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Abstract. We consider a quantum graph as a model of graphene in magnetic fields

and give a complete analysis of the spectrum, for all constant fluxes. In particular,

we show that if the reduced magnetic flux Φ/2π through a honeycomb is irrational,

the continuous spectrum is an unbounded Cantor set of Lebesgue measure zero.

1. Introduction

Graphene is a two-dimensional material that consists of carbon atoms at the vertices

of a hexagonal lattice. Its experimental discovery, unusual properties, and applications

led to a lot of attention in physics, see e.g. [N11]. Electronic properties of graphene

have been extensively studied rigorously in the absence of magnetic fields [FW12,

FW14, FWL18, KP07].

Magnetic properties of graphene have also attracted strong interest in physics (e.g.

[Zh05],[Gu10]). The purpose of this paper is to provide for the first time an analysis

of the spectrum of honeycomb structures in magnetic fields with constant flux.

The fact that magnetic electron spectra have fractal structures was first predicted

by Azbel [A64] and then numerically observed by Hofstadter [Ho76], for the Harper’s

model. The scattering plot of the electron spectrum as a function of the magnetic flux

is nowadays known as Hofstadter’s butterfly. Verifying such results experimentally

has been restricted for a long time due to the extraordinarily strong magnetic fields

required. Only recently, self-similar structures in the electron spectrum in graphene

have been observed [Ch14, De13, G17, Gor13].

With this work, we provide a rigorous foundation for self-similarity by showing that

for irrational fluxes, the electron spectrum of a model of graphene is a Cantor set.

We say A is a Cantor set if it is closed, nowhere dense and has no isolated points

(so compactness not required). The Schrödinger operator HB we study, see (3.7), is

defined on a metric honeycomb graph1 and is a direct sum, over all edges ~e of the

graph, of Schrödinger operators

HB
~e = (−i∂x − A~e)

2 + V~e

1Schrödinger operators defined on metric graphs are also called quantum graphs.
1
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with magnetic potential A~e, describing a constant magnetic field, and potential V~e ∈
L2(~e). We write σΦ,σΦ

cont, σ
Φ
ess for the (continuous, essential) spectra of HB and set HD

to be the Dirichlet operator (no magnetic field) defined in (2.14) (2.11), and denote by

σ(HD) its spectrum. Let σΦ
p be the collection of eigenvalues of HB. Then we have the

following description of the topological structure and point/continuous decomposition

of the spectrum

Theorem 1. For any symmetric Kato-Rellich potential V~e ∈ L2(~e) we have

(1) σΦ = σΦ
ess,

(2) σΦ
p = σ(HD),

(3) σΦ
cont is

• a Cantor set of measure zero for Φ /∈ 2πQ,

• a countable union of disjoint intervals for Φ ∈ 2πQ,

(4) σΦ
p ∩ σΦ

cont = ∅ for Φ /∈ 2πZ,

(5) the Hausdorff dimension dimH(σ
Φ) ≤ 1/2 for generic2 Φ.

Thus for irrational flux, the spectrum is a zero measure Cantor set plus a countable

collection of flux-independent isolated eigenvalues, each of infinite multiplicity, while

for rational flux the Cantor set is replaced by a countable union of intervals.

Furthermore, we can also describe the spectral decomposition of HB.

Theorem 2. For any symmetric Kato-Rellich potential V~e ∈ L2(~e) we have

(1) For Φ /∈ 2πQ, the spectrum on σΦ
cont is purely singular continuous.

(2) For Φ ∈ 2πQ, the spectrum on σΦ
cont is absolutely continuous.

Of course our results only describe the quantum graph model of graphene in a mag-

netic field, which is both single-electron and high contrast. In particular, we believe

that the isolated eigenvalues are unphysical, being an artifact of the graph model

which does not allow something similar to actual Coulomb potentials close to the

carbon atoms or dissolving of eigenstates supported on edges in the bulk. However,

there are reasons to expect that continuous spectrum of the quantum graph operator

(thus the Cantor set described in this paper) does adequately capture the experimental

properties of graphene in the magnetic field [BHJZ]. In particular, certain properties

of the density of states of our model (which starts from actual differential operator

and is exact in every step) better correspond to the experimental observations [Go12]

than those of the commonly used tight-binding model [AEG14]. We refer the reader to

[BZ18, BHJZ] for detail. Finally, our analysis provides full description of the spectrum

2In this paper, “generic” refers to a dense Gδ set. Recently, a stronger continuity of spectra

statement was proved in [JK], which combined with Lemma 4.3 allowed the authors to extend the

Hausdorff dimension statement to all irrational Φ.
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of the tight-binding Hamiltonian as well. Moreover, the applicability of our model is

certainly not limited to graphene.

Earlier work showing Cantor spectrum on quantum graphs with magnetic fields,

e.g. for the square lattice [BGP07] and magnetic chains studied in [EV17], has been

mostly limited to applications of the Cantor spectrum of the almost Mathieu operator

[AJ09, P04]. On the honeycomb graph, we can no longer resort to this operator. The

discrete operator is then matrix-valued and can be further reduced to a one-dimensional

discrete quasiperiodic operator using supersymmetry. The resulting discrete operator

is a singular Jacobi matrix 3 Cantor spectrum (in fact, a stronger, dry ten martini

type statement) for Jacobi matrices of this type has been studied in the framework

of the extended Harper’s model [H1]. However, the method of [H1] that goes back to

that of [AJ10] relies on (almost) reducibility, and thus in particular is not applicable

in absence of (dual) absolutely continuous spectrum which is prevented by singularity.

Similarly, the method of [AJ09] breaks down in presence of singularity in the Jacobi

matrix as well. Instead, we present a novel way that exploits singularity rather than

circumvents it by showing that the singularity leads to vanishing of the measure of the

spectrum, and thus Cantor structure and singular continuity, once (4) of Theorem 1

is established. 4 Our method applies also to proving zero measure Cantor spectrum of

the extended Harper’s model whenever the corresponding Jacobi matrix is singular and

either the Lyapunov exponent is zero on the spectrum or one can estimate the measure

of the spectrum for the rational frequency. The latter is also useful for estimating

the Hausdorff dimension and was only available previously for the almost Mathieu

operator [AMS90, L94] with, in particular, the method of [AMS90] extendable only

to situations when measure of the spectrum is not zero, and the method of [L94]

very almost Mathieu specific. Here we develop a novel method, that applies to general

singular Jacobi matrices (see e.g. Lemma 6.8) for which one can establish a Chambers-

type formula.

As mentioned, our first step is a reduction to a matrix-valued tight-binding hexago-

nal model. This leads to an operator QΛ defined in (4.1). This operator has been stud-

ied before for the case of rational magnetic flux (see [HKL16] and references therein).

Our analysis gives complete spectral description for this operator as well.

Theorem 3. The spectrum of QΛ(Φ) is

3A Jacobi matrix is called singular if its off-diagonal entries are not bounded away from zero.
4We note that singular continuity of the spectrum of critical extended Harper’s model (including

for parameters leading to singularity in the corresponding Jacobi matrix) has been proved recently in

[AJM17, H2] without establishing the Cantor nature.
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• a finite union of intervals and purely absolutely continuous for Φ/2π = p/q,

which is a reduced rational number, with the following measure estimate

|σ(QΛ(Φ))| ≤
C√
q
,

where C > 0 is an absolute constant.

• singular continuous and a zero measure Cantor set for Φ /∈ 2πQ,

• a set of Hausdorff dimension dimH(σ(QΛ(Φ))) ≤ 1/2 for generic5 Φ.

Remark 1. We will show that the constant C in the first item can be bounded by 8
√
6π
9

.

The theory of magnetic Schrödinger operators on graphs can be found in [KS03]. The

effective one-particle graph model for graphene without magnetic fields was introduced

in [KP07]. After incorporating a magnetic field according to [KS03] in the model of

[KP07], the reduction of differential operators on the graph to a discrete tight-binding

operator can be done using Krein’s extension theory for general self-adjoint operators

on Hilbert spaces. This technique has been introduced in [Pa06] for magnetic quantum

graphs on the square lattice. The quantum graph nature of the differential operators

causes, besides the contribution of the tight-binding operator to the continuous spec-

trum, a contribution to the point spectrum that consists of Dirichlet eigenfunctions

vanishing at every vertex.

In this paper we develop the corresponding reduction for the hexagonal structure

and derive spectral conclusions in a way that allows easy generalization to other planar

graphs spanned by two basis vectors. In particular, our techniques should be applicable

to study quantum graphs on the triangular lattice, which will be pursued elsewhere.

One of the striking properties of graphene is the presence of a linear dispersion

relation which leads to the formation of conical structures of the dispersion surfaces in

the Brillouin zone, see Figure 5. The points where the cones match are called Dirac

points to account for the special dispersion relation. We use a spectral equivalence

between the magnetic Schrödinger operators on the graph and tight-binding operators

that is based on Krein’s theory in a version introduced in [Pa13, Pa14]. In particular,

the bands of the graph model always touch at the Dirac points and are shown to have

open gaps at the band edges of the associated Hill operator if the magnetic flux is

non-trivial. We obtain the preceding results by first proving a bound on the operator

norm of the tight-binding operator and analytic perturbation theory.

In [KP07] it was shown that the Dirichlet contribution to the spectrum in the non-

magnetic case is generated by compactly supported eigenfunctions and that this is the

only contribution to the point spectrum of the Schrödinger operator on the graph. We

5See Footnote 2.
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extend this result to magnetic Schrödinger operators on hexagonal graphs. Let Hpp be

the pure point subspace accociated with HB. Then

Theorem 4. For any Φ, Hpp is spanned by compactly supported eigenfunctions (in

fact, by double hexagonal states).

While for the rational Φ the proof is based on ideas similar to those of [KP07],

for the irrational Φ we no longer have an underlying periodicity thus cannot use the

arguments of [K05]. After showing that there are double hexagonal state eigenfunctions

for each Dirichlet eigenvalue, it remains to show their completeness. While there are

various ways to show that all `1 (in a suitable sense) eigenfunctions are in the closure

of the span of double hexagonal states, the `2 condition is more elusive. Bridging the

gap between `1 and `2 has been a known difficult problem in several other scenarios

[A, AJM17, AW13, JL01]. Here we achieve this by constructing, for each Φ, an operator

that would have all slowly decaying `2 eigenfunctions in its kernel and showing its

invertibility. This is done using constructive arguments and properties of holomorphic

families of operators. We note that, to the best of our knowledge, Theorem 4 is the first

result of this sort in absence of periodicity, and our way of bridging the gap between

`1 and `2 is also a novel argument.

Outline. Section 2 serves as background, in particular it reviews results on the hon-

eycomb quantum graph model without magnetic fields. In Section 3, we introduce

the magnetic Schrödinger operator HB show that this one is unitarily equivalent to

a non-magnetic Schrödinger operator ΛB with magnetic contributions moved into the

boundary conditions. In Section 4, we present several key ingredients of the proofs of

the main theorems: Lemmas 4.1 and 4.2 - 4.4. Lemma 4.1 involves a further reduction

from ΛB to a two-dimensional tight-binding Hamiltonian QΛ(Φ), and Lemmas 4.2 -

4.4 reveal the topological structure of σ(QΛ(Φ)) (thus proving the topological part of

Theorem 3). The proofs of Lemmas 4.1, 4.2, 4.3 and 4.4 are given is Sections 7, 5 and

6 respectively. Section 8 is devoted to a complete spectral analysis of HB, thus proving

Theorem 1, with the analysis of Dirichlet spectrum in Section 8.2, where, in particu-

lar, we prove Theorem 4; absolutely continuous spectrum for rational flux in Section

8.3, singular continuous spectrum for irrational flux in Section 8.4 (thus proving The-

orem 2). Since most of the proofs for different parts of Theorems 1-4 are distributed

throughout the paper, we give an index to them, for the reader’s convenience in section

8.5.

2. Preliminaries

Notation. Given a graph G, we denote the set of edges of G by E(G), the set of

vertices by V(G), and the set of edges adjacent to a vertex v ∈ V(G) by Ev(G).
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For an operator H, let σ(H) be its spectrum and ρ(H) be the resolvent set.

The space c00 is the space of all infinite sequences with only finitely many non-zero

terms (finitely supported sequences). We denote by Ωi(R2) the vector space of all

i-covectors or differential forms of degree i on R2.

For a set U ⊆ R, let |U | be its Lebesgue measure. We define T∗
2 := R2/(2πZ)2 and

T := T1 := R/Z.

List of main symbols used in this article.

• r0 and r1 are the vertices of the fundamental cell (2.1).

• ~f,~g,~h are the vectors of the fundamental cell (2.2).

• WΛ :=
{
~f,~g,~h, r0, r1

}
is the fundamental cell.

• ~b1,~b2 are the basis vectors of the lattice (2.3).

• Λ is the metric honeycomb graph (2.4).

• [v], [~e] denotes the translate of a vertex v or edge ~e into the fundamental cell

(2.5).

• v = (γ1, γ2, [v]), ~e = (γ1, γ2, [~e]) are defined in the paragraph below (2.5).

• i, t map edges to their respective initial and terminal vertex (2.6).

• κ~e is the chart defined in (2.9).

• Hn are the Sobolev spaces (2.10).

• H~e is the maximal Schrödinger operator on an edge ~e (2.11).

• V is the potential as defined in (2.12).

• HD is the Schrödinger operator with Dirichlet boundary conditions (2.14).

• H is the Schrödinger operator without magnetic field (2.16).

• T st
γ are lattice translations (2.17).

• H(k) are non-magnetic Schrödinger operators satisfying Floquet boundary con-

ditions (2.21).

• ψλ,1, ψλ,2 are solutions to the boundary value problem stated in (2.23).

• η(λ) is introduced below (2.25).

• cλ,~e and sλ,~e are defined in (2.27).

• Hill potential VHill and Hill operator HHill are defined in (2.33) and (2.34).

• ∆(λ) is the Floquet discriminant defined in (2.37).

• HΦ,θ ∈ L(l2(Z)) is the Jacobi operator defined in (2.41), with spectrum ΣΦ,θ

and ΣΦ :=
⋃
θ∈T1

ΣΦ,θ.

• Θ is the set of zeros of c(θ) as defined in Subsection 2.2.1.

• Aλ, Aλn, Ãλ and are the transfer, n-step transfer, and normalized transfer matrix

defined in (2.42), (2.43), and (2.46).

• Dλ and Dλ
n are derived from transfer matrices in (2.49).

• L(λ,Φ) is the Lyapunov exponent defined in (2.44).
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• Vector potential A, integrated vector potential β, and flux Φ are defined in

(3.1) and (3.2).

• HB is the Schrödinger operator introduced in (3.7)

• ΛB is the Schrödinger operator introduced in (3.14).

• QΛ(Φ) is the tight-binding operator stated in (4.1).

• τ0 and τ1 are discrete magnetic translation operators defined in (4.2).

• γ(λ) is defined in (7.8), M(λ,Φ) is given in (7.9), Kλ is defined in (7.10).

• TBγ are magnetic translation defined in (8.1).

2.1. Hexagonal quantum graphs. This subsection is devoted to reviewing hexag-

onal quantum graphs without magnetic fields. The readers could refer to [KP07] for

details. We include some material here that serves as a preparation for the study of

quantum graphs with magnetic fields in Section 3.

