptoms

(Borsboom and Cramer, 2013; Schmittmann et al., 2013). In sum, these models are helpful

in capturing more nuanced changes within each unit of analysis (e.g., within-person,

within-dyad, and within-family dynamics). Despite the increased use of VAR models in
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substantive applications, one ubiquitous challenge faced by many researchers is the lack of

easily accessible methods of handling missingness in ILD, particularly in the presence of

missing categorical covariates.

The current paper provides a review and illustrations of commonly adopted missing

data handling techniques for VAR models. In particular, we include targeted comparisons

of a recent two-stage, hybrid Bayesian-frequentist multiple imputation (MI) approach (Ji

et al., 2018) to a novel single-stage, fully Bayesian approach proposed in this article. The

illustrative example used throughout this article was motivated by an empirical study

examining emotional dynamics of husband and wife after each conflict episodes, with the

influence of children’s reaction to the conflicts, over a period of 15 days. A VAR model was

applied to investigate how husband and wife’s emotional states were influenced by the

emotional states of themselves, as well as their partner’s, after previous conflict episode.

Two covariates on child reactions were also included in the model to reflect the child’s

influence over parents’ emotional states. As detailed later, one big challenge in fitting a

VAR model to this data set was the substantial amount of missingness in the child

variables. This paper illustrates and investigates the extent to which appropriate

inferential results can be obtained under different missing data handling approaches.

The present article has two unique contributions. In particular: (1) demonstrate a

single-stage Bayesian modeling procedure to fit a VAR model with different missing data

conditions with annotated sample modeling scripts; and (2) compare the performance of

the single-stage Bayesian approach to a recent two-stage hybrid approach for handling

missingness in ILD (Ji et al., 2018).

The remainder of this article is structured as follows. We first provide a review of

common missing data handling methods in the literature and their applicability to ILD. We

then outline the key features of the Bayesian missing data handling approach proposed in

this study and how they differ compared to previous methods in the literature, including a

two-step hybrid approach proposed by Ji et al. (2018), which combines a Bayesian approach



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS 5

for imputation of missing covariates, and a frequentist approach for model estimation with

imputed data. This is followed by an illustration of our proposed fully Bayesian approach,

including sample coding syntax, using an empirical example. Finally, results from a Monte

Carlo (MC) simulation study are presented to demonstrate the performance differences

between the Bayesian approach and the two-step hybrid approach. We conclude with some

recommendations for viable ways to handle potentially nonignorable missingness in ILD.

Missingness in Intensive Longitudinal Data and Common Approaches

We consider the value of a variable for one or multiple time points missing if it is

unobserved or unreported. ILD is especially prone to missingness due to, for example,

either study compliance issues or the nature of study design. Intensive assessments,

especially those involving self-reports, require an ongoing commitment to remain in a

study. The prolonged time span of these studies often entails increased participation

burden over time, and in turn, higher likelihood of missingness.

Based on Rubin (1976), missing data mechanisms can be classified into three types:

missing completely at random (MCAR), missing at random (MAR) and not missing at

random (NMAR), which is also referred to as nonignorable missingness. If the mechanism

is MCAR, the reason for missingness is independent of the questions investigated in the

study (e.g., technical hiccup). MAR occurs when the probability of having missing data

depends solely on some observed data (e.g., failure to report on weekends), but not on any

unobserved information (Fahrenberg and Myrtek, 2001). Finally, we face nonignorable

missingness when the reason for missingness is the unobserved missing data itself, meaning

that the missingness mechanism relates to the question(s) we study (e.g., not giving reports

on emotional experiences when being upset).

Typically, researchers make an assumption of the missing data mechanism, and then

choose a method to handle it based on that assumption. It has been shown that wrong

assumption of the missingness mechanism results in estimation problems, such as increased

biases in point estimates (Allison, 2003; Jones, 1996) and standard error estimates
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(Glasser, 1964). Most contemporary work involving VAR models assumes the presence of

MCAR or MAR. However, behavioral research with ILD involving self-report of constructs

such as emotions are often subject to nonignorable missingness — for example, when the

participants’ likelihood to report depends on their current emotions. If the data are

NMAR, the missing data mechanism needs to be accounted for during the estimation

process to yield unbiased parameter estimates.

Despite the proliferation of studies evaluating different missing data handling

techniques in cross-sectional and longitudinal panel data with a limited number of

measurement occasions (Allison, 1987; De Silva et al., 2017; Rubin, 1996; Schafer, 2001;

Schafer and Graham, 2002; Sinharay et al., 2001), the impact of different kinds of

missingness and strategies to handle missingness in multivariate, multi-subject time series

data is less well studied. Full-information maximum likelihood (FIML) and MI are two

most widely implemented approaches to handle missingness in the context of ILD, but they

both have limitations. FIML operates by using only the available observed variables from

each occasion and unit of analysis to compute the log-likelihood function for parameter and

standard error estimation purposes. FIML is widely implemented in most software

packages for VAR modeling, but it requires the missing values to be ignorable (i.e., MCAR

or MAR), and the covariates in the model need to be fully observed.

In contrast to FIML, the MI approach requires the specification of a hypothetical

model, termed the imputation model, to generate multiple “complete data sets” filled in

with plausible values for the missing entries. This is followed by pooling of estimation

results across all of the imputed data sets to yield a set of final parameter and standard

error estimates. To better explicate this approach, we first define some notation as follows.

Let Y be an array of J dependent variables, yj (j = 1, . . . , J), for all individuals and time

points, that can be partitioned into Y = {Ymiss,Yobs}. Y−j represents all other dependent

variables except for the jth dependent variable. X denotes an array of covariates for all

individuals and time points. R is a binary array summarizing the missing data patterns for
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all the variables, with 0 indicating an observed entry and 1 indicating a missing entry. φj

is the vector of parameters in the imputation model for ymiss
j .

One approach to conduct MI, which is also the approach adopted in the hybrid method

proposed by Ji et al. (2018), is multivariate imputation by chained equations (MICE), also

referred to as full conditional specification (van Buuren, 2012; van Buuren and

Groothuis-Oudshoorn, 2011). With this approach, probable values of missing observations

are generated in multivariate data on a variable-by-variable basis with a conditional

probability model P (Ymiss
j |Y−j,X,R,φj).

1 MICE has been widely adopted in

cross-sectional and longitudinal panel studies, but its performance has been shown to be

less satisfactory when used in intensive longitudinal settings (Liu and Molenaar, 2014).

To circumvent some known weaknesses of standard MICE techniques, Ji et al. (2018)

proposed including lagged variables as predictors in the MICE imputation model, and

compared different missing data handling techniques in the context of a VAR model. Two

two-stage approaches were proposed: a full MI approach, in which all missing information

were imputed before model fitting, and a partial MI approach, in which only missing

covariates were multiply imputed, whereas missing data in the dependent variables were

handled with FIML. Simulation results show that the two MI approaches outperformed

simpler methods such as listwise deletion (LD). However, relatively large biases and poor

coverage were still observed in some modeling parameters when mild misspecification was

present in the imputation model. Given the two-stage nature of Ji et al.’s proposed

approaches, the extent of sampling variability (i.e., standard error estimates) might have

1 To start the procedure, all missing observations are filled in using random draws with replacement from
all observed values. Then, for the first iteration, φ1

1
is drawn from the distribution P (φ1

1
|yobs

1
, Y0

−1
, X0, R).

Missing values in y1, ymiss
1

, are then filled in by drawing values from P (y1|yobs
1

, Y0

−1
, X0, R, φ1

1
), the

posterior predictive distribution of y1 conditioned on yobs
1

, Y0

−1
, X0, R, and φ1

1
. Here, we use superscript k

to denote data sets and parameter estimates from the kth iteration, with k = 0 denoting the original data
sets or initial starting values of the parameters. Similar procedure is subsequently performed to generate
predicted values for ymiss

2
, only that imputed values for y1 from the previous step are used in the

prediction process. The first iteration ends when missing observations are filled in for all variables. The
procedure is repeated for K iterations to result in one set of data with imputed values. The whole
procedure is repeated multiple times to generate multiple imputed data sets and correspondingly, multiple
sets of parameter and standard error estimates for subsequent pooling (van Buuren, 2012).
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been underestimated as well. In this study, we extend the study by Ji et al. by comparing

the authors’ recommended two-stage approach with a Bayesian single-stage approach, and

under conditions with a broader array of missing data percentages and degrees of

non-ignorability in missingness (Graham, 2012). Since better parameter point estimates for

some of the parameters were obtained with the partial MI approach in the previous

simulation study, we will only consider the partial MI approach in this paper.

A Bayesian Approach to Handle Missing Data

The limitations of the FIML and MI approaches in handling particular missing data

mechanisms and underestimation of sampling variability can be readily circumvented with

the proposed Bayesian approach. In what follows we highlight the key properties of the

Bayesian approach to joint modeling of the missingness mechanism and the multivariate

processes of interest via a VAR model. Specifically, we specify a joint probabilistic model

for the full data, with explicit assumptions about the mechanism that have given rise to the

missingness in the data. This is done by building submodels that describe the probabilities

that the covariates and/or endogenous variables are missing in the data set. These missing

data submodels are embedded within a larger model that also includes models of interest

(in our case, a VAR model) that specify the time evolution of the intensively measured

variables and their latent variable counterparts – whether they are observed or missing for

particular occasions. In cases where covariates are not fully observed, a model that

describes the distributions of the covariates is also necessary as a part of this larger model.

We will refer to this larger model as the “full-data model” for the remainder of this article.

