CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS

SIMON BECKER, RUI HAN, AND SVETLANA JITOMIRSKAYA

ABSTRACT. We consider a quantum graph as a model of graphene in magnetic fields
and give a complete analysis of the spectrum, for all constant fluxes. In particular,
we show that if the reduced magnetic flux ®/27 through a honeycomb is irrational,
the continuous spectrum is an unbounded Cantor set of Lebesgue measure zero.

1. INTRODUCTION

Graphene is a two-dimensional material that consists of carbon atoms at the vertices
of a hexagonal lattice. Its experimental discovery, unusual properties, and applications
led to a lot of attention in physics, see e.g. [N11]. Electronic properties of graphene
have been extensively studied rigorously in the absence of magnetic fields [FW12,
FW14, FWL18, KP07].

Magnetic properties of graphene have also attracted strong interest in physics (e.g.
[Zh05],[Gul0]). The purpose of this paper is to provide for the first time an analysis
of the spectrum of honeycomb structures in magnetic fields with constant flux.

The fact that magnetic electron spectra have fractal structures was first predicted
by Azbel [A64] and then numerically observed by Hofstadter [Ho76], for the Harper’s
model. The scattering plot of the electron spectrum as a function of the magnetic flux
is nowadays known as Hofstadter’s butterfly. Verifying such results experimentally
has been restricted for a long time due to the extraordinarily strong magnetic fields
required. Only recently, self-similar structures in the electron spectrum in graphene
have been observed [Chl4, Del3, G17, Gorl3].

With this work, we provide a rigorous foundation for self-similarity by showing that
for irrational fluxes, the electron spectrum of a model of graphene is a Cantor set.
We say A is a Cantor set if it is closed, nowhere dense and has no isolated points
(so compactness not required). The Schrodinger operator HZ we study, see (3.7), is
defined on a metric honeycomb graph' and is a direct sum, over all edges € of the
graph, of Schrodinger operators

HE = (—i0, — A2)* + Vi

ISchrodinger operators defined on metric graphs are also called quantum graphs.
1
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with magnetic potential Az, describing a constant magnetic field, and potential Vz €
L?(€). We write 0® 02 . o2 for the (continuous, essential) spectra of H? and set H”
to be the Dirichlet operator (no magnetic field) defined in (2.14) (2.11), and denote by
o(HP) its spectrum. Let o3 be the collection of eigenvalues of H”. Then we have the
following description of the topological structure and point/continuous decomposition

of the spectrum

Theorem 1. For any symmetric Kato-Rellich potential Vz € L*(€) we have

(1) o® = Ug;s,
(2) 0% = o(HP),
(3) O-E:mt is
e a Cantor set of measure zero for ® ¢ 2wQ,
e a countable union of disjoint intervals for ® € 2mQ,
(4) oy N0l =0 for @ ¢ 2nZ,
(5) the Hausdorff dimension dimg(c®) < 1/2 for generic® .

Thus for irrational flux, the spectrum is a zero measure Cantor set plus a countable
collection of flux-independent isolated eigenvalues, each of infinite multiplicity, while
for rational flux the Cantor set is replaced by a countable union of intervals.

Furthermore, we can also describe the spectral decomposition of HZ.

Theorem 2. For any symmetric Kato-Rellich potential Vz € L?(¢) we have

(1) For ® ¢ 2rQ, the spectrum on o2 . is purely singular continuous.

(2) For ® € 2nQ, the spectrum on o2 . is absolutely continuous.

Of course our results only describe the quantum graph model of graphene in a mag-
netic field, which is both single-electron and high contrast. In particular, we believe
that the isolated eigenvalues are unphysical, being an artifact of the graph model
which does not allow something similar to actual Coulomb potentials close to the
carbon atoms or dissolving of eigenstates supported on edges in the bulk. However,
there are reasons to expect that continuous spectrum of the quantum graph operator
(thus the Cantor set described in this paper) does adequately capture the experimental
properties of graphene in the magnetic field [BHJZ]. In particular, certain properties
of the density of states of our model (which starts from actual differential operator
and is exact in every step) better correspond to the experimental observations [Gol2]
than those of the commonly used tight-binding model [AEG14]. We refer the reader to
[BZ18, BHJZ] for detail. Finally, our analysis provides full description of the spectrum

In this paper, “generic” refers to a dense G5 set. Recently, a stronger continuity of spectra
statement was proved in [JK], which combined with Lemma 4.3 allowed the authors to extend the
Hausdorff dimension statement to all irrational ®.
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of the tight-binding Hamiltonian as well. Moreover, the applicability of our model is
certainly not limited to graphene.

