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Abstract

Intensive longitudinal designs involving repeated assessments of constructs often face the
problems of nonignorable attrition and selected omission of responses on particular
occasions. However, time series models, such as vector autoregressive (VAR) models, are
often fit to these data without consideration of nonignorable missingness. We introduce a
Bayesian model that simultaneously represents the over-time dependencies in multivariate,
multiple-subject time series data via a VAR model, and possible ignorable and nonignorable
missingness in the data. We provide software code for implementing this model with
application to an empirical data set. Moreover, simulation results comparing the joint
approach with two-step multiple imputation procedures are included to shed light on the
relative strengths and weaknesses of these approaches in practical data analytic scenarios.
Keywords: Intensive longitudinal data, Bayesian vector autoregressive model,

Multiple imputation, Nonignorable missing data
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A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent

Variables and Covariates: Development, Evaluation, and Application to Family Processes

Intensive longitudinal studies have gained popularity in the past two decades as a way
of studying intra-individual change over time, inter-individual differences in
intra-individual change, as well as other determinants of intra- and inter-individual
variations (Baltes and Nesselroade, 1979). Such growth in popularity is facilitated in part
by technological advances such as smartphone and wearable devices, which have provided
enriched opportunities for intensive but relatively unobtrusive data collection in
individuals’ natural environment. Comparing with longitudinal panel data, these data are
able to convey more nuanced information concerning change processes (Bolger and
Laurenceau, 2013; Stone et al., 2008).

One way to model these intensive longitudinal data (ILD) is through vector
autoregressive (VAR) models, which can capture the temporal dependencies amongst
multiple variables. VAR models have long been used in the econometric literature to
forecast the performance of the stock market, macroeconomics trends, and policy change
(for summaries see e.g., Fomby et al., 2013; Qin, 2011). They are also gaining traction in
recent years as a way of examining complex system dynamics in behavioral sciences, such
as patterns of neural interactions in neuroimaging studies (Ding et al., 2006),
intraindividual covariation of behaviors associated with personality models (Hamaker
et al., 2005), daily patterns of emotional states and substance use among young adults in
recovery (Zheng et al., 2013), dyadic interactions and coordinations between parent-child
or partners (Chow et al., 2010a; Ram et al., 2014; Thomas and Martin, 1976), the different
forms of concordance of a person’s physiological responding to emotional stimuli (Bulteel
et al., 2014), and network models of causal interplay between psychopathology symptoms
(Borsboom and Cramer, 2013; Schmittmann et al., 2013). In sum, these models are helpful
in capturing more nuanced changes within each unit of analysis (e.g., within-person,

within-dyad, and within-family dynamics). Despite the increased use of VAR models in
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substantive applications, one ubiquitous challenge faced by many researchers is the lack of
easily accessible methods of handling missingness in ILD, particularly in the presence of
missing categorical covariates.

The current paper provides a review and illustrations of commonly adopted missing
data handling techniques for VAR models. In particular, we include targeted comparisons
of a recent two-stage, hybrid Bayesian-frequentist multiple imputation (MI) approach (Ji
et al., 2018) to a novel single-stage, fully Bayesian approach proposed in this article. The
illustrative example used throughout this article was motivated by an empirical study
examining emotional dynamics of husband and wife after each conflict episodes, with the
influence of children’s reaction to the conflicts, over a period of 15 days. A VAR model was
applied to investigate how husband and wife’s emotional states were influenced by the
emotional states of themselves, as well as their partner’s, after previous conflict episode.
Two covariates on child reactions were also included in the model to reflect the child’s
influence over parents’ emotional states. As detailed later, one big challenge in fitting a
VAR model to this data set was the substantial amount of missingness in the child
variables. This paper illustrates and investigates the extent to which appropriate
inferential results can be obtained under different missing data handling approaches.

The present article has two unique contributions. In particular: (1) demonstrate a
single-stage Bayesian modeling procedure to fit a VAR model with different missing data
conditions with annotated sample modeling scripts; and (2) compare the performance of
the single-stage Bayesian approach to a recent two-stage hybrid approach for handling
missingness in ILD (Ji et al., 2018).

The remainder of this article is structured as follows. We first provide a review of
common missing data handling methods in the literature and their applicability to ILD. We
then outline the key features of the Bayesian missing data handling approach proposed in
this study and how they differ compared to previous methods in the literature, including a

two-step hybrid approach proposed by Ji et al. (2018), which combines a Bayesian approach
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for imputation of missing covariates, and a frequentist approach for model estimation with
imputed data. This is followed by an illustration of our proposed fully Bayesian approach,
including sample coding syntax, using an empirical example. Finally, results from a Monte
Carlo (MC) simulation study are presented to demonstrate the performance differences

between the Bayesian approach and the two-step hybrid approach. We conclude with some

recommendations for viable ways to handle potentially nonignorable missingness in ILD.
Missingness in Intensive Longitudinal Data and Common Approaches

We consider the value of a variable for one or multiple time points missing if it is
unobserved or unreported. ILD is especially prone to missingness due to, for example,
either study compliance issues or the nature of study design. Intensive assessments,
especially those involving self-reports, require an ongoing commitment to remain in a
study. The prolonged time span of these studies often entails increased participation
burden over time, and in turn, higher likelihood of missingness.

Based on Rubin (1976), missing data mechanisms can be classified into three types:
missing completely at random (MCAR), missing at random (MAR) and not missing at
random (NMAR), which is also referred to as nonignorable missingness. If the mechanism
is MCAR, the reason for missingness is independent of the questions investigated in the
study (e.g., technical hiccup). MAR occurs when the probability of having missing data
depends solely on some observed data (e.g., failure to report on weekends), but not on any
unobserved information (Fahrenberg and Myrtek, 2001). Finally, we face nonignorable
missingness when the reason for missingness is the unobserved missing data itself, meaning
that the missingness mechanism relates to the question(s) we study (e.g., not giving reports
on emotional experiences when being upset).

Typically, researchers make an assumption of the missing data mechanism, and then
choose a method to handle it based on that assumption. It has been shown that wrong
assumption of the missingness mechanism results in estimation problems, such as increased

biases in point estimates (Allison, 2003; Jones, 1996) and standard error estimates
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(Glasser, 1964). Most contemporary work involving VAR models assumes the presence of
MCAR or MAR. However, behavioral research with ILD involving self-report of constructs
such as emotions are often subject to nonignorable missingness — for example, when the
participants’ likelihood to report depends on their current emotions. If the data are
NMAR, the missing data mechanism needs to be accounted for during the estimation
process to yield unbiased parameter estimates.

Despite the proliferation of studies evaluating different missing data handling
techniques in cross-sectional and longitudinal panel data with a limited number of
measurement occasions (Allison, 1987; De Silva et al., 2017; Rubin, 1996; Schafer, 2001;
Schafer and Graham, 2002; Sinharay et al., 2001), the impact of different kinds of
missingness and strategies to handle missingness in multivariate, multi-subject time series
data is less well studied. Full-information maximum likelihood (FIML) and MI are two
most widely implemented approaches to handle missingness in the context of ILD, but they
both have limitations. FIML operates by using only the available observed variables from
each occasion and unit of analysis to compute the log-likelihood function for parameter and
standard error estimation purposes. FIML is widely implemented in most software
packages for VAR modeling, but it requires the missing values to be ignorable (i.e., MCAR
or MAR), and the covariates in the model need to be fully observed.

In contrast to FIML, the MI approach requires the specification of a hypothetical
model, termed the imputation model, to generate multiple “complete data sets” filled in
with plausible values for the missing entries. This is followed by pooling of estimation
results across all of the imputed data sets to yield a set of final parameter and standard
error estimates. To better explicate this approach, we first define some notation as follows.
Let Y be an array of J dependent variables, y; (7 =1,...,J), for all individuals and time
points, that can be partitioned into Y = { Y™ Y} Y _; represents all other dependent
variables except for the jth dependent variable. X denotes an array of covariates for all

individuals and time points. R is a binary array summarizing the missing data patterns for
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all the variables, with 0 indicating an observed entry and 1 indicating a missing entry. ¢,
is the vector of parameters in the imputation model for ygmss

One approach to conduct MI, which is also the approach adopted in the hybrid method
proposed by Ji et al. (2018), is multivariate imputation by chained equations (MICE), also
referred to as full conditional specification (van Buuren, 2012; van Buuren and
Groothuis-Oudshoorn, 2011). With this approach, probable values of missing observations
are generated in multivariate data on a variable-by-variable basis with a conditional
probability model P(Y}"**|Y_;, X, R, ¢;). ' MICE has been widely adopted in
cross-sectional and longitudinal panel studies, but its performance has been shown to be
less satisfactory when used in intensive longitudinal settings (Liu and Molenaar, 2014).