Daniels and Hogan (2008) illustrated three different ways to factorize the full-data

distribution, namely, as selection models (Diggle and Kenward, 1994; Heckman, 1979),

mixture models (Hogan and Laird, 1997; Little, 1993,9) and shared parameter models

(Henderson et al., 2000; Wu and Carroll, 1988). The full-data model can be specified as

P (Y,R|X,ω), where Y, X and R are as defined earlier in the introduction to MI in the

previous section, and ω is a collection of model parameters. Under the selection model, the
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full-data model can be factorized as follows:

P (Y,R|X,ω) = P (Y|X,θ)P (R|Y,X,φ), (1)

where P (Y|X,θ) represents the model for dependent variables (i.e., model of interest), and

P (R|Y,X,φ) represents the missing data mechanism. For example, Diggle and Kenward

(1994) proposed a model for continuous longitudinal data with NMAR drop-out, where a

multivariate linear model was used as the model of interest, and the drop-out process was

modeled using a logistic regression model, where probability of missing an observation

depended on observed response history and the current value of dependent variable, which

might be missing. The mixture and shared parameter modeling approaches capitalize on

different assumptions and hence, different specifications for the conditional relations among

elements of the full-data distribution2. In this paper, we illustrated the use of selection

model to handle missing data in intensive longitudinal studies because of the following

benefits: First, compared with the mixture models, the selection model is more feasible in

the context of ILD. This is because the mixture model approach involves conditioning of Y

over each possible combination of missing data patterns. With ILD, there could be too

many possible missing data patterns, and relatively few observations within each pattern.

In addition, slight differences in patterns may not reflect meaningful individual differences

at all. Second, unlike the shared parameter approach, the model of substantive interest,

P (Y|X,ω), as well as the missing data mechanism are directly specified in the selection

model approach, which is very intuitive for researchers. Finally, the selection model is

2 The mixture models factor the full-data model as:

P (Y, R|X, ω) = P (Y|R, X, ω)P (R|X, ω),

With this model, the relations between Y and X are conditioned on different missing data patterns. In
contrast, the shared parameter approach assumes a multilevel structure and models random effects b

jointly with Y and R with following general model:

P (Y, R|X, ω) =

∫

P (Y, R, b|X, ω)db.
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relatively easy to estimate, as compared with mixture models, which may have

identification issues with increased dimension of Y, and shared parameter models, which

involve integration over the shared parameters.

Given the full-data model, parameter estimation and inference in the Bayesian

statistical framework are based on the posterior distributions of the model parameters and

missing data. Posteriors are derived based on priors of model parameters and the

likelihood of the observed data, combined via Bayes’ rule. The missing data are treated as

an unknown quantity, similar to the unknown model parameters. The unknown quantities

are explored through Markov chain Monte Carlo (MCMC) techniques according to the

posterior distribution. If prior information on the possible values of the parameters is not

available, uninformative priors are set. However, when fitting a VAR model, we suggest to

use weakly informative priors for dynamic parameters that impose, whenever possible and

appropriate, the stationarity assumptions — namely, the assumption that the joint

distribution of the time series variables is time invariant (Lütkepohl, 2005).

The proposed Bayesian implementation has several advantages over the MI approaches.

First, unlike the two-stage MI approaches (e.g. Ji et al., 2018), the proposed Bayesian

implementation estimates the underlying dynamics and missingness mechanism in a single

step (Daniels and Hogan, 2008). That is, in the MI approaches, a MI step is first used to

impute values for the missing observations in Y and X, typically based on some

overparameterized generalizations of P (Y|X,ω,R) that often include some additional

auxiliary variables in X that help explain R, but not necessarily the dynamics of Y

directly. Once the imputed values of Y and X are available, only P (Y|X,ω) is modeled

directly in the second stage as if all Y and X values were fully observed. With the

Bayesian selection modeling approach, both P (Y|X,ω) and P (R|Y,X,φ) are estimated

simultaneously over long chains of iterative MCMC updates. This is to say that with this

approach, we simultaneously estimate the missing data modeling parameters and the VAR

modeling parameters. The missing data estimates can help researchers learn about the
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underlying missingness mechanism. Second, compared with MI approaches, the Bayesian

approach allows more flexibility in missing data model specification. Different missing data

models may be specified for missingness in different variables, and different missing data

mechanisms (i.e., MCAR, MAR, and NMAR) can be fully reflected in the model

specification. Researchers may also incorporate any theory-driven models of missingness

into the larger model. Third, in terms of standard error estimates, MI approaches only

incorporate a limited number of imputations, and this number might underestimate the

uncertainty in the imputation procedure. With Bayesian methods, the uncertainty about

the imputed data is fully propagated into all subparts of the estimation process, over

numerous iterations. Thus, standard errors and related quantities for inferential purposes

reflect the multiple sources of uncertainty from the data. Fourth, Bayesian methods allow

estimation of more complex models and data structure, such as multilevel models with

random effects (Wang and McArdle, 2008), and data with nested structure. Previous

studies have demonstrated the strengths of the Bayesian missing data modeling approach

with different models, such as multiple regression models with observational studies with

NMAR missing data (Mason et al., 2010), analysis of randomized clinical trials with

drop-outs (Scharfstein et al., 2003; Wang et al., 2010), path analysis model (Gajewski

et al., 2006) where the outcome variable and the mediating variable follow Poisson

distributions, survival analysis model (Hemming and Hutton, 2012), hierarchical models for

network meta-analysis (Zhang et al., 2015), and nonparametric statistical learning models

with Bayesian Additive Regression Trees (Kapelner and Bleich, 2015). We add to this

literature by studying the performance of the Bayesian missing data approach in modeling

multivariate, multi-subject intensive time series data under different missing data

mechanisms.
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Empirical Illustration

Motivating Model and Methodological Challenges

The proposed Bayesian VAR model was inspired by a previously published study that

explored the emotional dynamics of interparental conflicts (Schermerhorn et al., 2010).

Researchers collected data on emotional states at the end of conflicts with influences from

child emotions and behaviors during conflicts from 111 cohabiting couples with a child

(child ages range from 8 to 16 years), over 15 days. This study was an event-contingent

design where parents responded only during or shortly after a conflict. The parents were

asked to record their own emotional states as well as their children’s emotional states and

behaviors associated with particular conflicts.

We proposed the following VAR model to capture the time-dynamics of the observed

data:

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εw,n,t ∼ N (0, σ2

εw
), εh,n,t ∼ N (0, σ2

εh
)

(2)

where wnt and hnt represented conflict resolution ratings of wife and husband, respectively,

from family n at the end of the tth conflict (n = 1, . . ., N ; t = 1, . . ., Tn). Given the

event-contingency, the total number of conflicts (T ) was different for every family

(min = 11, max = 69, mean = 25.90). The terms εw,n,t and εh,n,t were the residuals for

wife and husband not accounted for by the hypothesized model, assumed to be normally

distributed with zero means, standard deviations σεw
and σεh

, respectively.

The hypothesized model was a VAR model of order 1 in which the dependent variables

at the current time point were predicted by the dependent variables at the immediately

preceding time point (i.e., a lag of 1). In the present context, the emotional states and

conflict resolution behavior of each spouse at the end of the tth conflict were posited to be

influenced by their own emotional states and resolution behavior at the t− 1th conflict, the

strengths of which were captured in the auto-regression parameters, aw→w and ah→h. In
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addition, each person’s previous emotional states and resolution behavior at the previous

conflict were also assumed to affect the partner’s emotional state and resolution behavior

at the tth conflict, as governed by the cross regression parameters, bh→w and bw→h.

Two covariates were included in the dynamic model. The covariate, x1, was an

aggregate measure of the child’s negativity, as averaged across actions such as anger,

sadness, fear, as well as misbehaving, yelling at the parents, and aggression. The other

covariate, x2, represents a child aggregate score on agentic behavior in family i, which

includes actions such as helping out, taking sides, comforting the parents, and trying to

make peace. Each one of the dependent variables and the covariates were standardized by

family over time prior to model fitting to ease prior selection and to remove some of the

pre-existing interindividual differences in process noise variances and VAR dynamics —

features not accommodated by our hypothesized model.

In this empirical study, a large portion (67% for all child-related variables) of the

child-related covariates was missing (Schermerhorn et al., 2010). In order to handle the

missingness, the authors previously recoded the child-related covariates from sum scores

(ranging from 0 to 10) into dummy variable such that a child’s value on each covariate was

coded as 0 both when the child did not display the behavior during the conflict, and when

the child was “missing”; each of the two covariates was coded as 1 when the child showed

any level of that behavior. This coding scheme has three primary drawbacks: (1) the data

blur levels of a child’s influence with the presence or absence of the data, obscuring the

ability to make meaning of the data, (2) it discounts potential effects of different levels of

the child-variables on dynamics at the family level, and (3) this data mechanism may be

inappropriate as both the dependent and child-related covariates may be NMAR (e.g., the

couples might be especially careful in ensuring that the child was absent when they

anticipated discussing highly stress-provoking topics). In order to account for some of the

aforementioned issues, Ji et al. (2018) applied a MI method to handle missing covariates in

this data set. With this method, the authors were able to preserve information on the
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magnitudes of child variables, since the variables were not dichotomously recoded.

However, the plausible missing data mechanism were still unknown and NMAR missing

effects might not be fully accounted for.

Bayesian Joint VAR and NMAR Modeling Example with JAGS

We utilized the Bayesian approach to model the dynamics of the process and the

missing data mechanisms simultaneously. With this approach, we can compare joint

models for the dynamics data and hypothesized missingness mechanisms. Bayesian model

fitting was performed in JAGS (Plummer et al., 2003), interfaced with R (R Core Team,

2016) for data formatting and result summaries through R package rjags (Plummer, 2016).

Details of the model fitting procedures are presented below.

In the empirical data set, Tn corresponds to the total number of conflicts for the nth

family, with Tmax representing the maximum number of conflicts across all families. We

structure the data as:

Dependent variables Y1, Y2: N × Tmax matrices

Covariates X1, X2: N × Tmax matrices

Missing data patterns (dummies) RY1
, RY2

, RX1
, RX2

: N × Tmax matrices

Time series length for the nth family, Tn: T[n]

For the Bayesian approach, the full-data model – including the VAR model for the

dependent variables, the model for covariates, and the missingness model for both

dependent variables and covariates – is specified in a text script to be read into JAGS.