Earlier work showing Cantor spectrum on quantum graphs with magnetic fields,
e.g. for the square lattice [BGP07] and magnetic chains studied in [FEV17], has been
mostly limited to applications of the Cantor spectrum of the almost Mathieu operator
[AJ09, PO4]. On the honeycomb graph, we can no longer resort to this operator. The
discrete operator is then matrix-valued and can be further reduced to a one-dimensional
discrete quasiperiodic operator using supersymmetry. The resulting discrete operator
is a singular Jacobi matrix * Cantor spectrum (in fact, a stronger, dry ten martini
type statement) for Jacobi matrices of this type has been studied in the framework
of the extended Harper’s model [H1]. However, the method of [[H1] that goes back to
that of [AJ10] relies on (almost) reducibility, and thus in particular is not applicable
in absence of (dual) absolutely continuous spectrum which is prevented by singularity.
Similarly, the method of [AJ09] breaks down in presence of singularity in the Jacobi
matrix as well. Instead, we present a novel way that exploits singularity rather than
circumvents it by showing that the singularity leads to vanishing of the measure of the
spectrum, and thus Cantor structure and singular continuity, once (4) of Theorem 1
is established. * Our method applies also to proving zero measure Cantor spectrum of
the extended Harper’s model whenever the corresponding Jacobi matrix is singular and
either the Lyapunov exponent is zero on the spectrum or one can estimate the measure
of the spectrum for the rational frequency. The latter is also useful for estimating
the Hausdorff dimension and was only available previously for the almost Mathieu
operator [AMS90, 1.94] with, in particular, the method of [AMS90] extendable only
to situations when measure of the spectrum is not zero, and the method of [[.94]
very almost Mathieu specific. Here we develop a novel method, that applies to general
singular Jacobi matrices (see e.g. Lemma 6.8) for which one can establish a Chambers-
type formula.

As mentioned, our first step is a reduction to a matrix-valued tight-binding hexago-
nal model. This leads to an operator Q5 defined in (4.1). This operator has been stud-
ied before for the case of rational magnetic flux (see [HKL16] and references therein).
Our analysis gives complete spectral description for this operator as well.

Theorem 3. The spectrum of Qa(P) is

3A Jacobi matrix is called singular if its off-diagonal entries are not bounded away from zero.

4We note that singular continuity of the spectrum of critical extended Harper’s model (including
for parameters leading to singularity in the corresponding Jacobi matrix) has been proved recently in
[AJM17, H2] without establishing the Cantor nature.
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e a finite union of intervals and purely absolutely continuous for ®/2m = p/q,
which is a reduced rational number, with the following measure estimate

C
|0 (Qa(®))] < 7

where C' > 0 1s an absolute constant.

e singular continuous and a zero measure Cantor set for ® ¢ 2w Q,
e a set of Hausdorff dimension dimg(o(Qa(®))) < 1/2 for generic® ®.

Remark 1. We will show that the constant C' in the first item can be bounded by %@.

The theory of magnetic Schrodinger operators on graphs can be found in [KS03]. The
effective one-particle graph model for graphene without magnetic fields was introduced
in [KPO7]. After incorporating a magnetic field according to [KS03] in the model of
[KP07], the reduction of differential operators on the graph to a discrete tight-binding
operator can be done using Krein’s extension theory for general self-adjoint operators
on Hilbert spaces. This technique has been introduced in [Pa06] for magnetic quantum
graphs on the square lattice. The quantum graph nature of the differential operators
causes, besides the contribution of the tight-binding operator to the continuous spec-
trum, a contribution to the point spectrum that consists of Dirichlet eigenfunctions
vanishing at every vertex.

In this paper we develop the corresponding reduction for the hexagonal structure
and derive spectral conclusions in a way that allows easy generalization to other planar
graphs spanned by two basis vectors. In particular, our techniques should be applicable
to study quantum graphs on the triangular lattice, which will be pursued elsewhere.

One of the striking properties of graphene is the presence of a linear dispersion
relation which leads to the formation of conical structures of the dispersion surfaces in
the Brillouin zone, see Figure 5. The points where the cones match are called Dirac
points to account for the special dispersion relation. We use a spectral equivalence
between the magnetic Schrodinger operators on the graph and tight-binding operators
that is based on Krein’s theory in a version introduced in [Pal3, Pal4]. In particular,
the bands of the graph model always touch at the Dirac points and are shown to have
open gaps at the band edges of the associated Hill operator if the magnetic flux is
non-trivial. We obtain the preceding results by first proving a bound on the operator
norm of the tight-binding operator and analytic perturbation theory.

