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1  | INTRODUC TION

Earth's forests provide trillions of dollars of benefits to society in 
ecosystem goods and services (Costanza et al., 1997) and take up 
nearly a quarter of human emissions of carbon each year, greatly 
slowing climate change (Bonan, 2008; Pan et al., 2011). Yet, human‐
caused climate change will profoundly alter the structure and 
function of forests through gradual changes in mean climate, distur‐
bances, and increasing frequency of climate extremes such as heat 

and drought (Allen, Breshears, & McDowell, 2015; Bonan, 2008; 
IPCC, 2012). Climate extremes are expected to be damaging to eco‐
systems (Easterling et al., 2000) but the magnitude and spatiotem‐
poral impacts of climate extremes on forests are particularly hard to 
predict because: (a) extremes are rare by definition; (b) the impacts 
often lag the inciting extreme by multiple years; and (c) experimen‐
tal manipulation in the field is logistically difficult and thus inher‐
ently limited in scope, while greenhouse manipulation on small trees 
may not generalize to field settings. Thus, “natural experiments” of 
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Abstract
Climate change‐driven drought stress has triggered numerous large‐scale tree 
mortality events in recent decades. Advances in mechanistic understanding and 
prediction are greatly limited by an inability to detect in situ where trees are likely 
to die in order to take timely measurements and actions. Thus, algorithms of early 
warning and detection of drought‐induced tree stress and mortality could have 
major scientific and societal benefits. Here, we leverage two consecutive droughts 
in the southwestern United States to develop and test a set of early warning met‐
rics. Using Landsat satellite data, we constructed early warning metrics from the 
first drought event. We then tested these metrics’ ability to predict spatial pat‐
terns in tree physiological stress and mortality from the second drought. To test 
the broader applicability of these metrics, we also examined a separate drought 
in the Amazon rainforest. The early warning metrics successfully explained sub‐
sequent tree mortality in the second drought in the southwestern US, as well as 
mortality in the independent drought in tropical forests. The metrics also strongly 
correlated with spatial patterns in tree hydraulic stress underlying mortality, which 
provides a strong link between tree physiological stress and remote sensing during 
the severe drought and indicates that the loss of hydraulic function during drought 
likely mediated subsequent mortality. Thus, early warning metrics provide a critical 
foundation for elucidating the physiological mechanisms underpinning tree mortal‐
ity in mature forests and guiding management responses to these climate‐induced 
disturbances.
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assessments on mature forests during severe droughts are critical to 
develop a predictive understanding. However, such “natural experi‐
ments” are rare because such events are often missed and can only 
be studied retrospectively or opportunistically.

Severe drought and heat have triggered widespread forest die‐
off events in all forested biomes around the globe in recent decades 
(Allen et al., 2010, 2015; Hartmann et al., 2018). Tree mortality 
has manifold consequences for ecosystems, including decreases in 
biodiversity, increases in invasive species, and loss of ecosystem 
function (Anderegg, Kane, & Anderegg, 2013; Kane et al., 2011). 
Furthermore, tree mortality has the potential to influence land‐at‐
mosphere feedbacks through changes in forest biophysical and bio‐
geochemical properties and even accelerate climate change if more 
carbon is emitted from dead trees than is absorbed by remaining liv‐
ing trees (Adams et al., 2010; Anderegg, Kane, et al., 2013). Despite 
mortality's critical impacts and potential carbon cycle feedbacks, our 
predictive understanding of drought‐induced tree mortality remains 
quite limited (Adams et al., 2017; McDowell et al., 2011; Powell et 
al., 2013). Due in large part to the limitations described above, the 
vast majority of mortality physiology studies have been conducted 
in greenhouse settings, which limits their utility for improving global 
vegetation models (Adams et al., 2017).

Our ability to study and predict mortality is severely limited by 
not being able to determine which areas are likely to die from the 
inciting drought, and thus where measurements and/or management 
actions ought to be taken (Hartmann et al., 2018). This lack of an 
“early warning metrics” greatly constrains ecophysiological studies 
on mature forests and societal response to mortality (Hartmann et al., 
2018). Ideally, such metrics would (a) use easily accessible and freely 
available satellite remote‐sensing data, (b) be applicable in a broad 
array of forest systems, and (c) cover large spatial areas. Several early 
warning signals from remote‐sensing techniques have been tried but 
efforts to date have some limitations because commonly utilized 
greenness indices, such as the Normalized Difference Vegetation 
Index (NDVI) (Rogers et al., 2018), may not have high accuracy in sys‐
tems with high leaf area or where understory greenness responses 
obscure a mortality signal (Huete et al., 2002; Rogers et al., 2018), or 
because they are based on aircraft spectroscopic data that is costly 
and logistically not feasible for large geographic areas (Asner et al., 
2016). Furthermore, the potential to link early warning metrics from 
remote sensing during the severe drought itself to tree physiological 
stress would provide an important advance for field ecophysiological 
studies to capture and quantify mortality mechanisms in vivo.