A model for effective one electron behavior in graphene is given by a hexagonal

graph with Schrödinger operators defined on each edge [KP07]. The hexagonal graph

Λ is obtained by translating its fundamental cell WΛ, the red colored part of Figure 1,

consisting of vertices

r0 := (0, 0) and r1 :=

(
1

2
,

√
3

2

)
(2.1)

and edges

~f := conv ({r0, r1}) \ {r0, r1},
~g := conv ({r0, (−1, 0)}) \{r0, (−1, 0)}, and

~h := conv

({
r0,

(
1

2
,−

√
3

2

)})
\
{
r0,

(
1

2
,−

√
3

2

)}
,

(2.2)

along the basis vectors of the lattice. The basis vectors are

~b1 :=

(
3

2
,

√
3

2

)
and ~b2 :=

(
0,
√
3
)

(2.3)

and so the hexagonal graph Λ ⊂ R2 is given by the range of a Z2-action on the

fundamental domain WΛ

Λ :=
{
x ∈ R2 : x = γ1~b1 + γ2~b2 + y for γ ∈ Z2 and y ∈ WΛ

}
. (2.4)

The fundamental domain of the dual lattice can be identified with the dual 2-torus

T∗
2.

For any vertex v ∈ V(Λ), we denote by [v] ∈ V(WΛ) the unique vertex, r0 or r1, for

which there is γ ∈ Z2 such that

v = γ1~b1 + γ2~b2 + [v]. (2.5)



8 SIMON BECKER, RUI HAN, AND SVETLANA JITOMIRSKAYA

g

f


h


b2
b1

r0

r1

Figure 1. The fundamental cellWΛ, colored in red and including points

r0, r1, and lattice basis vectors of Λ .

We will occasionally denote v by (γ1, γ2, [v]) to emphasize the location of v. We also

introduce a similar notation for edges. For an edge ~e ∈ E(Λ), we will sometimes denote

it by (γ1, γ2, [~e]). Finally, for any x ∈ Λ, we will also denote its unique preimage in

WΛ by [x] 6.

We can orient the edges in terms of initial and terminal maps

i : E(Λ) → V(Λ) and t : E(Λ) → V(Λ) (2.6)

where i and t map edges to their initial and terminal ends respectively. It suffices

to specify the orientation on the edges of the fundamental domain WΛ to obtain an

oriented graph Λ

i(~f) = i(~g) = i(~h) = r0,

t(~f) = r1, t(~g) = r1 −~b1, and t(~h) = r1 −~b2.
(2.7)

For arbitrary ~e ∈ E(Λ), we then just extend those maps by

i(~e) := γ1~b1 + γ2~b2 + i([~e]) and t(~e) := γ1~b1 + γ2~b2 + t([~e]). (2.8)

Let i(Λ) = {v ∈ V(Λ) : v = i(~e) for some ~e ∈ E(Λ)} be the collection of initial

vertices, and t(Λ) = {v ∈ V(Λ) : v = t(~e) for some ~e ∈ E(Λ)} be the collection of

terminal ones. It should be noted that based on our orientation, V(Λ) is a disjoint

union of i(Λ) and t(Λ).

6so that y in (2.4)=[x]
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Figure 2. The potential is the same on all edges and symmetric with

respect to the centre of the edge.

Every edge ~e ∈ E(Λ) is of length one and thus has a canonical chart

κ~e : ~e→ (0, 1), (2.9)

(i(~e)x+ t(~e)(1− x)) 7→ x

that allows us to define function spaces and operators on ~e and finally on the entire

graph. For n ∈ N0, the Sobolev space Hn(E (Λ)) on Λ is the Hilbert space direct sum

Hn(E (Λ)) :=
⊕

~e∈E(Λ)
Hn(~e). (2.10)

On every edge ~e ∈ E(Λ) we define the maximal Schrödinger operator

H~e : H2(~e) ⊂ L2(~e) → L2(~e)

H~eψ~e := −ψ′′
~e + V~eψ~e

(2.11)

with Kato-Rellich potential V~e ∈ L2(~e) that is the same on every edge and even with

respect to the center of the edge, see Fig. 2. Let

V (t) = V~e((κ~e)
−1(t)). (2.12)

Then

V (t) = V (1− t). (2.13)

One self-adjoint restriction of (2.11) is the Dirichlet operator

HD :=
⊕

~e∈E(Λ)

(
H1

0(~e) ∩H2(~e)
)
⊂ L2(E (Λ)) → L2(E (Λ))

(HDψ)~e := H~eψ~e,

(2.14)
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where H1
0(~e) is the closure of compactly supported smooth functions in H1(~e). The

Hamiltonian we will use to model the graphene without magnetic fields is the self-

adjoint [K05] operator H on Λ with Neuman type boundary conditions

D(H) :=

{
ψ = (ψ~e) ∈ H2(E(Λ)) : for all v ∈ V(Λ), ψ~e1(v) = ψ~e2(v) if ~e1, ~e2 ∈ Ev(Λ)

and
∑

~e∈Ev(Λ)
ψ′
~e(v) = 0

}

(2.15)

and defined by

H : D(H) ⊂ L2(E(Λ)) → L2(E(Λ))
(Hψ)~e := H~eψ~e.

(2.16)

Remark 2. The self-adjointness of H will also follow from the self-adjointness of the

more general family of magnetic Schrödinger operators that is obtained in Sec. 7.

Remark 3. The orientation is chosen so that all edges at any vertex are either all

incoming or outgoing. Thus, there is no need to distinguish those situations in terms

of a directional derivative in the boundary conditions (2.15).

2.1.1. Floquet-Bloch decomposition. Operator H commutes with the standard lattice

translations

T st
γ :L2(E(Λ)) → L2(E(Λ))

f 7→ f(· − γ1~b1 − γ2~b2)
(2.17)

for any γ ∈ Z2. In terms of those, we define the Floquet-Bloch transform for x ∈ E(WΛ)

and k ∈ T∗
2 first on function f ∈ Cc(E(Λ))

(Uf)(k,x) :=
∑

γ∈Z2

(T st
γ f)(x)e

i〈k,γ〉 (2.18)

and then extend it to a unitary map U ∈ L(L2(E(Λ)), L2(T∗
2 × E(WΛ))) with inverse

(U−1ϕ)(x) =

∫

T∗
2

ϕ(k, [x])e−i〈γ,k〉
dk

(2π)2
, (2.19)

where [x] ∈ E (WΛ) is the unique pre-image of x in WΛ, and γ ∈ Z2 is defined by

x = γ1~b1 + γ2~b2 + [x].

Then standard Floquet-Bloch theory implies that there is a direct integral represen-

tation of H

UHU−1 =

∫ ⊕

T∗
2

H(k)
dk

(2π)2
(2.20)
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Figure 3. For zero potential, we illustrate functions (2.23) and (2.27)

for λ = 16.

in terms of self-adjoint operators H(k)

H(k) : D(H(k)) ⊂ L2(E (WΛ)) → L2(E (WΛ))

(H(k)ψ)~e := (H~eψ~e)
(2.21)

on the fundamental domain WΛ with Floquet boundary conditions

D(H(k)) :=

{
ψ ∈ H2(E (WΛ)) : ψ~f (r0) = ψ~g(r0) = ψ~h(r0) and

∑

~e∈Er0 (Λ)
ψ′
~e(r0) = 0,

as well as ψ~f (r1) = eik1ψ~g(r1 −~b1) = eik2ψ~h(r1 −~b2)

and ψ′
~f
(r1) + eik1ψ′

~g(r1 −~b1) + eik2ψ′
~h
(r1 −~b2) = 0

}
.

(2.22)

Fix an edge ~e ∈ E(Λ) and λ /∈ σ(HD). There are linearly independent H2(~e)-

solutions ψλ,1,~e and ψλ,2,~e to the equation H~eψ~e = λψ~e with the following boundary

condition

ψλ,1,~e(i(~e)) = 1, ψλ,1,~e(t(~e)) = 0, ψλ,2,~e(i(~e)) = 0, and ψλ,2,~e(t(~e)) = 1. (2.23)

Any eigenfunction to operators H(k), with eigenvalues away from σ(HD), can there-

fore be written in terms of those functions for constants a, b ∈ C

ψ :=





a ψλ,1, ~f + b ψλ,2, ~f along edge ~f

a ψλ,1,~g + e−ik1b ψλ,2,~g along edge ~g

a ψλ,1,~h + e−ik2b ψλ,2,~h along edge ~h

(2.24)
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with the continuity conditions of (2.22) being already incorporated in the representa-

tion of ψ. Imposing the conditions stated on the derivatives in (2.22) shows that ψ is

non-trivial (a, b not both equal to zero) and therefore an eigenfunction with eigenvalue

λ ∈ R to H(k) iff

η(λ)2 =

∣∣1 + eik1 + eik2
∣∣2

9
(2.25)

with η(λ) :=
ψ′

λ,2,~e(t(~e))

ψ′

λ,2,~e
(i(~e))

well-defined away from the Dirichlet spectrum.

By noticing that the range of the function on the right-hand side of (2.25) is [0, 1],

the following spectral characterization is obtained [KP07, Theorem 3.6].

Theorem 5. As a set, the spectrum of H away from the Dirichlet spectrum is given

by

σ(H)\σ(HD) = {λ ∈ R : |η(λ)| ≤ 1} \σ(HD). (2.26)

2.1.2. Dirichlet-to-Neuman map. Fix an edge ~e ∈ E(Λ). Let cλ,~e, sλ,~e, which for V~e = 0

reduce to just cλ,~e = cos(
√
λ•) and sλ,~e = sin(

√
λ•)/

√
λ, be solutions to H~eψ~e = λψ~e

with the following boundary condition
(
cλ,~e(i(~e)) sλ,~e(i(~e))

c′λ,~e(i(~e)) s′λ,~e(i(~e))

)
=

(
1 0

0 1

)
. (2.27)

We point out that cλ(t) := cλ,~e(κ
−1
~e (t)) and sλ(t) := sλ,~e(κ

−1
~e (t)) are independent of

~e. They are clearly solutions to −ψ′′ + V ψ = λψ on (0, 1), with cλ(0) = 1, c′λ(0) =

0, sλ(0) = 0, s′λ(0) = 1, where V is defined in (2.12).

Then for λ /∈ σ(HD), namely when sλ(1) 6= 0, any H2(~e)-solution ψλ,~e can be written

as a linear combination of cλ,~e, sλ,~e

ψλ,~e(x) =
ψλ,~e(t(~e))− ψλ,~e(i(~e))cλ(1)

sλ(1)
sλ,~e(x) + ψλ,~e(i(~e))cλ,~e(x). (2.28)

The Dirichlet-to-Neuman map is defined by

m(λ) :=
1

sλ(1)

(
−cλ(1) 1

1 −s′λ(1)

)
(2.29)

with the property that for ψλ,~e as in (2.28), one has
(
ψ′
λ,~e(i(~e))

−ψ′
λ,~e(t(~e))

)
= m(λ)

(
ψλ,~e(i(~e))

ψλ,~e(t(~e))

)
. (2.30)

For the second component, the constancy of the Wronskian is used. Since V (t) is

assumed to be even, the intuitive relation

cλ(1) = s′λ(1) (2.31)

remains also true for non-zero potentials.
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For λ /∈ σ(HD), by expressing cλ(1) in terms of ψλ,1,~e and ψλ,2,~e, it follows immedi-

ately that

η(λ) = s′λ(1). (2.32)

2.1.3. Relation to Hill operators. Using the potential V (t) (2.12), we define the Z-

periodic Hill potential VHill ∈ L2
loc(R).

VHill(t) := V (t (mod 1)), (2.33)

for t ∈ R. The associated self-adjoint Hill operator on the real line is given by

HHill : H2(R) ⊂ L2(R) → L2(R)

HHillψ := −ψ′′ + VHillψ.
(2.34)

Then cλ, sλ ∈ H2(0, 1), extending naturally to H2
loc(R), become solutions to

HHillψ = λψ. (2.35)

The monodromy matrix associated with HHill is the matrix valued function

Q(λ) :=

(
cλ(1) sλ(1)

c′λ(1) s′λ(1)

)
(2.36)

and depends by standard ODE theory holomorphically on λ. Its normalized trace

∆(λ) :=
tr(Q(λ))

2
= s′λ(1) (2.37)

is called the Hill (aka Floquet) discriminant. In the simplest case when VHill = 0, the

Floquet discriminant is just ∆(λ) = cos
(√

λ
)
for λ ≥ 0.

By the well-known spectral decomposition of periodic differential operators on the

line [RS78], the spectrum of the Hill operator is purely absolutely continuous and

satisfies

σ(HHill) = {λ ∈ R : |∆(λ)| ≤ 1} =
∞⋃

n=1

[αn, βn] (2.38)

whereBn := [αn, βn] denotes the n-th Hill band with βn ≤ αn+1. We have ∆|′int(Bn)
(λ) 6=

0.

Putting (2.32) and (2.37) together, we get the following relation

∆(λ) = η(λ), for λ /∈ σ(HD), (2.39)

that connects the Hill spectrum with the spectrum of the graphene Hamiltonian.

Also, if λ ∈ σ(HD), then by the symmetry of the potential, the Dirichlet eigenfunc-

tion are either even or odd with respect to 1
2
. Thus, Dirichlet eigenvalues can only be

located at the edges of the Hill bands, see Fig.4. Namely,

∆(λ) = ±1, for λ ∈ σ(HD). (2.40)
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Spectral gapBand spectrum
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Figure 4. The Floquet discriminant for a Mathieu potential V (t) =

4 cos(6t). Energies in shaded regions are inside the band spectrum.

Dirichlet eigenvalues are located at the band edges.

2.1.4. Spectral decomposition. The singular continuous spectrum of H is empty by

the direct integral decomposition (2.20) [GN98]. Due to Thomas [T73] there is the

characterization, stated also in [K16, Corollary 6.11], of the pure point spectrum of

fibered operators: λ is in the pure point spectrum iff the set {k ∈ T∗
2;λj(k) = λ} has

positive measure where λj(k) is the j-th eigenvalue of H(k). Away from the Dirichlet

spectrum, the condition R 3 λ = λj(k) is by (2.25) equivalent to ∆(λ)2 =
|1+eik1+eik2 |2

9
.

Yet, the level-sets of this function are of measure zero. The spectrum of H away

from the Dirichlet spectrum is therefore purely absolutely continuous. The Dirichlet

spectrum coincides with the point spectrum of H and is spanned by so-called loop

states that consist of six Dirichlet eigenfunctions wrapped around each hexagon of the

lattice [KP07, Theorem 3.6(v)]. Hence, the spectral decomposition in the case without

magnetic field is given by

Theorem 6. The spectra of σ(H) and σ(HHill) coincide as sets. Aside from the Dirich-

let contribution to the spectrum, H has absolutely continuous spectrum as in Fig.5 with

conical cusps at the points (Dirac points) where two bands on each Hill band meet. The

Dirichlet spectrum is contained in the spectrum of H, is spanned by loop states sup-

ported on single hexagons, and is thus infinitely degenerated.

2.2. One-dimensional quasi-periodic Jacobi matrices.

The proof of the main Theorems will involve the study of a one-dimensional quasi-

periodic Jacobi matrix. We include several general facts that will be useful.