Since we have longitudinal data for multiple families and multiple observations for each

family, the model follows the basic structure below:

model{

for (n in 1:N){

y1[n,1] ~ dnorm(0, 0.01)

y2[n,1] ~ dnorm(0, 0.01)
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x1[n,1] ~ dnorm(0, 0.01)

x2[n,1] ~ dnorm(0, 0.01)

for (t in 2:T[n]){

<VAR model for dependent variables>

<Model for covariates>

<Model for missingness mechanisms>

} # end of t loop

} # end of n loop

<Priors>

}

Two for-loops are shown in the script above: one that loops through every family (the n

loop) and one through every observational time point (the t loop), the maximum number

of which is family-specific (T [n]). The first four lines inside of the n loop specify the

distributions for the first observations. In this example we use a normal distribution with a

large variance (100, or equivalently, a small precision of 0.01 as indicated in the script) for

all four observations, so that the distribution itself does not add very specific information

about the initial values of the variables at time 1, yet captures a reasonable range of

starting values. One thing to note is that the dnorm function in JAGS parametrizes the

normal distribution with its mean and precision, instead of variance (where precision =

1

variance
). The t loop contains three submodels: a VAR model for the covariates, a model for

covariates, and a model for missingness mechanisms. We will introduce each of the models

and the corresponding JAGS syntax in the following paragraphs, and a complete script for

model fitting is included in Appendix C. The model for covariates is only necessary if the

covariates are not fully observed.
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VAR Model for Dependent Variables. We first write out the model for dependent

variables, namely, the VAR model with covariates (based on Equation 2) as

y1[n,t] ~ dnorm(mu1[n,t], tau1)

y2[n,t] ~ dnorm(mu2[n,t], tau2)

mu1[n,t]<-a*y1[n,t-1]+b*y2[n,t-1]+c*x1[n,t]+d*x2[n,t]

mu2[n,t]<-b1*y1[n,t-1]+a1*y2[n,t-1]+c1*x1[n,t]+d1*x2[n,t]

Model for Covariates. A model for covariates is also necessary since the covariates also

contain missingness. In our illustrative example, both the covariates are measured using a

numeric response scale. Thus, we assume that each covariate follow a normal distribution

with:

x1nt
= β1 + β2pwnt

+ β2phnt
+ εx1,nt, εx1,nt ∼ N (0, σ2

εx1

) (3)

x2nt
= ψ1 + ψ2x1nt

+ ψ3pwnt
+ ψ3phnt

+ ψ4agen + εx2,nt, εx2,nt ∼ N (0, σ2

εx2

). (4)

Fully observed post-conflict positivity levels of husbands’ (ph) and wives’ (pw), both N

× Tmax matrices, are entered into the model for covariates above and the model for

missingness mechanisms later. Since we do not have specific assumptions of mother’s and

father’s positivity levels influencing children differently, we constrain pw’s and ph’s influence

on x1 and x2 to be the same, as indicated by having the same parameter coefficient in

Equations 3 and 4 (β2 and ψ3). This approach can be seen as being equivalent to taking

the average levels between mother’s and father’s positivity scores as a predictor. age is

specified as a vector of length N with the nth element being the age of the child in family

n. These three variables (ph, pw, and age), albeit not variables of interest in the VAR

model, are speculated to be related to the covariates and probabilities of missingness, and

are thus included to improve the performance of the full-data model.

As with the model for the dependent variables, the model shown in Equations 4 is but

one plausible model for the covariates. This model reflects our hypothesized relations

among the measured covariates and other fully observed auxillary variables in the current
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data set. That is, we assume that x1 (the child’s negativity) would be affected by the

parents’ positivity post-conflict. In addition, we assume that x2 (the child’s agentic

behaviors) is related to parents’ positivity, the child’s post-conflict negativity (x1; e.g.

Davies and Cummings, 1994; Emery, 1989), and the child’s age. The age-based postulate is

motivated by the theoretical expectation that agentic behaviors require certain levels of

executive functioning that develop with age (e.g. Goeke-Morey et al., 2013; Grych and

Fincham, 1990).

This model for the covariates can be specified in JAGS script as follows:

x1[n,t] ~ dnorm(mux1[n,t],tau_x1)

x2[n,t] ~ dnorm(mux2[n,t],tau_x2)

mux1[n,t] <- beta[1] + beta[2]*pw[n,t] + beta[2]*ph[n,t]

mux2[n,t] <- psi[1]+psi[2]*x1[n,t]+psi[3]*pw[n,t]+

psi[3]*ph[n,t]+psi[4]*age[n].

In order to explore the sensitivity of modeling results to the model for covariates, we also

considered an alternative, unconditional model for the covariates. In this alternative

model, x1 did not depend on any variable observed in the data set (Appendix B).

Model for Missingness Mechanisms. Next, we specify the missingness mechanisms for

all the variables. All the missingness indicators (ry1nt
, ry2nt

, rx1nt
, rx2nt

) are entered into

JAGS as observed data (1 = missing, 0 = observed). For this empirical data set, we

assume that missingness in all of the dependent variables and covariates is associated with

the post-conflict positivity scores of husbands and wives (ph and pw), as the couples’

emotional states post-conflict might affect their willingness to report. In addition, we

assume that missingness in both of the covariates is associated with children’s agentic

behaviors (x2), as children’s tendency of such behaviors may affect their presence on scene.
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Thus, we specify the missingness mechanisms as:

P (ry1nt
= 1|pwnt

, phnt
) = logit−1(φinty1

+ φp→ypwnt
+ φp→yphnt

) (5)

P (ry2nt
= 1|pwnt

, phnt
) = logit−1(φinty2

+ φp→ypwnt
+ φp→yphnt

) (6)

P (rx1nt
= 1|x2nt

, pwnt
, phnt

) = logit−1(φintx1
+ φxx2nt

+ φp→xpwnt
+ φp→xphnt

) (7)

P (rx2nt
= 1|x2nt

, pwnt
, phnt

) = logit−1(φintx2
+ φxx2nt

+ φp→xpwnt
+ φp→xphnt

). (8)

In the above equations, logit−1 represents the inverse-logit (logistic) function. This model

for missingness mechanisms is a mixture of MAR missing models for the dependent

variables, and NMAR missing models for the covariate variables. That is, the missing data

model for the dependent variables consists only of post-conflict positivity scores of

husbands and wives, which are fully observed, whereas the missing data model for the

covariates contains x2, which is partially missing. In addition to this mixed missing

mechanisms model, we also considered three other alternative missing mechanisms models,

including MCAR, MAR, and NMAR models for all dependent variables and covariates

respectively. With MCAR model, for all dependent and covariate variables, the missingness

were modeled by an intercept, assuming missingness in all four variables were completely

random and did not depend on any other variables. Under the MAR condition, missingness

of all variables were predicted by the two fully observed variables, the positivity scores of

husbands and wives. In the NMAR model, the missingness of the variables depended on

the value of the variables themselves, in addition to the fully observed positivity scores of

the couples. Model specification details for the alternative models are presented in

Appendix A.

Below is the corresponding script for specifying missingness mechanism for x1, child’s

negativity, as an example:

nmarlogitx1[n,t]<-phix1[1]+phix1[2]*x2[n,t]+phix1[3]*

pw[n,t]+phix1[3]*ph[n,t]

nmarprx1[n,t]<-exp(nmarlogitx1[n,t])/(1+exp(nmarlogitx1[n,t]))
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Rx1[n,t] ~ dbern(nmarprx1[n,t])

The first line in the JAGS code specifies the linear combination in Equation 7 delineating

the log odds of observing missingness in x1 as related to other fully observed or partially

missing variables. The second line transforms the linear combination through the logistic

function into a missing data probability for family n at time t (nmarprx1[n,t] =

P (rx1nt
= 1|x2nt

, pwnt
, phnt

)). Finally, the third line of code specifies the missing data

indicator in rx1nt
as Bernoulli distributed with a probability given by

P (rx1nt
= 1|x2nt

, pwnt
, phnt

).

Priors and Model Selections. In the present illustration, we use weakly informative

priors (normal distributions with means at 0 and variances of 10) for parameters in the

VAR model (i.e. a, a1, b, b1, c, c1, d, d1). Even though these priors may seem

informative, the ranges of possible parameter values under these priors are still notably

more diffuse than the values that would be expected to arise under the stationarity

constraint imposed in generating the simulated data. The rest of the prior settings can be

considered non-informative: we use a gamma prior with both parameters set to 0.001 for

the inverse of the variance parameters (e.g.tau1), and a normal prior centered on 0 with

variance 100 for all other parameters. Code for prior specification is included in the JAGS

Script under Appendix C.

Given the complexity of the complete data models, we utilized the following setting in

sampling: 2 chains, 50000 steps of adaptation, 10000 steps of burn-in, and 50000 samples

per chain. To help with model convergence, we linearly interpolated values for the missing

data based on the observed values immediately before and after the missing locations, and

entered the interpolated values into JAGS as starting values for the MCMC sampler at

these missing locations.

Based on previous simulation results (see, e.g., Lu et al., 2017), we used the Bayesian

Information Criterion (BIC) as a model selection measure in the empirical illustration to

select the models described above from several possible candidate models. We obtained
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BIC from the MCMC estimation as:

BIC ≈ D̄ + p× log(S) (9)

In the above equation, D̄ is the posterior mean of the deviance, defined as:

D̄ = −
N

∑

n=1

Tn
∑

t=1

(

log(fY ) + log(fX) + log(fR)
)

, (10)

In Equation 9, p is the number of parameters in a given model, and S represents the

sample size, which is taken to be the sum of all T ’s across families in the present study.

Other terms in Equation 10 are defined as follows: fY = fy(ynt|yn,t−1,xn,t−1,θ),

fX = fx(xnt|vnt,θ), fR = fr(rit|yn,t,xn,t,θ), where ynt, xnt, vnt, rnt represent vectors of

dependent variables [wnt, hnt], covariates [x1nt
, x2nt

], auxiliary variables [pwnt
, phnt

], and

missingness indicators [rwnt
, rhnt

, rx1nt
, rx2nt

] respectively, and fY , fX , fR are the

conditional joint densities of ynt, xnt, and rnt. Note that our definition of BIC was similar

to the standard definition for BIC adopted within the frequentist framework in that we did

not add the number of missing data values as unknown parameters in the calculation of p.