A “climate change‐type” drought—a drought exacerbated 
by high temperatures—occurred in 2002 in the southwestern 
US and drove widespread mortality of trembling aspen (Populus 
tremuloides) in the region (Anderegg, Berry, Smith, et al., 2012; 
Huang & Anderegg, 2012; Worrall et al., 2008, 2010). However, 
like many drought‐induced tree mortality events across the world 
(Anderegg, Berry, & Field, 2012; Trugman et al., 2018), we ob‐
served a lag between when drought struck and when mortality 
occurred (Figure 1). This lag was about 3–6  years (gray bars in 
Figure 1b)—new area affected by mortality peaked in 2007 and 

had largely tapered off by 2011. In previous work, we used freely 
available Landsat satellite data to show that we can map spatial 
patterns in the severity of drought‐induced aspen mortality using 
the amount of “non‐photosynthetically active vegetation (NPV)” 
cover (broadly defined as senescent leaves, bark, snags, and coarse 
woody debris) that can be directly viewed by a satellite optical 
sensor (Huang & Anderegg, 2012). Intriguingly, we found that NPV 
during the 2002 drought and the change in NPV between pre‐
drought and drought were indicative of areas that would experi‐
ence high mortality between 2004 and 2010 (Figure 1) (Huang & 
Anderegg, 2014). Thus, we hypothesized these two metrics as po‐
tentially useful early warning metrics (Huang & Anderegg, 2014).

A second severe drought struck the region in 2012 (Figure 1a) and 
provided an excellent opportunity to rigorously field test the hypoth‐
esized early warning metrics. Guided by these early warning metrics 
from satellite data, we established a set of field plots during the severe 
2012 drought, took a suite of physiological measurements, and fol‐
lowed these plots for subsequent mortality through 2017. We asked: 
(a) can the NPV‐based early warning metrics during the 2012 drought 
explain subsequent mortality, (b) what are the potential canopy struc‐
tural mechanisms underlying the early warning metrics, and (c) can the 
early warning metrics predict spatial patterns of tree water stress and 
physiological damage to guide ecophysiological field studies? As a pre‐
liminary investigation to test the generality of this approach in a very 
different system, we also did a simple analysis using the same metrics 
on the severe 2005 drought in the Amazon forest, which triggered 
substantial mortality (Brienen et al., 2015; Phillips et al., 2009, 2010).

2  | METHODS

2.1 | Overview

We used two consecutive droughts—2002 and 2012—in the same re‐
gion to build and test early warning metrics for drought‐induced tree 
mortality. The severe 2002 drought in the southwestern United States 
triggered a lagged episode of widespread aspen mortality, where 
mortality peaked at 4–5 years after the inciting drought (Worrall et 
al., 2008, 2010). Extensive research has shown that drought is the 
dominant cause of regional‐scale aspen mortality in this area and time 
period (Anderegg, Berry, Smith, et al., 2012, Anderegg, Hicke, et al., 
2015, Anderegg, Flint, et al., 2015; Worrall et al., 2008, 2010). Our 
focal study area was the San Juan National Forest (915 km2; 37.5N, 
108.3W, mean annual temperature = 3.9°C, mean annual precipita‐
tion = 699.7 mm) in western Colorado, USA (Huang & Anderegg, 2014), 
which experienced severe aspen mortality (Worrall et al., 2010).

We used previously hypothesized early warning metrics calcu‐
lated from a satellite image taken during the severe 2012 drought to 
guide field plot selection and physiological measurements and then 
followed these satellite‐selected plots and other existing field plots 
(see below) to observe lagged mortality 4–5 years later. This method 
provides a rigorous field test of early warning metrics because we 
did not know which, if any, of the plots would experience mortality 
4–5 years later.
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2.2 | Remote sensing of early warning metrics

Our previous studies conducted in the aspen forests of the San 
Juan National Forest found that the presence of a high amount of 
brown vegetation (NPV), indicating fewer leaves and more branches 
exposed to the sky, was able to accurately map spatial patterns in 
the severity of aspen mortality, whereas standard greenness indi‐
ces could not (Huang & Anderegg, 2012). We also observed an in‐
crease in NPV during the drought (Figure 1c), which might reflect 
physiological response to drought through changes in leaf area or 
leaf shedding. This NPV increase was spatially correlated with sub‐
sequent (lagged) tree mortality patterns observed after the drought 
(2009–2011). Time‐series analysis of NPV was undertaken in a pre‐
vious study in these forests and found that NPV can robustly detect 
mortality at a regional scale (Huang & Anderegg, 2014).