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 15

-4.5

-3.5

-2.5

E
n

e
rg

y
 

-1.5

2 2
0 0

-2 -2

Dirac point Dirac point

Figure 5. The first two bands of the Schrödinger operator on the graph

with Mathieu potential V (t) = 20 cos(2πt) and no magnetic field showing

the characteristic conical Dirac points where the two differently colored

bands touch. The two bands are differently colored.

Let HΦ,θ ∈ L(l2(Z)) be a quasi-periodic Jacobi matrix, that is given by

(HΦ,θu)m = c

(
θ +m

Φ

2π

)
um+1+c

(
θ + (m− 1)

Φ

2π

)
um−1+v

(
θ +m

Φ

2π

)
um. (2.41)

Let ΣΦ,θ := σ(HΦ,θ) be the spectrum of HΦ,θ and ΣΦ =
⋃
θ∈T1

ΣΦ,θ. It is a well

known result that for irrational Φ
2π
, the set ΣΦ,θ is independent of θ, thus ΣΦ,θ = ΣΦ.

It is also well known that, for any Φ, ΣΦ has no isolated points. 7

2.2.1. Transfer matrix and Lyapunov exponent.

We assume that c(θ) has finitely many zeros (counting multiplicity), and label them

as θ1, θ2, ..., θm.
8 Let Θ := ∪mj=1 ∪k∈Z

{
θj + k Φ

2π

}
, in particular if Φ

2π
∈ Q, then Θ is a

finite set in T.

7For rational Φ

2π
and singular HΦ,θ, ΣΦ,θ may consist of infinitely degenerate isolated eigenvalues,

if c vanishes somewhere on the orbit of rotation of θ by Φ

2π
.

8In our concrete model, c(θ) = 1 + e−2πiθ, see (5.4), hence has a single zero θ1 = 1/2.
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For θ /∈ Θ, the eigenvalue equation HΦ,θu = λu has the following dynamical refor-

mulation:
(
un+1

un

)
= Aλ

(
θ + n

Φ

2π

)(
un
un−1

)
,

where

GL(2,C) 3 Aλ(θ) =
1

c(θ)

(
λ− v(θ) −c(θ − Φ

2π
)

c(θ) 0

)
(2.42)

is called the transfer matrix. Let

Aλn(θ) = Aλ(θ + (n− 1)
Φ

2π
) · · ·Aλ(θ + Φ

2π
)Aλ(θ) (2.43)

be the n-step transfer matrix.

We define the Lyapunov exponent of HΦ,θ at energy λ as

L(λ,Φ) := lim
n→∞

1

n

∫

T1

log ‖Aλn(θ)‖ dθ. (2.44)

By a trivial bound ‖A‖2 ≥ | detA|, which comes from the fact A is a 2× 2 matrix,

we get

L(λ,Φ) ≥ lim
n→∞

1

2n

∫

T1

log

(
|c(θ − Φ

2π
)|

|c(θ + (n− 1) Φ
2π
|

)
dθ = 0. (2.45)

2.2.2. Normalized transfer matrix. Let |c(θ)| =
√
c(θ)c(θ). We introduce the normal-

ized transfer matrix:

SL(2,R) 3 Ãλ(θ) =
1√

|c(θ)||c(θ − Φ
2π
)|

(
λ− v(θ) −|c(θ − Φ

2π
)|

|c(θ)| 0

)
(2.46)

and the n-step normalized transfer matrix Ãλn(θ).

The following connection between Aλ and Ãλ is clear:

Ãλ(θ) =
c(θ)√

|c(θ)||c(θ − Φ
2π
)|

(
1 0

0 c(θ)
|c(θ)|

)
Aλ(θ)

(
1 0

0
c(θ− Φ

2π
)

|c(θ− Φ
2π

)|

)−1

. (2.47)

When Φ
2π

= p
q
is rational, (2.47) yields

tr(Ãλq (θ)) =

∏q−1
j=0 c(θ + j p

q
)

∏q−1
j=0 |c(θ + j p

q
)|
tr(Aλq (θ)). (2.48)
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Let

Dλ(θ) = c(θ)Aλ(θ) =

(
λ− v(θ) −c(θ − Φ

2π
)

c(θ) 0

)
(2.49)

and Dλ
n(θ) = Dλ(θ + (n − 1) Φ

2π
) · · ·Dλ(θ + Φ

2π
)Dλ(θ). Then when Φ

2π
= p

q
is rational,

(2.48) becomes

tr(Ãλq (θ)) =
tr(Dλ

q (θ))∏q−1
j=0 |c(θ + j p

q
)|
. (2.50)

Note that although Aλn(θ) is not well-defined for θ ∈ Θ, Dλ
n(θ) is always well-defined.

3. Magnetic Hamiltonians on quantum graphs

3.1. Magnetic potential.

Given a vector potential A(x) = A1(x1, x2) dx1+A2(x1, x2) dx2 ∈ Ω1(R2), the scalar

potential A~e ∈ C∞(~e) along edges ~e ∈ E(Λ) is obtained by evaluating the form A on

the graph along the vector field generated by edges [~e] ∈ E(WΛ)

A~e(x) := A(x) ([~e]1∂1 + [~e]2∂2) . (3.1)

The integrated vector potentials are defined as β~e :=
∫
~e
A~e(x)dx for ~e ∈ E(Λ).

Assumption 1. The magnetic flux Φ through each hexagon 9 of the lattice

Φ :=

∫

9

dA (3.2)

is assumed to be constant.

Let us mention that the assumption above is equivalent to the following equation,

in terms of the integrated vector potentials

βγ1,γ2, ~f − βγ1,γ2+1,~h + βγ1,γ2+1,~g − βγ1−1,γ2+1, ~f + βγ1−1,γ2+1,~h − βγ1,γ2,~g = Φ, (3.3)

for any γ1, γ2 ∈ Z.

Example 1. The vector potential A ∈ Ω1(R2) of a homogeneous magnetic field B ∈
Ω2(R2)

B(x) = B0 dx1 ∧ dx2 (3.4)

can be chosen as

A(x) := B0x1 dx2. (3.5)

This scalar potential is invariant under ~b2-translations. The integrated vector potentials

β~e are given by

βγ1,γ2, ~f =
Φ

2

(
γ1 +

1

6

)
, βγ1,γ2,~g = 0, and βγ1,γ2,~h = −βγ1,γ2, ~f , (3.6)
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where, in this case, the magnetic flux through each hexagon is Φ = 3
√
3

2
B0.

3.2. Magnetic differential operator and modified Peierls’ substitution. In

terms of the magnetic differential operator (DBψ)~e := −iψ′
~e − A~eψ~e, the Schrödinger

operator modeling graphene in a magnetic field reads

HB : D(HB) ⊂ L2(E (Λ)) → L2(E (Λ))

(HBψ)~e := (DBDBψ)~e + V~eψ~e,
(3.7)

and is defined on

D(HB) :=

{
ψ ∈ H2(E (Λ)) : ψ~e1(v) = ψ~e2(v) for any ~e1, ~e2 ∈ Ev(Λ)

and
∑

~e∈Ev(Λ)

(
DBψ

)
~e
(v) = 0

}
.

(3.8)

Let us first introduce a unitary operator U on L2(E(Λ)), defined as

Uψγ1,γ2,~e = ζγ1,γ2ψγ1,γ2,~e for ~e = ~f,~g,~h, (3.9)

the factors ζγ1,γ2 are defined as follows. First, choose a path p(·) : N → Z2 connecting

(0, 0) to (γ1, γ2) with

p(0) = (0, 0) and p(|γ1|+ |γ2|) = (γ1, γ2). (3.10)

Note that (3.10) implies that both components of p(·) are monotonic functions. Then

we define ζγ1,γ2 recursively through the following relations along p(·):
ζ0,0 = 1,

ζγ1+1,γ2 = e
iβ

γ1,γ2,
~f
−iβγ1+1,γ2,~gζγ1,γ2 ,

ζγ1,γ2+1 = e
iβ

γ1,γ2,
~f
−iβ

γ1,γ2+1,~h
−iΦγ1ζγ1,γ2 .

(3.11)

Due to (3.3), it is easily seen that the definition of ζγ1,γ2 is independent of the choice

of p(·), hence is well-defined.

The unitary Peierls’ substitution9 is the multiplication operator

P :L2(E (Λ)) → L2(E (Λ))

(ψ~e) 7→
((
~e 3 x 7→ ei

∫
i(~e)→x

A~e(s)ds
)
ψ~e

)
,

(3.12)

where i(~e) → x denotes the straight line connecting i(~e) with x ∈ ~e. It reduces

the magnetic Schrödinger operator to non-magnetic ones with magnetic contribution

moved into boundary condition, with multiplicative factors at terminal edges given by

eiβ~e .

9This transform is also known as minimal coupling.



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 19

We will define a modified Peierls’ substitution that allows us to reduce the number

of non-trivial multiplicative factors to one, by taking

P̃ = PU. (3.13)

It transforms HB into

ΛB :=

(
− d2

dt2~e
+ V~e

)

~e∈E(Λ)
= P̃−1HBP̃ . (3.14)

The domain of ΛB is

D(ΛB) =

{
ψ ∈ H2(E(Λ)) : any ~e1, ~e2 ∈ E(Λ) with i(~e1) = i(~e2) = v satisfy

ψ~e1(v) = ψ~e2(v) and
∑

i(~e)=v

ψ′
~e(v) = 0; whilst at edges for which

t(~e1) = t(~e2) = v, eiβ̃~e1ψ~e1(v) = eiβ̃~e2ψ~e2(v) and
∑

t(~e)=v

eiβ̃~eψ′
~e(v) = 0

}
,

(3.15)

where

β̃γ1,γ2,~g ≡ β̃γ1,γ2, ~f ≡ 0 and β̃γ1,γ2,~h = −Φγ1. (3.16)

Thus, the problem reduces to the study of non-magnetic Schrödinger operators with

magnetic contributions moved into the boundary conditions.

Observe that the magnetic Dirichlet operator

HD,B :
⊕

~e∈E(Λ)

(
H1

0(~e) ∩H2(~e)
)
⊂ L2(E (Λ)) → L2(E (Λ))

(HD,Bψ)~e := (DBDBψ)~e + V~eψ~e

(3.17)

is by the (modified) Peierls’ substitution unitary equivalent to the Dirichlet operator

without magnetic field

HD = P̃−1HD,BP̃ = P−1HD,BP. (3.18)

Consequently, the spectrum of the Dirichlet operator HD is invariant under perturba-

tions by the magnetic field.

4. Main lemmas

First, let us introduce the following two-dimensional tight-binding Hamiltonian

QΛ(Φ) :=
1

3

(
0 1 + τ0 + τ1

(1 + τ0 + τ1)
∗ 0

)
(4.1)
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with translation operators τ0, τ1 ∈ L(l2(Z2;C)) which for γ ∈ Z2 and u ∈ l2(Z2;C) are

defined as

(τ0(u))γ1,γ2 := uγ1−1,γ2 and (τ1(u))γ1,γ2 := e−iΦγ1uγ1,γ2−1. (4.2)

The following lemma connects the spectrum of HB with σ(QΛ). We have

Lemma 4.1. Let ∆(λ) be the Hill discriminant defined in (2.37). A number λ ∈
ρ(HD) lies in σ(HB) iff ∆(λ) ∈ σ(QΛ(Φ)). Such λ is in the point spectrum of HB iff

∆(λ) ∈ σp(QΛ(Φ)).

Remark 4. We will show in Lemma 5.2 that σp(QΛ(Φ)) is empty, thus HB has no

point spectrum away from σ(HD).

Lemma 4.2 below shows σ(QΛ(Φ)) is a zero-measure Cantor set for irrational flux
Φ
2π
, Lemma 4.3 gives a measure estimate for rational flux, and Lemma 4.4 provides

an upper bound on the Hausdorff dimension of the spectrum of QΛ(Φ). These three

lemmas prove the topological structure part of Theorem 3.

Lemma 4.2. For Φ
2π

∈ R \Q, σ(QΛ(Φ)) is a zero-measure Cantor set.

Lemma 4.3. If Φ
2π

= p
q
is a reduced rational number, then σ(QΛ(Φ)) is a finite union

of intervals, with measure estimate

|σ(QΛ(Φ))| ≤
8
√
6π

9
√
q
.

Lemma 4.4. For generic Φ, the Hausdorff dimension of σ(QΛ(Φ)) is ≤ 1
2
.

5. Reduction of QΛ(Φ) to a one-dimensional Jacobi matrix

5.1. Symmetric property of QΛ.

Lemma 5.1. The spectrum of QΛ has the following properties:

(1) σ(QΛ(Φ)) is symmetric with respect to 0.

(2) 0 ∈ σ(QΛ(Φ)).

Proof. (1). Conjugating QΛ in (4.1) by

Ω =

(
− id 0

0 id

)
(5.1)

shows that σ(QΛ(Φ)) is symmetric with respect to 0 [KL14, Prop. 3.5].
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(2). If we view QΛ(Φ) as an operator-valued function of the flux Φ, then

Φ 7→ 〈QΛ(Φ)x, y〉, (5.2)

for x, y ∈ c00 arbitrary, is analytic and QΛ therefore is a bounded analytic map. If there

was Φ0/2π ∈ R\Q where QΛ(Φ0) was invertible, then QΛ(Φ) would also be invertible

in a sufficiently small neighborhood of Φ0 (e.g. [Ka95, Ch.7.1]). Yet, in [HKL16,

Prop.4.1] it has been shown that for rational Φ/2π, 0 ∈ σ(QΛ(Φ)). Thus, by density

0 ∈ σ(QΛ(Φ)), independent of Φ ∈ R. �

5.2. Reduction to the one-dimensional Hamiltonian.

Relating the spectrum of QΛ to that of Q2
Λ, we obtain the following characterization

of σ(QΛ).

Lemma 5.2. (1) The spectrum of the operator QΛ(Φ) as a set is given by

σ(QΛ(Φ)) = ±
√⋃

θ∈T1
σ(HΦ,θ)

9
+

1

3

⋃
{0} . (5.3)

where HΦ,θ ∈ L(l2(Z)) is the one-dimensional quasi-periodic Jacobi matrix de-

fined as in (2.41) with

c(θ) = 1 + e−2πiθ, and v(θ) = 2 cos 2πθ. (5.4)

(2) QΛ(Φ) has no point spectrum.

Proof. (1). Let A := 1
3
(1 + τ0 + τ1). Then squaring the operator QΛ(Φ) yields

Q2
Λ(Φ) =

(
AA∗ 0

0 A∗A

)
. (5.5)

The spectral mapping theorem implies that σ(Q2
Λ(Φ)) = σ(QΛ(Φ))

2 and from Lemma

5.2 we conclude that σ(QΛ(Φ)) = ±
√
σ(Q2

Λ(Φ)). Clearly, the operator AA∗|ker(A∗)⊥

and A∗A|ker(A)⊥ are unitarily equivalent. Thus, the spectrum can be expressed by

σ(QΛ(Φ)) = ±
√
σ(AA∗) ∪ {0} (5.6)

where we are able to use either of the two (AA∗ or A∗A) since 0 ∈ σ(QΛ(Φ)) due to

Lemma 5.1.