We used the BIC, for instance, to compare our hypothesized model for the covariates in

Equations 3 – 4 to the alternative, unconditional model for the covariates (Appendix B).

Our hypothesized covariate model had a lower BIC value and was thus preferred over the

alternative model. In addition, inspection of the parameter estimates from both models

suggested that the key substantive conclusions obtained with the alternative covariate

model remained the same compared to our original hypothesized model (see Appendix B).

This indicated that the substantive results were not sensitive to such changes in the

covariate model. We also used the BIC to select among several possible models for the

missingness mechanisms. We compared the BIC values across the four proposed possible

missingness mechanism models and selected the mixed missingness mechanisms model as

the best-fitting model based on its smallest BIC value (see Appendix A for details).

In order to compare the estimation results from the proposed Bayesian method and the

two-step partial MI method, the following procedures were performed for the partial MI
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method. We first imputed multiple sets of plausible values for the missing observations,

using all information available and the lagged dependent variables. Given the relative large

percentage of missing data in the covariates, 10 imputations were performed, generating 10

sets of imputed data. The VAR model for dependent variables was then fitted using the

imputed data sets, resulting in 10 set of parameter estimates. Finally, parameter estimates

obtained from different imputed data sets were pooled. Detailed procedure for applying the

two-step MI method and example syntax are available in Ji et al. (2018).

Empirical Results

Parameter estimates from both approaches are shown in Table 1. None of the dynamic

parameters (neither the autoregressive nor the cross-regressive ones) was different from 0

(defined as credible/confidence intervals not containing 0). Results from the Bayesian

approach suggested conflict resolution scores for both husbands and wives were negatively

associated with children’s negativity scores and positively associated with children’s agentic

behaviors (cx1→w=-0.50, cx1→h=-0.51, dx2→w=0.06, dx2→h=0.06). These are in accordance

with previous literature on children’s influence towards marital conflict (Schermerhorn

et al., 2010).

However, it is worth noting the differences in estimated parameter values between

approaches. Results from the two-step partial MI approach, though also suggesting a

negative association between children’s negativity scores and conflict resolutions, showed

much smaller effect sizes on parameters cx1→w and cx1→h (−0.5 vs. −0.1). The effects of

children’s agentic behaviors on conflict resolution were not significant under the partial MI

approach, and the process noise variances were also estimated to be larger compared to the

Bayesian approach. We speculate these differences to be due to the missingness mechanism

being partially NMAR (as suggested by our hypothesized missingness mechanism model

outperforming the MAR mechanism model in terms of BIC). This demonstrates the

possible different conclusions drawn from an analysis if NMAR mechanism is not

addressed, even when partial MI is used.
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To check whether the parameter estimates from the Bayesian approach were sensitive

to prior distributions, we performed post-hoc sensitivity check following the procedures

described in Lee (2007) separately for the VAR model, the covariate model, and the

missing data parameters. The sensitivity check involved altering the prior distributions in

three ways and rerunning the analysis. The variances for the prior distributions were set to

1 for all parameters as opposed to 10 and 100 in the previous analysis, and the means were

set to (1) estimated parameter values from the previous analysis based on the vague priors,

(2) halves of the estimated parameter values and (3) two times the estimated parameter

values. Table 2 shows the estimated values from all 9 sensitivity checks and most values

remained unchanged from those resulted from the previous analyses. The only exception

was the intercept parameters (φinty1
,φinty2

,φintx1
,φintx2

) and the NMAR parameter (φx)

when the means of the missingness model parameter prior distributions were changed to

twice their estimated values. Even though these differences may seem large on a logit scale,

the differences in estimated values on a probability scale were much less notable. This

suggests that the missing model parameters were relatively sensitive to the choices of prior

distributions. This may due in part to the difficulties in obtaining sufficient effective

sample sizes for these parameters despite our use of very long chains.

This empirical illustration demonstrated the utility of the Bayesian approach with data

from an existing empirical study. Estimation results with Bayesian method were in general

consistent with other approaches, such as two-step partial MI. However, larger covariate

effects, and smaller noise variances were noted with the Bayesian method. Observing the

estimated missing data model parameters with the Bayesian method, we can also infer that

the missing data mechanism for the covariates was likely NMAR.

Simulation Study: Design and Results

We conducted an MC simulation study to evaluate the performance of different missing

data handling methods under different missing data conditions. Factors that we

manipulated include: missing data mechanism (MCAR, MAR, NMAR), strength of NMAR
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dependency in the NMAR conditions, and missing data percentages. Our key goal was to

clarify the performance of the fully Bayesian joint modeling approach relative to other

missing data handling approaches, particularly the two-step approach evaluated previously

by Ji et al. (2018).

For each condition, we conducted 100 MC replications using the bivariate VAR model

in Equation 2. Missingness was imposed on each of the complete data sets using one of

three possible missing data models: MCAR, MAR, and NMAR. The NMAR missing data

model was the most general model because it included NMAR components, MAR

components, as well as MCAR components (details of the missing data models to follow).

In order to evaluate the influence of percentage of missing data and the strength of the

NMAR component, we crossed the NMAR strength (low, high) with two possible (low,

high) missingness percentages, resulting in four NMAR conditions, namely NMARL3 (low

dependency NMAR with 30% of missing data), NMARL5 (low dependency NMAR with

50% of missing data), NMARH3 (high dependency NMAR with 30% of missing data), and

NMARH5 (high dependency NMAR with 50% of missing data). The bivariate VAR model

was fit to each of the simulated data sets using different missing data handling approaches,

including the LD method, two-step partial MI method, and Bayesian approach. Next, we

describe the data generating models, missing data settings, and model-fitting procedures in

detail.

The Data Generating Model

The dynamical process in the simulation study was based on the VAR model

introduced in the motivating example (Equation 2) and used in the Empirical Illustration

section. The sample size configuration was chosen to mirror characteristics of the empirical

data set. We simulated data for N = 100 couples. The total number of observations (T)

for two people within each dyad was assumed to be the same, and T per dyad followed a

negative binomial distribution of number of successes before five failures with a failing

probability of 0.167. Figure 1 offers a comparison of the empirical and simulated Ts. The
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observed simulated distribution was derived from simulated Ts in all 100 MC replications.

We can see from the figure that the distribution of T of the simulated datasets mimics the

distribution of the observed T of the empirical data set.

The true parameter values of the dynamic model used in the simulation were set as

follows: aw→w=0.4, ah→h=0.3, bh→w=-0.3, bw→h=-0.2, cx1→w=0.4, cx1→h=0.3, dx2→w=0.5,

dx2→h=0.4, and σ2

εw
= σ2

εh
= 1, which are within the typical ranges of parameter values

observed in the motivating example as well as other empirical studies in psychology

utilizing variations of the VAR model (Chow et al., 2007,0). The two covariates, x1nt
and

x2nt
, were generated according to the following models:

pnt = logit−1(β1 + β2v1nt
)

x1nt
∼ Bern(pnt)

x2nt
= ψ1 + ψ2x1nt

+ ψ3v1nt
+ εx2

εx2
∼ N (0, σ2

εx2

),

(11)

As we can see from Equations 11, the first covariate, denoted x1, was a binary variable that

followed a Bernoulli distribution at each observational time point, with probability of

observing values of 1 dependent on contemporaneous observations being pnt, which is

parameterized by β1 = 0, β2=-2. In Equations 11, v1 represents a fully observed auxiliary

variable with a uniform distribution over (-3, 3). The second covariate, denoted x2,

followed a normal distribution at each time point with means derived from

contemporaneous observations of both v1 and x1, and parametrized via ψ1 = 2, ψ2 = −0.2,

ψ3 = 0.2, and σ2

εx2

= 0.25.

Missingness Settings

We simulated missingness in both the dependent variables and the covariates following

each of the three possible missing data mechanisms: MCAR, MAR and NMAR. Under

NMAR, four combinations of NMAR strength and missing value percentage were

considered. Let rwnt
, rhnt

, rx1nt
, rx2nt

be the missingness indicators for the dependent
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variables and the covariates, respectively, such that r
nt

=1 if the corresponding variable for

dyad n at time t is missing and 0 otherwise. Hence, r
nt

was Bernoulli distributed with

probability of missing P (rnt), which was determined by different variables depending on

the nature of the missingness. The most general missing data model considered was an

NMAR model in which we specified the probability of the rnt as conditional on the

variables subjected to missingness themselves (hnt, wnt, x1nt
, or x2nt

) and fully observed

variables v2nt
and v3nt

.

The missing data model for the dependent variables is expressed as:

P (rwnt
= 1|wnt, v2nt

, v3nt
) = logit−1(φinty1

+ φywnt + φv2
v2nt

+ φv3
v3nt

)

P (rhnt
= 1|hnt, v2nt

, v3nt
) = logit−1(φinty2

+ φyhnt + φv2
v2nt

+ φv3
v3nt

),

(12)

where v2 and v3 were both uniformly distributed over (0, 3).

We also generated missingness for the covariates according to the functions below:

P (rx1nt
= 1|x1nt

, v2nt
, v3nt

) = logit−1(φintx1
+ φx1

x1nt
+ φv2

v2nt
+ φv3

v3nt
)

P (rx2nt
= 1|x2nt

, v2nt
, v3nt

) = logit−1(φintx2
+ φx2

x2nt
+ φv2

v2nt
+ φv3

v3nt
),

(13)

In the scenario of our empirical example, this would capture the possibility that one’s

perception of conflict resolution affects his/her probability of reporting of such conflict, and

also that the reporting of a conflict is affected by other factors such as the emotional state

one is in (fully observed variables). In terms of covariates, children’s reactions can be

missing due to a lack of reaction (NMAR), or an absence of parent’s reporting (MAR). We

made two assumptions regarding the nature of the missing data mechanisms. First, we

assumed that the effect of wnt on P (rwnt
) and the effect of hnt on P (rhnt

) were the same (as

represented by a sole φy in both equations in 12) given that they were measured the same

way and of the same construct, just for different individuals. Second, we assumed that the

effects of fully observed variables v2nt
and v3nt

were the same for all variables (as

represented by only one set of φv2
and φv3

in Equations 12 and 13). In other words, each

unit of increase in these fully observed variables was assumed to affect all variables’ log
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odds of being missing on a particular occasion by the same degree. The missing data model

was constructed in this way to strike a balance between offering a reasonable missing data

scenario in the study of affects, and realistic levels of model complexity from an estimation

standpoint. In addition, it mirrors the missing data patterns observed in many ecological

momentary assessment studies in that individuals tend to show heightened probability of

omitting responses to an entire set of items (e.g., sections of a survey, or even an entire

survey), as opposed to isolated items on the survey.