To circumvent some known weaknesses of standard MICE techniques, Ji et al. (2018)
proposed including lagged variables as predictors in the MICE imputation model, and
compared different missing data handling techniques in the context of a VAR model. Two
two-stage approaches were proposed: a full MI approach, in which all missing information
were imputed before model fitting, and a partial MI approach, in which only missing
covariates were multiply imputed, whereas missing data in the dependent variables were
handled with FIML. Simulation results show that the two MI approaches outperformed
simpler methods such as listwise deletion (LD). However, relatively large biases and poor
coverage were still observed in some modeling parameters when mild misspecification was

present in the imputation model. Given the two-stage nature of Ji et al.’s proposed

approaches, the extent of sampling variability (i.e., standard error estimates) might have

I To start the procedure, all missing observations are filled in using random draws with replacement from
all observed values. Then, for the first iteration, ¢} is drawn from the distribution P(¢1]y$**,Y?,,X° R).
Missing values in yi, y***, are then filled in by drawing values from P(y;|y$**, Y%, X" R, ¢}), the
posterior predictive distribution of y; conditioned on y$**,Y? |, X% R, and ¢}. Here, we use superscript k
to denote data sets and parameter estimates from the k'" iteration, with & = 0 denoting the original data
sets or initial starting values of the parameters. Similar procedure is subsequently performed to generate
predicted values for y7***, only that imputed values for y; from the previous step are used in the
prediction process. The first iteration ends when missing observations are filled in for all variables. The
procedure is repeated for K iterations to result in one set of data with imputed values. The whole
procedure is repeated multiple times to generate multiple imputed data sets and correspondingly, multiple
sets of parameter and standard error estimates for subsequent pooling (van Buuren, 2012).
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been underestimated as well. In this study, we extend the study by Ji et al. by comparing
the authors’ recommended two-stage approach with a Bayesian single-stage approach, and
under conditions with a broader array of missing data percentages and degrees of
non-ignorability in missingness (Graham, 2012). Since better parameter point estimates for
some of the parameters were obtained with the partial MI approach in the previous

simulation study, we will only consider the partial MI approach in this paper.
A Bayesian Approach to Handle Missing Data

The limitations of the FIML and MI approaches in handling particular missing data
mechanisms and underestimation of sampling variability can be readily circumvented with
the proposed Bayesian approach. In what follows we highlight the key properties of the
Bayesian approach to joint modeling of the missingness mechanism and the multivariate
processes of interest via a VAR model. Specifically, we specify a joint probabilistic model
for the full data, with explicit assumptions about the mechanism that have given rise to the
missingness in the data. This is done by building submodels that describe the probabilities
that the covariates and/or endogenous variables are missing in the data set. These missing
data submodels are embedded within a larger model that also includes models of interest
(in our case, a VAR model) that specify the time evolution of the intensively measured
variables and their latent variable counterparts — whether they are observed or missing for
particular occasions. In cases where covariates are not fully observed, a model that
describes the distributions of the covariates is also necessary as a part of this larger model.
We will refer to this larger model as the “full-data model” for the remainder of this article.

Daniels and Hogan (2008) illustrated three different ways to factorize the full-data
distribution, namely, as selection models (Diggle and Kenward, 1994; Heckman, 1979),
mixture models (Hogan and Laird, 1997; Little, 1993,9) and shared parameter models
(Henderson et al., 2000; Wu and Carroll, 1988). The full-data model can be specified as
P(Y,R|X,w), where Y, X and R are as defined earlier in the introduction to MI in the

previous section, and w is a collection of model parameters. Under the selection model, the
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full-data model can be factorized as follows:
P(Y,RIX,w) = P(Y|X,0)P(R|Y, X, ), (1)

where P(Y|X, ) represents the model for dependent variables (i.e., model of interest), and
P(R|Y, X, ¢) represents the missing data mechanism. For example, Diggle and Kenward
(1994) proposed a model for continuous longitudinal data with NMAR drop-out, where a
multivariate linear model was used as the model of interest, and the drop-out process was
modeled using a logistic regression model, where probability of missing an observation
depended on observed response history and the current value of dependent variable, which
might be missing. The mixture and shared parameter modeling approaches capitalize on
different assumptions and hence, different specifications for the conditional relations among
elements of the full-data distribution?. In this paper, we illustrated the use of selection
model to handle missing data in intensive longitudinal studies because of the following
benefits: First, compared with the mixture models, the selection model is more feasible in
the context of ILD. This is because the mixture model approach involves conditioning of Y
over each possible combination of missing data patterns. With ILD, there could be too
many possible missing data patterns, and relatively few observations within each pattern.
In addition, slight differences in patterns may not reflect meaningful individual differences
at all. Second, unlike the shared parameter approach, the model of substantive interest,
P(Y|X,w), as well as the missing data mechanism are directly specified in the selection

model approach, which is very intuitive for researchers. Finally, the selection model is

2 The mixture models factor the full-data model as:
P(Y,R|X,w) = P(YR,X,w)P(R|X,w),

With this model, the relations between Y and X are conditioned on different missing data patterns. In
contrast, the shared parameter approach assumes a multilevel structure and models random effects b
jointly with Y and R with following general model:

P(Y,R|X,w) = /P(Y,R,b\X,w)db.
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relatively easy to estimate, as compared with mixture models, which may have
identification issues with increased dimension of Y, and shared parameter models, which
involve integration over the shared parameters.

Given the full-data model, parameter estimation and inference in the Bayesian
statistical framework are based on the posterior distributions of the model parameters and
missing data. Posteriors are derived based on priors of model parameters and the
likelihood of the observed data, combined via Bayes’ rule. The missing data are treated as
an unknown quantity, similar to the unknown model parameters. The unknown quantities
are explored through Markov chain Monte Carlo (MCMC) techniques according to the
posterior distribution. If prior information on the possible values of the parameters is not
available, uninformative priors are set. However, when fitting a VAR model, we suggest to
use weakly informative priors for dynamic parameters that impose, whenever possible and
appropriate, the stationarity assumptions — namely, the assumption that the joint
distribution of the time series variables is time invariant (Liitkepohl, 2005).

The proposed Bayesian implementation has several advantages over the MI approaches.
First, unlike the two-stage MI approaches (e.g. Ji et al., 2018), the proposed Bayesian
implementation estimates the underlying dynamics and missingness mechanism in a single
step (Daniels and Hogan, 2008). That is, in the MI approaches, a MI step is first used to
impute values for the missing observations in Y and X, typically based on some
overparameterized generalizations of P(Y|X,w, R) that often include some additional
auxiliary variables in X that help explain R, but not necessarily the dynamics of Y
directly. Once the imputed values of Y and X are available, only P(Y|X,w) is modeled
directly in the second stage as if all Y and X values were fully observed. With the
Bayesian selection modeling approach, both P(Y|X,w) and P(R|Y, X, ¢) are estimated
simultaneously over long chains of iterative MCMC updates. This is to say that with this
approach, we simultaneously estimate the missing data modeling parameters and the VAR

modeling parameters. The missing data estimates can help researchers learn about the
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underlying missingness mechanism. Second, compared with MI approaches, the Bayesian
approach allows more flexibility in missing data model specification. Different missing data
models may be specified for missingness in different variables, and different missing data
mechanisms (i.e., MCAR, MAR, and NMAR) can be fully reflected in the model
specification. Researchers may also incorporate any theory-driven models of missingness
into the larger model. Third, in terms of standard error estimates, MI approaches only
incorporate a limited number of imputations, and this number might underestimate the
uncertainty in the imputation procedure. With Bayesian methods, the uncertainty about
the imputed data is fully propagated into all subparts of the estimation process, over
numerous iterations. Thus, standard errors and related quantities for inferential purposes
reflect the multiple sources of uncertainty from the data. Fourth, Bayesian methods allow
estimation of more complex models and data structure, such as multilevel models with
random effects (Wang and McArdle, 2008), and data with nested structure. Previous
studies have demonstrated the strengths of the Bayesian missing data modeling approach
with different models, such as multiple regression models with observational studies with
NMAR missing data (Mason et al., 2010), analysis of randomized clinical trials with
drop-outs (Scharfstein et al., 2003; Wang et al., 2010), path analysis model (Gajewski

et al., 2006) where the outcome variable and the mediating variable follow Poisson
distributions, survival analysis model (Hemming and Hutton, 2012), hierarchical models for
network meta-analysis (Zhang et al., 2015), and nonparametric statistical learning models
with Bayesian Additive Regression Trees (Kapelner and Bleich, 2015). We add to this
literature by studying the performance of the Bayesian missing data approach in modeling
multivariate, multi-subject intensive time series data under different missing data

mechanisms.
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Empirical Illustration
Motivating Model and Methodological Challenges

The proposed Bayesian VAR model was inspired by a previously published study that
explored the emotional dynamics of interparental conflicts (Schermerhorn et al., 2010).
Researchers collected data on emotional states at the end of conflicts with influences from
child emotions and behaviors during conflicts from 111 cohabiting couples with a child
(child ages range from 8 to 16 years), over 15 days. This study was an event-contingent
design where parents responded only during or shortly after a conflict. The parents were
asked to record their own emotional states as well as their children’s emotional states and
behaviors associated with particular conflicts.

We proposed the following VAR model to capture the time-dynamics of the observed

Wht Qw—sw  Onsw| |Wnt—1 Corow  Aagmw | [ T1, €wn,t
Pt bu—n  ansh| | hng—1 Corsh Agosh | | T2, €h,n,t (2)
€wnt ~ N(0, O'?w), €nnt ~ N(0, O’?h)

where w,,; and h,,; represented conflict resolution ratings of wife and husband, respectively,
from family n at the end of the #'* conflict (n = 1, ..., N;t =1, ..., T,). Given the
event-contingency, the total number of conflicts (7") was different for every family
(min = 11, max = 69, mean = 25.90). The terms €, ,; and €y, were the residuals for
wife and husband not accounted for by the hypothesized model, assumed to be normally
distributed with zero means, standard deviations o, and o, , respectively.

The hypothesized model was a VAR model of order 1 in which the dependent variables
at the current time point were predicted by the dependent variables at the immediately
preceding time point (i.e., a lag of 1). In the present context, the emotional states and
conflict resolution behavior of each spouse at the end of the t** conflict were posited to be
influenced by their own emotional states and resolution behavior at the ¢t — 1** conflict, the

strengths of which were captured in the auto-regression parameters, a,, ., and a,_,. In
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addition, each person’s previous emotional states and resolution behavior at the previous
conflict were also assumed to affect the partner’s emotional state and resolution behavior
at the t* conflict, as governed by the cross regression parameters, bj,_., and b,_,p.

Two covariates were included in the dynamic model. The covariate, z1, was an
aggregate measure of the child’s negativity, as averaged across actions such as anger,
sadness, fear, as well as misbehaving, yelling at the parents, and aggression. The other
covariate, xg, represents a child aggregate score on agentic behavior in family ¢, which
includes actions such as helping out, taking sides, comforting the parents, and trying to
make peace. Each one of the dependent variables and the covariates were standardized by
family over time prior to model fitting to ease prior selection and to remove some of the
pre-existing interindividual differences in process noise variances and VAR dynamics —
features not accommodated by our hypothesized model.