Then, it follows that

AA∗ =
id

3
+

id

9
((τ0 + τ ∗0 ) + (τ1 + τ ∗1 ) + τ0τ

∗
1 + τ1τ

∗
0 )︸ ︷︷ ︸

=:HΦ

. (5.7)

Observe that

HΦψm,n =ψm−1,n + ψm+1,n + e−iΦmψm,n−1 + eiΦmψm,n+1

+ eiΦ(m−1)ψm−1,n+1 + e−iΦmψm+1,n−1. (5.8)
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Since HΦ is invariant under discrete translations in n, the operator is unitarily equiv-

alent to the direct integral operator
∫ ⊕
T1
HΦ,θ dθ, which gives the claim.

(2). It follows from a standard argument that the two dimensional operator HΦ has

no point spectrum. Indeed, assume HΦ has point spectrum at energy E, then HΦ,θ

would have the same point spectrum E for a.e. θ ∈ T1. This implies the integrated

density of states of HΦ,θ has a jump discontinuity at E, which is impossible. Therefore

the point spectrum of HΦ is empty, hence the same holds for QΛ(Φ). �

6. Proof of Lemmas 4.2, 4.3, 4.4

For a set U , let dimH(U) be its Hausdorff dimension.

Lemma 4.2 follows as a direct consequence of (5.3) and the following Theorem 7.

Let ΣΦ be defined as in Section 2.2.

Theorem 7. For Φ
2π

∈ R\Q, ΣΦ is a zero-measure Cantor set.

We will postpone the proof of Theorem 7 till the end of this section. We will first

present the proofs of Lemmas 4.3 and 4.4, which are based on the following three

lemmas. First, we have

Lemma 6.1. Let Φ
2π

= p
q
be a reduced rational number, then Σ2πp/q is a union of q

(possibly touching) bands with |Σ2πp/q| < 16π
3q

.

Lemma 6.1 will be proved in subsections 6.4 and 6.5 after some further preparation.

The following lemma addresses the continuity of the spectrum ΣΦ in Φ, extending a re-

sult of [AMS90] (see Proposition 7.1 therein) from quasiperiodic Schrödinger operators

to Jacobi matrices.

Lemma 6.2. There exist absolute constants C1, C2 > 0 such that if λ ∈ ΣΦ and

|Φ− Φ′| < C1, then there exists λ′ ∈ ΣΦ′ such that

|λ− λ′| ≤ C2|Φ− Φ′| 12 .

We will prove Lemma 6.2 in Appendix C.

The next lemma provides an upper bound on the Hausdorff dimension of a set.

Lemma 6.3. (Lemma 5.1 of [L94]) Let S ⊂ R, and suppose that S has a sequence of

covers: {Sn}∞n=1, S ⊂ Sn, such that each Sn is a union of qn intervals, qn → ∞ as

n→ ∞, and for each n,

|Sn| <
C

qβn
,



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 23

where β and C are positive constants, then

dimH(S) ≤
1

1 + β
.

Proof of Lemma 4.3. The fact that σ(QΛ(Φ)) is a finite union of intervals follows

from (5.3) and Lemma 6.1.

It suffices to prove the measure estimate. It is clear that for any ε > 0, we have

√
Σ2πp/q + 3 ⊆ [ 0,

√
ε ]
⋃√(

Σ2πp/q + 3
)⋂

(ε,∞).

Hence by Lemma 6.1, we have

|
√

Σ2πp/q + 3| ≤ √
ε+

|Σ2πp/q|
2
√
ε

≤ √
ε+

8π

3
√
εq
.

Optimizing in ε leads to

|
√
Σ2πp/q + 3| ≤ 4

√
6π

3
√
q
.

Then (5.3) implies

|σ(QΛ(2πp/q))| ≤
8
√
6π

9
√
q
. (6.1)

�

Proof of Lemma 4.4. We will show that if Φ
2π

is an irrational obeying

q4n

∣∣∣∣
Φ

2π
− pn
qn

∣∣∣∣ < C, (6.2)

for some constant C, and a sequence of reduced rationals {pn/qn} with qn → ∞, then

dimH(σ(QΛ(Φ))) ≤ 1/2. It is easy to see that the Φ’s satisfying (6.2) form a dense Gδ

set of R, hence is generic.

Without loss of generality, we may assume Φ
2π

∈ (0, 1).

First, by (5.3), we have that

dimH(σ(QΛ(Φ))) = sup
k≥2

dimH

(
±
√(

ΣΦ

9
+

1

3

)
∩ [

1

k
, 1]

)
,

where we used a trivial bound ‖HΦ,θ‖ ≤ 6. Hence it suffices to show that for each

k ≥ 2,

dimH

(√(
ΣΦ

9
+

1

3

)
∩ [

1

k
, 1]

)
≤ 1

2
. (6.3)
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The rest of the argument is similar to that of [L94]. By Lemma 6.2, taking any

λ ∈ ΣΦ, for n ≥ n0, there exists λ′ ∈ Σ2πpn/qn such that |λ− λ′| ≤ C2| Φ2π − pn
qn
| 12 . This

means ΣΦ is contained in the C2| Φ2π −
pn
qn
| 12 neighbourhood of Σ2πpn/qn . By Lemma 6.1,

Σ2πpn/qn has qn (possibly touching) bands with total measure |Σ2πpn/qn | ≤ 16π
3qn

. Hence

ΣΦ has cover Sn such that Sn is a union of (at most) qn intervals with total measure

|Sn| ≤
16π

3qn
+ 2C2qn

∣∣∣∣
Φ

2π
− pn
qn

∣∣∣∣

1
2

. (6.4)

Since q4n

∣∣∣ Φ2π − pn
qn

∣∣∣ ≤ C, we have, by (6.4),

|Sn| ≤
16π

3qn
+

2C2

√
C

qn
=:

C̃

qn
. (6.5)

This implies
(
ΣΦ

9
+ 1

3

)
∩ [ 1

k
, 1] has cover S̃n such that S̃n is a union of (at most) qn

intervals with total measure

|S̃n| ≤
√
kC̃

2qn
. (6.6)

Then Lemma 6.3 yields (6.3). �

6.1. Proof of Theorem 7. Note that Lemmas 6.1 and 6.2 already imply zero measure

(and thus Cantor nature) of the spectrum for fluxes Φ/2π with unbounded coefficients

in the continued fraction expansion, thus for a.e. Φ, by an argument similar to that

used in the proof of Lemma 4.4. However extending the result to the remaining measure

zero set this way would require a slightly stronger continuity in Lemma 6.2, which is

not available. We circumvent this by the following strategy:

(1). Use quantization of acceleration techniques to prove the Lyapunov exponent of

operator HΦ,θ identically vanishes on the spectrum, see Proposition 6.4;

(2). employ the singularity of the Jacobi matrix to show the absolutely continuous

spectrum of HΦ,θ is empty, see Proposition 6.5;

(3). apply Kotani theory for Jacobi matrices, see Theorem 8.

Let Σac(HΦ,θ) be the absolutely continuous spectrum of HΦ,θ. Let L(λ,Φ) be the

Lyapunov exponent of HΦ,θ at energy λ, as defined in (2.44). For a set U ⊆ R, let U
ess

be its essential closure.

First, we are able to give a characterization of the Lyapunov exponent on the spec-

trum.

Proposition 6.4. For Φ
2π

∈ R \Q, L(λ,Φ) = 0 if and only if λ ∈ ΣΦ.

The proof of this is similar to that for the almost Mathieu operator as given in [A15]

and the extended Harper’s model [JM12]. The general idea is to complexify θ to θ+ iε,
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and obtain asymptotic behavior of the Lyapunov exponent when |ε| → ∞. Convexity

and quantization of the acceleration (see Theorem 5 of [A15]) then bring us back to

the ε = 0 case. We will give the proof in Appendix A.

Exploiting the fact that c(θ) = 1 + e−2πiθ has a real zero θ1 =
1
2
, we have

Proposition 6.5. ([Do78], see also Proposition 7.1 of [JM12]) For Φ
2π

∈ R \ Q, and

a.e. θ ∈ T1, Σac(HΦ,θ) is empty.

Hence our operator HΦ,θ has zero Lyapunov exponent on the spectrum and empty

absolutely continuous spectrum. Celebrated Kotani theory identifies the essential clo-

sure of the set of zero Lyapunov exponents with the absolutely continuous spectrum,

for general ergodic Schrödinger operators. This has been extended to the case of non-

singular (that is |c(·)| uniformly bounded away from zero) Jacobi matrices in Theorem

5.17 of [Te00]. In our case |c(·)| is not bounded away from zero, however a careful

inspection of the proof of Theorem 5.17 of [Te00] shows that it holds under a weaker

requirement: log (|c(·)|) ∈ L1. Namely, let Hc,v(θ) acting on `2(Z) be an ergodic Jacobi

matrix,

(Hc,v(θ)u)m = c(Tmθ)um+1 + c(Tm−1θ)um−1 + v(Tmθ)um

where c :M → C, v :M → R, are bounded measurable functions, and T :M →M is

an ergodic map. Let Lc,v(λ) be the corresponding Lyapunov exponent. We have

Theorem 8. (Kotani theory) Assume log (|c(·)|) ∈ L1(M). Then for a.e. θ ∈ M ,

Σac(Hc,v(θ)) = {λ : Lc,v(λ) = 0}ess.

Proof. The proof of Theorem 5.17 of [Te00] works verbatim. �

Proof of Theorem 7. In our concrete model, log (|c(θ)|) = log (2| cos πθ|) ∈ L1(T1),

thus Theorem 8 applies, and combining with Propositions 6.4, 6.5, it follows that ΣΦ

must be a zero measure set. �

The rest of this section will be devoted to proving Lemma 6.1.

6.2. Quick Observations about H2πp/q,θ.

Let Aλ(·), Ãλ(·), Dλ(·),Θ be defined as in Section 2.2.1. We start with several quick

observations about H2πp/q,θ.

Observation 1. The sampling function c(θ) = 0 yields a unique solution θ = 1
2
(mod

1), hence Θ = 1
2
+ 1

q
Z. Then,

• for θ /∈ Θ, we have c(θ + np
q
) 6= 0 for any n ∈ Z

• for θ ∈ Θ, there exists k0 ∈ {0, 1, ..., q − 1} such that c(θ + np
q
) = 0 if and only

if n ≡ k0 (mod q).
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Note that |c(θ)| = 2| cos πθ|, so a simple computation yields that
∏q−1

j=0 |c(θ+ j p
q
)| =

2| sin πq(θ + 1
2
)|. Thus (2.50) becomes

tr(Ãλq (θ)) =
tr(Dλ

q (θ))

2| sin πq(θ + 1
2
)| . (6.7)

We have the following characterization of Σ2πp/q,θ.

6.2.1. Case 1. If θ ∈ Θ, we have the following

Observation 2. For θ ∈ Θ, the infinite matrix H2πp/q,θ is decoupled into copies of the

following block matrix Mq of size q:



v(1
2
+ p

q
) c(1

2
+ p

q
)

c(1
2
+ p

q
) v(1

2
+ 2p

q
)

. . .
. . . . . .

v(1
2
+ (q − 1)p

q
) c(1

2
+ (q − 1)p

q
)

c(1
2
+ (q − 1)p

q
) v(1

2
)




. (6.8)

Thus

Σ2πp/q,θ = {eigenvalues of Mq}, for θ ∈ Θ. (6.9)

6.2.2. Case 2. If θ /∈ Θ, by Floquet theory, we have

Σ2πp/q,θ = {λ : | tr Ãλq (θ)| ≤ 2}. (6.10)

Furthermore, the set {λ : tr Ãλq (θ) = 2 cos 2πν} contains q individual points (counting

multiplicities), which are eigenvalues of the following q × q matrix Mq,ν :

Mq,ν(θ) =




v(θ + p
q
) |c(θ + p

q
)| e2πiν |c(θ)|

|c(θ + p
q
)| v(θ + 2p

q
)

. . .
. . . . . .

v(θ + (q − 1)p
q
) |c(θ + (q − 1)p

q
)|

e−2πiν |c(θ)| |c(θ + (q − 1)p
q
)| v(θ)




(6.11)

Combining (6.10) with (6.7), we arrive at an alternative representation

Σ2πp/q,θ =

{
λ : | tr(Dλ

q (θ))| ≤ 4| sin πq(θ + 1

2
)|
}
. (6.12)
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6.3. Key lemmas.

Let

dq(θ) = tr(Dλ
q (θ)). (6.13)

We have

Lemma 6.6 (Chambers’ type formula). For all θ ∈ T1, we have

dq(θ) = −2 cos 2πqθ +Gq(λ), (6.14)

where Gq(λ) (defined by (6.14)) is independent of θ.

Remark 5. Chambers’ formula is well-known for the celebrated almost Mathieu opera-

tor. It was also recently developed for various models including the tight-binding model

QΛ(Φ) in [HKL16]. Here we do not use the Chambers’ formula for QΛ(Φ), rather we

develop one for one-dimensional Hamiltonian HΦ,θ.

Proof. It is easily seen that dq(·) is a 1/q-periodic function, thus

dq(θ) = Gq(λ) + aqe
2πiqθ + a−qe

−2πiqθ,

in which the Gq(λ) part is independent of θ. One can easily compute the coefficients

aq, a−q, and get aq = a−q = −1. �

Lemma 6.7. For θ ∈ Θ,

det (λ · Id−Mq(θ)) = tr(Dλ
q (θ)). (6.15)

The proof of this lemma is stated in Appendix B.

Combining (6.12), (6.9) and Lemma 6.7 with the fact that | sin πq(θ + 1
2
)| = 0 for

θ ∈ Θ, we arrive at

Σ2πp/q,θ = {λ : | tr(Dλ
q (θ))| ≤ 4| sin πq(θ + 1

2
)|} (6.16)

holds uniformly for θ ∈ T1.

By (6.14), we get the following alternative characterization of Σ2πp/q,θ.

Σ2πp/q,θ =

{
λ : −4| sin πq(θ + 1

2
)|+ 2 cos 2πqθ ≤ Gq(λ) ≤ 4| sin πq(θ + 1

2
)|+ 2 cos 2πqθ

}
.

(6.17)

Let us denote Lq(θ) := 4| sin πq(θ + 1
2
)| + 2 cos 2πqθ, and lq(θ) := −4| sin πq(θ + 1

2
)| +

2 cos 2πqθ. Then (6.17) translates into

Σ2πp/q,θ = {λ : lq(θ) ≤ Gq(λ) ≤ Lq(θ)}. (6.18)

This clearly implies

Σ2πp/q = {λ : min
T1

lq(θ) ≤ Gq(λ) ≤ max
T1

Lq(θ)}. (6.19)
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Note that Gq(λ) is a polynomial of λ of degree q with leading coefficient 1, Σ2πp/q

consists of q non-overlapping (but possibly touching) bands and G′(λ) 6= 0 in the

interior of each band, see e.g. Section 6 of [HKL16].

The following lemma provides estimates of |Σ2πp/q,θ| and holds for any Jacobi matrix

(2.41).

Lemma 6.8. We have

|Σ2πp/q,θ| ≤ 4|c(θ)|.

Proof. For θ ∈ Θ, by (6.9), |Σ2πp/q,θ| = 0. It then suffices to consider θ /∈ Θ.

By (6.10), we have

Σ 2πp
q
,θ = {λ : −2 ≤ tr(Ãλq (θ)) ≤ 2}.