In [KP07] it was shown that the Dirichlet contribution to the spectrum in the non-
magnetic case is generated by compactly supported eigenfunctions and that this is the
only contribution to the point spectrum of the Schrodinger operator on the graph. We

5See Footnote 2.
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extend this result to magnetic Schrodinger operators on hexagonal graphs. Let Hp, be
the pure point subspace accociated with H”. Then

Theorem 4. For any ®, H,, is spanned by compactly supported eigenfunctions (in
fact, by double hexagonal states).

While for the rational ® the proof is based on ideas similar to those of [KP07],
for the irrational ® we no longer have an underlying periodicity thus cannot use the
arguments of [K05]. After showing that there are double hexagonal state eigenfunctions
for each Dirichlet eigenvalue, it remains to show their completeness. While there are
various ways to show that all /! (in a suitable sense) eigenfunctions are in the closure
of the span of double hexagonal states, the ¢? condition is more elusive. Bridging the
gap between ¢! and ¢? has been a known difficult problem in several other scenarios
[A, AJM17, AW13, JLO1]. Here we achieve this by constructing, for each ®, an operator
that would have all slowly decaying ¢? eigenfunctions in its kernel and showing its
invertibility. This is done using constructive arguments and properties of holomorphic
families of operators. We note that, to the best of our knowledge, Theorem 4 is the first
result of this sort in absence of periodicity, and our way of bridging the gap between
¢' and ¢? is also a novel argument.

Outline. Section 2 serves as background, in particular it reviews results on the hon-
eycomb quantum graph model without magnetic fields. In Section 3, we introduce
the magnetic Schrodinger operator H? show that this one is unitarily equivalent to
a non-magnetic Schrodinger operator A® with magnetic contributions moved into the
boundary conditions. In Section 4, we present several key ingredients of the proofs of
the main theorems: Lemmas 4.1 and 4.2 - 4.4. Lemma 4.1 involves a further reduction
from AP to a two-dimensional tight-binding Hamiltonian Q,(®), and Lemmas 4.2 -
4.4 reveal the topological structure of o(Q,(®)) (thus proving the topological part of
Theorem 3). The proofs of Lemmas 4.1, 4.2, 4.3 and 4.4 are given is Sections 7, 5 and
6 respectively. Section 8 is devoted to a complete spectral analysis of H?, thus proving
Theorem 1, with the analysis of Dirichlet spectrum in Section 8.2, where, in particu-
lar, we prove Theorem 4; absolutely continuous spectrum for rational flux in Section
8.3, singular continuous spectrum for irrational flux in Section 8.4 (thus proving The-
orem 2). Since most of the proofs for different parts of Theorems 1-4 are distributed
throughout the paper, we give an index to them, for the reader’s convenience in section
8.5.

2. PRELIMINARIES

Notation. Given a graph G, we denote the set of edges of G by £(G), the set of
vertices by V(G), and the set of edges adjacent to a vertex v € V(G) by &,(G).
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For an operator H, let o(H) be its spectrum and p(H) be the resolvent set.

The space cgyg is the space of all infinite sequences with only finitely many non-zero
terms (finitely supported sequences). We denote by Q(R?) the vector space of all
i-covectors or differential forms of degree i on R2.

For a set U C R, let |U] be its Lebesgue measure. We define T} := R?/(27Z)? and
T:=T, :=R/Z.

List of main symbols used in this article.

ro and 7, are the vertices of the fundamental cell (2.1).
f, g, h are the vectors of the fundamental cell (2.2).

Wy = {f, g, ﬁ, T, rl} is the fundamental cell.

e by, by are the basis vectors of the lattice (2.3).
e A is the metric honeycomb graph (2.4).

[v], [€] denotes the translate of a vertex v or edge € into the fundamental cell
(2.5).

v = (71,7, |[v]),€= (71,7, [€]) are defined in the paragraph below (2.5).

i,t map edges to their respective initial and terminal vertex (2.6).

ke is the chart defined in (2.9).

H™ are the Sobolev spaces (2.10).

Hz is the maximal Schrédinger operator on an edge € (2.11).

V' is the potential as defined in (2.12).

HP is the Schrédinger operator with Dirichlet boundary conditions (2.14).

H is the Schrédinger operator without magnetic field (2.16).

T3 are lattice translations (2.17).

H (k) are non-magnetic Schrodinger operators satisfying Floquet boundary con-
ditions (2.21).

Y1, ¥y 2 are solutions to the boundary value problem stated in (2.23).

n(A) is introduced below (2.25).

cae and sz are defined in (2.27).

Hill potential Vi and Hill operator Hyyy are defined in (2.33) and (2.34).
A(A) is the Floquet discriminant defined in (2.37).