In this empirical study, a large portion (67% for all child-related variables) of the
child-related covariates was missing (Schermerhorn et al., 2010). In order to handle the
missingness, the authors previously recoded the child-related covariates from sum scores
(ranging from 0 to 10) into dummy variable such that a child’s value on each covariate was
coded as 0 both when the child did not display the behavior during the conflict, and when
the child was “missing”; each of the two covariates was coded as 1 when the child showed
any level of that behavior. This coding scheme has three primary drawbacks: (1) the data
blur levels of a child’s influence with the presence or absence of the data, obscuring the
ability to make meaning of the data, (2) it discounts potential effects of different levels of
the child-variables on dynamics at the family level, and (3) this data mechanism may be
inappropriate as both the dependent and child-related covariates may be NMAR (e.g., the
couples might be especially careful in ensuring that the child was absent when they
anticipated discussing highly stress-provoking topics). In order to account for some of the
aforementioned issues, Ji et al. (2018) applied a MI method to handle missing covariates in

this data set. With this method, the authors were able to preserve information on the



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS 14

magnitudes of child variables, since the variables were not dichotomously recoded.
However, the plausible missing data mechanism were still unknown and NMAR, missing

effects might not be fully accounted for.
Bayesian Joint VAR and NMAR Modeling Example with JAGS

We utilized the Bayesian approach to model the dynamics of the process and the
missing data mechanisms simultaneously. With this approach, we can compare joint
models for the dynamics data and hypothesized missingness mechanisms. Bayesian model
fitting was performed in JAGS (Plummer et al., 2003), interfaced with R (R Core Team,
2016) for data formatting and result summaries through R package rjags (Plummer, 2016).
Details of the model fitting procedures are presented below.

In the empirical data set, T}, corresponds to the total number of conflicts for the nth
family, with T},., representing the maximum number of conflicts across all families. We

structure the data as:

Dependent variables Y7, Y>: N x T,,,, matrices
Covariates X1, Xo5: N X T},,, matrices
Missing data patterns (dummies) Ry,, Ry,, Rx,, Rx,: N X T,,,, matrices

Time series length for the n'® family, T,,: T|n]

For the Bayesian approach, the full-data model — including the VAR model for the
dependent variables, the model for covariates, and the missingness model for both
dependent variables and covariates — is specified in a text script to be read into JAGS.
Since we have longitudinal data for multiple families and multiple observations for each

family, the model follows the basic structure below:

modelq
for (n in 1:N){
yil[n,1] ~ dnorm(0, 0.01)

y2[n,1] ~ dnorm(0, 0.01)
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x1[n,1] ~ dnorm(0, 0.01)

x2[n,1] ~ dnorm(0, 0.01)

for (t in 2:T[n]){
<VAR model for dependent variables>
<Model for covariates>
<Model for missingness mechanisms>

} # end of t loop

} # end of n loop
<Priors>

b

Two for-loops are shown in the script above: one that loops through every family (the n
loop) and one through every observational time point (the ¢ loop), the maximum number
of which is family-specific (T'[n]). The first four lines inside of the n loop specify the
distributions for the first observations. In this example we use a normal distribution with a
large variance (100, or equivalently, a small precision of 0.01 as indicated in the script) for
all four observations, so that the distribution itself does not add very specific information
about the initial values of the variables at time 1, yet captures a reasonable range of
starting values. One thing to note is that the dnorm function in JAGS parametrizes the

normal distribution with its mean and precision, instead of variance (where precision =

1

variance

). The t loop contains three submodels: a VAR model for the covariates, a model for
covariates, and a model for missingness mechanisms. We will introduce each of the models
and the corresponding JAGS syntax in the following paragraphs, and a complete script for
model fitting is included in Appendix C. The model for covariates is only necessary if the

covariates are not fully observed.
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VAR Model for Dependent Variables. We first write out the model for dependent

variables, namely, the VAR model with covariates (based on Equation 2) as

yl[n,t] ~ dnorm(mul[n,t], taul)
y2[n,t] ~ dnorm(mu2([n,t], tau2)
mul [n,t]<-a*yl[n,t-1]+b*xy2[n,t-1]+c*x1[n,t]+d*x2[n,t]

mu2 [n,t]<-blxyl[n,t-1]+al*y2[n,t-1]+cl*x1[n,t]+d1*x2[n,t]

Model for Covariates. A model for covariates is also necessary since the covariates also
contain missingness. In our illustrative example, both the covariates are measured using a
numeric response scale. Thus, we assume that each covariate follow a normal distribution

with:

Tl = Bl + B2pwm + 62phm + €x1,nty; €xynt ™ N<07 0-5211) (3)

T, = Y1 + Vo1, + UsDw,, + UsDh,, + Vaage, + €y nty €xymt ~ N (O, 05212)- (4)

Fully observed post-conflict positivity levels of husbands’ (py) and wives’ (p,,), both N
X T4 matrices, are entered into the model for covariates above and the model for
missingness mechanisms later. Since we do not have specific assumptions of mother’s and
father’s positivity levels influencing children differently, we constrain p,’s and p;,’s influence
on z; and o to be the same, as indicated by having the same parameter coefficient in
Equations 3 and 4 (f and 13). This approach can be seen as being equivalent to taking
the average levels between mother’s and father’s positivity scores as a predictor. age is
specified as a vector of length N with the nth element being the age of the child in family
n. These three variables (py, pw, and age), albeit not variables of interest in the VAR
model, are speculated to be related to the covariates and probabilities of missingness, and
are thus included to improve the performance of the full-data model.

As with the model for the dependent variables, the model shown in Equations 4 is but
one plausible model for the covariates. This model reflects our hypothesized relations

among the measured covariates and other fully observed auxillary variables in the current
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data set. That is, we assume that x; (the child’s negativity) would be affected by the
parents’ positivity post-conflict. In addition, we assume that z, (the child’s agentic
behaviors) is related to parents’ positivity, the child’s post-conflict negativity (x1; e.g.
Davies and Cummings, 1994; Emery, 1989), and the child’s age. The age-based postulate is
motivated by the theoretical expectation that agentic behaviors require certain levels of
executive functioning that develop with age (e.g. Goeke-Morey et al., 2013; Grych and
Fincham, 1990).

This model for the covariates can be specified in JAGS script as follows:

x1[n,t] ~ dnorm(muxl[n,t],tau_x1)

x2[n,t] ~ dnorm(mux2[n,t],tau_x2)

muxl[n,t] <- betal[l] + beta[2]*pw[n,t] + beta[2]*ph([n,t]
mux2[n,t] <- psi[l]+psi[2]*x1[n,t]+psi[3]*pw[n,t]+

psi[3]*phln,t]+psi[4]*age[n].

In order to explore the sensitivity of modeling results to the model for covariates, we also
considered an alternative, unconditional model for the covariates. In this alternative

model, z; did not depend on any variable observed in the data set (Appendix B).

Model for Missingness Mechanisms. Next, we specify the missingness mechanisms for
all the variables. All the missingness indicators (ry, , 7y, 72, T2, ) are entered into
JAGS as observed data (1 = missing, 0 = observed). For this empirical data set, we
assume that missingness in all of the dependent variables and covariates is associated with
the post-conflict positivity scores of husbands and wives (p, and p,), as the couples’
emotional states post-conflict might affect their willingness to report. In addition, we
assume that missingness in both of the covariates is associated with children’s agentic

behaviors (x2), as children’s tendency of such behaviors may affect their presence on scene.
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Thus, we specify the missingness mechanisms as:

P(Tznm = UpPwni Phoy) = logit_l(gbmtyl + GpsyPuwne T PpsyPhny) (5)
P(Tant = ]‘|pwnt7phnt) = logit_1(¢inty2 + ¢p—>ypwm + ¢p—>yphm) (6)
P(Tﬂflnt = 1|x2nt’p’IUnt’phnt) = logit_l(gbintxl + ¢$x2nt + ¢p_>-7»’pwnt + ¢p_>-1’phnt) (7)

P(T$2nt = 1|x2nt’p’IUnt’phnt) = loglt_1(¢lnt12 + ¢xx2nt + ¢pﬁxpwnt + ¢p_>xphnt) (8)

In the above equations, logit~! represents the inverse-logit (logistic) function. This model
for missingness mechanisms is a mixture of MAR missing models for the dependent
variables, and NMAR missing models for the covariate variables. That is, the missing data
model for the dependent variables consists only of post-conflict positivity scores of
husbands and wives, which are fully observed, whereas the missing data model for the
covariates contains xo, which is partially missing. In addition to this mixed missing
mechanisms model, we also considered three other alternative missing mechanisms models,
including MCAR, MAR, and NMAR models for all dependent variables and covariates
respectively. With MCAR model, for all dependent and covariate variables, the missingness
were modeled by an intercept, assuming missingness in all four variables were completely
random and did not depend on any other variables. Under the MAR condition, missingness
of all variables were predicted by the two fully observed variables, the positivity scores of
husbands and wives. In the NMAR model, the missingness of the variables depended on
the value of the variables themselves, in addition to the fully observed positivity scores of
the couples. Model specification details for the alternative models are presented in
Appendix A.

Below is the corresponding script for specifying missingness mechanism for xq, child’s

negativity, as an example:

nmarlogitxl[n,t]<-phix1[1]+phix1[2]*x2[n,t]+phix1[3]*
pwln,t]+phix1[3]*ph(n,t]

nmarprxl[n,t]<-exp(nmarlogitxl[n,t])/(1+exp(nmarlogitxl[n,t]))
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Rx1[n,t] ~ dbern(umarprxl[n,t])

The first line in the JAGS code specifies the linear combination in Equation 7 delineating
the log odds of observing missingness in z; as related to other fully observed or partially
missing variables. The second line transforms the linear combination through the logistic
function into a missing data probability for family n at time ¢ (nmarprxi[n,t] =

P(rs, . = 1|Z2,,, P> Ph,, ). Finally, the third line of code specifies the missing data
indicator in r,,,, as Bernoulli distributed with a probability given by

P<7"a:1m = 1|22, , Pwns> Phot)-

Priors and Model Selections. In the present illustration, we use weakly informative
priors (normal distributions with means at 0 and variances of 10) for parameters in the
VAR model (i.e. a, a1, b, bl, c, cl, d, dl). Even though these priors may seem
informative, the ranges of possible parameter values under these priors are still notably
more diffuse than the values that would be expected to arise under the stationarity
constraint imposed in generating the simulated data. The rest of the prior settings can be
considered non-informative: we use a gamma prior with both parameters set to 0.001 for
the inverse of the variance parameters (e.g.taul), and a normal prior centered on 0 with
variance 100 for all other parameters. Code for prior specification is included in the JAGS
Script under Appendix C.