Note that tr(Ãλq (θ)) is a polynomial of degree q in λ with leading coefficient 1. By

standard Floquet theory, see e.g. [T81, Te00], we have

d

dλ
tr(Ãλq (θ)) 6= 0,

holds for any λ such that tr(Ãλq (θ)) ∈ (−2, 2). Hence Σ2πp/q,θ is completely determined

by the λ’s such that tr(Ãλq (θ)) = ±2. By (6.10) and the explanation below it,
{
{λ : tr(Ãλq (θ)) = 2} = {eigenvalues of Mq,0(θ)}
{λ : tr(Ãλq (θ)) = −2} = {eigenvalues of Mq, 1

2
(θ)}.

(6.20)

Let {λi(θ)}qi=1 be eigenvalues of Mq,0(θ), labelled in the increasing order. Let

{λ̃i(θ)}qi=1 be eigenvalues of Mq, 1
2
(θ), labelled also in the increasing order. Then we

have

|Σ 2πp
q
,θ| =

q∑

k=1

(−1)q−k
(
λk(θ)− λ̃k(θ)

)
(6.21)

=

[ q+1
2

]∑

k=1

(
λq−2k+2(θ)− λ̃q−2k+2(θ)

)
−

[ q−1
2

]∑

k=1

(
λq−2k+1(θ)− λ̃q−2k+1(θ)

)
.

Note the coefficient of (λq(θ)− λ̃q(θ)) is 1 rather than −1. This is due to the fact that

the leading coefficient of tr(Ãλq (θ)) is positive.

Consider the difference matrix

Mq,0(θ)−Mq, 1
2
(θ) =




2|c(θ)|

2|c(θ)|



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whose eigenvalues we denote by {Ei(θ)}qi=1, namely,

E1(θ) = −2|c(θ)| < 0 = E2(θ) = · · · = Eq−1(θ) = 0 < 2|c(θ)| = Eq(θ).

Recall the following Lidskii inequality and dual Lidskii inequality: Let Mj, j = 1, 2

be n×n self-adjoint matrices, let E1(Mj) ≤ E2(Mj) ≤ · · · ≤ En(Mj) be the eigenvalues

of Mj. Then, for the eigenvalues of the sum of the two matrices, we have
{∑k

l=1Eil(M1 +M2) ≤
∑k

r=1Eir(M1) +
∑n

s=n−k+1Es(M2)∑k
l=1Eil(M1 +M2) ≥

∑k
r=1Eir(M1) +

∑k
s=1Es(M2)

(6.22)

for any 1 ≤ i1 < · · · < ik ≤ n.

By Lidskii inequalities (6.22), we have

[ q+1
2

]∑

k=1

λq−2k+2(θ) ≤
[ q+1

2
]∑

k=1

λ̃q−2k+2(θ) +

[ q+1
2

]∑

k=1

Eq−k+1(θ) =

[ q+1
2

]∑

k=1

λ̃q−2k+2(θ) + 2|c(θ)|, (6.23)

and

[ q−1
2

]∑

k=1

λq−2k+1(θ) ≥
[ q−1

2
]∑

k=1

λ̃q−2k+1(θ) +

[ q−1
2

]∑

k=1

Ek(θ) =

[ q−1
2

]∑

k=1

λ̃q−2k+1(θ)− 2|c(θ)|. (6.24)

Hence combining (6.21) with (6.23) (6.24), we get,

|Σ 2πp
q
,θ| ≤ 4|c(θ)|. (6.25)

�

6.4. Proof of Lemma 6.1 for even q.

For sets/functions that depend on θ, we will sometimes substitute θ in the notation

with A ⊆ T1, if corresponding sets/functions are constant on A.

Since q is even, a simple computation shows




maxT1 Lq(θ) = Lq(
6Z+1
6q

) = Lq(
6Z+5
6q

) = 3,

minT1 lq(θ) = lq(
2Z+1
2q

) = −6.

A simple computation also shows lq(
6Z+1
6q

) = −1 and Lq(
2Z+1
2q

) = 2. Thus we have, by

(6.19),

Σ2πp/q ={λ : −6 ≤ Gq(λ) ≤ 3}
={λ : −6 ≤ Gq(λ) ≤ 2}

⋃
{λ : −1 ≤ Gq(λ) ≤ 3}

=Σ 2πp
q
, 2Z+1

2q

⋃
Σ 2πp

q
, 6Z+1

6q
.
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This implies

|Σ2πp/q| ≤ |Σ 2πp
q
, 2Z+1

2q
|+ |Σ 2πp

q
, 6Z+1

6q
|. (6.26)

Now it remains to estimate |Σ 2πp
q
, 2Z+1

2q
| and |Σ 2πp

q
, 6Z+1

6q
|. Since q is even, let us consider

Σ 2πp
q
, q+1

2q
and Σ 2πp

q
, 3q+1

6q
.

By Lemma 6.8, we have



|Σ 2πp

q
, q+1

2q
| ≤ 4|c( q+1

2q
)| < 4π

q
,

|Σ 2πp
q
, 3q+1

6q
| ≤ 4|c(3q+1

6q
)| < 4π

3q
.

(6.27)

Hence putting (6.26), (6.27) together, we have

|Σ 2πp
q
| < 16π

3q
. (6.28)

6.5. Proof of Lemma 6.1 for odd q.

Since the proof for odd q is very similar to that for even q, we only sketch the steps

here.

For odd q, similar to (6.26), we have

|Σ 2πp
q
| ≤ |Σ 2πp

q
, 3Z+1

3q
|+ |Σ 2πp

q
, Z
q
|. (6.29)

By Lemma 6.8, we have



|Σ 2πp

q
, 3q−1

6q
| ≤ 4|c(3q−1

6q
)| < 4π

3q
,

|Σ 2πp
q
, q−1

2q
| ≤ 4|c( q−1

2q
)| < 4π

q
.

(6.30)

Hence putting (6.29), (6.30) together, we have

|Σ 2πp
q
| < 16π

3q
. (6.31)

This proves the claimed result. �

7. Proof of Lemma 4.1

Lemma 4.1 is the reduction from ΛB to the tight-binding model QΛ. We now present

its proof below.

Using ideas from [Pa06] and [BGP07], we can express the resolvent of the opera-

tor ΛB (3.14) by Krein’s resolvent formula in terms of the resolvent of the Dirichlet

Hamiltonian and the resolvent of QΛ.
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For this we need to introduce a few concepts first. The l2-space on the vertices

l2(V(Λ)) carries the inner product

〈f, g〉 :=
∑

v∈V(Λ)
3f(v)g(v) (7.1)

where the factor three accounts for the number of incoming or outgoing edges at each

vertex.

A convenient method from classical extension theory required to state Krein’s resol-

vent formula, and thus to link the magnetic Schrödinger operator HB with an effective

Hamiltonian, is the concept of boundary triples.

Definition 7.1. Let T : D(T ) ⊂ H → H be a closed linear operator on the Hilbert

space H , then the triple (π, π′,H ′), with H ′ being another Hilbert space and π, π′ :

D(T ) → H ′, is a boundary triple for T , if

• Green’s identity holds on D(T ), i.e. for all ψ, ϕ ∈ D(T )

〈ψ, T ϕ〉H − 〈T ψ, ϕ〉H = 〈πψ, π′ϕ〉H ′ − 〈π′ψ, πϕ〉H ′ . (7.2)

• ker(π, π′) is dense in H .

• (π, π′) : D(T ) → H ′ ⊕ H ′ is a linear surjection.

The following lemma applies this concept to our setting.

Lemma 7.2. The operator T B : D(T B) ⊂ L2(E (Λ)) → L2(E (Λ)) acting as the

maximal Schrödinger operator (2.11) on every edge with domain

D(T B) :=

{
ψ ∈ H2(E (Λ)) : any ~e1, ~e2 ∈ Ev(Λ) such that i(~e1) = i(~e2) = v satisfy

ψ~e1(v) = ψ~e2(v) and if t(~e1) = t(~e2) = v,

then eiβ̃~e1ψ~e1(v) = eiβ̃~e2ψ~e2(v)

}
(7.3)

is closed. The maps π, π′ on D(T B) defined by

π(ψ)(v) :=
1

3

(
∑

i(~e)=v

ψ~e(v) +
∑

t(~e)=v

eiβ̃~eψ~e(v)

)

π′(ψ)(v) :=
1

3

(
∑

i(~e)=v

ψ′
~e(v)−

∑

t(~e)=v

eiβ̃~eψ′
~e(v)

)
(7.4)

form together with H ′ := l2(V(Λ)) a boundary triple associated to T B.
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Proof. The proof follows the same strategy as in [Pa06]. The operator T B is closed

iff its domain is a closed subspace (with respect to the graph norm) of the domain

of some closed extension of T B. Such a closed extension is given by
⊕

~e∈E(Λ) H2
~e on

H2(E (Λ)). To see that D(T B) is a closed subspace of H2(E (Λ)), observe that in terms

of continuous functionals

l~ei,~ej : H2(E (Λ)) → C, l~ei,~ej(ψ) = ψ~ei(i(~ei))− ψ~ej(i(~ej))

k~ei,~ej : H2(E (Λ)) → C, k~ei,~ej(ψ) = eiβ̃~eiψ~ei(t(~ei))− eiβ̃~ejψ~ej(t(~ej)) (7.5)

we obtain

D(T B) =
⋂

~ei,~ej∈E(Λ) with i(~ei)=i(~ej)

ker
(
l~ei,~ej

)
∩

⋂

~ei,~ej∈E(Λ) with t(~ei)=t(~ej)

ker
(
k~ei,~ej

)
(7.6)

which proves closedness of T B. Green’s identity follows directly from integration by

parts on the level of edges. The denseness of ker(π, π′) is obvious since this space

contains
⊕

~e∈E(Λ)C
∞
c (~e). To show surjectivity, it suffices to consider a single edge. On

those however, the property can be established by explicit constructions as in Lemma

2 in [Pa06]. �

Any boundary triple for T as in Def. 7.1 and any self-adjoint relation A ⊆ H ′⊕H ′

gives rise [S12] to a self-adjoint restriction TA of T with domain

D(TA) = {ψ ∈ D(T ) : (π(ψ), π′(ψ)) ∈ A} . (7.7)

The restriction of T B satisfying Dirichlet type boundary conditions on every edge is

obtained by selecting A1 := {0}⊕l2(V(Λ)) and coincides with HD (2.14). The operator

ΛB (3.14) is recovered from T B by picking the relation A2 := l2(V(Λ))⊕ {0} .

Definition 7.3. Given the boundary triple for T B as above, the gamma-field γ :

ρ(HD) → L(l2(V(Λ)), L2(E (Λ))) is given by γ(λ) :=
(
π|ker(T B−λ)

)−1
and the Weyl

function M(·,Φ) : ρ(HD) → L(l2(V(Λ))) is defined as M(λ,Φ) := π′γ(λ).

A computation shows that those maps are well-defined.

Lemma 7.4. For the operator T B, the gamma-field γ and Weyl function M can be

explicitly written in terms of the solutions sλ, cλ (2.35) on an arbitrary edge ~e ∈ E(Λ)
for λ ∈ ρ(HD) and z ∈ l2(V(Λ)) by

(γ(λ)z)~e(x) =
(sλ(1)cλ,~e(x)− sλ,~e(x)cλ(1)) z(i(~e)) + e−iβ̃~esλ,~e(x)z(t(~e))

sλ(1)
(7.8)

and

M(λ,Φ) =
KΛ(Φ)−∆(λ)

sλ(1)
(7.9)



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 33

where

(KΛ(Φ)z)(v) :=
1

3




∑

~e: i(~e)=v

e−iβ̃~ez(t(~e)) +
∑

~e: t(~e)=v

eiβ̃~ez(i(~e))


 (7.10)

defines an operator in L(l2(V(Λ))) with ‖KΛ(Φ)‖ ≤ 1.

Proof. For λ ∈ ρ(HD) and z ∈ l2(V(Λ)) we define for ~e ∈ E(Λ) arbitrary
ψ~e := (γ(λ)z)~e = ((π|ker(T B−λ))

−1z)~e (7.11)

with ψ := (ψ~e). In particular, ψ~e is the solution to −ψ′′
~e+V~eψ~e = λψ~e with the following

boundary condition: ψ~e(i(~e)) = z(i(~e)) and ψ~e(t(~e)) = e−iβ̃~ez(t(~e)). The representation

(7.8) is then an immediate consequence of (2.28).

The expression for the Weyl function on the other hand, follows from the Dirichlet-

to-Neuman map (2.29).

(M(λ,Φ)z)(v) = (π′γ(λ)z)(v)

=
1

3




∑

~e: i(~e)=v

ψ′
~e(v)−

∑

~e: t(~e)=v

eiβ̃~eψ′
~e(v)




=
(KΛ(Φ)z)(v)

sλ(1)
−




cλ(1)

sλ(1)
δv∈i(V(Λ))z(v) +

s′λ(1)

sλ(1)
δv∈t(V(Λ))z(v)

︸ ︷︷ ︸
=

s′
λ
(1)

sλ(1)
z(v)




=
(KΛ(Φ)z − s′λ(1)z) (v)

sλ(1)
, (7.12)

here we used (2.31). The formula (7.9) then follows from (7.12) and (2.37). Since

i(Λ) ∩ t(Λ) = ∅, we have ‖KΛ(Φ)‖ ≤ 1. �

The resolvents of HD = T B
A1

and ΛB = T B
A2

are then related by Krein’s resolvent

formula [S12, Theorem 14.18] and a unitary equivalence between ΛB and KΛ(Φ) away

from the Dirichlet spectrum holds [Pa13, Pa14]

Theorem 9. Let (l2(V(Λ)), π, π′) be the boundary triple for T B and γ,M as above,

then for λ ∈ ρ(HD) ∩ ρ(ΛB) there is also a bounded inverse of M(λ,Φ) and

(ΛB − λ)−1 − (HD − λ)−1 = −γ(λ)M(λ,Φ)−1γ(λ)∗. (7.13)

In particular, σ(ΛB)\σ(HD) = {λ ∈ R ∩ ρ(HD) : 0 ∈ σ(M(λ,Φ))} and for intervals

J ⊂ R\σ(HD)

∆
(
ΛB 1lJ(Λ

B)
)
= U

[
KΛ(Φ) 1l∆(J)(KΛ(Φ))

]
U∗ (7.14)
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with unitary operator U : ran
(
KΛ(Φ) 1l∆(J)(KΛ(Φ))

)
→ ran

(
ΛB 1lJ(Λ

B)
)
given by

U =

∫

J

√
∂λsλ(1)
∆′(λ)

γ(λ) dEKΛ(Φ)(∆(λ))

and EKΛ(Φ) is the spectral measure of the self-adjoint operator KΛ(Φ).

Since all vertices are integer translates of either of the two vertices r0, r1 ∈ WΛ by

basis vectors ~b1,~b2, we conclude that l2(V(Λ)) ' l2(Z2;C2). Our next Lemma shows

KΛ(Φ) and QΛ(Φ) are unitary equivalent under this identification.

Lemma 7.5. KΛ(Φ) is unitary equivalent to operator QΛ(Φ).