Hgy € L(I*(Z)) is the Jacobi operator defined in (2.41), with spectrum Y g
and S = Uper, Sap.

© is the set of zeros of ¢(f) as defined in Subsection 2.2.1.

AN AN A* and are the transfer, n-step transfer, and normalized transfer matrix
defined in (2.42), (2.43), and (2.46).

e D* and D) are derived from transfer matrices in (2.49).

L(\, ®) is the Lyapunov exponent defined in (2.44).
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e Vector potential A, integrated vector potential #, and flux ® are defined in
(3.1) and (3.2).

e H?% is the Schrodinger operator introduced in (3.7)

e AP is the Schrodinger operator introduced in (3.14).

o (QA(®) is the tight-binding operator stated in (4.1).

e 75 and 7y are discrete magnetic translation operators defined in (4.2).

e (A) is defined in (7.8), M (A, ®) is given in (7.9), K is defined in (7.10).

o T'0 are magnetic translation defined in (8.1).

2.1. Hexagonal quantum graphs. This subsection is devoted to reviewing hexag-
onal quantum graphs without magnetic fields. The readers could refer to [[KP07] for
details. We include some material here that serves as a preparation for the study of
quantum graphs with magnetic fields in Section 3.

A model for effective one electron behavior in graphene is given by a hexagonal
graph with Schrédinger operators defined on each edge [KP07]. The hexagonal graph
A is obtained by translating its fundamental cell Wy, the red colored part of Figure 1,
consisting of vertices

ro = (0,0) and 71 := (% ?) (2.1)
and edges
fi= conv ({ro,71}) \ {ro, 71},
G :=conv ({rg, (—1,0)}) \{ro,(—1,0)}, and (22)
h =

(- (-2)) - (-2

along the basis vectors of the lattice. The basis vectors are
by = (5, %) and by := <0, \/§> (2.3)

and so the hexagonal graph A C R? is given by the range of a Z2-action on the
fundamental domain W

A= {:B cR?: x:7151+7252+y for v € Z* and y € WA}. (2.4)
The fundamental domain of the dual lattice can be identified with the dual 2-torus
T3,
For any vertex v € V(A), we denote by [v] € V(W}) the unique vertex, ry or rq, for
which there is v € Z? such that

v = ”7151 + 7252 + [v]. (2.5)
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F1GURE 1. The fundamental cell W}, colored in red and including points
ro, 71, and lattice basis vectors of A .

We will occasionally denote v by (71,72, [v]) to emphasize the location of v. We also
introduce a similar notation for edges. For an edge ¢ € £(A), we will sometimes denote
it by (71,72, [€]). Finally, for any @ € A, we will also denote its unique preimage in
Wi by [z] °.

We can orient the edges in terms of initial and terminal maps
i:EA) = V(A) and t: E(A) — V(A) (2.6)

where ¢ and ¢ map edges to their initial and terminal ends respectively. It suffices
to specify the orientation on the edges of the fundamental domain W, to obtain an
oriented graph A

i(f) = i(3) = i(h) = m,
(J i(g) q() 0 ) ) 1)
t(f) =71, t(g) =1 — b1, and t(h) = r; — by.
For arbitrary € € £(A), we then just extend those maps by
Z(é) = ’ylbl + ")/262 + Z([é]) and t(g) = ")/151 + '}/252 + t([é]) (28)

Let ¢(A) = {v € V(A) : v = i(€) for some & € E(A)} be the collection of initial
vertices, and t(A) = {v € V(A) : v = t(€) for some € € E(A)} be the collection of
terminal ones. It should be noted that based on our orientation, V(A) is a disjoint

union of 7(A) and ¢(A).

S50 that y in (2.4)=[x]
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FIGURE 2. The potential is the same on all edges and symmetric with
respect to the centre of the edge.

Every edge € € £(A) is of length one and thus has a canonical chart

ke €—(0,1), (2.9)
(&) + (1 — ) o 2

that allows us to define function spaces and operators on € and finally on the entire
graph. For n € Ny, the Sobolev space H™(E (A)) on A is the Hilbert space direct sum

H'(E(N) = €D H"(@). (2.10)

FeE(N)

On every edge € € £(A) we define the maximal Schrédinger operator

Hz: H*(€) C L*(€) — L*(e)

" (2.11)
Hapz = _¢€ + Ve

with Kato-Rellich potential Vz € L?*(€) that is the same on every edge and even with
respect to the center of the edge, see Fig. 2. Let

V(t) = Vil (re) ' (2))- (2.12)
Then
V(t)=V(1—-1). (2.13)
One self-adjoint restriction of (2.11) is the Dirichlet operator

HP .= P (&) NHA() € LX(E (A) — LX(E (A))
geg() (2.14)