In order to derive satellite NPV of 2011 and 2012 to test our 
early warning metrics, surface reflectance data of summer growing 
season Landsat Thematic Mapper (TM) (collected on July 1, 2011) 

and Enhanced TM plus (ETM+) (June 25, 2012) surface reflectance 
data for the San Juan National Forest were acquired from the 
LEDAPS (Landsat surface reflectance product processed using the 
on‐demand processing Landsat Ecosystem Disturbance Adaptive 
Processing System) algorithm (Claverie, Vermote, Franch, Masek, 
2015) via the Google Earth Engine servers via Python (https​://earth​
engine.google.com/) (Figure S1). We controlled the dates of these 
two sets of imagery closely to make them comparable by sampling 
only in the ~2.5 month leaf area index (LAI) plateau in peak grow‐
ing season of aspen forests and avoid natural seasonality induced 
differences in leaf development or senescence. Land surface end‐
member cover fractions photosynthetically active vegetation (PV), 
NPV, and bare soil (ranging from 0% to 100%) of each pixel were 
derived applying a Monte Carlo simulation‐based spectral mixture 
analysis model (Bateson, Asner, & Wessman, 2000) using Interactive 
Data Language (IDL v. 8.2; Exelis Visual Information Solutions, Inc., 
CO, USA), which is ideal for the quantification of disturbed hetero‐
geneous land surfaces (Huang et al., 2013). Specific settings for the 

F I G U R E  1   (a) Potential water deficit 
(water year [October–September] 
precipitation—water year potential 
evapotranspiration) for the Upper San 
Juan (USGS HUC8 14080101) watershed 
from 2001 to 2017 from Abatzoglou, 
Dobrowski, Parks, & Hegewisch, 2018. 
Solid line is the mean from 1980 to 2000 
and dashed lines are 1 standard deviation 
from the mean. (b) Lagged aspen mortality 
following two consecutive droughts 
(2002 and 2012; red shaded boxes) in the 
southwestern United States. Mortality 
data following the 2002 drought (gray 
bars, kHa of recent mortality per year) 
was taken from US Forest Service Aerial 
Detection Surveys over the state of 
Colorado and was redrawn from Worrall 
et al. (2010), calculated as the annual 
increase in the aspen damage area 
reported by Worrall et al. (2010). Green 
diamonds are average percent canopy 
dieback measured across all plots in the 
San Juan National Forest, Colorado and 
error bars are the standard deviation. (c) 
Blue, red, and dark red circles indicate the 
non‐photosynthetically active vegetation 
(NPV) detected from Landsat for healthy, 
intermediate, and severe mortality/sudden 
aspen decline (SAD) affected plots, 
respectively, which were classified in 2011 
in Huang and Anderegg (2014) based on 
field data in the same region (San Juan 
National Forest, CO). NPV‐based early 
warning metrics illustrated via arrows
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spectral mixture model for these aspen forests are described in pre‐
vious publications (Huang & Anderegg, 2012, 2014). For the small 
amount of subsampled pixels corresponding to our field plots, we 
extended the unmixing repetition to 250K times to obtain a more 
stable outcome (Asner & Lobell, 2000).

2.3 | Plot locations and field data collection

We used the NPV calculated from the June 25, 2012 Landsat ETM+ 
image and the NPV12‐NPV11 metric to identify 13 aspen plots 
that showed a wide range of early warning metric values (Figure 
S2). In particular, we conducted a stratified random sample within 
1  km of an accessible road and selected ~54% of plots (N  =  7) 
that had NPV12‐NVP11 >30% and 46% of plots (N = 6) that had 
NPV12‐NVP11 <30% in the same region. We also included two 
pre‐existing plots, one with high NPV and one with low NPV, be‐
cause we had strong baseline physiology and stand structure data 
pre‐drought (2011; see Section 2.4 below). We ensured that none 
of these plots fell within the sections of missing data in Landsat 
7 due to the Scan Line Corrector Failure, which is a well‐known 
issue in Landsat 7 of data gaps due to a sensor failure (Chen, Zhu, 
Vogelmann, Gao, & Jin, 2011). This issue does not affect our study, 
however, as we used Landsat 7 only for calculating plot‐level pat‐
terns (not region‐wide patterns) and all of our plots did not fall in 
the image gaps. We surveyed those aspen plots from June 27 to 
July 3, 2012 and established 0.05 ha fixed radius (i.e., 8.8 m radius) 
circular plots, recording each plot's precise location with a Garmin 
Global Positioning System (spatial uncertainty <8 m). While these 
plots are relatively small compared to the pixel size, a smaller plot 
size was used both for feasibility constraints (high tree density 
precluded larger plots) and to reduce the potential for misregis‐
tration errors. Furthermore, plots were randomly located within 
larger, homogenous aspen forests and are thus likely to be rep‐
resentative and similar plot sizes have been used successfully to 
detect mortality with Landsat in these forests previously (Huang 
& Anderegg, 2012).

In each plot, we measured the diameter at breast height (DBH, 
cm, defined as stem diameter 1.37 m above the forest floor), sta‐
tus (living/dead), and percent canopy dieback (0%–100%) of all 
trees with a DBH greater than 5  cm. Percent canopy dieback in 
aspen is based on the number of recently dead branches and a 
visual assessment of the percentage of a roughly spherical healthy 
crown that is missing. All canopy dieback estimates were made 
by two independent observers and cross‐checked for consistency, 
and we have used the percent canopy dieback metric extensively 
in remote sensing (Huang & Anderegg, 2012) and physiological 
(Anderegg, Berry, Smith, et al., 2012; Anderegg, Plavcová, et al., 
2013) studies of aspen mortality previously. We also noted the 
presence of any secondary fungal or insect pests and pathogens 
in trees, which are thought to play a contributing but not a major 
causal role in aspen mortality in this region (Worrall et al., 2010). 
We resurveyed the plots in 2013 and 2017, measuring status and 
percent canopy dieback of each tree.