With the aforementioned general NMAR missing data model, the MAR and MCAR

models in this simulation can be viewed as reduced special cases of the general model. To

simulate missingness according to the MAR mechanism, we set φy, φx1
and φx2

in

Equations 12 and 13 to 0 so that missingness did not depend on the dependent variables in

focus, but on the two fully observed variables, v2 and v3. For the MCAR condition, all φ’s

except for the intercept term were set to be 0 in the model, thus the missingness did not

depend on any data-related information. Table 3 contains all the parameter values used in

missingness generation. For MCAR and MAR missingness, we simulated roughly 50% of

missingness in each variable. For the NMAR, we investigated four different conditions: 1.

where impact of NMAR factors (wnt, hnt, x1nt
, and x2nt

) were relative low and each

variable had roughly 30% of data missing ("NMARL3"), 2. where impact of NMAR factors

were relative low and each variable had roughly 50% of data missing ("NMARL5"), 3.

where impact of NMAR factors were relative high and each variable had roughly 30% of

data missing ("NMARH3"), 4. where impact of NMAR factors were relative high and each

variable had roughly 50% of data missing ("NMARH5"). The φ values were chosen to

ensure the missingness percentages and NMAR impact in each condition.

Model Fitting Procedures

Each of the datasets simulated under different missing data mechanisms and

percentages were fitted to a bivariate VAR model using different missing data handling

approaches, including the LD method, two-step partial MI method, and Bayesian
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approach. With the LD method, observations with any missing variables were excluded

from the analysis. The listwise deleted data were then fitted to the VAR model using a

Bayesian approach. This method was considered as the baseline method. For the two-step

partial MI method, missing data in the covariates were multiply imputed, and model fitting

procedures were performed using frequentist method, specifically, by optimizing a

log-likelihood function constructed using prediction errors obtained from running the

Kalman filter (Chow et al., 2010b; Schweppe, 1965).

Under the Bayesian approach, Bayesian models with MCAR, MAR, and NMAR

missing data model components were fitted to all data sets, regardless of true missing data

generation mechanisms, resulting in 18 conditions for the Bayesian missing data approach

(6 true data conditions × 3 Bayesian models for model fitting). In the remaining sections,

we refer to results from the Bayesian approach by true data generation conditions × fitted

model. For instance, NMARL5×MAR stands for low dependency NMAR data with 50% of

missingness fitted to a Bayesian model with MAR missing data model, specifically the

missing data model in Equation 12 - 13 with the NMAR parameters, φy, φx1
, and φx2

, fixed

at 0 as opposed to freely estimated.

We categorized fitted models in the Bayesian approach into three scenarios: correctly

specified models, underfitting models (when the model only contains part of the true

model), and overfitting models (when the true model can be seen as a special case of the

fitted model with some parameters having values of 0). Correctly specified models included

MCAR×MCAR, MAR×MAR, and NMAR×NMAR. Underfitting models were

MAR×MCAR, NMAR×MCAR, and NMAR×MAR. MCAR×MAR, MCAR×NMAR, and

MAR×NMAR are all considered as overfitting models. Response variables of interest and

covariates that contained missingness were modeled with the true data generating models

(Equations 2 and 11).

Consistent with the approach adopted in the empirical illustration, weakly informative

priors were set for the parameters in the VAR model. For the rest of the parameters, the
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prior settings were non-informative. Given the complexity of the complete data models, we

used the following setting in sampling: 2 chains, 1000 steps of adaptation, 5000 steps of

burn-in, and 200000 samples per chain.

The partial MI method was adopted for the two-step MI approach in this paper.

Specifically, we first generated m=5 sets of plausible values of missing covariates. Then,

the missing observations of the covariates in the simulated data sets were filled in with the

imputed values, resulting in five data sets with fully observed covariates and missing data

in dependent variables. Those data sets were used in VAR model fitting, and the estimated

parameters from the five imputed data sets were pooled together based on Rubin’s method

(Rubin, 1996). More details about the partial MI was described in Ji et al. (2018). With

the partial MI method, an inclusive model, which includes all available information from

the data set, is usually recommended for imputation procedures. Therefore, regardless of

missing data conditions, the same imputation model was applied, making use of all

variables involved in the data/missingness generation procedures, and lagged variables as

necessary. To be specific, the imputation model included fully observed variables v1nt
, v2nt

,

and v3nt
, model covariates with missing values x1nt

and x2nt
, and dependent variables and

their values at the immediate previous time points wnt, hnt, wn,t−1, and hn,t−1. VAR model

fitting under the partial MI approach was performed using the dynr package in R (Ou

et al., 2017), which provides an option for fitting discrete-time state-space models such as

the VAR model by optimizing a log-likelihood function constructed using prediction errors

obtained from running the Kalman filter on a specified state-space model (Chow et al.,

2010b; Schweppe, 1965).

Performance Measures

In order to compare between a Bayesian approach and a frequentist approach, we

treated the Bayesian posterior mean of a parameter θ as the point estimate for that

parameter (θ̂), and the posterior standard deviation as the standard error of that estimate.

With that, we compared the following performance measures for each parameter: 1.
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relative bias (Equation 14), 2. root-mean-square error (RMSE, Equation 15), 3. difference

in average standard error across MC runs compared to the MC standard deviation

(MCSDs3; “dSD”, Equation 16), 4. difference in average standard error across MC runs

compared to the MCSD from the fitting the model for dependent variables (Equation 2

only) to the complete data without missingness (“dSDFull”), 5. coverage, defined as

percentage of MC runs in which the credible or confidence intervals contained the true

parameter value. Relative bias and RMSE, in particular, are defined as:

relative bias(θ) =
1

H

H
∑

h=1

(
θ̂h − θ

θ
) (14)

RMSE(θ) =

√

√

√

√

1

H

H
∑

h=1

(θ̂h − θ)2, (15)

dSD(θ) =
1

H

H
∑

h=1

SEh(θ̂) −

√

√

√

√

1

H − 1

H
∑

h=1

(θ̂h − θ̄)2, (16)

where H represents the total number of MC runs, and θ̄ =
∑H

h=1
θ̂h/H. Finally, we also

evaluated the performance of the BIC, as defined in Equation 9, as one possible model

selection measure.

Simulation Results

To facilitate comparisons among parameters that appeared in different submodels, we

grouped VAR parameters into three categories: dynamic (aw→w, ah→h, bh→w, bw→h),

covariate (cx1→w, cx1→h, dx2→w, dx2→h) and noise (σ2

εw
, σ2

εh
) parameters, similar to the

grouping done in Ji et al. (2018). Figure 2 shows the average relative bias and RMSE of

estimates within each group across conditions. In general, as expected, both the two-step

partial MI approach and the Bayesian selection model approach outperformed the LD

approach, which generated biased results for all parameters under all missing data

conditions. The advantage of the Bayesian approach was more apparent under the NMAR

conditions, especially with higher percentage of missingness and higher NMAR

dependency. Compared with the percentage of missingness, NMAR dependency was

3 The standard deviation of all point estimates on a parameter across MC runs
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observed to have more notable effects on parameter estimation accuracy. We now elaborate

on specific details pertaining to each missing data handling technique.

Simulation results for the LD approach. The LD approach generated biased

parameter point estimates, as evaluated by relative bias and RMSE under all conditions.

Compared to covariate parameters and noise parameters, the dynamic parameters were

affected the most when the LD approach was used because deleting missing observations

led to distortion in the time intervals between successive measurements. Figure 2 shows

that dynamic parameters tended to be under-estimated with LD approach, with negative

relative biases, under all conditions. Covariate parameters were not as affected by LD as

the other two parameter groups in terms of relative biases in point estimates, probably due

to the fact that relationships between covariates and the variables of interest would still be

preserved under LD. An interesting observation was that the RMSEs for covariates were

visibly larger with LD across all conditions with 50% missing data (i.e., MCAR, MAR,

NMARL5, NMARH5) compared to when other methods were used, suggesting that

estimation biases in covariates using LD were due more to the influence of missingness

percentages, regardless of missingness mechanisms. Such biases in parameter point

estimates also resulted in low coverage rate (i.e., around 50% when averaged across all

VAR parameters) for the LD approach under all conditions.

In terms of standard error estimates, using LD approach in general yielded very similar

results when compared with empirical MC standard deviation, reflected by close to zero

dSD across all conditions. However, when compared with model estimation results using

full data set without missingness, LD approach led to over-estimation of standard errors for

all parameters under all conditions. Since LD approach includes fewer observations in the

analysis, inflation of standard error estimates is in accordance with our expectation.

A comparison of the results using two-step partial MI and Bayesian

approaches. Under MCAR and MAR conditions, using approaches other than LD yielded

comparable biases in estimates. For dynamic and covariate parameters, the two-step
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partial MI approach and the Bayesian approach both yielded very small biases and

RMSEs, regardless of whether the missingness model was correctly specified, underfitting

or overfitting with the Bayesian approach. Figure 2 also shows that estimates for noise

parameters had higher biases and RMSEs in the two-step partial MI approach compared to

those from the three modeling conditions in the Bayesian approach, with results in the

Bayesian approach being very similar to each other. This may due to the fact that in the

two-step partial MI approach, missing data imputation models were slightly misspecified.