Given the complexity of the complete data models, we utilized the following setting in
sampling: 2 chains, 50000 steps of adaptation, 10000 steps of burn-in, and 50000 samples
per chain. To help with model convergence, we linearly interpolated values for the missing
data based on the observed values immediately before and after the missing locations, and
entered the interpolated values into JAGS as starting values for the MCMC sampler at
these missing locations.

Based on previous simulation results (see, e.g., Lu et al., 2017), we used the Bayesian
Information Criterion (BIC) as a model selection measure in the empirical illustration to

select the models described above from several possible candidate models. We obtained
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BIC from the MCMC estimation as:
BIC ~ D +p x log(9) (9)

In the above equation, D is the posterior mean of the deviance, defined as:

N T,

D==33 (log(fy) +log(fx) +log(fr)), (10)

t=1

In Equation 9, p is the number of parameters in a given model, and S represents the
sample size, which is taken to be the sum of all T’s across families in the present study.
Other terms in Equation 10 are defined as follows: fy = fy,(Ynt|Ynt—1, Tni-1,0),
Ix = fo(@nt|Vnt, 0), frR = fr(Tit|Ynt, Tnt, 0), Where Ypr, Tpr, Unt, Tr represent vectors of
dependent variables [wy, hy|, covariates [z1,,, x9,,], auxiliary variables [py,.,, ph,,], and
missingness indicators [1u,,,, T, Ty, Tas, | TESPectively, and fy, fx, fr are the
conditional joint densities of y,;, @,¢, and 7r,;. Note that our definition of BIC was similar
to the standard definition for BIC adopted within the frequentist framework in that we did
not add the number of missing data values as unknown parameters in the calculation of p.

We used the BIC, for instance, to compare our hypothesized model for the covariates in
Equations 3 — 4 to the alternative, unconditional model for the covariates (Appendix B).
Our hypothesized covariate model had a lower BIC value and was thus preferred over the
alternative model. In addition, inspection of the parameter estimates from both models
suggested that the key substantive conclusions obtained with the alternative covariate
model remained the same compared to our original hypothesized model (see Appendix B).
This indicated that the substantive results were not sensitive to such changes in the
covariate model. We also used the BIC to select among several possible models for the
missingness mechanisms. We compared the BIC values across the four proposed possible
missingness mechanism models and selected the mixed missingness mechanisms model as
the best-fitting model based on its smallest BIC value (see Appendix A for details).

In order to compare the estimation results from the proposed Bayesian method and the

two-step partial MI method, the following procedures were performed for the partial MI
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method. We first imputed multiple sets of plausible values for the missing observations,
using all information available and the lagged dependent variables. Given the relative large
percentage of missing data in the covariates, 10 imputations were performed, generating 10
sets of imputed data. The VAR model for dependent variables was then fitted using the
imputed data sets, resulting in 10 set of parameter estimates. Finally, parameter estimates
obtained from different imputed data sets were pooled. Detailed procedure for applying the

two-step MI method and example syntax are available in Ji et al. (2018).
Empirical Results

Parameter estimates from both approaches are shown in Table 1. None of the dynamic
parameters (neither the autoregressive nor the cross-regressive ones) was different from 0
(defined as credible/confidence intervals not containing 0). Results from the Bayesian
approach suggested conflict resolution scores for both husbands and wives were negatively
associated with children’s negativity scores and positively associated with children’s agentic
behaviors (¢, —,w=-0.50, ¢z, ,=-0.51, dy,,,=0.06, d,, ,,=0.06). These are in accordance
with previous literature on children’s influence towards marital conflict (Schermerhorn
et al., 2010).

However, it is worth noting the differences in estimated parameter values between
approaches. Results from the two-step partial MI approach, though also suggesting a
negative association between children’s negativity scores and conflict resolutions, showed
much smaller effect sizes on parameters ¢, ., and ¢;, ., (—0.5 vs. —0.1). The effects of
children’s agentic behaviors on conflict resolution were not significant under the partial MI
approach, and the process noise variances were also estimated to be larger compared to the
Bayesian approach. We speculate these differences to be due to the missingness mechanism
being partially NMAR (as suggested by our hypothesized missingness mechanism model
outperforming the MAR mechanism model in terms of BIC). This demonstrates the
possible different conclusions drawn from an analysis if NMAR mechanism is not

addressed, even when partial MI is used.
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To check whether the parameter estimates from the Bayesian approach were sensitive
to prior distributions, we performed post-hoc sensitivity check following the procedures
described in Lee (2007) separately for the VAR model, the covariate model, and the
missing data parameters. The sensitivity check involved altering the prior distributions in
three ways and rerunning the analysis. The variances for the prior distributions were set to
1 for all parameters as opposed to 10 and 100 in the previous analysis, and the means were
set to (1) estimated parameter values from the previous analysis based on the vague priors,
(2) halves of the estimated parameter values and (3) two times the estimated parameter
values. Table 2 shows the estimated values from all 9 sensitivity checks and most values
remained unchanged from those resulted from the previous analyses. The only exception
was the intercept parameters (dine,, @int,, ;Qints, »Pint,,) and the NMAR parameter (¢,)
when the means of the missingness model parameter prior distributions were changed to
twice their estimated values. Even though these differences may seem large on a logit scale,
the differences in estimated values on a probability scale were much less notable. This
suggests that the missing model parameters were relatively sensitive to the choices of prior
distributions. This may due in part to the difficulties in obtaining sufficient effective
sample sizes for these parameters despite our use of very long chains.

This empirical illustration demonstrated the utility of the Bayesian approach with data
from an existing empirical study. Estimation results with Bayesian method were in general
consistent with other approaches, such as two-step partial MI. However, larger covariate
effects, and smaller noise variances were noted with the Bayesian method. Observing the
estimated missing data model parameters with the Bayesian method, we can also infer that

the missing data mechanism for the covariates was likely NMAR.

Simulation Study: Design and Results

We conducted an MC simulation study to evaluate the performance of different missing
data handling methods under different missing data conditions. Factors that we

manipulated include: missing data mechanism (MCAR, MAR, NMAR), strength of NMAR
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dependency in the NMAR conditions, and missing data percentages. Our key goal was to
clarify the performance of the fully Bayesian joint modeling approach relative to other
missing data handling approaches, particularly the two-step approach evaluated previously
by Ji et al. (2018).

For each condition, we conducted 100 MC replications using the bivariate VAR model
in Equation 2. Missingness was imposed on each of the complete data sets using one of
three possible missing data models: MCAR, MAR, and NMAR. The NMAR missing data
model was the most general model because it included NMAR components, MAR
components, as well as MCAR components (details of the missing data models to follow).
In order to evaluate the influence of percentage of missing data and the strength of the
NMAR component, we crossed the NMAR strength (low, high) with two possible (low,
high) missingness percentages, resulting in four NMAR conditions, namely NMARL3 (low
dependency NMAR with 30% of missing data), NMARL5 (low dependency NMAR with
50% of missing data), NMARH3 (high dependency NMAR with 30% of missing data), and
NMARHS5 (high dependency NMAR with 50% of missing data). The bivariate VAR model
was fit to each of the simulated data sets using different missing data handling approaches,
including the LD method, two-step partial MI method, and Bayesian approach. Next, we
describe the data generating models, missing data settings, and model-fitting procedures in

detail.
The Data Generating Model

The dynamical process in the simulation study was based on the VAR model
introduced in the motivating example (Equation 2) and used in the Empirical Illustration
section. The sample size configuration was chosen to mirror characteristics of the empirical
data set. We simulated data for N = 100 couples. The total number of observations (T)
for two people within each dyad was assumed to be the same, and T per dyad followed a
negative binomial distribution of number of successes before five failures with a failing

probability of 0.167. Figure 1 offers a comparison of the empirical and simulated Ts. The
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observed simulated distribution was derived from simulated Ts in all 100 MC replications.
We can see from the figure that the distribution of T of the simulated datasets mimics the
distribution of the observed T of the empirical data set.

The true parameter values of the dynamic model used in the simulation were set as
follows: @y—sy=0.4, ap—p=0.3, bp—uy=-0.3, by—p=-0.2, ¢z, 5,=0.4, ¢z, 5, =0.3, dy, ., =0.5,

dyy—n=0.4, and 02 = o? = 1, which are within the typical ranges of parameter values

observed in the motivating example as well as other empirical studies in psychology
utilizing variations of the VAR model (Chow et al., 2007,0). The two covariates, z1,, and

xs,,, were generated according to the following models:

put = logit ™' (81 + Bavy,,)

x1,, ~ Bern(pu) a1

Ta,, = V1 + Yax1,, + Y3v1, + €4y

€z, ~ N (0, 06212),
As we can see from Equations 11, the first covariate, denoted 1, was a binary variable that
followed a Bernoulli distribution at each observational time point, with probability of
observing values of 1 dependent on contemporaneous observations being p,,;, which is
parameterized by 5 = 0, S;=-2. In Equations 11, v; represents a fully observed auxiliary
variable with a uniform distribution over (-3, 3). The second covariate, denoted x,
followed a normal distribution at each time point with means derived from
contemporaneous observations of both v; and x, and parametrized via 1y = 2, 1)y = —0.2,
13 = 0.2, and afm = 0.25.
Missingness Settings

We simulated missingness in both the dependent variables and the covariates following
each of the three possible missing data mechanisms: MCAR, MAR and NMAR. Under
NMAR, four combinations of NMAR strength and missing value percentage were

considered. Let ru,,, Th,,, Te, s Tz, , e the missingness indicators for the dependent
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variables and the covariates, respectively, such that r ,=1 if the corresponding variable for
dyad n at time ¢ is missing and 0 otherwise. Hence, r, was Bernoulli distributed with
probability of missing P(r,;), which was determined by different variables depending on
the nature of the missingness. The most general missing data model considered was an
NMAR model in which we specified the probability of the r,; as conditional on the
variables subjected to missingness themselves (hpt, wp, x1,,, Or Z2,,) and fully observed
variables vy , and vs ,.