At these 13 satellite‐selected and two pre‐existing field plots, 
we took a suite of field measurements of physiology during the 
peak of the drought (June 27–July 5, 2012), which was just prior to 
the start of the monsoon rains that began around July 7, 2012 (see 
Anderegg, Anderegg, Berry, & Field, 2014 for detailed climate data 
during the drought). At these 15 plots, we measured the average leaf 
size and δ13C of leaf sugars of mature, sun‐exposed canopy leaves. 
We randomly selected three dominant canopy trees in each plot and 
between 12:00 and 14:00  hours collected two mid‐to‐upper can‐
opy, sun‐exposed branches with a 20 gauge shotgun, severing small 
branches with light bird‐shot and ensuring that no leaves were dam‐
aged during collection. For leaf size, a random subsample of leaves 
from each tree was photographed immediately in the field (e.g., 
Figure 3a) and average leaf size was then calculated using ImageJ 
(https​://imagej.nih.gov/ij/). At the pre‐existing high and low NPV 
plots, we measured average leaf size using the exact same method 
(one plot in each group, three randomly selected trees per plot, ~30 
leaves/plot) during August 15–16, 2011, and June 6–7, July 5–6, and 
August 15–16, 2012, which allows an assessment of the change be‐
tween 2011 and 2012.

For δ13C of leaf sugars, a separate random subset of leaves for 
each tree was immediately placed in sealed plastic bags and then in a 
dark cooler on ice. These leaves were kept in the dark and on ice until 
oven‐dried at 65°C within 24  hr. Leaves were then ground finely 
using a Wiley Mill (30 mesh) and then ground to a powder using a 
ball mill. To extract the leaf sugars for isotopic measurements, we 
followed the ion chromatography protocol of Brugnoli, Hubick, 
Caemmerer, Wong, and Farquhar (1988) (Brugnoli et al., 1988; 
Richter et al., 2009). Briefly, 150 mg of ground leaf tissue was added 
to 150  mg of polyvinylpolypyrrolidone and 5  ml of DI water, vor‐
texed for 5 s, and shaken at room temperature for 45 min. This sam‐
ple was then centrifuged for 20 min at 17,000 g, and the supernatant 
recovered and used for chromatography. For sugar purification via 
chromatography, the supernatant was passed sequentially through 
an ion exchange resin (DOWEX 50Wx8‐100, 50–100 mesh, SIGMA 
cat no. 217492) to eliminate amino acids and then an ion exchange 
resin (DOWEX 1X2, Cl‐, 50–100 mesh, strongly basic, SIGMA cat no. 
44290) to eliminate organic acids. Samples were then freeze‐dried, 
foil‐balled, and shipped to the UC Davis Stable Isotope Facility and 
measured via isotope ratio mass spectrometry (Thermoscientific) 
and δ13C in parts per thousand notation (‰) was calculated as 
δ13C = [(δ13Csamp/δ12Csamp)]/[(δ13Cref/δ12Cref) − 1] × 1,000.

At a subset of seven plots (five satellite‐selected and two 
pre‐existing) selected to be in close geographic proximity but in‐
cluding four high NPV and three low NPV values, we took a fur‐
ther set of physiology and canopy measurements during the peak 
drought stress. We measured LAI using hemispherical photogra‐
phy at these seven plots during July 4–6, 2012. We took photo‐
graphs prior to sunrise (05:00–06:00 hours) from the plot centers 
with a standardized orientation toward north. We then processed 
these photographs using Gap Light Analyzer (Frazer, Canham, & 
Lertzman, 1999) to calculate LAI with a standard angle of 75° be‐
cause no plots were on steep (>10°) slopes. We measured predawn 

https://imagej.nih.gov/ij/


     |  2463ANDEREGG et al.

and midday stem water potentials on three trees per plot and 
two sun‐exposed branches per tree, collected as above and recut 
at least 20 cm and two distal nodes from the initial break point, 
using a Scholander‐type pressure chamber (PMS Instruments, 
Corvalis OR, USA). Measurements were taken between 04:00 and 
05:30  hours local time for predawn and 12:00–14:00  hours for 
midday and leaves were kept in the dark prior to measurement and 
measured within ~2 min after collection from the tree. Finally, we 
collected 2–3 branch segments from each of the three trees per 
plot to measure native and maximum stem hydraulic conductivity. 
Briefly, >10 cm segments were cut from branches (average branch 
diameter 0.5 cm) and kept dark and moist in a sealed plastic bag 
for transport to the laboratory. In the laboratory, branch segments 
were recut under water to avoid any cutting artifacts (Venturas, 
MacKinnon, Jacobsen, & Pratt, 2015) with a razor blade and 
then processed via the standard pressure‐flow method (Sperry, 
Donnelly, & Tyree, 1988). Stems were then vacuum infiltrated over‐
night to remove any embolism and the process repeated to calcu‐
late maximum conductivity. Conductivity (Ks, g m−2 s−1 MPa−1) was 
calculated standardized by branch basal area and stem length and 
the percent loss of conductivity (PLC, %) calculated as