Proof. By (3.16), (7.10),

{
(KΛ(Φ)z)(γ1, γ2, r0) =

1
3

(
z(γ1, γ2, r1) + z(γ1 − 1, γ2, r1) + e−iΦγ1z(γ1, γ2 − 1, r1)

)
,

(KΛ(Φ)z)(γ1, γ2, r1) =
1
3

(
z(γ1, γ2, r0) + z(γ1 + 1, γ2, r0) + eiΦγ1z(γ1, γ2 + 1, r0)

)
.

In order to transform KΛ to QΛ we use the unitary identification W : l2(V(Λ)) →
l2(Z2,C2)

(Wz)γ1,γ2 :=
(
z(γ1, γ2, r0) , z(γ1, γ2, r1)

)T
. (7.15)

This way, QΛ(Φ) = WKΛ(Φ)W
∗. �

Remark 6. In terms of a ∈ l2(Z2,C2) defined as

a(0,0) :=
1

3

(
0 1

1 0

)
, a(0,1) :=

1

3

(
0 1

0 0

)

a(1,0) :=
1

3

(
0 1

0 0

)
, a(0,−1) :=

1

3

(
0 0

1 0

)

a(−1,0) :=
1

3

(
0 0

1 0

)
, and aγ := 0 for other γ ∈ Z2, (7.16)

we can express (4.1) in the compact form

QΛ(Φ) =
∑

γ∈Z2;|γ|≤1

aγ(τ0)
γ1(τ1)

γ2 , (7.17)

where |γ| := |γ1| + |γ2|. This operator has already been studied, in different contexts,

for rational flux quanta in [KL14], [HKL16], and [AEG14].

Finally, we point out that Lemma 4.1 follows from a combination of Theorem 9,

Lemma 7.4 and Lemma 7.5. 2
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8. Spectral analysis

This section is devoted to complete spectral analysis of HB.

In view of Lemmas 4.1 and 5.1, an important technical fact is:

Lemma 8.1. The operator norm of QΛ(Φ) for non-trivial flux quanta Φ /∈ 2πZ is

strictly less than 1.

Indeed, then, away from the Dirichlet spectrum σ(HD), which are located on the

edges of the Hill bands (2.40), we have the following characterization of σ(HB). Let

Bn and ∆ be defined as in Section 2.1.3.

Lemma 8.2. For the magnetic Schrödinger operator HB, the following properties hold.

(1) The level of the Dirac points ∆|−1
int(Bn)

(0) always belongs to the spectrum of HB,

i.e. 0 ∈ ∆|int(Bn)(σ(H
B)).

(2) λ ∈ ∆|int(Bn)(σ(H
B)) iff −λ ∈ ∆|int(Bn)(σ(H

B)). Consequently, the property

∆′(∆|−1
int(Bn)

(0)) 6= 0 implies that locally with respect to the Dirac points, the

spectrum of HB is symmetric.

(3) HB has no point spectrum away from σ(HD).

(4) For non-trivial flux Φ /∈ 2πZ, HB has purely continuous spectrum bounded away

from σ(HD).

In this paper, we only show the energy ∆|−1
int(Bn)

(0) belongs to the spectrum of HB.

In [BH19] the first two authors show that not only this energy belongs to the spectrum,

but also that Dirac cones actually form around this energy for any Φ ∈ 2πQ.

Combining Lemma 8.2 with Lemma 4.4, we get

Lemma 8.3. For generic Φ, dimH(σ
Φ) ≤ 1

2
.

Proof of Lemma 8.3. Lemma 4.4 and Lemma 8.1, which implies that ∆−1‖Bn is Lips-

chitz on σ(QΛ(Φ)) for Φ /∈ 2πZ, show that for generic Φ,

dimH

(
∆|−1

int(Bn)
(σ(QΛ(Φ))

)
≤ 1

2
.

Hence since

σΦ = σ(HD)
⋃(

∪n∈N ∆|−1
int(Bn)

(σ(QΛ(Φ))
)
,

we have

dimH(σ
Φ) ≤ sup

{
dimH(σ(H

D)), sup
n∈N

dimH

(
∆|−1

int(Bn)
(σ(QΛ(Φ))

)}
≤ 1

2
.

This proves Lemma 8.3. �
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Proof of Lemma 8.2. (1), (2) follow from a quick combination of Lemma 4.1 and

Lemma 5.1, and (3) follows from Part (2) of Lemma 5.2. (4) is a corollary of Lemma

8.1 and (3). 2

Proof of Lemma 8.1. Without loss of generality Φ ∈ (0, 2π). By (5.3), it suffices to

show ‖HΦ,θ‖ < cΦ < 6 for some constant cΦ independent of θ ∈ T1. Let us take

ϕ ∈ `2(Z) with ‖ϕ‖`2(Z) = 1. Consider

(HΦ,θϕ)n = c

(
θ + n

Φ

2π

)
ϕn+1

︸ ︷︷ ︸
=:(h1ϕ)n

+ c

(
θ + (n− 1)

Φ

2π

)
ϕn−1

︸ ︷︷ ︸
=:(h2ϕ)n

+ v

(
θ + n

Φ

2π

)
ϕn

︸ ︷︷ ︸
=:(h3ϕ)n

,

in which h1, h2, h3 ∈ L(`2(Z)). Hence

‖HΦ,θϕ‖2`2(Z) ≤3
(
‖h1ϕ‖2`2(Z) + ‖h2ϕ‖2`2(Z) + ‖h3ϕ‖2`2(Z)

)

≤3 sup
n∈Z



∣∣∣∣c
(
θ + (n− 1)

Φ

2π

)∣∣∣∣
2

+

∣∣∣∣∣c
(
θ + n

Φ

2π

)∣∣∣∣∣

2

+

∣∣∣∣v
(
θ + n

Φ

2π

)∣∣∣∣
2



≤12 sup
θ∈T1

(
cos2π

(
θ − Φ

2π

)
+ cos2(πθ) + cos2(2πθ)

)

=:c2Φ < 36.

�

In order to investigate further the Dirichlet spectrum and spectral decomposition of

the continuous spectrum into absolutely and singular continuous parts, we start with

constructing magnetic translations.

8.1. Magnetic translations.

Below, let γ = (γ1, γ2) be in Z2 and ~e = (γ̃1, γ̃2, [~e]) an arbitrary edge.

In general, ΛB does not commute with lattice translations T stγ . Yet, there is a

set of modified translations, introduced by [Z64], that do still commute with ΛB,

although they in general no longer commute with each other. We define those magnetic

translations TBγ : L2(E (Λ)) → L2(E (Λ)) as unitary operators given by

(TBγ ψ)~e := uBγ (~e)(T
st
γ ψ)~e (8.1)

for any ψ := (ψ~e)~e∈E(Λ) ∈ L2(E (Λ)) and γ ∈ Z2. The lattice translation T stγ is defined

by (T stγ ψ)~e(x) = ψ~e−γ1~b1−γ2~b2(x − γ1~b1 − γ2~b2) as before. The function uBγ is constant

on each copy of the fundamental domain, and defined as follows

uBγ (γ̃1, γ̃2, [~e]) = eiΦγ1γ̃2 , for [~e] = ~f,~g or ~h, γ = (γ1, γ2) ∈ Z2. (8.2)
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By the definition (8.1), (8.2), it is clear that for any ψ ∈ L2(E(Λ)),

d

dt
TBγ ψ = TBγ

d

dt
ψ and V TBγ ψ = TBγ V ψ. (8.3)

In order to make sure D(ΛBTBγ ) = D(TBγ ΛB), it suffices to check TBγ (D(ΛB)) =

D(ΛB), which translates into





uγ(~e1) = uγ(~e2) whenever i(~e1) = i(~e2)

e
iβ̃~e2 uγ(~e2)

e
iβ̃~e1 uγ(~e1)

= e
iβ̃

~e2−γ1
~b1−γ2

~b2

e
iβ̃

~e1−γ1
~b1−γ2

~b2

whenever t(~e1) = t(~e2).

(8.4)

This, by (3.16) is in turn equivalent to the following: for any γ̃1, γ̃2 ∈ Z:





uγ(γ̃1, γ̃2, ~f) = uγ(γ̃1, γ̃2, ~g) = uγ(γ̃1, γ̃2,~h)

uγ(γ̃1, γ̃2, ~f) = uγ(γ̃1 + 1, γ̃2, ~g) = e−iΦγ1uγ(γ̃1, γ̃2 + 1,~h)

The definition of uBγ (8.2) clearly satisfies this requirement.

Therefore, although magnetic translations do not necessarily commute with one

another, they commute with ΛB

TBγ ΛB = ΛBTBγ . (8.5)

8.2. Dirichlet spectrum.

In this subsection, we will study the energies belonging to the Dirichlet spectrum

σ(HD). Lemma 8.4 below shows that σ(HD) is contained in the point spectrum of

HB, hence the only point spectrum of HB, due to Part (3) of Lemma 8.2.

Consider a compactly supported simply closed loop, which is a path with vertices

of degree 2 enclosing q hexagons, see e.g. Fig. 7. Then this loop passes (proceeding in

positive direction from the center of an edge ~e1 such that the first vertex we reach is

t(~e1)) n edges ~e1, ..., ~en in E(Λ), where n is an even number. For a solution vanishing

outside this loop, the boundary conditions imposed by (3.15) on the derivatives can

be represented in a matrix equation

TΦ(n)ψ
′(n) = 0, (8.6)
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where

TΦ(n) :=




eiβ̃~e1 eiβ̃~e2 0 0 0 · · · 0

0 1 1 0 0 · · · 0

0 0 eiβ̃~e3 eiβ̃~e4 0 · · · 0
...

... 0
. . . . . . 0 0

0 0 0 0 0 eiβ̃~en−1 eiβ̃~en

1 0 0 0 0 0 1




and ψ′(n) :=




ψ′
~e1
(1)

ψ′
~e2
(1)

ψ′
~e3
(1)
...

ψ′
~en−1

(1)

ψ′
~en
(1)




.

(8.7)

Remark 7. We observe that TΦ(n) can be row-reduced to an upper triangular matrix

with diagonal

(eiβ̃~e1 , 1, eiβ̃~e3 , 1, eiβ̃~e5 , ..., 1, eiβ̃~en−1 , 1− ei
∑n

j=1(−1)j β̃~ej )

=(eiβ̃~e1 , 1, eiβ̃~e3 , 1, eiβ̃~e5 , ..., 1, eiβ̃~en−1 , 1− e±iqΦ),

where q is the number of enclosed hexagons. Hence rank(TΦ(n)) = n iff qΦ /∈ 2πZ and

rank(TΦ(n)) = n− 1 otherwise.

Lemma 8.4. The Dirichlet eigenvalues λ ∈ σ(HD) are contained in the point spectrum

of HB.

Proof. For Φ ∈ 2πZ the statement is known [KP07, Theroem 3.6], thus we focus on

Φ /∈ 2πZ. By unitary equivalence, it suffices to construct an eigenfunction to ΛB. We

will construct an eigenfunction on two adjacent hexagons Γ as in Fig. 6. Thus, q = 2,

the total number of edges is m = 11, of which n = 10 are on the outer loop. Let us

denote the slicing edge by ~e and the edges on the outer loop by ~e1, ~e2, ..., ~e10 (see Fig.

6). Recall that sλ,~e is the Dirichlet eigenfunction on ~e.

By Remark 7, for 2Φ ∈ 2πZ, operator TΦ(10) has a non-trivial nullspace. We could

take

a = (aj) ∈ ker (TΦ(10)) \{0}, (8.8)

and an eigenfunction ψ on Γ such that ψ~e = 0 and ψ~ej = ajsλ,~ej .

If 2Φ /∈ 2πZ, we take a vector y ∈ C10 such that y2 = −1, y7 = −eiβ̃~e and yj = 0

otherwise. Since in this case TΦ(10) is invertible, there exists a unique solution a = (aj)

to the following equation:

TΦ(10)a = y. (8.9)

Let us take ψ on Γ such that ψ~ej = ajsλ,~ej and ψ~e = sλ,~e, then one can easily check ψ

is indeed an eigenfunction on Γ. �

As a corollary of Lemma 8.1 and Lemma 8.4, we have the following:
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Magnetic translations are unitary, thus there is for any magnetic translation a nor-

malized eigenfunction ψ with eigenvalue λ on the unit circle in C. For ψ, there is a

sufficiently large ball B(0, R) such that

‖ψ‖L2(E(Λ)∩B(0,R)) > 1− ε. (8.10)

Upon n-fold application of the magnetic translation, the point 0 gets translated to

some point xn whereas the eigenfunction ψ acquires only a complex phase λn. Thus,

(8.10) still holds and we must also have that

‖ψ‖L2(E(Λ)∩B(xn,R)) > 1− ε. (8.11)

Yet, there exists n such that B(0, R) ∩ B(xn, R) = ∅. Therefore, (8.10) and (8.11)

cannot hold at the same time for arbitrarily large n. This contradicts the existence of

an eigenfunction to magnetic translations and thus the existence of a finite-dimensional

eigenspace.

(2). If there is an eigenfunction to HB with eigenvalue λ that does not vanish at

a vertex, by (modified) Peierls’ substitution (3.13), there is one to ΛB, denoted as ϕ,

as well. We may expand the function in local coordinates on every edge ~e ∈ E(Λ) as
ϕ~e = a~ecλ,~e+ b~esλ,~e according to (2.35). Recall also that the Dirichlet eigenfunction sλ
is either even or odd. Thus, using (2.31) we conclude that |cλ(0)| = |cλ(1)| and thus ϕ

cannot be compactly supported. In particular, ϕ has the same absolute value at any

vertex by boundary conditions (3.15). Due to
∑

~e∈E(Λ)
|ϕ~e(i(~e))|2 ≤ ‖ϕ‖2H2 <∞ (8.12)

ϕ has to vanish at every vertex. Thus ϕ is also an eigenfunction to HD.

(3) clearly follows from (2) and (3.15). �

8.2.1. Dirichlet spectrum for rational flux quanta.

In this section, the flux quanta are assumed to be reduced fractions Φ
2π

= p
q
.

If magnetic fields are absent, the point spectrum is spanned by hexagonal simply

closed loop states, i.e. states supported on a single hexagon [KP07]. We will see in the

following that similar statements remain true in the case of rational flux quanta and

derive such a basis as well. The natural extension of loop states supported on a single

hexagon, in the case of magnetic fields, are simply closed loops enclosing an area qΦ
B0

rather than just Φ
B0
, see Fig. 7.

Lemma 8.8. Any simply closed loop enclosing an area of qΦ
B0

has a unique (up to

normalization) eigenfunction of HB supported on it.
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Figure 7. Simply closed loop state supported on black arrows encloses

area 4Φ
B0
.

Proof. The existence of eigenfunctions on simply closed loops enclosing this flux follows

directly from the non-trivial kernel of (8.7), see Remark 7. Due to dim(ker(TΦ)) = 1,

such eigenfunctions are also unique (up to normalization). �

Lemma 8.9. The nullspaces ker(HB−λ) where λ ∈ σ(HD) are generated by compactly

supported eigenfunctions.

Proof. Unitary equivalence allows us to work with ΛB rather than HB. Without loss

of generality, we assume that the Dirichlet eigenfunction to λ is even. Due to Lemma

8.7, eigenfunctions of ΛB to Dirichlet eigenvalues vanish at every vertex. Thus, on

every edge ~e ∈ E(V ), they are of the form ϕ~e = a~esλ,~e for some a~e.