The missing data model for the dependent variables is expressed as:

P(T’wnt = 1|wnt7 U2nta v3nt) = logit_1(¢inty1 + ¢ywnt + vaQ UQnt + ¢U3U3nt)

(12)
P(rhnt = 1|h"nt7 U?»mga U3nt) = logit_l(qsintyQ + ¢yhnt + ¢’U2U2nt + ¢’03U3m§)a
where vy and v were both uniformly distributed over (0, 3).
We also generated missingness for the covariates according to the functions below:
P(Tﬂ?lnt = 1|x1m7 V2pes Ugnt) = logit_1<¢intm1 + ¢$1x1nt + ¢U2U2nt + ¢'U3U3nt> (13)

P(ry, = 1|, v2,,,v3,,) = L0git ™ (Gintes + GusTan, + Guy2,, + Pug¥s,,),

In the scenario of our empirical example, this would capture the possibility that one’s
perception of conflict resolution affects his/her probability of reporting of such conflict, and
also that the reporting of a conflict is affected by other factors such as the emotional state
one is in (fully observed variables). In terms of covariates, children’s reactions can be
missing due to a lack of reaction (NMAR), or an absence of parent’s reporting (MAR). We
made two assumptions regarding the nature of the missing data mechanisms. First, we
assumed that the effect of w,; on P(r,,,) and the effect of h,; on P(ry,,) were the same (as
represented by a sole ¢, in both equations in 12) given that they were measured the same
way and of the same construct, just for different individuals. Second, we assumed that the
effects of fully observed variables vy, and vz, were the same for all variables (as
represented by only one set of ¢,, and ¢,, in Equations 12 and 13). In other words, each

unit of increase in these fully observed variables was assumed to affect all variables’ log



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS 26

odds of being missing on a particular occasion by the same degree. The missing data model
was constructed in this way to strike a balance between offering a reasonable missing data
scenario in the study of affects, and realistic levels of model complexity from an estimation
standpoint. In addition, it mirrors the missing data patterns observed in many ecological
momentary assessment studies in that individuals tend to show heightened probability of
omitting responses to an entire set of items (e.g., sections of a survey, or even an entire
survey), as opposed to isolated items on the survey.

With the aforementioned general NMAR missing data model, the MAR and MCAR
models in this simulation can be viewed as reduced special cases of the general model. To
simulate missingness according to the MAR mechanism, we set ¢,, ¢,, and ¢,, in
Equations 12 and 13 to 0 so that missingness did not depend on the dependent variables in
focus, but on the two fully observed variables, vy and vs. For the MCAR condition, all ¢’s
except for the intercept term were set to be 0 in the model, thus the missingness did not
depend on any data-related information. Table 3 contains all the parameter values used in
missingness generation. For MCAR and MAR missingness, we simulated roughly 50% of
missingness in each variable. For the NMAR, we investigated four different conditions: 1.
where impact of NMAR factors (wpt, hne, 21,,, and xs,,) were relative low and each
variable had roughly 30% of data missing ("NMARL3"), 2. where impact of NMAR factors
were relative low and each variable had roughly 50% of data missing ("NMARL5"), 3.
where impact of NMAR factors were relative high and each variable had roughly 30% of
data missing ("NMARH3"), 4. where impact of NMAR factors were relative high and each
variable had roughly 50% of data missing ("NMARHS5"). The ¢ values were chosen to

ensure the missingness percentages and NMAR impact in each condition.
Model Fitting Procedures
Each of the datasets simulated under different missing data mechanisms and

percentages were fitted to a bivariate VAR model using different missing data handling

approaches, including the LD method, two-step partial MI method, and Bayesian
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approach. With the LD method, observations with any missing variables were excluded
from the analysis. The listwise deleted data were then fitted to the VAR model using a
Bayesian approach. This method was considered as the baseline method. For the two-step
partial MI method, missing data in the covariates were multiply imputed, and model fitting
procedures were performed using frequentist method, specifically, by optimizing a
log-likelihood function constructed using prediction errors obtained from running the
Kalman filter (Chow et al., 2010b; Schweppe, 1965).

Under the Bayesian approach, Bayesian models with MCAR, MAR, and NMAR
missing data model components were fitted to all data sets, regardless of true missing data
generation mechanisms, resulting in 18 conditions for the Bayesian missing data approach
(6 true data conditions x 3 Bayesian models for model fitting). In the remaining sections,
we refer to results from the Bayesian approach by true data generation conditions x fitted
model. For instance, NMARL5xMAR stands for low dependency NMAR data with 50% of
missingness fitted to a Bayesian model with MAR missing data model, specifically the
missing data model in Equation 12 - 13 with the NMAR parameters, ¢,, ¢,,, and ¢,,, fixed
at 0 as opposed to freely estimated.

We categorized fitted models in the Bayesian approach into three scenarios: correctly
specified models, underfitting models (when the model only contains part of the true
model), and overfitting models (when the true model can be seen as a special case of the
fitted model with some parameters having values of 0). Correctly specified models included
MCARXxMCAR, MARxMAR, and NMARXxNMAR. Underfitting models were
MARXxMCAR, NMARXMCAR, and NMARxMAR. MCARXxMAR, MCARXxNMAR, and
MARXNMAR are all considered as overfitting models. Response variables of interest and
covariates that contained missingness were modeled with the true data generating models
(Equations 2 and 11).

Consistent with the approach adopted in the empirical illustration, weakly informative

priors were set for the parameters in the VAR model. For the rest of the parameters, the
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prior settings were non-informative. Given the complexity of the complete data models, we
used the following setting in sampling: 2 chains, 1000 steps of adaptation, 5000 steps of
burn-in, and 200000 samples per chain.

The partial MI method was adopted for the two-step MI approach in this paper.
Specifically, we first generated m=>5 sets of plausible values of missing covariates. Then,
the missing observations of the covariates in the simulated data sets were filled in with the
imputed values, resulting in five data sets with fully observed covariates and missing data
in dependent variables. Those data sets were used in VAR model fitting, and the estimated
parameters from the five imputed data sets were pooled together based on Rubin’s method
(Rubin, 1996). More details about the partial MI was described in Ji et al. (2018). With
the partial MI method, an inclusive model, which includes all available information from
the data set, is usually recommended for imputation procedures. Therefore, regardless of
missing data conditions, the same imputation model was applied, making use of all
variables involved in the data/missingness generation procedures, and lagged variables as
necessary. To be specific, the imputation model included fully observed variables vy ,, vy,
and vz ,, model covariates with missing values z1,, and x5 ,, and dependent variables and
their values at the immediate previous time points wps, Apt, Wy —1, and by 1. VAR model
fitting under the partial MI approach was performed using the dynr package in R (Ou
et al., 2017), which provides an option for fitting discrete-time state-space models such as
the VAR model by optimizing a log-likelihood function constructed using prediction errors
obtained from running the Kalman filter on a specified state-space model (Chow et al.,
2010b; Schweppe, 1965).

Performance Measures

In order to compare between a Bayesian approach and a frequentist approach, we
treated the Bayesian posterior mean of a parameter 6 as the point estimate for that
parameter (é), and the posterior standard deviation as the standard error of that estimate.

With that, we compared the following performance measures for each parameter: 1.
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relative bias (Equation 14), 2. root-mean-square error (RMSE, Equation 15), 3. difference
in average standard error across MC runs compared to the MC standard deviation
(MCSDs?; “dSD”, Equation 16), 4. difference in average standard error across MC runs
compared to the MCSD from the fitting the model for dependent variables (Equation 2
only) to the complete data without missingness (“dSDFull”), 5. coverage, defined as
percentage of MC runs in which the credible or confidence intervals contained the true

parameter value. Relative bias and RMSE, in particular, are defined as:

o 1 & 6,—0
relative bias(f) = i hz::l( 7 ) (14)
RMSE(9) = J ;I S (0 — )2 (15)
dSD(0) = ;[ > SE(0) - J Hl—l s (0h — 0)" (16)

where H represents the total number of MC runs, and 6 = 7, O /H. Finally, we also
evaluated the performance of the BIC, as defined in Equation 9, as one possible model

selection measure.
Simulation Results

To facilitate comparisons among parameters that appeared in different submodels, we

grouped VAR parameters into three categories: dynamic (Gy—w, Ghsh, bhsw, bw_sh),

2

€w’

covariate (Cz,—sw, Coy—h, doy—w, dzy—p) and noise (o afh) parameters, similar to the
grouping done in Ji et al. (2018). Figure 2 shows the average relative bias and RMSE of
estimates within each group across conditions. In general, as expected, both the two-step
partial MI approach and the Bayesian selection model approach outperformed the LD
approach, which generated biased results for all parameters under all missing data
conditions. The advantage of the Bayesian approach was more apparent under the NMAR

conditions, especially with higher percentage of missingness and higher NMAR

dependency. Compared with the percentage of missingness, NMAR dependency was

3 The standard deviation of all point estimates on a parameter across MC runs
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observed to have more notable effects on parameter estimation accuracy. We now elaborate

on specific details pertaining to each missing data handling technique.

Simulation results for the LD approach. The LD approach generated biased
parameter point estimates, as evaluated by relative bias and RMSE under all conditions.
Compared to covariate parameters and noise parameters, the dynamic parameters were
affected the most when the LD approach was used because deleting missing observations
led to distortion in the time intervals between successive measurements. Figure 2 shows
that dynamic parameters tended to be under-estimated with LD approach, with negative
relative biases, under all conditions. Covariate parameters were not as affected by LD as
the other two parameter groups in terms of relative biases in point estimates, probably due
to the fact that relationships between covariates and the variables of interest would still be
preserved under LD. An interesting observation was that the RMSEs for covariates were
visibly larger with LD across all conditions with 50% missing data (i.e., MCAR, MAR,
NMARL5, NMARH5) compared to when other methods were used, suggesting that
estimation biases in covariates using LD were due more to the influence of missingness
percentages, regardless of missingness mechanisms. Such biases in parameter point
estimates also resulted in low coverage rate (i.e., around 50% when averaged across all
VAR parameters) for the LD approach under all conditions.

In terms of standard error estimates, using LD approach in general yielded very similar
results when compared with empirical MC standard deviation, reflected by close to zero
dSD across all conditions. However, when compared with model estimation results using
full data set without missingness, LD approach led to over-estimation of standard errors for
all parameters under all conditions. Since LD approach includes fewer observations in the
analysis, inflation of standard error estimates is in accordance with our expectation.