2.4 | Leveraging pre‐existing field plots

In addition to the satellite‐guided plots, we further leveraged exist‐
ing aspen monitoring plots (N = 15) in the San Juan National Forest, 
established between 2010 and 2014 with similar stand survey and 
dieback/mortality methods, from other research projects to track 
mortality between plot establishment and 2017. While these plots 
were selected for other reasons, primarily ecophysiological stud‐
ies of aspen drought stress (Anderegg, Anderegg, Abatzoglou, 
Hausladen, & Berry, 2013; Anderegg et al., 2014), we extracted the 
2011 and 2012 NPV values for the pixels in which they were located 
and they allowed us to bring additional sample sizes of aspen stands 
to bear on testing the early warning metrics for mortality (Ntotal = 28 
plots). These plot locations were selected randomly within larger 
aspen forests but typically constrained to be within 1 km of an ac‐
cessible road for measurements.

2.5 | Analyses

We used ordinary least squares linear regression to test whether 
the early warning metrics could predict/explain eventual mortal‐
ity or dieback. We analyzed two dependent variables—percent 
canopy dieback total (cumulative) in 2017 and the change in per‐
cent canopy dieback between 2012 (or plot establishment year) 
and 2017—and two independent variables—NPV during the 2012 
drought (NPV2012) and the difference in NPV from pre‐drought to 
drought. We compared alternate models (single predictor variables, 
multiple variables, and interaction terms) using the Akaike informa‐
tion criterion. We had to drop two outlier plots—one where smoke 

from a fire contaminated the NPV calculation and one where a se‐
vere tent caterpillar outbreak confounded the drought signal with 
regard to mortality.

We compared the early warning metric NPV2012 to stand struc‐
tural (average leaf size and LAI) and physiological stress (δ13C of leaf 
sugars, water potentials, Ks, and PLC) using univariate ordinary least 
squares linear regression. We checked the assumptions of linear re‐
gression using quantile–quantile and other diagnostic plots. All sta‐
tistical analyses were conducted in the R software language, version 
3.4 (R Core Team, 2012).

2.6 | Exploring the 2005 Amazon drought: Amazon 
field plot data

As a preliminary exploration of whether these early warning metrics 
might be useful across multiple biomes, we examined their applica‐
bility in the 2005 severe drought in the Amazon rainforest. We used 
the publicly available RAINFOR data for the Amazon from Brienen 
et al. (2015), available at forestplots.net. These are generally perma‐
nent sampling plots where the diameter and status of all trees within 
a 0.4–12 ha plot, depending on plot, was censused at irregular inter‐
vals. This data contains detailed aboveground biomass loss to mor‐
tality at each census from 1980 to 2011 with temporal normalization 
in Mg ha−1 year−1 and latitude/longitude coordinates for each plot at 
the tenth degree resolution (~10 km). We screened these plots for 
plots where an initial census was made in 2005 and a subsequent 
census was made in 2009 (to include previously documented lagged 
mortality post‐drought but prior to a second drought in 2010), and 
excluded ones located in highly fragmented (likely human disturbed) 
forest landscapes. One plot recorded very high mortality rate in 
2009 which was a normal year and 3 years after the 2005 drought, 
which was inconsistent with other plots. Therefore, we considered 
it as a potential “outlier” plot. We performed all analysis both with 
and without this plot. This led to a final sample size of 28–29 field 
plots (Table S1).

2.ƕ | Remote sensing of early warning metrics 
for the 2005 Amazon drought

The Amazonian validation data were widely distributed over a 
vast region. Therefore, the greenest period to determine the op‐
timal time to assess pre‐drought and drought PV and NPV may 
vary from plot to plot. To account for this, we acquired spatially 
corresponding high temporal resolution long‐term (2001–2017) 
MODIS (the Moderate Resolution Imaging Spectroradiometer) 
EVI (the Enhanced Vegetation Index) to find the period (total 23 
periods per year) with the maximum productivity. We found that 
the greenest periods of the studied region were within September 
14 to November 1. We then acquired Landsat Thematic Mapper 
(TM) pixel values of the corresponding time period acquired in 
2004 and 2005 from the Google Earth Engine servers via Python  
(https​://earth​engine.google.com/). The numbers of pixels selected 
were based upon the field plot sizes ranging from 0.4 to 12  ha. 

PLC=100 ×
(

Kmax−Knative

)

∕Kmax

https://earthengine.google.com/
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Since no dimensions were described in the database, satellite 
pixels encompassing a circular plot shape were collected, which 
would also include most square plot designs. Fractional cover of 
the forested land surface's PV, NPV, and bare soil (ranging from 
0% to 100%) of each pixel were calculated using the same spectral 
mixture analysis model applied on the aspen forests of San Juan 
National Forest but with tropical forest spectral endmembers; 
specific settings of the spectral mixture model for tropical forests 
can be found in Huang et al. (2013).