Table 4 contains comparisons of dSDs and dSDFulls across conditions in the three

parameter groups. Except for those resulted from LD, all the dSDs and dSDFulls were

small and similar to each other, suggesting that the standard error estimates from the

two-step approach and the posterior standard deviations from the Bayesian approach both

approximated the degree of sampling variability in the parameters well under MCAR and

MAR conditions. The coverage as averaged across parameters were comparable for the

two-step partial MI and Bayesian approaches, and very similar for the MCAR and MAR

conditions. To be specific, the coverage for the Bayesian approach were slightly better,

with better point estimation results for noise parameters, resulting in an average coverage

of 95% across all parameters for both the MCAR and MAR conditions. The average

coverage across all parameters for the two-step partial MI approach was 86% for the

MCAR condition and 87% for the MAR condition.

Under NMAR conditions, clearer differences emerged between the two-step partial MI

and the Bayesian approach. When missingness model was correctly specified (i.e.,

NMAR×NMAR) using the Bayesian method, dynamic parameters were well recovered with

close to zero relative bias and very small RMSE, even when the NMAR dependency was

high and 50% of observations were missing (i.e., in the NMARH5 condition). The two-step

partial MI approach resulted in slightly higher biases and RMSEs compared to the

Bayesian approach when a correctly specified missing data model was fitted, especially

with increase in NMAR strength and missing data percentage. In contrast, when the
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missing data model was an underfitting one (e.g., a MCAR or MAR model fitted to NMAR

data), the Bayesian approach yielded slightly higher biases and RMSEs than the two-step

partial MI approach, which used the same imputation model that allowed for NMAR

elements regardless of the true missing data mechanism. The differences between the

Bayesian and two-step partial MI approaches grew as the NMAR dependency and the

percentage of missingness increased.

Compared to covariate parameters and process noise parameters, dynamic parameters

were the least affected by misspecification of missing data model in that underfitting

missingness models (i.e., NMAR×MCAR, or NMAR×MAR) only resulted in a very small

addition in biases and RMSEs compared to the true model (i.e., NMAR×NMAR) across

all NMAR conditions. Simulation results suggested that the differences in biases were more

affected by NMAR dependency (e.g. comparing NMARL3 and NMARH3) than the

percentage of missingness (e.g. comparing NMARL3 and NMARL5).

The aforementioned simulation results regarding parameter point estimates were also

reflected in the credible intervals resulted from the Bayesian approaches and confidence

intervals from the two-step partial MI approach. We plotted the coverage results only from

the NMAR conditions because the differences between missing data handling techniques

were the most salient under these conditions (Figure 3). The upper graph shows the overall

coverages across all VAR parameters, and the lower graph grouped coverage percentages by

parameter type. Under NMAR, only the Bayesian approach with correctly specified

missing data model resulted in coverage percentages that were close to the nominal 95%

across all parameters. With the exception of the LD method, coverage of the dynamic

parameters was largely similar across different missing data handling methods and was not

very sensitive to misspecification in the missing data model. However, the coverage

percentages for covariate and noise parameters were considerably worse when using LD, the

two-step partial MI, or with an underfitting model in the Bayesian approach. The coverage

percentages continued to worsen with increase in NMAR dependency and missing data
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percentage.

To summarize, the LD approach produced the most biased point estimates, especially

for dynamic parameters under all missing data conditions. Standard error estimates were

also larger with the LD approach, as compared with standard errors when full data was

fitted to the model. The Bayesian approach, when coupled with the correctly specified

missing data model, performed the best under NMAR conditions. Even with 50% of

missing data and relatively high NMAR dependency, the parameters were well recovered

and the coverage rates were close to the 95% nominal level. The two-step partial MI

approach also produced reasonable estimation results under MCAR and MAR conditions.

Under NMAR conditions, the two-step partial MI approach generated similar, and even

slightly better results than the Bayesian approach when underfitting models were used

(i.e., NMAR×MCAR, NMAR×MAR), as indicated by slightly smaller RMSE and better

coverage rate for the two-step partial MI approach results, when compared with

underfitting Bayesian approaches. In addition, the biases in estimation for the two-step

partial MI approach and underfitting Bayesian models were more substantial for covariate

and noise parameters, than for dynamic parameters.

Missingness Model Parameters and Model Selections. Table 5 compares

parameter estimates from fitting the dynamic model with a MCAR, MAR and NMAR

missingness model to the true parameter values under the six missingness scenarios

(MCAR, MAR, NMARL3, NMARL5, NMARH3, NMARH5, respectively) 4. As expected,

fitting the correctly specified missingness model yielded good accuracy in the estimated

missing data parameter values. A misspecified but overfitting missingness model (i.e.,

MAR×NMAR, MCAR×NMAR, or MCAR×MAR) also yield satisfactory estimation

results, with the overfitted parameters estimated to be close to 0 (i.e., credible intervals

centered around 0, as opposed to the ones for other nonzero missingness parameters where

4 Since neither the LD method nor the two-step partial MI method explicitly specify and estimate a
missingness model, no missing data parameter estimates were available from these methods.
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credible intervals did not contain 0). Looking at credible intervals therefore allows us to

infer the missingness mechanism, especially in terms of NMAR missingness versus MAR or

MCAR. Underfitting regarding the missingness mechanism, however, resulted in biased

estimates in the missing data model parameters. For instance, when an MAR model was

fitted to NMAR data, estimates of the intercept as well as the MAR parameters all showed

notable biases.

A comparison of the BIC values under all true missingness mechanisms and

missingness models can be found in Figure 4. The BIC performed well in selecting the true

missingness model (i.e., BIC was the lowest for the true data generating model among all

missingness models 100% out of all the trials). Model selection results based on the BIC

were consistent with the conclusions drawn from inspecting the credible intervals of the

missing data parameters. For instance, when the true missing data mechaniem was

NMAR, the BIC suggested — across all the trials considered — a preference for the

NMAR model over other missing data models. Consistent with results from the BIC, the

corresponding credible intervals for NMAR parameters, namely φx1
, φx2

, and φy, also

indicated that these parameters deviated substantially from zero.

Discussion

Missing data, especially NMAR missingness and missing observations in covariates,

pose great challenges in model estimation for ILD. We applied a selection model approach

with Bayesian estimation procedures to fit both the model of interest, a bivariate VAR

model with covariates, and the missing data model simultaneously to time series data with

missingness. We performed a simulation study to illustrate the different performances of

the Bayesian approach and MI approach under different missing data mechanisms,

including MCAR, MAR, and NMAR. In order to demonstrate how percentages of missing

data, and NMAR dependencies may affect the estimation results, we tested four NMAR

conditions, including low dependency NMAR and high dependency NMAR paired with 30%

and 50% of missingness. Simulation results showed that the performance of the Bayesian
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approach was satisfactory across all tested conditions when correct missing data model was

fitted, with close to zero relative biases and very small RMSEs (i.e., smaller than .06). The

standard deviation estimates were also very close to empirical standard deviations across

100 MC runs, as well as the standard deviations obtained when the complete data were

used for model fitting (i.e., differences smaller than .03 for all parameters). The coverage

for all parameters were very close to 95%. In addition, with correctly specified missingness

model, all missingness model parameters were reliably recovered. The application of the

Bayesian modeling approach was illustrated with an empirical data set and the estimation

results were comparable with previous studies. Compared with the Bayesian approach with

correct missing data model, the two-step partial MI approach generated relatively reliable

estimates for dynamic parameters across all conditions, but parameter point estimates for

covariate and process noise parameters were biased under NMAR conditions, resulting in

relatively low coverage. This finding was consistent with the finding in the Ji et al. (2018)

paper. When underfitting Bayesian models (i.e., NMAR×MCAR, NMAR×MAR) were

used with NMAR conditions, the two-step parital MI approach generated similar, and even

slightly better results than the Bayesian approach.

When the Bayesian selection model approach is used to model missingness mechanism,

implementing an overfitting missing data model can have some advantages in some

contexts. For instance, if the model is not too highly parameterized, the overfitting model

can still lead to correct inferences regarding other important parameters in the model.

Doing so also allows researchers to examine the plausible missing data mechnism and infer

whether the missingness is MCAR, MAR or NMAR. It is also possible to obtain posterior

distributions on the missing data, which may be of substantive interest.

It is also worth pointing out that as a parametric likelihood method, this approach

requires good knowledge of both the model for the dependent variables and the missingness

model. Misspecified models or overly complicated models can easily lead to convergence

issue. For instance, when applying the Bayesian selection model approach to the empirical
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data in this paper, we took several approaches to simplify the missing data model in order

to achieve model convergence, which included constraining most of the missing data

parameter values to be the same for the covariate parameters. Given the theoretically

similar missing data mechanisms for the two covariates in the model, we considered such

constraints appropriate. However, in other empirical studies, different missing data models

may be necessary for different variables with missingness. In addition, the fact that in real

life, we never know what is the true missing data model may also pose challenge in model

fitting of the Bayesian selection model approach. Furthermore, with complex models and

large data sets, the Bayesian method may be more time-consuming compared with fully or

partially frequentist methods, such as the two-step partial MI approach. With relatively

moderate percentage of missingness (i.e., 30%) and low NMAR dependency level, the

two-step partial MI approach were able to recover most of the parameters of the model of

interest, and the model fitting procedures take relatively short period of time (115.81

seconds for MI vs. 47697.73 seconds in Bayesian given the specifications of iterations

provided).

Similar to other dynamic models for longitudinal data, to start the process, initial

conditions need to be first specified. The specification we adopted in this article coincides

with what is typically regarded as “diffused initial condition” in the state space model

literature. A diffused initial condition typically involves specifying the distributions of the

latent variables at the first time point to be approximated by parametric distributions that

are “spread-out” enough to include the true initial conditions, such as a series of univariate

normal distributions with initial means at zeros and arbitrarily large variances (e.g.,

De Jong, 1991; Harvey, 2001; Schweppe, 1973). This was the initial condition distribution

adopted in this article, and the variance we imposed (100) was chosen to ensure that the

majority of the posterior probability distribution is within the possible range of values for

the dependent variables w and h. Other approaches exist in addressing the first time points

in dynamic modeling, including freely estimating the mean and covariance structure (e.g.
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Harvey and Souza, 1987; McArdle and Epstein, 1987), or using the model-implied mean

and covariance (e.g. du Toit and Browne, 2007; Hamaker, 2005), among a few. The

specification of initial time points is itself an active area of research that is beyond the

scope of this article (e.g. du Toit and Browne, 2007; Ji et al., 2018; Ou et al., 2016).