A comparison of the results using two-step partial MI and Bayesian
approaches. Under MCAR and MAR conditions, using approaches other than LD yielded

comparable biases in estimates. For dynamic and covariate parameters, the two-step
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partial MI approach and the Bayesian approach both yielded very small biases and
RMSESs, regardless of whether the missingness model was correctly specified, underfitting
or overfitting with the Bayesian approach. Figure 2 also shows that estimates for noise
parameters had higher biases and RMSEs in the two-step partial MI approach compared to
those from the three modeling conditions in the Bayesian approach, with results in the
Bayesian approach being very similar to each other. This may due to the fact that in the
two-step partial MI approach, missing data imputation models were slightly misspecified.

Table 4 contains comparisons of dSDs and dSDFulls across conditions in the three
parameter groups. Except for those resulted from LD, all the dSDs and dSDFulls were
small and similar to each other, suggesting that the standard error estimates from the
two-step approach and the posterior standard deviations from the Bayesian approach both
approximated the degree of sampling variability in the parameters well under MCAR and
MAR conditions. The coverage as averaged across parameters were comparable for the
two-step partial MI and Bayesian approaches, and very similar for the MCAR and MAR
conditions. To be specific, the coverage for the Bayesian approach were slightly better,
with better point estimation results for noise parameters, resulting in an average coverage
of 95% across all parameters for both the MCAR and MAR conditions. The average
coverage across all parameters for the two-step partial MI approach was 86% for the
MCAR condition and 87% for the MAR condition.

Under NMAR conditions, clearer differences emerged between the two-step partial MI
and the Bayesian approach. When missingness model was correctly specified (i.e.,
NMARXxNMAR) using the Bayesian method, dynamic parameters were well recovered with
close to zero relative bias and very small RMSE, even when the NMAR dependency was
high and 50% of observations were missing (i.e., in the NMARHS5 condition). The two-step
partial MI approach resulted in slightly higher biases and RMSEs compared to the
Bayesian approach when a correctly specified missing data model was fitted, especially

with increase in NMAR strength and missing data percentage. In contrast, when the
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missing data model was an underfitting one (e.g., a MCAR or MAR model fitted to NMAR
data), the Bayesian approach yielded slightly higher biases and RMSEs than the two-step
partial MI approach, which used the same imputation model that allowed for NMAR
elements regardless of the true missing data mechanism. The differences between the
Bayesian and two-step partial MI approaches grew as the NMAR dependency and the
percentage of missingness increased.

Compared to covariate parameters and process noise parameters, dynamic parameters
were the least affected by misspecification of missing data model in that underfitting
missingness models (i.e., NMARXMCAR, or NMARXMAR) only resulted in a very small
addition in biases and RMSEs compared to the true model (i.e., NMARxNMAR) across
all NMAR conditions. Simulation results suggested that the differences in biases were more
affected by NMAR dependency (e.g. comparing NMARL3 and NMARH3) than the
percentage of missingness (e.g. comparing NMARL3 and NMARLS5).

The aforementioned simulation results regarding parameter point estimates were also
reflected in the credible intervals resulted from the Bayesian approaches and confidence
intervals from the two-step partial MI approach. We plotted the coverage results only from
the NMAR conditions because the differences between missing data handling techniques
were the most salient under these conditions (Figure 3). The upper graph shows the overall
coverages across all VAR parameters, and the lower graph grouped coverage percentages by
parameter type. Under NMAR, only the Bayesian approach with correctly specified
missing data model resulted in coverage percentages that were close to the nominal 95%
across all parameters. With the exception of the LD method, coverage of the dynamic
parameters was largely similar across different missing data handling methods and was not
very sensitive to misspecification in the missing data model. However, the coverage
percentages for covariate and noise parameters were considerably worse when using LD, the
two-step partial MI, or with an underfitting model in the Bayesian approach. The coverage

percentages continued to worsen with increase in NMAR dependency and missing data
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percentage.

To summarize, the LD approach produced the most biased point estimates, especially
for dynamic parameters under all missing data conditions. Standard error estimates were
also larger with the LD approach, as compared with standard errors when full data was
fitted to the model. The Bayesian approach, when coupled with the correctly specified
missing data model, performed the best under NMAR conditions. Even with 50% of
missing data and relatively high NMAR dependency, the parameters were well recovered
and the coverage rates were close to the 95% nominal level. The two-step partial MI
approach also produced reasonable estimation results under MCAR and MAR conditions.
Under NMAR conditions, the two-step partial MI approach generated similar, and even
slightly better results than the Bayesian approach when underfitting models were used
(i.e., NMARxMCAR, NMARxMAR), as indicated by slightly smaller RMSE and better
coverage rate for the two-step partial MI approach results, when compared with
underfitting Bayesian approaches. In addition, the biases in estimation for the two-step
partial MI approach and underfitting Bayesian models were more substantial for covariate

and noise parameters, than for dynamic parameters.

Missingness Model Parameters and Model Selections. Table 5 compares
parameter estimates from fitting the dynamic model with a MCAR, MAR and NMAR
missingness model to the true parameter values under the six missingness scenarios
(MCAR, MAR, NMARL3, NMARL5, NMARH3, NMARHS5, respectively) *. As expected,
fitting the correctly specified missingness model yielded good accuracy in the estimated
missing data parameter values. A misspecified but overfitting missingness model (i.e.,
MARXxNMAR, MCARXxNMAR, or MCARXMAR) also yield satisfactory estimation
results, with the overfitted parameters estimated to be close to 0 (i.e., credible intervals
centered around 0, as opposed to the ones for other nonzero missingness parameters where

4 Since neither the LD method nor the two-step partial MI method explicitly specify and estimate a
missingness model, no missing data parameter estimates were available from these methods.
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credible intervals did not contain 0). Looking at credible intervals therefore allows us to
infer the missingness mechanism, especially in terms of NMAR missingness versus MAR or
MCAR. Underfitting regarding the missingness mechanism, however, resulted in biased
estimates in the missing data model parameters. For instance, when an MAR model was
fitted to NMAR data, estimates of the intercept as well as the MAR parameters all showed
notable biases.

A comparison of the BIC values under all true missingness mechanisms and
missingness models can be found in Figure 4. The BIC performed well in selecting the true
missingness model (i.e., BIC was the lowest for the true data generating model among all
missingness models 100% out of all the trials). Model selection results based on the BIC
were consistent with the conclusions drawn from inspecting the credible intervals of the
missing data parameters. For instance, when the true missing data mechaniem was
NMAR, the BIC suggested — across all the trials considered — a preference for the
NMAR model over other missing data models. Consistent with results from the BIC, the
corresponding credible intervals for NMAR parameters, namely ¢,,, ¢,,, and ¢,, also

indicated that these parameters deviated substantially from zero.

Discussion

Missing data, especially NMAR missingness and missing observations in covariates,
pose great challenges in model estimation for ILD. We applied a selection model approach
with Bayesian estimation procedures to fit both the model of interest, a bivariate VAR
model with covariates, and the missing data model simultaneously to time series data with
missingness. We performed a simulation study to illustrate the different performances of
the Bayesian approach and MI approach under different missing data mechanisms,
including MCAR, MAR, and NMAR. In order to demonstrate how percentages of missing
data, and NMAR dependencies may affect the estimation results, we tested four NMAR
conditions, including low dependency NMAR and high dependency NMAR paired with 30%

and 50% of missingness. Simulation results showed that the performance of the Bayesian
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approach was satisfactory across all tested conditions when correct missing data model was
fitted, with close to zero relative biases and very small RMSEs (i.e., smaller than .06). The
standard deviation estimates were also very close to empirical standard deviations across
100 MC runs, as well as the standard deviations obtained when the complete data were
used for model fitting (i.e., differences smaller than .03 for all parameters). The coverage
for all parameters were very close to 95%. In addition, with correctly specified missingness
model, all missingness model parameters were reliably recovered. The application of the
Bayesian modeling approach was illustrated with an empirical data set and the estimation
results were comparable with previous studies. Compared with the Bayesian approach with
correct missing data model, the two-step partial MI approach generated relatively reliable
estimates for dynamic parameters across all conditions, but parameter point estimates for
covariate and process noise parameters were biased under NMAR conditions, resulting in
relatively low coverage. This finding was consistent with the finding in the Ji et al. (2018)
paper. When underfitting Bayesian models (i.e., NMARXMCAR, NMARXxMAR) were
used with NMAR conditions, the two-step parital MI approach generated similar, and even
slightly better results than the Bayesian approach.

When the Bayesian selection model approach is used to model missingness mechanism,
implementing an overfitting missing data model can have some advantages in some
contexts. For instance, if the model is not too highly parameterized, the overfitting model
can still lead to correct inferences regarding other important parameters in the model.
Doing so also allows researchers to examine the plausible missing data mechnism and infer
whether the missingness is MCAR, MAR or NMAR. It is also possible to obtain posterior
distributions on the missing data, which may be of substantive interest.

It is also worth pointing out that as a parametric likelihood method, this approach
requires good knowledge of both the model for the dependent variables and the missingness
model. Misspecified models or overly complicated models can easily lead to convergence

issue. For instance, when applying the Bayesian selection model approach to the empirical
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data in this paper, we took several approaches to simplify the missing data model in order
to achieve model convergence, which included constraining most of the missing data
parameter values to be the same for the covariate parameters. Given the theoretically
similar missing data mechanisms for the two covariates in the model, we considered such
constraints appropriate. However, in other empirical studies, different missing data models
may be necessary for different variables with missingness. In addition, the fact that in real
life, we never know what is the true missing data model may also pose challenge in model
fitting of the Bayesian selection model approach. Furthermore, with complex models and
large data sets, the Bayesian method may be more time-consuming compared with fully or
partially frequentist methods, such as the two-step partial MI approach. With relatively
moderate percentage of missingness (i.e., 30%) and low NMAR dependency level, the
two-step partial MI approach were able to recover most of the parameters of the model of
interest, and the model fitting procedures take relatively short period of time (115.81
seconds for MI vs. 47697.73 seconds in Bayesian given the specifications of iterations
provided).