Let ϕ be such a function. We define the sequence (u(v))v∈V(Λ) as follows
{
u(γ1, γ2, r0) := ϕ′

γ1,γ2,~g
(γ1, γ2, r0)

u(γ1, γ2, r1) := ϕ′
γ1,γ2, ~f

(γ1, γ2, r1).

Observe that the sequence (u(v)) determines the eigenfunction on every edge. Indeed,

aγ1,γ2,~g = u(γ1, γ2, r0) and aγ1,γ2, ~f = u(γ1, γ2, r1), since s
′
λ(1) = s′λ(0). At the same

time, aγ1,γ2,~h can be determined in two different ways, one for each endpoint, from the

boundary condition (3.15). Let us now introduce an operator A ∈ L(l2(V(Λ))) that

has precisely the sequences (u(v)) with matching boundary conditions for aγ1,γ2,~h in

its kernel. Then,

(Au)(γ1, γ2, r0) := u(γ1, γ2, r0) + u(γ1, γ2, r1)

− e2πi
pγ1
q

(
u(γ1 + 1, γ2 − 1, r0) + u(γ1, γ2 − 1, r1)

)
and

(Au)(γ1, γ2, r1) := 0. (8.13)
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The operatorA is then a Z2-periodic finite-order difference operator. Any eigenfunction

ϕ satisfying (ΛB−λ)ϕ = 0 leads by standard arguments to a square-summable sequence

(u(v)) as defined above in the nullspace of A. Conversely, any such element in the

nullspace of A uniquely defines an eigenfunction ϕ = a~esλ,~e to ΛB. Theorem 8 in [K05]

implies then that the nullspace of A is generated by sequences in c00(V(Λ)). It suffices

now to observe that those compactly supported sequences also give rise to compactly

supported eigenfunctions to conclude the claim. �

Lemma 8.10. Let Φ /∈ 2πZ. The eigenspaces are spanned by the set of double hexag-

onal states, see Fig. 6.

Proof. By Lemma 8.7, all eigenfunctions vanish at every vertex. Compactly supported

eigenfunctions are dense in the eigenspace by the previous Lemma 8.9. Thus, it suf-

fices, as in the non-magnetic [KP07] case, to show that any compactly supported

eigenfunction is a linear combination of double hexagonal states. Let ϕ be a com-

pactly supported eigenfunction of ΛB to some Dirichlet eigenvalue λ. Consider an

edge ~d ∈ E(Λ) on the boundary loop of the support of ϕ. It exists due to (3) of Lemma

8.7. The boundary loop, which cannot be just a loop around a single hexagon, as this

one does not support such eigenfunctions, necessarily encloses a double hexagon Γ, as

in Fig. 6, which contains the chosen edge ~d. Then, there is by the proof of Lemma 8.4

a state ψ on Γ so that the wavefunction ψ~d on
~d coincides with ϕ~d. Subtracting ψ from

ϕ leaves us with an eigenfunction to ΛB that encloses at least one single hexagon less

than ψ. Thus, iterating this procedure shows that compactly supported eigenfunctions

are spanned by double hexagonal states which implies the claim. �

8.2.2. Dirichlet spectrum for irrational flux quanta.

After proving Theorem 4 for rational flux quanta, we now prove the analogous result

for irrational magnetic fluxes. We start by introducing the following definition.

Definition 8.11. The Hilbert space l2(E(Λ)) is defined as

l2(E(Λ)) :=



z : E(Λ) → C, ‖z‖2l2(E(Λ)) :=

∑

~e∈E(Λ)
|z(~e)|2 <∞



 . (8.14)

Theorem 10. The double hexagonal states generate the eigenspaces of Dirichlet spec-

trum of HB for irrational flux quanta.

We will give a proof of this theorem after a couple of auxiliary observations. For

this entire discussion to follow we consider a fixed λ ∈ σ(HD).

Definition 8.12. We denote the closed L2(E(Λ)) subspace generated by linear combi-

nations of all double hexagonal states on the entire graph Λ by DHE(Λ)(Φ).
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There is a countable orthonormal system of states V (Φ) ⊂ DHE(Λ)(Φ) such that

span(V (Φ)) = DHE(Λ)(Φ). (8.15)

We may label elements of V (Φ) by ϕγ(Φ) with γ ∈ Z2. Without loss of generality,

ϕγ(Φ) can be chosen to depend analytically on Φ ∈ (0, 1). Every element ϕγ(Φ) ∈
V (Φ) is due to Lemma 8.7 of the form

ϕγ(Φ) =
∑

~e∈E(Λ)
ϕγ,~e(Φ)sλ,~e (8.16)

because it is an element of ker(HB − λ).

Now assume that the statement of Theorem 10 does not hold, this is equivalent to

saying that Z(Φ) := ker(HB − λ) ∩ DHE(Λ)(Φ)
⊥ is not the zero space, i.e. there are

eigenfunctions not spanned by double hexagonal states. Our goal is to characterize

Z(Φ) as the nullspace of a suitable operator we define next.

Definition 8.13. Let A(Φ) ∈ L(l2(E(Λ))) be defined as

(A(Φ)u)(γ, ~f) := u(γ, ~f) + u(γ, ~g) + u(γ,~h)

(A(Φ)u)(γ, ~g) := u(γ1, γ2 − 1, ~f) + u(γ1 + 1, γ2 − 1, ~g) + e−iΦγ1u(γ1, γ2,~h)

(A(Φ)u)(γ,~h) := 〈u, (ϕγ,~e(Φ))〉l2(E(Λ)) ,
(8.17)

for any u ∈ l2(E(Λ)).

Remark 9. The first two lines of this definition resemble the boundary conditions for

the derivatives at outgoing/incoming vertices (3.17) and with the third line we monitor

the orthogonality of
∑

~e∈E(Λ) u~esλ,~e to DHE(Λ)(Φ).

In particular, there is an isometric isomorphism η ∈ L(ker(A(Φ)), Z(Φ)) with

η(u) :=
∑

~e∈E(Λ)

u~e
‖sλ,~e‖L2(~e)

sλ,~e. (8.18)

We observe that by Lemma 8.9 and the isomorphism (8.18) the operator A(Φ) is

injective for Φ
2π

∈ Q∩ (0, 1). To prove Theorem 10 we only need the following Lemma:

Lemma 8.14. The operator A(Φ) is surjective for Φ
2π

∈ (0, 1). In particular, for any

(a(~e)) ∈ l2(E(Λ)), there exists (u(~e)) ∈ l2(E(Λ)) such that A(Φ)u = a and

‖u‖l2(E(Λ)) ≤
C

|1− e−iΦ|‖a‖l2(E(Λ)) (8.19)

holds for a universal constant C.
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Combining Lemma 8.14 with the already established injectivity result, we have A(Φ)

is continuously invertible for Φ
2π

∈ Q ∩ (0, 1) with the following control of its norm

‖A(Φ)−1‖ ≤ C

|1− e−iΦ| . (8.20)

Now let us give the proof of Theorem 10, assuming the result of Lemma 8.14.

Proof of Theorem 10. Since ‖A(Φ)‖ is uniformly bounded by a constant and Φ 7→
〈x,A(Φ)y〉 is analytic for x, y ∈ c00(E(Λ)), A(Φ) is an analytic operator in Φ. Thus

for any Φ̃
2π

∈ (0, 1), there exists ε1(Φ̃) and C(Φ̃) such that

‖A(Φ)− A(Φ̃)‖ ≤ C(Φ̃)|Φ− Φ̃|, for |Φ− Φ̃| < ε1(Φ̃). (8.21)

Also by (8.20), for any irrational Φ̃
2π

∈ (0, 1) and rational Φ
2π

with |Φ− Φ̃| < ε2(Φ̃), we

have

‖A(Φ)−1‖ ≤ 2C

|1− e−iΦ̃|
. (8.22)

Hence, taking Φ
2π

∈ Q∩(0, 1) that is close to Φ̃
2π

such that |Φ−Φ̃| < min(ε1(Φ̃), ε2(Φ̃),
|1−e−iΦ̃|
2C(Φ̃)C

),

we would get

‖A(Φ)−1(A(Φ̃)− A(Φ))‖ < 1.

This implies that

A(Φ̃) = A(Φ)
(
Id + A(Φ)−1(A(Φ̃)− A(Φ))

)

is invertible. Thus, we conclude that also for irrational fluxes ker(A(Φ)) = {0} and by

(8.18) therefore Z(Φ) = {0} which shows the claim. 2

Proof of Lemma 8.14. We prove this Lemma by showing that there is a sufficiently

sparse set of elements in l2(E(Λ)) that gets mapped under A(Φ) on the standard basis

of l2(E(Λ)).
Let α~e,(γ,~h) := ϕγ,~e ‖sλ,~e‖2L2(~e) . Since functions ϕγ satisfy the continuity conditions

(3.17) and form an L2 orthonormal system, we obtain the standard basis vectors

δ•,(γ,~h) ∈ l2(E(Λ)) under A(Φ)

(A(Φ)α•,(γ,~h))(γ
′, ~f) := 0,

(A(Φ)α•,(γ,~h))(γ
′, ~g) := 0, and

(A(Φ)α•,(γ,~h))(γ
′,~h) := δγ,γ′ .

(8.23)

To obtain also the remaining basis vectors, let us define L2 functions ψ̃(γ, ~f) and

ψ̃(γ,~g) supported on a single hexagon Γγ as shown in Figure 8. The indices of ψ̃(γ,[~e])

are chosen to indicate the standard basis vectors δ•,(γ,[~e]) ∈ l2(E(Λ)) in the range of
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(γ − (1; 0); ~f)

(γ; ~g)

(γ;~h)

(γ − (1; 0);~h)

(γ − (0; 1); ~g)

(γ − (0; 1); ~f)

v1

v2

Figure 8. Labelling of hexagon Γγ .

A(Φ) that we will construct from those functions. To define ψ̃(γ, ~f) and ψ̃(γ,~g), we

introduce coefficients ζ•,(γ, ~f) and ζ•,(γ,~g) such that ψ̃(γ, ~f) :=
∑

~e∈E(Γγ)
ζ~e,(γ, ~f)sλ,~e and

ψ̃(γ,~g) :=
∑

~e∈E(Γγ)
ζ~e,(γ,~g)sλ,~e, respectively.

We do this in such a way that all continuity conditions for ψ̃(γ, ~f) at the vertices of

Γγ are satisfied up to a single one at the (initial) vertex v1 := i((γ, ~g)) = i((γ,~h)), see

Fig. 8. We define for fixed ~e = (γ, ~f)

ζ(γ,~h),~e :=
1

1− e−iΦ
, ζ(γ−(0,1), ~f),~e :=

−e−iΦγ1
1− e−iΦ

, ζ(γ−(0,1),~g),~e :=
e−iΦγ1

1− e−iΦ
,

ζ(γ−(1,0),~h),~e :=
−e−iΦ
1− e−iΦ

, ζ(γ−(1,0), ~f),~e :=
e−iΦ

1− e−iΦ
, ζ(γ,~g),~e :=

−e−iΦ
1− e−iΦ

(8.24)

and all other ζ•,~e are taken to be zero. Since for ψ̃(γ, ~f) all but one continuity conditions

are satisfied, we obtain for the first two components of (8.17)

(A(Φ)ζ•,(γ, ~f))(γ
′, ~f) := δγ,γ′ and (A(Φ)ζ•,(γ, ~f))(γ

′, ~g) := 0. (8.25)

To ensure that we also get constant zero in the third component of (8.17), we project

onto the orthogonal complement of the double hexagonal states ψ(γ, ~f) := ψ̃(γ, ~f) −
PDHE(Λ)(Φ)ψ̃(γ, ~f) where PDHE(Λ)(Φ) is the orthogonal projection onto DHE(Λ)(Φ). Let

now α~e,(γ, ~f) be such that

ψ(γ, ~f) =
∑

~e∈E(Γγ)

α~e,(γ, ~f)sλ,~e, (8.26)

then it follows that

(A(Φ)α•,(γ, ~f))(γ
′, ~f) := δγ,γ′ ,

(A(Φ)α•,(γ, ~f))(γ
′, ~g) := 0, and

(A(Φ)α•,(γ, ~f))(γ
′,~h) := 0. (8.27)



46 SIMON BECKER, RUI HAN, AND SVETLANA JITOMIRSKAYA

Similarly, we choose coefficients ζ•,~e with ~e = (γ, ~g), such that the boundary con-

ditions are satisfied up to the one at the (terminal) vertex v2 := t((γ,~h)) = t((γ −
(0, 1), ~f)), see Fig. 8.

ζ(γ−(0,1), ~f),~e :=
1

1− e−iΦ
, ζ(γ−(0,1),~g),~e :=

−1

1− e−iΦ
, ζ(γ−(1,0),~h),~e :=

eiΦ(γ1−1)

1− e−iΦ

ζ(γ−(1,0), ~f),~e :=
−eiΦ(γ1−1)

1− e−iΦ
, ζ(γ,~g),~e :=

eiΦ(γ1−1)

1− e−iΦ
, ζ(γ,~h),~e :=

−eiΦ(γ1−1)

1− e−iΦ
(8.28)

and all other coefficients ζ•,~e equal to zero. Thus, we get for the first two components

of (8.17)

(A(Φ)ζ•,(γ,~g))(γ
′, ~f) = 0 and (A(Φ)ζ•,(γ,~g))(γ

′, ~g) = δγ,γ′ . (8.29)

To ensure that we also get constant zero in the third component of (8.17), we project

again on the orthogonal complement of the double hexagonal states ψ(γ,~g) := ψ̃(γ,~g) −
PDHE(Λ)(Φ)ψ̃(γ,~g). Let now ψ(γ,~g) =

∑
~e∈E(Γγ)

α~e,(γ,~g)sλ,~e, then

(A(Φ)α•,(γ,~g))(γ
′, ~f) := 0

(A(Φ)α•,(γ,~g))(γ
′, ~g) := δγ,γ′ , and

(A(Φ)α•,(γ,~g))(γ
′,~h) := 0.