3  | RESULTS

Aspen canopy dieback in southwestern Colorado was initially low 
(11%) in these plots during the 2012 drought itself and rose slightly 
to 17% during 2013 (Figure 1b). However, by 2017, average plot 
canopy dieback was 32% with some plots reaching 50%–100% die‐
back (Figure 1b). These aspen canopy dieback and mortality rates 
are well above background rates of <10% average canopy dieback 
for healthy stands in this region (Huang & Anderegg, 2012) and <3% 
stem mortality rates during non‐drought periods in the western 
United States in the US Forest Inventory and Analysis permanent 
monitoring plots (Anderegg, Hicke, et al., 2015; Anderegg, Flint, 
et al., 2015; Bell, Bradford, & Lauenroth, 2014). This timing of a 
4–5 years lag in canopy dieback after the 2012 drought was con‐
sistent with the observed lag in dieback and mortality following the 
severe 2002 drought quantified in aerial surveys of aspen mortality 
in Colorado (Figure 1b). Collectively, the field plots covered a large 
range of dieback severity useful for testing the predictive accuracy 
of our early warning metric, including five plots that showed little 
canopy dieback indicative long‐term, non‐drought‐related dieback 
rates (less than <10% by 2017).

The combination of early warning metrics for the 2012 drought 
which we had hypothesized based on our research on the 2002 
drought—NPV during the drought and the change in NPV from pre‐
drought to drought—explained canopy dieback, particularly absolute 
canopy dieback levels in 2017, with high accuracy (Figure 2) (Dieback 
in 2017: R2 = 0.58, N = 26, df = 22, p < 0.0001; change in dieback be‐
tween 2012 and 2017: R2 = 0.23, N = 26, df = 22, p = 0.02). The most 

parsimonious model (ΔAIC  <  −3 from all other models; Figure 2) 
showed that the canopy dieback in 2017 (Dieback2017, %) was a func‐
tion of NPV during the 2012 drought (NPV2012) and the difference in 
NPV from pre‐drought (2011) to drought (ΔNPV):

with the intercorrelation of predictor variables of r  =  0.36 and 
standard errors of the predictor variables as 0.21 and 0.17, re‐
spectively. The most parsimonious model for the change in canopy 
dieback between 2017 and 2012 had the same predictor variables:

with standard errors of the predictor variables as 0.18 and 0.15, re‐
spectively. The aim in including this latter dependent variable is to 
account for the variation in initial dieback conditions, as a few stands 
had higher levels of canopy dieback even in 2012, potentially from the 
previous 2002 drought.

Non‐photosynthetically active vegetation is calculated using sta‐
tistical methods from all Landsat reflective bands and is separated 
from “PV” and bare soil. Thus, NPV can be thought of as the amount 
of “exposed bark” in a 30 × 30 m pixel. Aspen plots with higher NPV 
generally showed more open and sparse canopies (Figure 3a). We 
found that NPV across plots was strongly associated with LAI during 
drought (R2 = 0.78, N = 7, df = 5, p = 0.008, Figure 3d), but only weakly 
and insignificantly associated with average leaf size of sun‐exposed 
leaves (R2 = 0.07, N = 15, df = 13, p = 0.4, Figure 3c). For two plots 
where we had pre‐drought data, the drought year was associated 
with both smaller average leaf size and a decrease in LAI (Figure 3b). 
These results suggest that the absolute NPV during drought is medi‐
ated by changes in canopy leaf area, but not necessarily average leaf 
size, which suggests that stressed forests may flush fewer leaves per 
branch or decrease the number of shade leaves.

Considering only the field plots selected entirely by the early 
warning metric from satellite data to capture a range of mortality risk, 
which were the plots where physiological measurements were made, 
NPV during the drought was strongly associated with several critical 
metrics of physiological stress that mediate mortality (Figure 4). NPV 
was associated with the δ13C of leaf sugars (R2 = 0.39, N = 10, df = 8, 
p = 0.04, Figure 4a) during the peak of the drought (early July 2012) 

Dieback2017=−0.93ΔNPV + 0.92NPV2012 + 2.78

ΔDieback = −0.33ΔNPV + 0.43NPV2012 + 1.61

F I G U R E  2   (a) Regression‐predicted 
percent total canopy dieback for aspen 
plots in 2017 and based on the satellite‐
derived early warning metrics during 
2011 and 2012 compared to observed 
field‐measured canopy dieback in 2017 
(R2

adj = 0.58, p < 0.0001). (b) Regression‐
predicted change in percent canopy 
dieback for aspen plots between 2012 
and 2017 and based on the satellite‐
derived early warning metrics during 2011 
and 2012 compared to observed field‐
measured change in dieback between 
2012 and 2017 (R2

adj = 0.23, p = 0.02). The 
black lines are the 1:1 lines
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with higher NPV stands showing more enriched values that are con‐
sistent with more frequent stomatal closure. The isotope ratio of δ13C 
of leaf sugars likely captures the degree of recent stomatal closure 
(i.e., Ci/Ca) of the past 2–4 days in most species (Brugnoli et al., 1988). 
NPV was not associated with predawn (p = 0.51) or midday (p = 0.59) 
stem water potentials (Figure 4b). Nevertheless, NPV was strongly 

associated with both native stem hydraulic conductivity (R2 = 0.54, 
N = 10, df = 8, p = 0.03) and the percent loss of stem hydraulic con‐
ductivity (R2 = 0.73, N = 10, df = 8, p = 0.007) during the peak of the 
drought (Figure 4c,d).