Our simulation results also confirmed the utility of the BIC in selecting the correct

missing data model. Model selection under the Bayesian framework with information

criteria is still an active field of research. The utilization of information criteria should not

be restricted to BIC, and the way we computed BIC is only one way of deriving it from

posterior samples. BIC was computed in the aforementioned way primarily for

computational ease, in that it did not require additional MCMC sampling or explicit

evaluation of the log-likelihood. Future research should explore a more diverse pool of

information criteria, some examples being the conditional Deviance Information Criterion

(DIC) considered by Celeux et al. (2006), and the modified DIC, which is a combination of

the BIC and the DIC, proposed by Lu and Song (2012).

This article demonstrated a Bayesian selection model approach to handle missing data

in longitudinal studies when a bivariate VAR model with covariates, a very widely applied

model in empirical studies, was fitted. In our study, the covariance of the process noises in

the VAR model was fixed at zero and thus not estimated. In other applications, it may be

of interest to free up the covariance by using a bivariate normal prior distribution

specification in the Bayesian method. In addition, further simulation studies need to be

conducted to evaluate the performance of this Bayesian selection model approach with

different full-data model specification. For instance, with Bayesian estimation approach, a

natural extension would be longitudinal models with multilevel structure with random

effects. Since MI methods have also been developed to handle nested data, it would be

interesting to compare the performance of the Bayesian approach and multilevel MI

approach. It would also be of interest to evaluate and compare the performance of the

Bayesian selection model approach and MI approaches with other dynamic model, such as



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS 38

VAR models with categorical data, process factor analysis models, regime switching models.
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Table 1
Empirical Estimation Results Using the Bayesian Approach with an NMAR Missingness
Model and Using the partial MI approach

Parameter
Bayesian MI

Mean SD Mean SE

VAR model parameters

aw→w 0.0037 0.0377 -0.028 0.047
ah→h -0.0417 0.0382 0.017 0.048
bh→w 0.0171 0.0377 0.039 0.046
bw→h 0.0585 0.0382 -0.054 0.047
cx1→w -0.5035 0.0178 -0.121 0.024
cx1→h -0.5096 0.0178 -0.132 0.026
dx2→w 0.0623 0.0184 0.033 0.041
dx2→h 0.0608 0.0186 0.017 0.035
σ2

ew
0.5449 0.0207 0.928 0.032

σ2

eh
0.5279 0.0203 0.917 0.032

Covariate model parameters

β1 0.4233 0.1218
β2 -0.2937 0.0150
ψ1 2.1743 0.4363
ψ2 0.8212 0.1873
ψ3 0.2402 0.0625
ψ4 0.0674 0.0364
σ2

εx1

1.284 0.1056

σ2

εx2

7.0253 0.6747

Missingness model parameters

φinty1
-5.9096 0.4406

φinty2
-5.7389 0.4093

φintx1
-10.5266 1.2860

φintx2
-10.5264 1.2853

φp→y 0.181 0.1208
φp→x 0.0954 0.1067
φx 5.3734 0.5267

Note: A number in bold indicates that the credible/confidence interval for that estimate did not contain zero.
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Table 2
Sensitivity Check Results for Empirical Illustration

Parameter VAR1 VAR2 VAR3 Cov1 Cov2 Cov3 NA1 NA2 NA3

VAR model parameters
aw→w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ah→h -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
bh→w 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
bw→h 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
cx1→w -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
cx1→h -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51
dx2→w 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
dx2→h 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
σ2

ew
0.54 0.55 0.54 0.54 0.54 0.55 0.54 0.54 0.55

σ2

eh
0.53 0.53 0.52 0.53 0.53 0.53 0.53 0.53 0.53

Covariate model parameters
β1 0.43 0.42 0.43 0.42 0.43 0.41 0.43 0.43 0.46
β2 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29
ψ1 2.16 2.17 2.17 2.18 2.03 2.51 2.16 2.15 2.25
ψ2 0.83 0.82 0.83 0.82 0.83 0.82 0.83 0.83 0.91
ψ3 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.27
ψ4 0.07 0.07 0.07 0.07 0.08 0.04 0.07 0.07 0.07
σ2

εx1

1.29 1.28 1.30 1.28 1.29 1.27 1.29 1.29 1.31

σ2

εx2

6.98 7.05 6.98 7.03 6.96 7.15 7.02 6.86 7.65
Missingness model parameters
φinty1

-5.91 -5.91 -5.91 -5.91 -5.91 -5.91 -5.92 -5.86 -6.05
φinty2

-5.74 -5.74 -5.74 -5.74 -5.74 -5.74 -5.75 -5.70 -5.87
φintx1

-10.49 -10.54 -10.47 -10.54 -10.59 -10.67 -10.72 -9.54 -16.41
φintx2

-10.49 -10.54 -10.47 -10.54 -10.58 -10.67 -10.72 -9.54 -16.41
φp→y 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20
φp→x 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.10
φx 5.36 5.38 5.35 5.38 5.40 5.42 5.45 4.98 7.63
Notes: VAR: VAR model parameters check; Cov: Covariate model parameters check; NA: Missingness model parameters check.
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Table 3
Parameter Values for Missing Data Mechanisms in Simulation Study

MCAR MAR NMARL3 NMARL5 NMARH3 NMARH5

φintx1
0 -1.05 -3.04 -2.19 -4.18 -3.33

φintx2
0 -1.05 -2.40 -1.55 -2.90 -1.45

φinty1
0 -1.05 -2.45 -1.60 -3.05 -2.20

φinty2
0 -1.05 -2.35 -1.50 -2.81 -1.96

φv2
0 0.30 0.30 0.30 0.30 0.30

φv3
0 0.40 0.40 0.40 0.40 0.40

φx1
0 0 0.60 0.60 1.20 1.20

φx2
0 0 1.00 1.00 2.00 2.00

φy 0 0 0.50 0.50 1.00 1.00
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Table 4
Standard Deviation/Error Estimates Comparison for Simulation Study

True: MCAR True: MAR

Method used/ dSD dSDFull dSD dSDFull

Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise

LD 0.00 0.00 0.02 0.06 0.10 0.13 -0.00 -0.01 0.01 0.05 0.08 0.11
MI 0.00 -0.00 0.00 0.01 0.02 0.02 0.00 0.00 -0.00 0.01 0.02 0.02
MCAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.01
MAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.01
NMAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.02

True: NMARL3 True: NMARL5

Method used/ dSD dSDFull dSD dSDFull

Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise

LD -0.00 0.00 -0.01 0.02 0.03 0.04 0.00 0.00 -0.00 0.06 0.09 0.10
MI -0.00 0.00 -0.00 0.01 0.01 0.01 0.00 0.00 -0.00 0.02 0.02 0.02
MCAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.01
MAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.01
NMAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.02

True: NMARH3 True: NMARH5

Method used/ dSD dSDFull dSD dSDFull

Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise

LD -0.00 0.00 -0.00 0.03 0.04 0.04 -0.00 0.01 0.00 0.07 0.11 0.11
MI 0.00 0.00 -0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.02 0.01
MCAR 0.00 0.00 -0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.01 0.01
MAR 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.01 0.01
NMAR 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 -0.00 0.01 0.02 0.03
Note: dSD: difference in average standard error across MC runs compared MCSDs; dSDFull: difference in average standard error across MC runs compared to
the MCSD from the fitting the model for dependent variables to the complete data without missingness.
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Table 5
Estimated Missingness Parameter Values for Simulation Study

Parameter
MCAR MAR NMARL3

True MCAR MAR NMAR True MCAR MAR NMAR True MCAR MAR NMAR

φintx1
0 -0.01 -0.01 -0.01 -1.05 0.01 -1.04 -1.06 -3.04 -0.78 -1.82 -3.08

φintx2
0 -0.01 -0.01 0 -1.05 0 -1.04 -1.04 -2.4 -0.78 -1.81 -2.41

φinty1
0 0 0 -0.01 -1.05 0 -1.05 -1.05 -2.45 -0.58 -1.61 -2.47

φinty2
0 0.01 0.01 0 -1.05 0 -1.04 -1.05 -2.35 -0.78 -1.81 -2.37

φv2
0 0 0.3 0.3 0.3 0.3 0.29 0.3

φv3
0 0 0.4 0.4 0.4 0.4 0.38 0.4

φx1
0 0.01 0.6 0.62

φx2
-0.02 -0.01 1 1

φy 0 0 0.5 0.51

Parameter
NMARL5 NMARH3 NMARH5

True MCAR MAR NMAR True MCAR MAR NMAR True MCAR MAR NMAR

φintx1
-2.19 0 -0.98 -2.22 -4.18 -0.73 -1.62 -4.17 -3.33 0 -0.86 -3.36

φintx2
-1.55 0 -0.98 -1.54 -2.9 -0.66 -1.56 -2.91 -1.45 0.47 -0.38 -1.46

φinty1
-1.6 0.17 -0.81 -1.6 -3.05 -0.4 -1.29 -3.05 -2.2 0.24 -0.61 -2.24

φinty2
-1.5 0 -0.99 -1.51 -2.81 -0.69 -1.58 -2.81 -1.96 -0.01 -0.87 -1.98

φv2
0.3 0.28 0.3 0.3 0.25 0.3 0.3 0.25 0.3

φv3
0.4 0.38 0.4 0.4 0.33 0.4 0.4 0.33 0.4

φx1
0.6 0.61 1.2 1.19 1.2 1.21

φx2
1 0.98 2 2.01 2 2.02

φy 0.5 0.51 1 0.99 1 1.01

Note: A number in bold indicates that over 95% of credible intervals for that estimate did not contain zero within a specific simulation condition.
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Figure 1 . A Comparison between the Empirical and Simulated Distributions of Numbers
of Total Observations (Ts).
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(a) Average Relative Biases by Parameter Group
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Figure 2 . Relative bias (a) and RMSE (b) in parameter estimates in different approaches
and when fitting true and misspecified models, grouped by parameter category.
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(a) Average Coverage across All VAR Parameters
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Figure 3 . Average coverage across all VAR parameters (a) and grouped by parameter
categories (b) in NMAR true missingness conditions with different approaches and when
fitting true and misspecified models.
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Figure 4 . Boxplots of BIC values for all MC replications across true data generation
conditions and missingness models fit.