(8.30)

Hence, we obtained in (8.23), (8.27), and (8.30) sequences
{
α•,(γ, ~f), α•,(γ,~g), and α•,(γ,~h);γ ∈ Z2

}
(8.31)

in l2(E(Λ)) that get mapped under A(Φ) onto the standard unit basis of l2(E(Λ)).
To conclude surjectivity of A(Φ) from this, it suffices to show that for all (a(~e)) ∈

l2(E(Λ)) we can bound u(~e) :=
∑

~d∈E(Λ) a(
~d) α~e,~d as follows

‖u‖2l2(E(Λ)) ≤
C2

|1− e−iΦ|2
∑

~e∈E(Λ)
|a(~e)|2 . (8.32)

We then define

σ~e =
∑

~d∈E(Λ);[~d] 6=~h

a(~d) α~e,~d and ν~e =
∑

~d∈E(Λ);[~d] 6=~h

a(~d) ζ~e,~d. (8.33)

Since ψ(γ, ~f), ψ(γ,~g) ∈ DHE(Λ)(Φ)
⊥ and (ϕγ) forms an orthonormal system inDHE(Λ)(Φ),

to prove (8.32) it suffices to show

‖σ‖2l2(E(Λ)) ≤
C2

|1− e−iΦ|2
∑

~e∈E(Λ);[~e] 6=~h

|a(~e)|2 . (8.34)

Due to ‖σ‖l2(E(Λ)) ≤ ‖ν‖l2(E(Λ)) + ‖σ − ν‖l2(E(Λ)) we may establish estimate (8.32) for

each term on the right-hand side of the triangle inequality, individually.
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For two edges ~d,~e ∈ E(Λ) we define a function M(~d,~e) := 1 if there are γ,γ ′ ∈ Z2

and two hexagons Γγ ,Γγ′ satisfying Γγ ∩ Γγ′ 6= ∅ such that ~d ∈ Γγ and ~e ∈ Γγ′ ,

and M(~d,~e) := 0 otherwise. Choosing τ1 such that
∑

~d∈E(Λ);[~d] 6=~hM(~d,~e) ≤ τ1 for any

~e ∈ E(Λ), then

‖ν‖2l2(E(Λ)) ≤
∑

~d,~e∈E(Λ);[~d],[~e] 6=~h

∣∣∣a(~d)
∣∣∣ |a(~e)|

∥∥∥ζ•,~d
∥∥∥
l2(E(Λ))

‖ζ•,~e‖l2(E(Λ))
︸ ︷︷ ︸

≤ 7

|1−e−iΦ|2

M(~d,~e)

≤ 6τ1

|1− e−iΦ|2
∑

~e∈E(Λ);[~e] 6=~h

|a(~e)|2 .
(8.35)

For the second term ‖σ − ν‖l2(E(Λ)), we use that functions ψ̃(γ,[~e]) with [~e] 6= [~h] are

supported on hexagons Γ and can therefore only overlap with finitely many linearly

independent double hexagonal states. Thus, we define a function N with N(~d,~e) := 1

if ~d,~e belong to two hexagons Γγ ,Γγ′ for which there are two double hexagons Γ1,Γ2

with the property that all intersections Γγ ∩ Γ1, Γ1 ∩ Γ2, Γ2 ∩ Γγ′ are not empty.

Otherwise, we set N(~d,~e) := 0. Choosing τ2 such that
∑

~d∈E(Λ);[~d] 6=~hN(~d,~e) ≤ τ2 for

any ~e ∈ E(Λ), then

‖σ − ν‖2l2(E(Λ)) =
∑

~d,~e∈E(Λ);[~d],[~e] 6=~h

N(~d,~e)a(~d) a(~e)

‖sλ‖2L2((0,1))

〈
PDHE(Λ)(Φ)ψ̃~d, PDHE(Λ)(Φ)ψ̃~e

〉
L2(E(Λ))

≤
∑

~d,~e∈E(Λ);[~d],[~e] 6=~h

∣∣∣a(~d)
∣∣∣ |a(~e)|

∥∥∥ζ•,~d
∥∥∥
l2(E(Λ))

‖ζ•,~e‖l2(E(Λ))N(~d,~e)

≤ 6τ2

|1− e−iΦ|2
∑

~e∈E(Λ);[~e] 6=~h

|a(~e)|2 .

(8.36)

2

8.3. Absolutely continuous spectrum for rational flux quanta.

Lemma 8.15. For Φ
2π

= p
q
∈ Q, the spectrum of HB away from the Dirichlet spectrum

is absolutely continuous and has possibly touching, but non-overlapping band structure.

An interval I ⊂ [−1, 1] is a band of QΛ(Φ) if and only if its pre-image under ∆, on

each fixed band of the Hill operator, is a band of HB.

Proof. That the bands of QΛ(Φ) do not overlap is shown in Section 6 of [HKL16].

Thus, the unique correspondence between bands of QΛ(Φ) and H
B, following from the

unitary equivalence (7.14), shows that the non-overlapping of bands holds true for HB

as well. �



48 SIMON BECKER, RUI HAN, AND SVETLANA JITOMIRSKAYA

Figure 9. Touching bands for Φ
2π

= 1
2
on the first Hill band of a

Schrödinger operator with Mathieu potential V (t) = 20 cos(2πt). Differ-

ent bands are differently colored.

Remark 10. For Φ
2π

= 1
2
the spectral bands of QΛ(Φ) are touching and given by

[HKL16]
[
−
√

2
3
,−
√

1
3

]
,

[
−
√

1
3
, 0

]
,

[
0,
√

1
3

]
, and

[√
1
3
,
√

2
3

]
. (8.37)

Thus, by Lemma 8.15 the bands of HB on each Hill band are touching as well, see Fig.

9. Bands belonging to different Hill bands do, as a rule for Φ ∈ (0, 2π), not touch by

Lemma 8.1.

In the case of Φ
2π

= 1
3
however, only the bands at the Dirac points touch, see also Fig.

10. The touching at the Dirac points is always satisfied by Lemma 8.2.

8.4. Singular continuous Cantor spectrum for irrational flux quanta.

Proof. By Lemma 4.2, the spectrum of QΛ(Φ) for irrational
Φ
2π

is a Cantor set of mea-

sure zero. Thus, the pullback of σ(QΛ) by ∆|int(Bn) is still a Cantor set of zero measure

that coincides with σ(HB)\σ(HD). Therefore, the absolutely continuous spectrum of

HB has to be empty. The Cantor spectrum part of (3) of Theorem 1, and (1) of

Theorem 2 then follows from (4) of Lemma 8.2. �
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Figure 11. The Hofstadter butterfly for HB with V = 0 on the first

five Hill bands Bk = [π2(k − 1)2, π2k2] for k ∈ {1, .., 5} and magnetic

flux quanta Φ
2π

= p
q
∈ [0, 1] with q ≤ 50.

Appendix A. Proof of Proposition 6.4

The proof of this result is very similar to that for the almost Mathieu operator and

the extended Harper’s model. We will present it briefly here for completeness. Readers

could refer to Theorem 3.2 (together with its proof in Appendix 2) of [AJM17] for a

more detailed discussion.

Let Dλ be defined as in (2.49), in which v(θ) = 2 cos 2πθ and c(θ) = 1+e−2πiθ, hence

Dλ(θ) =

(
λ− e2πiθ − e−2πiθ −1− e2πi(θ−

Φ
2π

)

1 + e−2πiθ 0

)
. (A.1)

Let us complexify θ and define Dλ
ε for ε ∈ R as follows

Dλ
ε (θ) := Dλ(θ + iε). (A.2)

Let

L(Dλ
ε ,Φ) := lim

n→∞

1

n

∫

T1

log ‖
0∏

j=n−1

Dλ
ε (θ + j

Φ

2π
)‖ dθ, (A.3)
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be the complexified Lyapunov exponent. By Hardy’s convexity theorem, see e.g. The-

orem 1.6 in [D70], L(Dλ
ε ,Φ) is convex in ε.

Let

ω(λ,Φ; ε) :=
1

2π
lim
h→0+

L(Dλ
ε+h,Φ)− L(Dλ

ε ,Φ)

h
(A.4)

be the right-derivative of the complexified Lyapunov exponent, which has been dubbed

acceleration in [A15].

By Theorem 1 of [JM13], since det(Dλ(θ + iε)) 6= 0 for ε 6= 0, we have

ω(λ,Φ; ε) ∈ Z, for ε 6= 0. (A.5)

This is usually referred to as quantization of acceleration.

One can also easily compute the following asymptotic behaviour

Dλ
ε (θ) =

(
−e2πε 0

e2πε 0

)
+O(1), ε→ ∞

Dλ
ε (θ) =

(
−e−2πε − e−iΦe−2πε

0 0

)
+O(1), ε→ −∞,

(A.6)

hence by (A.5),
{
L(Dλ

ε ,Φ) = ε, ε > ε0 > 0,

L(Dλ
ε ,Φ) = −ε, ε < −ε0.

(A.7)

Hence convexity of L(Dλ
ε ,Φ) and quantization of acceleration force either

• L(Dλ
0 ,Φ) = 0 or

• L(Dλ
0 ,Φ) > 0 with ω(0,Φ; ε) = 0.

By Theorem 1.2 of [AJS14], the second case is equivalent to ( Φ
2π
, Dλ

0 ) inducing a dom-

inated splitting. This is equivalent to λ /∈ ΣΦ, by [M14].

Finally note that we always have

L(λ,Φ) = L(Dλ
0 ,Φ)−

∫

T1

log |1 + e−2πiθ| dθ = L(Dλ
0 ,Φ). (A.8)

Hence L(λ,Φ) = 0 if and only if λ ∈ ΣΦ. �

Appendix B. Proof of Lemma 6.7

Assume θ = 1
2
+ k0

p
q
. Let (H2πp/q,θ)|[0,k−1] be the restriction of H2πp/q,θ onto interval

[0, k − 1] with Dirichlet boundary condition. Let Pk(θ) = det (λ− (H2πp/q,θ)|[0,k−1])
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be the determinant of this k × k matrix. One can prove by induction (in k) that the

following holds

Dλ
k(θ) =

(
Pk(θ) −c(θ − p

q
)Pk−1(θ +

p
q
)

c(θ + (k − 1)p
q
)Pk−1(θ) −c(θ − p

q
)c(θ + (k − 1)p

q
)Pk−2(θ +

p
q
)

)
. (B.1)

Thus

tr(Dλ
q (θ)) = Pq(θ)− |c(θ − p

q
)|2Pq−2(θ +

p

q
). (B.2)

It then suffices to note that



tr(Dλ
q (θ − (k0 − 1)p

q
)) = tr(Dλ

q (θ)),

c(θ − k0
p
q
) = 0,

(H 2πp
q
,θ−(k0−1) p

q
))|[0,q−1] =Mq.

(B.3)

Appendix C. 1/2-Hölder continuity of spectra of Jacobi matrices

Proof of Lemma 6.2. We will prove the following general result for quasi-periodic

Jacobi matrices. Let Hα,θ ∈ L(l2(Z)) be defined as

(Hα,θu)n = c(θ + nα)un+1 + c(θ + (n− 1)α)un−1 + v(θ + nα)un. (C.1)

Let σα := ∪θ∈T1σ(Hα,θ).

Lemma C.1. Let c(·), v(·) ∈ C1(T1,C). There exist constants C̃(c, v), C(c, v) > 0

such that if λ ∈ σα and α′ ∈ T1 is such that |α−α′| < C̃(c, v), then there is a λ′ ∈ σα′

such that

|λ− λ′| ≤ C(c, v)|α− α′| 12 .

Lemma 6.2 follows from Lemma C.1 by taking Φ = 2πα and Φ′ = 2πα′. Lemma C.1

is in turn the argument of [AMS90] adapted to the Jacobi setting.

Proof of Lemma C.1. Let L ≥ 1 be given. There exists φL ∈ l2(Z) and θ such that

‖(Hα,θ − λ)φL‖ ≤ 1

L
‖φL‖. (C.2)

Let ηj,L be the test function centered at j,

ηj,L(n) =

{
(1− |n− j|/L), |n− j| ≤ L,

0, |n− j| ≥ L.

Then for large L,

∑

j

(ηj,L(n))
2 = 1 +

(L− 1)(2L− 1)

3L
≡ aL. (C.3)
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is independent of n. Clearly,
∑

j

‖ηj,L(Hα,θ − λ)φL‖2 = aL‖(Hα,θ − λ)φL‖2 ≤
aL
L2

‖φL‖2 =
1

L2

∑

j

‖ηj,LφL‖2. (C.4)

Since ‖u+ v‖2 ≤ 2‖v‖2 + 2‖u‖2, by (C.4), we get
∑

j

‖(Hα,θ − λ)ηj,LφL‖2 ≤2
∑

j

‖ηj,L(Hα,θ − λ)φL‖2 + 2
∑

j

‖[ηj,L, Hα,θ]φL‖2

≤ 2

L2

∑

j

‖ηj,LφL‖2 + 2
∑

j

‖[ηj,L, Hα,θ]φL‖2, (C.5)

where [ηj,L, Hα,θ] = ηj,LHα,θ −Hα,θηj,L is the commutator. Note that

([ηj,l, Hα,θ]φ)n = c(θ + nα)(ηj,L(n)−ηj,L(n+ 1))φn+1

+c(θ + (n− 1)α)(ηj,L(n)− ηj,L(n− 1))φn−1,

which implies

∑

j

‖[ηj,L, Hα,θ]φL‖2 ≤
8‖c‖2∞
L

‖φL‖2 ≤
8‖c‖2∞
LaL

∑

j

‖ηj,LφL‖2.

Combining this with (C.5) and taking into account that aL ∼ 2
3
L, we get

∑

j

‖(Hα,θ − λ)ηj,LφL‖2 ≤
2 + 25‖c‖2∞

L2

∑

j

‖ηj,LφL‖2,

for L > L0. Hence for certain j, ηj,LφL 6= 0 and

‖(Hα,θ − λ)ηj,LφL‖ ≤ (2 + 25‖c‖2∞)
1
2

L
‖ηj,LφL‖. (C.6)

Given α′ near α, choose θ′ such that

θ + jα = θ′ + jα′.

Then on supp(ηj,Lφε),

|f(θ + nα)− f(θ′ + nα′)| ≤ L‖f ′‖∞|α− α′|, (C.7)

holds for f = c, v. Thus, by (C.6) and (C.7),

‖(Hα′,θ′ − λ)ηj,LφL‖ ≤ C1(c, v)‖ηj,LφL‖,
where

C1(c, v) =
(2 + 25‖c‖2∞)

1
2

L
+ (6‖c′‖2∞ + 3‖v′‖2∞)

1
2L|α− α′|.

Finally, taking

L = C2(c, v)|α− α′|− 1
2 > L0,
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we get

‖(Hα′,θ′ − λ)ηj,LφL‖ ≤ C(c, v)|α− α′| 12‖ηj,LφL‖.
�
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view B 89.7: 075401. 2014.

[D70] Duren, P. Theory of Hp spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New

York. 1970.



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 55

[De13] Dean, C. R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami,

M., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K. L., Hone, J., Kim, P.

Hofstadter’s butterfly in moire superlattices: A fractal quantum Hall effect, Nature 497, pp. 598-

602. 2013.

[Do78] Dombrowsky, J. Quasitriangular matrices, Proc. Amer. Math. Soc. 69, pp. 95-96. 1978.

[EV17] Exner, P. and Vaata, D. Cantor spectra of magnetic chain graphs, Journal of Physics A:

Mathematical and Theoretical 50.16: 165201. 2017.

[FW12] Fefferman, C. and Weinstein, M. Honeycomb lattice potentials and Dirac points, Journal of

the American Mathematical Society 25.4, pp. 1169-1220. 2012.

[FW14] Fefferman, C. and Weinstein, M. Wave packets in honeycomb structures and two-dimensional

Dirac equations, Commun. Math. Phys. Volume 326, 251–286, 2014.

[FWL18] Fefferman, C., M.J.P. Lee-Thorp and Weinstein, M. Honeycomb Schroedinger operators in

the strong binding regime,Communications in Pure and Applied Mathematics, Volume 71 6 (2018)

[G17] Garcia-C., H., Gaggero-S., L., Dı́az-G., D.S., Sotolongo-C., O., and Rodŕıguez-V., I. Self-similar
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[HS89] Helffer, B. and Sjöstrand, J. Equation de Schrödinger avec champ magnétique et équation de
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