As a preliminary analysis to test if the NPV metrics might predict 
subsequent mortality in other biomes, we calculated these same 

F I G U R E  3   Changes in canopy 
structure associated with satellite 
estimates of non‐photosynthetically 
active vegetation (NPV). (a) Hemispherical 
photographs and average leaf size 
photos for a low NPV (top) and high NPV 
(bottom) aspen plot. The black line shows 
the scale bar. (b) Time‐series of average 
leaf size (N = ~25 leaves per stand per 
time window; cm2) and leaf area index 
(m2/m2) of a low NPV (white bars) and 
high NPV (black bars) stand before and 
during the severe 2012 drought. (c and 
d) It shows the relationship between 
average leaf size (cm2) and leaf area index, 
respectively, and NPV during the peak 
of the drought across 7–15 aspen plots. 
Lines are the ordinary least squares linear 
regressions with dashed lines showing 
the 95% confidence interval and solid 
lines are statistically significant; dashed 
regression lines are not statistically 
significant [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  4   Relationships between 
tree physiological variables and satellite 
estimates of non‐photosynthetically 
active vegetation (NPV) during the 
peak 2012 drought. Physiological 
variables include (a) δ13C of leaf sugars 
(‰; R2 = 0.39), (b) midday stem water 
potential (ψ, MPa; R2 = 0.09), (c) native 
stem hydraulic conductivity (Knative, 
g m−2 s−1 MPa−1; R2 = 0.54), and (d) percent 
loss of stem hydraulic conductivity (PLC, 
%; R2 = 0.73). Lines are the ordinary 
least squares linear regressions with 
dashed lines showing the 95% confidence 
interval and solid lines are statistically 
significant; dashed regression lines are not 
statistically significant
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metrics for 29 long‐term forest plots that met our criteria in the 
Amazon following the severe 2005 drought. Both the difference 
between pre‐drought and drought NPV (R2 = 0.21, N = 29, df = 27, 
p = 0.01) and the drought NPV (R2 = 0.47, N = 29, df = 27, p < 0.0001) 
metrics were significant predictors of aboveground biomass mor‐
tality by 2009. The most parsimonious model was a linear function 
of drought NPV that explained 47% of the variance in plot mortality 
(Figure S3) and 63% of the variance after removing one outlier plot 
where the mortality data may be incorrect (i.e., results are robust 
even with outlier included).

4  | DISCUSSION

Using data from two consecutive severe droughts, we have 
shown that publicly available satellite data can provide rigorous 
early warning metrics for drought‐induced aspen mortality. In 
particular, the combination of the NPV during the drought and 
the change in NPV between pre‐drought and drought were valu‐
able early warning metrics of subsequent dieback and mortality. 
NDVI‐based early warning metrics have been tested rigorously in 
North American boreal forests and found to capture both episodic 
pulses of mortality and more gradual “spiral of decline” in these 
forests (Rogers et al., 2018). This underscores that there may be 
multiple satellite‐based optical remote sensing metrics that cap‐
ture incipient mortality with different advantages and disadvan‐
tages. One advantage of an NPV‐based approach is the ability to 
more clearly distinguish the signal of canopy dieback/mortality 
from understory vegetation, which is a limitation of NDVI‐based 
approaches. Aspen forests are a useful study system to test early 
warning metrics for mortality because they have a multilayer can‐
opy where our previous research found that the understory veg‐
etation obscures mortality estimates based on greenness alone 
(Huang & Anderegg, 2012). And, indeed, NPV has been used to 
detect mortality and disturbance in a number of temperate and 
tropical forests (Chambers et al., 2007, 2013), although this has 
typically been larger scale mortality such as windthrow. Canopy 
leaf area adjustment is a widely observed phenomenon during 
drought (Barr et al., 2004, 2007; Sperry & Love, 2015) and our 
results suggest leaf area adjustment (a) can be observed via the 
amount of exposed non‐photosynthetic tissue and (b) can be used 
to pick up stressed stands that might ultimately die.