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS 48

Appendix A

Models for Different Missingness Mechanism for Empirical Illustration

Apart from the model specified in Equations 5 - 8, we also considered the following three

alternative models for missing mechanisms, in which all the dependent variables and

covariates were assumed to be MCAR, MAR, or NMAR respectively. However, they all

had BIC values greater than the mixed MAR and NMAR model reported in the Empirical

Illustration, indicating less good model fits (Table A1). Therefore, the mixed model

(Equations 5 - 8) was selected. Here, we describe briefly these alternative missing data

models considered.

Let zjnt
denote the jth variable in the data for family n and time t, where zjnt

may be

any variable in Y or X; and rzjnt
represents the missingness indicator for this variable.

MCAR condition: Whether an observation is missing or not does not depend on any

data-related factor. Hence the missingness is modeled only by an intercept.

P (rzjnt
= 1) = logit−1(φintj

)

MAR condition: Whether an observation is missing or not depends on fully observed

variables in data (here ph and pw).

P (rzjnt
= 1|pwnt

, phnt
) = logit−1(φintj

+ φpw→j
pwnt

+ φph→j
phnt

)

NMAR condition: Whether an observation is missing or not depends on fully observed

variables in data as well as variables themselves.

P (rzjnt
= 1|zjnt

, pwnt
, phnt

) = logit−1(φintj
+ φjzjnt

+ φpw→j
pwnt

+ φph→j
phnt

)
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Table A1
Comparison of BICs with Different Missing Mechanisms for Empirical Illustration

Mixed∗ MCAR MAR NMAR
BIC 14732.63 17613.94 17348.34 15447.45

∗: The mixed MAR and NMAR missing mechanisms follow the specification in Equations 5 - 8
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Appendix B

Alternative Model for Covariates and Results Comparison

In place of Equation 3, we considered an alternative model that contained, for x1:

x1nt
= β + εx1,nt

, εx1,nt
∼ N (0, σ2

εx1

),

where x1 did not depend on any information contained in the data set.

The BIC for the alternative model was 14950.02, which was slightly higher than that

of the model for covariates reported in the Empirical Illustration (Equations 3 & 4;

14732.63). Hence we selected the originally proposed model. Estimated parameter values

for the alternative model are reported in Table B1. These estimates would not lead to

substantively different conclusions, though some of them differ in magnitude from those in

Table 1 (e.g. dx2→h).
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Table B1
Estimation Result Using An Alternative Model for Covariates

Parameter Mean SD

VAR model parameters

aw→w 0.0022 0.0391
ah→h -0.0467 0.0390
bh→w 0.0114 0.0391
bw→h 0.0561 0.0391
cx1→w -0.5112 0.0184
cx1→h -0.5176 0.0184
dx2→w 0.2297 0.0139
dx2→h 0.2307 0.0139
σ2

1
0.5651 0.0216

σ2

2
0.5492 0.0211

Covariate model parameters

β 1.7936 0.1193
ψ1 0.7559 0.3147
ψ2 1.5289 0.0702
ψ3 0.4525 0.0291
ψ4 0.0421 0.0271
σ2

εx1

3.5962 0.3383

σ2

εx2

3.8657 0.3471

Missingness model parameters

φinty1
-5.9098 0.4424

φinty2
-5.7435 0.4095

φintx1
-13.2284 2.3228

φintx2
-13.2267 2.3209

φp→y 0.1822 0.1207
φp→x -0.2788 0.1284
φx 6.0966 0.8715

Note: A number in bold indicates that the credible interval for that estimate did not contain zero.
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Appendix C

R Script and JAGS Model Script Used for Empirical Illustration

R Script

library(rjags)

library(coda)

library(stats)

load.module("dic")

adaptSteps = 50000

burnInSteps = 10000

nChains = 2

# Setting initial values for MCMC (optional)

init1<-list(a=0,a1=0,b=0,b1=0,c=-0.5,c1=-0.5,d=0,d1=0,

tau1=2,tau2=2,

beta=c(0,-0.4),

psi=c(0,0.1,0,0),

tau_x1=0.1,

tau_x2=0.1,

phiy1=rep(0.1,7),

y1=y1guess,y2=y2guess,x1=x1guess,x2=x2guess,

.RNG.seed=2*batch+1,.RNG.name="base::Mersenne-Twister"

)

init2<-list(a=rnorm(1,0,0.1),a1=rnorm(1,0,0.1),

b=rnorm(1,0,0.1),b1=rnorm(1,0,0.1),

c=-0.5+rnorm(1,0,0.1),c1=-0.5+rnorm(1,0,0.1),
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d=rnorm(1,0,0.1),d1=rnorm(1,0,0.1),

tau1=1,tau2=1,

beta=c(1,0.4)+rnorm(2,0,0.1),

psi=c(0.5,-0.1,0.1,0.1)+rnorm(4,0,0.1),

tau_x1=0.5,

tau_x2=0.5,

phiy1=rep(-0.1,7)+rnorm(7,0,0.1),

y1=y1guess,y2=y2guess,x1=x1guess,x2=x2guess,

.RNG.seed=2*batch,.RNG.name="base::Mersenne-Twister"

)

# Organize the data into a list

dataList <- list(y1=y1, y2=y2, x1=x1, x2=x2, N = n, T = T,

mu0=0, tau0=0.001, R1=R1, R2=R2, R3=R3, R4=R4,

age=age, ph=ph, pw=pw)

jagsModelNMAR <- jags.model( "emp_model.txt", data=dataList, n.chains=nChains,

n.adapt=adaptSteps, inits=list(init1,init2) )

update( jagsModelNMAR , n.iter=burnInSteps )

parameters<- c("a","a1","b","b1","c","c1","d","d1","Sigma1","Sigma2","deviance",

"phiy1", "tau_x1", "tau_x2", "beta", "psi")

mcmcCodaNMAR <- coda.samples(jagsModelNMAR, variable.names=parameters,

n.iter=50000)

JAGS Script: emp_model.txt

model {
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for (n in 1:N){

y1[n,1] ~ dnorm(0, 0.01)

y2[n,1] ~ dnorm(0, 0.01)

x1[n,1] ~ dnorm( 0,0.01 )

x2[n,1] ~ dnorm(0,0.01)

for (t in 2:T[n]){

mux1[n,t] <- beta[1] + beta[2]*pw[n,t] + beta[2]*ph[n,t]

x1[n,t] ~ dnorm(mux1[n,t],tau_x1)

mux2[n,t] <- psi[1] + psi[2]*x1[n,t] + psi[3]*pw[n,t] +

psi[3]*ph[n,t] + psi[4]*age[n]

x2[n,t] ~ dnorm(mux2[n,t],tau_x2)

y1[n,t] ~ dnorm(mu1[n,t], tau1)

y2[n,t] ~ dnorm(mu2[n,t], tau2)

mu1[n,t]<-a*y1[n,t-1]+b*y2[n,t-1]+c*x1[n,t]+d*x2[n,t]

mu2[n,t]<-b1*y1[n,t-1]+a1*y2[n,t-1]+c1*x1[n,t]+d1*x2[n,t]

nmarlogity1[n,t]<-phi[1]+ phi[5]*pw[n,t] + phiy1[5]*ph[n,t]

nmarpry1[n,t]<-exp(nmarlogity1[n,t])/(1+exp(nmarlogity1[n,t]))

R1[n,t] ~ dbern(nmarpry1[n,t])
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nmarlogity2[n,t]<-phi[2]+ phi[5]*pw[n,t] + phi[5]*ph[n,t]

nmarpry2[n,t]<-exp(nmarlogity2[n,t])/(1+exp(nmarlogity2[n,t]))

R2[n,t] ~ dbern(nmarpry2[n,t])

nmarlogitx1[n,t]<-phi[3]+phi[7]*x2[n,t] + phi[6]*pw[n,t] +

phi[6]*ph[n,t]

nmarprx1[n,t]<-exp(nmarlogitx1[n,t])/(1+exp(nmarlogitx1[n,t]))

R3[n,t] ~ dbern(nmarprx1[n,t])

nmarlogitx2[n,t]<-phi[4]+phi[7]*x2[n,t] + phi[6]*pw[n,t] +

phi[6]*ph[n,t]

nmarprx2[n,t]<-exp(nmarlogitx2[n,t])/(1+exp(nmarlogitx2[n,t]))

R4[n,t] ~ dbern(nmarprx2[n,t])

}

}

# PRIORS

for (i in 1:2){

beta[i] ~ dnorm(0, 0.01)

}

for (i in 1:4){

psi[i] ~ dnorm(0, 0.01)

}

a ~ dnorm(0, 0.1)

a1 ~ dnorm(0, 0.1)
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b ~ dnorm(0, 0.1)

b1 ~ dnorm(0, 0.1)

c ~ dnorm(0, 0.1)

c1 ~ dnorm(0, 0.1)

d ~ dnorm(0, 0.1)

d1 ~ dnorm(0, 0.1)

for(i in 1:7){

phi[i] ~ dnorm(0, 0.01)

}

tau1 ~ dgamma(0.001,0.001)

Sigma1 <- inverse(tau1)

tau2 ~ dgamma(0.001,0.001)

Sigma2 <- inverse(tau2)

tau_x1 ~ dgamma(0.001,0.001)

tau_x2 ~ dgamma(0.001,0.001)

}
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