Similar to other dynamic models for longitudinal data, to start the process, initial
conditions need to be first specified. The specification we adopted in this article coincides
with what is typically regarded as “diffused initial condition” in the state space model
literature. A diffused initial condition typically involves specifying the distributions of the
latent variables at the first time point to be approximated by parametric distributions that
are “spread-out” enough to include the true initial conditions, such as a series of univariate
normal distributions with initial means at zeros and arbitrarily large variances (e.g.,

De Jong, 1991; Harvey, 2001; Schweppe, 1973). This was the initial condition distribution
adopted in this article, and the variance we imposed (100) was chosen to ensure that the
majority of the posterior probability distribution is within the possible range of values for
the dependent variables w and h. Other approaches exist in addressing the first time points

in dynamic modeling, including freely estimating the mean and covariance structure (e.g.
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Harvey and Souza, 1987; McArdle and Epstein, 1987), or using the model-implied mean
and covariance (e.g. du Toit and Browne, 2007; Hamaker, 2005), among a few. The
specification of initial time points is itself an active area of research that is beyond the
scope of this article (e.g. du Toit and Browne, 2007; Ji et al., 2018; Ou et al., 2016).

Our simulation results also confirmed the utility of the BIC in selecting the correct
missing data model. Model selection under the Bayesian framework with information
criteria is still an active field of research. The utilization of information criteria should not
be restricted to BIC, and the way we computed BIC is only one way of deriving it from
posterior samples. BIC was computed in the aforementioned way primarily for
computational ease, in that it did not require additional MCMC sampling or explicit
evaluation of the log-likelihood. Future research should explore a more diverse pool of
information criteria, some examples being the conditional Deviance Information Criterion
(DIC) considered by Celeux et al. (2006), and the modified DIC, which is a combination of
the BIC and the DIC, proposed by Lu and Song (2012).

This article demonstrated a Bayesian selection model approach to handle missing data
in longitudinal studies when a bivariate VAR model with covariates, a very widely applied
model in empirical studies, was fitted. In our study, the covariance of the process noises in
the VAR model was fixed at zero and thus not estimated. In other applications, it may be
of interest to free up the covariance by using a bivariate normal prior distribution
specification in the Bayesian method. In addition, further simulation studies need to be
conducted to evaluate the performance of this Bayesian selection model approach with
different full-data model specification. For instance, with Bayesian estimation approach, a
natural extension would be longitudinal models with multilevel structure with random
effects. Since MI methods have also been developed to handle nested data, it would be
interesting to compare the performance of the Bayesian approach and multilevel MI
approach. It would also be of interest to evaluate and compare the performance of the

Bayesian selection model approach and MI approaches with other dynamic model, such as
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VAR models with categorical data, process factor analysis models, regime switching models.
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Table 1
Empirical Estimation Results Using the Bayesian Approach with an NMAR Missingness
Model and Using the partial MI approach

Parameter Bayesian MI
Mean SD Mean SE

VAR model parameters
Gy 0.0037 0.0377  -0.028 0.047
ap—sh -0.0417 0.0382  0.017 0.048
bh—w 0.0171 0.0377  0.039 0.046
buw—h 0.0585 0.0382  -0.054 0.047
Cry—w -0.5035 0.0178 -0.121 0.024
Cry—h -0.5096 0.0178 -0.132 0.026
0 0.0623 0.0184  0.033 0.041
dyysh, 0.0608 0.0186  0.017 0.035
ol 0.5449 0.0207  0.928 0.032
afh 0.5279 0.0203  0.917 0.032
Covariate model parameters
53 0.4233 0.1218
Ba -0.2937  0.0150
N 2.1743 0.4363
Yo 0.8212 0.1873
U3 0.2402 0.0625
Yy 0.0674 0.0364

2

1.284 0.1056
7.0253 0.6747

€x1

67;2
Missingness model parameters

Gint,, -5.9096  0.4406
Dint,, -5.7389  0.4093
Pint,, -10.5266  1.2860
Pint,, -10.5264  1.2853
Bpsy 0.181 0.1208
Bpsa 0.0954  0.1067
b 5.3734  0.5267

Note: A number in bold indicates that the credible/confidence interval for that estimate did not contain zero.
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Table 2

Sensitivity Check Results for Empirical Illustration

Parameter VAR1 VAR2 VAR3 Covl Cov2 Cov3d NA1l NA2 NA3
VAR model parameters
[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qh—sh -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
hsw 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
w—sh 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Cry—w -0.50  -0.50 -0.50  -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
Cry—h -0.51  -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51
— 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
N 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
ol 0.54 0.55 0.54 0.54 0.54 0.55 0.54 0.54 0.55
gh 0.53 0.53 0.52 0.53 0.53 0.53 0.53 0.53 0.53
Covariate model parameters
b1 0.43 0.42 0.43 0.42 0.43 0.41 043 043 0.46
Ba -0.29  -0.29 -029 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29
(N 2.16 2.17 2.17 2.18 2.03 2.51 216 215  2.25
(1 0.83 0.82 0.83 0.82 0.83 0.82 0.83 083 0.91
(1 0.24 0.24 0.24 0.24 0.24 0.24 024 024 0.27
(N 0.07 0.07 0.07 0.07 0.08 0.04 0.07  0.07 0.07
ale 1.29 1.28 1.30 1.28 1.29 1.27 1.29 129 1.31
ol 6.98 7.05 6.98 7.03 6.96 7.15 702 686 7.65
Missingness model parameters
Pint,, -591  -591 -591 -591 -591 -591 -592 -586 -6.05
inty, -5.74 574 -574 574 5774 574 575 -570 -5.87
inta, -10.49 -10.54 -10.47 -10.54 -10.59 -10.67 -10.72 -9.54 -16.41
ity -10.49 -10.54 -10.47 -10.54 -10.58 -10.67 -10.72 -9.54 -16.41
Dpsy 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20
D> 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.10
5.36 5.38 5.35 5.38 5.40 5.42 545 498  7.63

T

Notes: VAR: VAR model parameters check; Cov: Covariate model parameters check; NA: Missingness model parameters check.
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Table 3
Parameter Values for Missing Data Mechanisms in Simulation Study

| MCAR MAR NMARL3 NMARL5 NMARH3 NMARH5

Gtz | 0 -1.05  -3.04 -2.19 -4.18 -3.33
itz | 0 <105 =240 -1.55 -2.90 -1.45
ity |0 105 -2.45 -1.60 -3.05 -2.20
i | 0 <105 -2.35 -1.50 -2.81 -1.96

s 0 030  0.30 0.30 0.30 0.30
s 0 040  0.40 0.40 0.40 0.40
o 0 0 0.60 0.60 1.20 1.20
o 0 0 1.00 1.00 2.00 2.00
§ 0 0 0.50 0.50 1.00 1.00
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Table 4
Standard Deviation/Error Estimates Comparison for Simulation Study

True: MCAR True: MAR

Method used/ dSD dSDFull dSD dSDFull

Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise
LD 0.00 0.00 0.02 0.06 0.10 0.13 -0.00 -0.01 0.01 0.05 0.08 0.11
MI 0.00 -0.00 0.00 0.01 0.02 0.02 0.00 0.00 -0.00 0.01 0.02 0.02
MCAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.01
MAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.01
NMAR -0.00 -0.00 0.00 0.01 0.02 0.01 0.00 0.00 -0.00 0.01 0.02 0.02

True: NMARL3 True: NMARLbH

Method used/ dsD dSDFull dsD dSDFull

Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise
LD -0.00 0.00 -0.01 0.02 0.03 0.04 0.00 0.00 -0.00 0.06 0.09 0.10
MI -0.00 0.00 -0.00 0.01 0.01 0.01 0.00 0.00 -0.00 0.02 0.02 0.02
MCAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.01
MAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.01
NMAR -0.00 0.00 -0.00 0.01 0.01 0.01 -0.00 0.00 -0.00 0.01 0.02 0.02

True: NMARH3 True: NMARH5

Method used/ dSD dSDFull dSD dSDFull
Model fitted Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise Dynamic Covariate Noise
LD -0.00 0.00 -0.00 0.03 0.04 0.04 -0.00 0.01 0.00 0.07 0.11 0.11
MI 0.00 0.00 -0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.02 0.01
MCAR 0.00 0.00 -0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.01 0.01
MAR 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 -0.00 0.02 0.01 0.01
NMAR 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 -0.00 0.01 0.02 0.03

Note: dSD: difference in average standard error across MC runs compared MCSDs; dSDFull: difference in average standard error across MC runs compared to
the MCSD from the fitting the model for dependent variables to the complete data without missingness.
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Table 5
FEstimated Missingness Parameter Values for Simulation Study

MCAR MAR NMARL3

Parameter

True MCAR MAR NMAR True MCAR MAR NMAR True MCAR MAR NMAR
Dintar 0 -0.01 -0.01 -0.01 -1.05 0.01 -1.04 -1.06 -3.04 -0.78 -1.82 -3.08
Qintzs 0 -0.01 -0.01 0 -1.05 0 -1.04 -1.04 -24 -0.78 -1.81 -2.41
Dinty, 0 0 0 -0.01  -1.05 0 -1.05 -1.05 -2.45 -0.58 -1.61 -2.47
Dintys 0 0.01 0.01 0 -1.05 0 -1.04 -1.05 -235 -0.78 -1.81 -2.37
Doy 0 0 0.3 0.3 0.3 0.3 0.29 0.3
Do 0 0 0.4 0.4 0.4 0.4 0.38 0.4
Oy 0 0.01 0.6 0.62
Dy -0.02 -0.01 1 1
Oy 0 0 0.5 0.51

NMARL5 NMARH3 NMARH5

Parameter

True MCAR MAR NMAR True MCAR MAR NMAR True MCAR MAR NMAR
Dintay -2.19 0 -0.98 -2.22 -4.18 -0.73 -1.62 -4.17 -3.33 0 -0.86 -3.36
Dintas -1.55 0 -0.98 -154 -29 -0.66 -1.56 -2.91 -1.45 0.47 -0.38 -1.46
Dint, -1.6 0.17 -0.81 -1.6 -305 -04 -1.29 -3.05 -22 0.24 -0.61 -2.24
Dintys -1.5 0 -0.99 -1.51 -281 -0.69 -1.58 -2.81 -196 -0.01 -0.87 -1.98
Do, 0.3 0.28 0.3 0.3 0.25 0.3 0.3 0.25 0.3
Do 0.4 0.38 0.4 0.4 0.33 0.4 0.4 0.33 0.4
Py 0.6 0.61 1.2 1.19 1.2 1.21
Oy 1 0.98 2 2.01 2 2.02
Oy 0.5 0.51 1 0.99 1 1.01

Note: A number in bold indicates that over 95% of credible intervals for that estimate did not contain zero within a specific simulation condition.
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Figure 1. A Comparison between the Empirical and Simulated Distributions of Numbers
of Total Observations (Ts).