(HP)z :== Haps,
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where H}(€) is the closure of compactly supported smooth functions in H'(€). The
Hamiltonian we will use to model the graphene without magnetic fields is the self-
adjoint [K05] operator H on A with Neuman type boundary conditions

D(H) := {w = (vYz) € HA(E(A)) : for all v € V(A), g, (v) = ¥, (v) if €1, € Ey(A)

and ) ng('v):O}

€e€y(N) ( )
2.15

and defined by
H:D(H) C L*(E(A)) — L*(E(N))
(ff&)g:zzfﬂﬁﬂa

Remark 2. The self-adjointness of H will also follow from the self-adjointness of the
more general family of magnetic Schrodinger operators that is obtained in Sec. 7.

(2.16)

Remark 3. The orientation is chosen so that all edges at any vertex are either all
imcoming or outgoing. Thus, there is no need to distinguish those situations in terms
of a directional derivative in the boundary conditions (2.15).

2.1.1. Floquet-Bloch decomposition. Operator H commutes with the standard lattice
translations

T= L*(E(N) = L*(E(N))
fe=fl- 7151 — 7252)

for any v € Z?. In terms of those, we define the Floquet-Bloch transform for ¢ € £(W,)
and k € T3 first on function f € C.(E(A))

(2.17)

(Uf) (K, z) =Y (T3 f)(@)e®D (2.18)
~EeZ?
and then extend it to a unitary map U € L(L*(E(A)), L*(T; x £(W,))) with inverse
e = [ otk e (2.19)

where [x] € £ (W) is the unique pre-image of @ in W,, and v € Z? is defined by
T = 7151 + 7252 + [x].

Then standard Floquet-Bloch theory implies that there is a direct integral represen-
tation of H

D
UHU™ = | H(k)

: o (2.20)
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FIGURE 3. For zero potential, we illustrate functions (2.23) and (2.27)
for A = 16.

in terms of self-adjoint operators H (k)
H(k): D(H(k)) C L*(€ (Wa)) — L*(€ (W)
(H(k)))e = (Hebe)
on the fundamental domain Wy with Floquet boundary conditions
D)) = {0 € HA(E (W) o) = o) = vglm) and 3 wltra) =
ey (A)

as well as @bf(rl) = eiklwg(rl — l;l) = e“”zbﬁ(rl - gg)

(2.21)

and w;;(ﬁ) + eMyl(r — by) + 6ik2¢%(”‘1 —by) = 0}.
(2.22)
Fix an edge € € £(A) and A ¢ o(HP). There are linearly independent H?(é)-

solutions 1) 1 and ¥y 2 to the equation Hxpe = M)z with the following boundary
condition

Un1e(i(€)) =1, Un1e(t(€) =0, r2e(i(€) =0, and Yyae(t(€)) =1.  (2.23)

Any eigenfunction to operators H(k), with eigenvalues away from o(H?), can there-
fore be written in terms of those functions for constants a,b € C
aty,ft b wx,zf along edge f

Y=< a1+ e Fbiya; along edge § (2.24)
a, z+e™bi,, - along edge h
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with the continuity conditions of (2.22) being already incorporated in the representa-
tion of 1. Imposing the conditions stated on the derivatives in (2.22) shows that 1 is
non-trivial (a, b not both equal to zero) and therefore an eigenfunction with eigenvalue
A € R to H(k) iff

1 4 ik iks |2
N2 = ‘ +e 9—|—e ]
P 2 2(t(E)

w well-defined away from the Dirichlet spectrum.

(2.25)

with n(A) :=

By noticing that the range of the function on the right-hand side of (2.25) is [0, 1],
the following spectral characterization is obtained [KP07, Theorem 3.6].

Theorem 5. As a set, the spectrum of H away from the Dirichlet spectrum is given
by
o(H)\o(H”) ={A e R: [n(\)] < 1}\o(HP). (2.26)

2.1.2. Dirichlet-to-Neuman map. Fix an edge € € E(A). Let ¢y ¢, 55z which for Vz=0
reduce to just cyg = cos(\/Xo) and sz = sin(\/Xo)/\/X, be solutions to Hzpz = M)z
with the following boundary condition