Notably, satellite‐derived NPV was strongly associated with 
multiple metrics of plant physiological stress during drought. This 
is particularly exciting because the majority of remote sensing 
based estimates of vegetation water stress have been conducted 
with airborne spectroscopic data (e.g., Asner et al., 2016) and 
stress detection with the freely available Landsat satellite data 
is potentially of broad interest. Loss of hydraulic conductivity 
through embolism and “hydraulic deterioration” has been shown 
to be a critical mechanism of drought‐induced tree mortality after 
the 2002 and 2012 droughts in this species (Anderegg et al., 2014; 
Anderegg, Berry, Smith, et al., 2012; Anderegg, Plavcová, et al., 

2013) and can predict spatial patterns in mortality following the 
2002 drought (Anderegg, Hicke, et al., 2015; Anderegg, Flint, et 
al., 2015). As a caveat, we note that we do not have pre‐drought 
physiological measurements on these plots and thus cannot rule 
out if these stressed plots had pre‐existing/longer term hydrau‐
lic impairment due to previous droughts or poor site conditions. 
Indeed, it is unclear whether NPV is a good early warning metric 
because it identifies marginal sites that are most stressed at base‐
line and therefor most vulnerable to drought, or because it detects 
actual stress during drought. The fact that NPV goes up during 
drought (Figure 1c, Huang & Anderegg, 2012) indicates that NPV 
captures some element of drought stress. However, sites that sub‐
sequently die tend to have higher NPV at baseline (Figure 1), sug‐
gesting that our early warning model (including both NPV2012 and 
ΔNPV) may be driven by both site vulnerability and mid‐drought 
stress. Disentangling these two signals is a fruitful avenue for fu‐
ture research.

The mechanisms of drought‐induced tree mortality are an active 
research area (Adams et al., 2017; Hartmann et al., 2018) and while 
it was not our primary aim to directly quantify the mechanisms of 
mortality during the 2012 drought, the hydraulic status of aspen 
stands—whose locations were selected via the satellite early warn‐
ing metric—during the drought was indeed predictive of eventual 
dieback/mortality in 2017 (Ks: R

2 = 0.53, N = 8, df = 6, p = 0.04; PLC: 
R2 = 0.79, N = 8, df = 6, p = 0.003). We note, however, that the loss 
of hydraulic conductivity in our stands that subsequently died was 
much lower (e.g., 30%–40%) than currently hypothesized thresh‐
olds of ~60% (Adams et al., 2017). Thus, the intriguing finding that 
plant hydraulic status was identified from space suggests there is 
major promise in using satellites to guide mechanistic tree mortality 
studies. The lack of a relationship between NPV and stem water po‐
tentials is consistent with the lack of water potential differences be‐
tween dying and healthy stands following the 2002 drought, where 
shifts in hydraulic vulnerability but similar water potentials led to 
loss in hydraulic function in dying stems (Anderegg et al., 2013). This 
lack of relationship between NPV and water potential may also be 
due to a suite of other things like soil texture, rooting distributions, 
and hydraulic traits that influence water potential that the satellite 
naturally cannot observe.

We believe these early warning metrics may be useful in a 
number of forest biomes, particularly broadleaf forest biomes 
with moderate to high LAI that form a large fraction of the terres‐
trial carbon sink. Indeed, our preliminary analysis in the Amazon 
rainforest during the severe 2005 drought supports this (Figure S3). 
There are some uncertainties and caveats that further studies 
are needed to explore. First, the spatial resolution of the publicly 
available geospatial coordinates adds uncertainty in colocating 
the field‐measured dieback or mortality with remotely sensed 
NPV. Because we were careful to screen sites for continuous 
forest and these plots are predominantly in undisturbed mature 
forests, we believe this approach is still reasonable. Second, 
absolute NPV during the drought was the best predictor in the 
Amazon rather than both the difference between pre‐drought 
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and drought NPV and the absolute NPV during the drought. This 
could either be because (a) region‐specific (Amazon rainforest) 
endmembers are needed or (b) the LAI of these continuous forests 
is so high that NPV alone captures the majority of the important 
signal. Finally, as with all remote‐sensing studies, the spatial scale 
mismatch between plot data and satellite pixels adds a source of 
uncertainty. While this Amazon analysis is exploratory and future 
work is needed to examine these metrics this region in more de‐
tail, it indicates that this early warning metric approach appears 
promising in a vastly different biome that is an important carbon 
sink and potentially threatened by rising climate‐driven mortality 
(Brienen et al., 2015). A thorough understanding of the interac‐
tions between plant physiological mechanisms during mortality at 
the leaf and canopy scales and NPV is a critical avenue for future 
research, which could be assessed using canopy radiative trans‐
fer approaches (e.g., Féret, Gitelson, Noble, & Jacquemoud, 2017; 
Jacquemoud et al., 2009).

In conclusion, a set of early warning metrics for drought‐induced 
tree mortality has extensive potential for a number of research 
fields and societal applications. A recent meta‐analysis demon‐
strated that lags in mortality after drought are widely observed in 
many forest systems (Trugman et al., 2018). An early warning sys‐
tem of incipient tree mortality following drought thus presents an 
opportunity for managers to prepare treatments and trigger forest 
regeneration in managed forest settings (Cobb et al., 2017). With 
aspen, research has shown that treatment before canopy dieback 
reaches 30% typically yields robust forest regeneration while treat‐
ment after that threshold does not (Shepperd, Smith, & Pelz, 2015). 
For land management and mechanistic and modeling studies, there 
is a short “window of opportunity” between when drought strikes 
and all the trees have eventually died to improve our understand‐
ing of tree mortality and to improve forest resilience to climate 
extremes. Thus, there is major promise both for ecophysiologists, 
vegetation modelers, and land managers in developing and opera‐
tionalizing an early warning system for drought‐induced mortality.
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