A BAYESIAN VAR MODEL WITH NONIGNORABLE MISSINGNESS

(a) Average Relative Biases by Parameter Group
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Figure 2. Relative bias (a) and RMSE (b) in parameter estimates in different approaches
and when fitting true and misspecified models, grouped by parameter category.
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(a) Average Coverage across All VAR Parameters
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Figure 3. Average coverage across all VAR parameters (a) and grouped by parameter
categories (b) in NMAR true missingness conditions with different approaches and when

fitting true and misspecified models.
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Appendix A
Models for Different Missingness Mechanism for Empirical Illustration

Apart from the model specified in Equations 5 - 8, we also considered the following three
alternative models for missing mechanisms, in which all the dependent variables and
covariates were assumed to be MCAR, MAR, or NMAR respectively. However, they all
had BIC values greater than the mixed MAR and NMAR model reported in the Empirical
[lustration, indicating less good model fits (Table A1). Therefore, the mixed model
(Equations 5 - 8) was selected. Here, we describe briefly these alternative missing data
models considered.

Let z;,, denote the jth variable in the data for family n and time ¢, where z;,, may be
any variable in Y or X; and r,, represents the missingness indicator for this variable.
MCAR condition: Whether an observation is missing or not does not depend on any

data-related factor. Hence the missingness is modeled only by an intercept.
P(r., =1)=logit™" (¢im,)

MAR condition: Whether an observation is missing or not depends on fully observed

variables in data (here p, and p,).

P(sznt = 1|pwnt7phnt) = logit_l(gbintj + gbpw—m'pwnt —I— ¢ph—>]’phnt)

NMAR condition: Whether an observation is missing or not depends on fully observed

variables in data as well as variables themselves.

P(sznt - ]'lzjnt’pwnﬂphnt) = lOgit_1(¢intj + gb]Z]nt + qbpwejp’wnt + ¢ph—>jphnt)
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Table Al
Comparison of BICs with Different Missing Mechanisms for Empirical Illustration

Mixed*  MCAR MAR NMAR
BIC 14732.63 17613.94 17348.34 15447.45

*: The mixed MAR and NMAR missing mechanisms follow the specification in Equations 5 - 8

49
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Appendix B
Alternative Model for Covariates and Results Comparison

In place of Equation 3, we considered an alternative model that contained, for x;:

Tl = B + €x1mty Cxyme © N(O 02 )7

» Yy

where x; did not depend on any information contained in the data set.

The BIC for the alternative model was 14950.02, which was slightly higher than that
of the model for covariates reported in the Empirical [llustration (Equations 3 & 4;
14732.63). Hence we selected the originally proposed model. Estimated parameter values
for the alternative model are reported in Table B1. These estimates would not lead to

substantively different conclusions, though some of them differ in magnitude from those in

Table 1 (e.g. duysh)-
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Table B1
Estimation Result Using An Alternative Model for Covariates

Parameter Mean SD

VAR model parameters

Qs 0.0022 0.0391
Ahsh -0.0467 0.0390
bhsu 0.0114 0.0391
bu—sh 0.0561 0.0391
A -0.5112 0.0184
Carosh -0.5176 0.0184
Ay 0.2297 0.0139
dpysh 0.2307 0.0139
o? 0.5651 0.0216
03 0.5492 0.0211
Covariate model parameters
3 1.7936 0.1193
i 0.7559 0.3147
s 1.5289 0.0702
s 0.4525 0.0291
Uy 0.0421 0.0271
2 3.5962 0.3383
3.8657 0.3471
Missingness model parameters
Gint,, -5.9098 0.4424
Gint,, -5.7435 0.4095
Gint, -13.2284 2.3228
Pint,, -13.2267 2.3209
sy 0.1822 0.1207
Gpsa -0.2788 0.1284
bu 6.0966 0.8715

Note: A number in bold indicates that the credible interval for that estimate did not contain zero.
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Appendix C
R Script and JAGS Model Script Used for Empirical Illustration
R Script
library(rjags)
library(coda)
library(stats)

load.module("dic")

adaptSteps = 50000
burnInSteps = 10000

nChains = 2

# Setting initial values for MCMC (optional)
init1<-1list(a=0,21=0,b=0,b1=0,c=-0.5,c1=-0.5,d=0,d1=0,
taul=2,tau2=2,
beta=c(0,-0.4),
psi=c(0,0.1,0,0),
tau_x1=0.1,
tau_x2=0.1,
phiyl=rep(0.1,7),
yl=ylguess,y2=y2guess,xl=xlguess,x2=x2guess,

.RNG.seed=2*batch+1, .RNG.name="base: :Mersenne-Twister"

init2<-list(a=rnorm(1,0,0.1),al=rnorm(1,0,0.1),
b=rnorm(1,0,0.1) ,bl=rnorm(1,0,0.1),

c=-0.5+rnorm(1,0,0.1),c1=-0.5+rnorm(1,0,0.1),
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d=rnorm(1,0,0.1),d1=rnorm(1,0,0.1),
taul=1,tau2=1,

beta=c(1,0.4)+rnorm(2,0,0.1),
psi=c(0.5,-0.1,0.1,0.1)+rnorm(4,0,0.1),
tau_x1=0.5,

tau x2=0.5,
phiyl=rep(-0.1,7)+rnorm(7,0,0.1),
yl=ylguess,y2=y2guess,xl=xlguess,x2=x2guess,

.RNG.seed=2*batch, .RNG.name="base: :Mersenne-Twister"

# Organize the data into a list
datalist <- list(yl=yl, y2=y2, x1=x1, x2=x2, N =n, T =T,
mu0=0, tau0=0.001, R1=R1, R2=R2, R3=R3, R4=R4,

age=age, ph=ph, pw=pw)

jagsModelNMAR <- jags.model( "emp_model.txt", data=datalist, n.chains=nChains,

n.adapt=adaptSteps, inits=list(initl,init2) )

update( jagsModelNMAR , n.iter=burnInSteps )

parameters<- c("a","al","b","b1","c","c1","d","d1","Sigmal","Sigma2","deviance",
"phiyl", "tau_x1", "tau_x2", "beta", "psi")

mcmcCodaNMAR <- coda.samples(jagsModelNMAR, variable.names=parameters,

n.iter=50000)

JAGS Script: emp__model.txt

model {
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for (n in 1:N){

yl[n,1] ~ dnorm(0, 0.01)
y2[n,1] ~ dnorm(0, 0.01)
x1[n,1] ~ dnorm( 0,0.01 )

x2[n,1] ~ dnorm(0,0.01)

for (t in 2:T[n]){

muxl[n,t] <- betal[l] + beta[2]*pw[n,t] + betal[2]*ph[n,t]

x1[n,t] ~ dnorm(muxl[n,t],tau_x1)

mux2[n,t] <- psil[1] + psi[2]*x1[n,t] + psil[3]*pw[n,t] +
psil[3]*phl[n,t] + psil[4]*age[n]

x2[n,t] ~ dnorm(mux2[n,t],tau x2)

yl[n,t] ~ dnorm(mul[n,t], taul)
y2[n,t] ~ dnorm(mu2[n,t], tau2)
mul[n,t]<-a*yl[n,t-1]+b*y2[n,t-1]+c*x1[n,t]+d*x2[n,t]

mu2[n,t]<-blxyl[n,t-1]+al*y2[n,t-1]+cl*x1[n,t]+d1*x2[n,t]

nmarlogityl[n,t]<-phi[1]+ phi[6]*pw[n,t] + phiyl[5]*ph[n,t]
nmarpryl[n,t]<-exp(nmarlogityl[n,t])/(1+exp(nmarlogityl[n,t]))

Ri[n,t] ~ dbern(nmarpryl([n,t])
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nmarlogity2[n,t]<-phi[2]+ phi[5]*pw[n,t] + phi[5]*ph[n,t]
nmarpry2[n,t]<-exp(nmarlogity2[n,t])/(1+exp(nmarlogity2[n,t]))

R2[n,t] ~ dbern(nmarpry2([n,t])

nmarlogitxl[n,t]<-phi[3]+phi[7]*x2[n,t] + phi[6]*pw[n,t] +
phi[6]*ph[n,t]
nmarprxl[n,t]<-exp(nmarlogitxl[n,t])/(1+exp(nmarlogitxl[n,t]))

R3[n,t] ~ dbern(nmarprxi[n,t])

nmarlogitx2[n,t]<-phi[4]+phi[7]*x2[n,t] + phi[6]*pw[n,t] +
phi[6]*ph[n,t]
nmarprx2[n,t]<-exp(nmarlogitx2[n,t])/(1+exp(nmarlogitx2[n,t]))

R4[n,t] ~ dbern(nmarprx2([n,t])

# PRIORS
for (i in 1:2){
betal[i] ~ dnorm(0, 0.01)
}
for (i in 1:4){

psili] ~ dnorm(0, 0.01)

a ~ dnorm(0, 0.1)

al ~ dnorm(0, 0.1)
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b ~ dnorm(0, 0.1)
bl ~ dnorm(0, 0.1)
c ~ dnorm(0, 0.1)
cl ~ dnorm(0, 0.1)
d ~ dnorm(0, 0.1)
di ~ dnorm(0, 0.1)

for(i in 1:7){

phil[i] ~ dnorm(0, 0.01)

taul ~ dgamma(0.001,0.001)
Sigmal <- inverse(taul)

tau2 ~ dgamma(0.001,0.001)
Sigma2 <- inverse(tau2)
tau_x1 ~ dgamma(0.001,0.001)
tau_x2 ~ dgamma(0.001,0.001)
}
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