C)\J?(Z.(é»)) 8/\75(2.(64)) — ]' O (2 27)
AhA1(€)  s(i(€)) 0 1) '
We point out that cx(t) := cxz(r; ' (t)) and sy(t) := sy z(k;'(t)) are independent of
€. They are clearly solutions to —¢" + Vi = A on (0, 1), with ¢,(0) = 1,¢,\(0) =
0,51(0) = 0,5,(0) = 1, where V' is defined in (2.12).
Then for A ¢ o(HP), namely when s,(1) # 0, any H?(€)-solution 1, z can be written
as a linear combination of ¢y ¢, s) ¢
_ — s (3 1
o) — D) = A @)er(1)
sx(1)
The Dirichlet-to-Neuman map is defined by
1 [—e(l) 1
A) = 2.2
0= (Y ) 229
with the property that for ¥, z as in (2.28), one has
V4 (i(€)) ) (@/JA g(i(é)))
€ =m(A ’ . 2.30
(k) = (e (2:30)
For the second component, the constancy of the Wronskian is used. Since V(t) is
assumed to be even, the intuitive relation

er(1) = $4(1) (2.31)

remains also true for non-zero potentials.

8)\75'($) + Q/JAyg(i(g))C,\,g(iB). (2.28)
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For A\ ¢ o(HP), by expressing c)(1) in terms of 1,1 z and 1y 2z, it follows immedi-
ately that

1) = h(1). (2.3
2.1.3. Relation to Hill operators. Using the potential V(t) (2.12), we define the Z-
periodic Hill potential Vi € LE (R).
Vi (t) := V(¢ (mod 1)), (2.33)
for t € R. The associated self-adjoint Hill operator on the real line is given by
Hmn : HA(R) € L*(R) — L*(R)

Y (2.34)
Hyntp = —¢7 + V).
Then cy, sy € H*(0, 1), extending naturally to HZ (R), become solutions to
Humt) = M. (2.35)

The monodromy matrix associated with Hyyy is the matrix valued function
ax(1) (1)
Q) = < 2.36
V= am 50 (239
and depends by standard ODE theory holomorphically on A. Its normalized trace
tr(Q(A
AQ) = # — (1) (2.37)
is called the Hill (aka Floquet) discriminant. In the simplest case when Vi = 0, the
Floquet discriminant is just A(\) = cos (\/X) for A > 0.
By the well-known spectral decomposition of periodic differential operators on the

line [RS78], the spectrum of the Hill operator is purely absolutely continuous and

satisfies
o0

o(Hum) = {} € R: |[AWN)| < 1} = (o, 5] (2.38)

n=1

where B,, := [ay, (,] denotes the n-th Hill band with 8, < a,41. We have A|{nt(Bn)()\) +
0.

Putting (2.32) and (2.37) together, we get the following relation
AN) =n(N), for A ¢ o(HP), (2.39)
that connects the Hill spectrum with the spectrum of the graphene Hamiltonian.

Also, if A € o(HP), then by the symmetry of the potential, the Dirichlet eigenfunc-
tion are either even or odd with respect to % Thus, Dirichlet eigenvalues can only be
located at the edges of the Hill bands, see Fig.4. Namely,

A(X) = 1, for X € o(HP). (2.40)
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Band spectrum ,Spectral gap

Dirichlet
spectrum

- E
E nergy

-0.5

Floquet discriminant

-1.0~

FIGURE 4. The Floquet discriminant for a Mathieu potential V (t) =
4 cos(6t). Energies in shaded regions are inside the band spectrum.
Dirichlet eigenvalues are located at the band edges.

2.1.4. Spectral decomposition. The singular continuous spectrum of H is empty by
the direct integral decomposition (2.20) [GN98]. Due to Thomas [T73] there is the
characterization, stated also in [[K16, Corollary 6.11], of the pure point spectrum of
fibered operators: A is in the pure point spectrum iff the set {k € T5; \;(k) = A} has
positive measure where \;(k) is the j-th eigenvalue of H(k). Away from the Dirichlet

. . 2
|1+67,k:1 +e7,k2 |

spectrum, the condition R 3 X = \;(k) is by (2.25) equivalent to A(\)? 5

Yet, the level-sets of this function are of measure zero. The spectrum of H away
from the Dirichlet spectrum is therefore purely absolutely continuous. The Dirichlet
spectrum coincides with the point spectrum of H and is spanned by so-called loop
states that consist of six Dirichlet eigenfunctions wrapped around each hexagon of the
lattice [IKXP0O7, Theorem 3.6(v)]. Hence, the spectral decomposition in the case without
magnetic field is given by

Theorem 6. The spectra of o(H) and o(H ) coincide as sets. Aside from the Dirich-
let contribution to the spectrum, H has absolutely continuous spectrum as in Fig.5 with
conical cusps at the points (Dirac points) where two bands on each Hill band meet. The
Dirichlet spectrum s contained in the spectrum of H, is spanned by loop states sup-
ported on single hexagons, and is thus infinitely degenerated.

2.2. One-dimensional quasi-periodic Jacobi matrices.

The proof of the main Theorems will involve the study of a one-dimensional quasi-
periodic Jacobi matrix. We include several general facts that will be useful.
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1.5

Dirac point

F1GURE 5. The first two bands of the Schrodinger operator on the graph
with Mathieu potential V' (t) = 20 cos(27t) and no magnetic field showing
the characteristic conical Dirac points where the two differently colored
bands touch. The two bands are differently colored.

Let Hgyp € L(I*(Z)) be a quasi-periodic Jacobi matrix, that is given by

) ) )
(Hopgt)m = c (9 + m%) Uma1+C (0 + (m — 1)%> Um—1+V <9 + m%) U (2.41)

Let Yg g := 0(Hgpp) be the spectrum of Hgy and Yo = U(,eTl Yop. It is a well
known result that for irrational %, the set g ¢ is independent of 6, thus X9 = Yg.

-
(

It is also well known that, for any ®, ¥¢ has no isolated points.

2.2.1. Transfer matriz and Lyapunov exponent.

We assume that ¢(f) has finitely many zeros (counting multiplicity), and label them
as 01,0s,...,0,,. © Let © := UM Ukez {Gj + /{:%}, in particular if % € Q, then © is a
finite set in T.

"For rational % and singular Hg g, Yo ¢ may consist of infinitely degenerate isolated eigenvalues,
if ¢ vanishes somewhere on the orbit of rotation of 6 by %.
8In our concrete model, ¢(f) = 1 + e~27 see (5.4), hence has a single zero 6; = 1/2.
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For 6 ¢ ©, the eigenvalue equation Hggu = Au has the following dynamical refor-

mulation:
Unp+1 :A)\ 9+n2 Unp,
Up 2w ) \Un-1)’
where
L (A—v(l) —c(0@—2)
GL(2,C) 32 AM0) = —— 2r 2.42
2.€) 3 4%(0) 6(9)<C(9) . (242
is called the transfer matriz. Let
) )
ANO) = AMNO —1)—)- - AN+ —)AN0 2.4
A0) = AN0 + (0= 1)5 ) A0+ ) AN0) (2.3
be the n-step transfer matrix.
We define the Lyapunov exponent of Hg at energy A as
1
L\, ®) := lim — [ log||A)6)| dé. (2.44)

n—oo M T,

By a trivial bound ||A||?> > | det A|, which comes from the fact A is a 2 x 2 matrix,
we get

1 (0 — 52)I
LA, ®) > lim — 1 2 df = 0. 2.45
. )‘nggo%/nrl Og(!c(eﬂn—l)% (249
2.2.2. Normalized transfer matriz. Let |c(0)| = 1/ c(0)c(0). We introduce the normal-
1zed transfer matriz:
i 1 A=v(0)  —[e(0 - 3)|
A _ 2T
SL(2,R) 5 A(0) = ( c(0)] 0 (2.46)

VIe®lle(® — )

and the n-step normalized transfer matriz A)(6).

The following connection between A* and A* is clear:

-1
- 10 10
A(0) = ) @ | AMNO) w5 | - (2.47)
P 0 ( 0 (0—5;)
VIe®lle@ — )1 \0 1o Fo
When % = § is rational, (2.47) yields

_ IToe0+52)
[Tj0 le(0 + 52)]

=

tr(A2(0)) tr(A(6)). (2.48)
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Let

_ (6 — 2
DNO) = c(6)ANg) = (A~ 0 0 = 5) (2.49)
c(0) 0

and D}(0) = D0 + (n — 1)52) -+ D*(0 + 5=)D*(6). Then when o = - is rational,
(2.48) becomes

_ t(D(9))

IT5=0 le(@ +55)1
Note that although A} (6) is not well-defined for § € ©, D} (0) is always well-defined.

tr(A)(0)) (2.50)

3. MAGNETIC HAMILTONIANS ON QUANTUM GRAPHS

3.1. Magnetic potential.

Given a vector potential A(x) = A (1, x2) dry+ Ag(wy, 22) doy € Q(R?), the scalar
potential Az € C'*(€) along edges ¢ € £(A) is obtained by evaluating the form A on
the graph along the vector field generated by edges [e] € E(W,)

Ag(z) = Alz) ([el101 + [€]205) - (3.1)
The integrated vector potentials are defined as fz := [ Az(x)dx for € € E(A).

Assumption 1. The magnetic flux ® through each hexagon O of the lattice

D= /OdA (3.2)

18 assumed to be constant.

Let us mention that the assumption above is equivalent to the following equation,
in terms of the integrated vector potentials

571,72,]?_ 671,724-1,}2 + Byiyat15 — /371—1,«,2+1,f+ /371—1,«,2+1,E — Brieg = P, (3.3)
for any vy, € Z.
Example 1. The vector potential A € Q'(R?) of a homogeneous magnetic field B €
0%(R?)
B(z) = By dxy A dxy (3.4)
can be chosen as
A(z) := Box; dxs. (3.5)
This scalar potential is invariant under gg—tmnslations. The integrated vector potentials
Bz are given by

P 1
B’Yl,'ﬁ,fz 5 (71 + 6) ) 671,7275 =0, and 671,“72,5 = _571,72’% (3.6)
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where, in this case, the magnetic flux through each hexagon is ® = %530.

3.2. Magnetic differential operator and modified Peierls’ substitution. In
terms of the magnetic differential operator (DP4)z := —it)l — Ax)z, the Schrodinger
operator modeling graphene in a magnetic field reads

HP : D(HP) C L*(€ (A)) — L*(E (M) 57)
(HP)e := (DPDPy)e + Viabe, .

and is defined on

D(H?) := {w € H*(E (M) : 1z (v) = Vg, (v) for any €, € Ey(A)
(3.8)

and Z (DB’(/)>€(’U):O}.

Ee€y(N)
Let us first introduce a unitary operator U on L?(E(A)), defined as
U¢71772,5 = C’YL’YQw’Yh’YQE fore=f,g,h, (39)

the factors ¢, ,, are defined as follows. First, choose a path p(-) : N — Z? connecting
(0,0) to (71,72) with

p(0) = (0,0) and p(|n|+ [r2]) = (11,72)- (3.10)

Note that (3.10) implies that both components of p(-) are monotonic functions. Then
we define (,, -, recursively through the following relations along p(-):

C0,0 = 17
_ B F _iﬁv1+1avza§
C’71+1772 =e s Cm,'yza (3.11)
B ~ —if 1)
CW1772+1 = e e f Y172+, C%’w_

Due to (3.3), it is easily seen that the definition of (,, ., is independent of the choice
of p(+), hence is well-defined.

The unitary Peierls’ substitution’ is the multiplication operator
P :L*(E(N)) — L*(E (N))
(wé-) — ((59 €T — ezfz(é')%:z: Ag(S)dS) wé') ,

where i(€) — @« denotes the straight line connecting i(¢€) with & € €. It reduces
the magnetic Schrodinger operator to non-magnetic ones with magnetic contribution

(3.12)

moved into boundary condition, with multiplicative factors at terminal edges given by
etbe.

9This transform is also known as minimal coupling.
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We will define a modified Peierls’ substitution that allows us to reduce the number
of non-trivial multiplicative factors to one, by taking

P = PU. (3.13)
It transforms HZ into

2 ~ ~
AP = (—d— + V) =P 'HPP. (3.14)
GeE(N)
The domain of AP is
D(AP) = {@/} € H3(E(N)) : any €y, e, € E(A) with i(€]) = i(éy) = v satisfy

Yz (v) = Vg (v) and Z YPi(v) = 0; whilst at edges for which

e

i(&)=v
£HE) = t(&) = v, ePs, (v) = Py, (v) and > ePpl(v) 0},
t(&)=v
(3.15)
where
Brmg =B, ;=0 and B o= —dy. (3.16)

Thus, the problem reduces to the study of non-magnetic Schrodinger operators with
magnetic contributions moved into the boundary conditions.

Observe that the magnetic Dirichlet operator
HPP - @5 (Hy(@) nH (@) € L* (€ (M) — L*(E (M)
GeE() (3.17)
(HPP4)e := (DPDPp)e + Ve
is by the (modified) Peierls’ substitution unitary equivalent to the Dirichlet operator
without magnetic field

HP = p~tgPBp = ptHPBp, (3.18)

Consequently, the spectrum of the Dirichlet operator H” is invariant under perturba-
tions by the magnetic field.

4. MAIN LEMMAS

First, let us introduce the following two-dimensional tight-binding Hamiltonian

1 0 1+70+71>

Qa(P) = 3 ((1 1t )" 0 (4.1)
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with translation operators 7, 71 € £L(I?(Z?;C)) which for v € Z* and u € [>(Z*C) are
defined as

(TO(U»’YL’}Q = Uy -1, and (7—1<u>)’71,‘r2 = eiiqmu'ylﬁzfl- (4.2)

The following lemma connects the spectrum of H? with o(Q). We have

Lemma 4.1. Let A(N) be the Hill discriminant defined in (2.37). A number \ €
p(HP) lies in o(HB) iff A(N) € o(Qa(P)). Such X is in the point spectrum of HP iff
AA) € 7,(Qa (D).

Remark 4. We will show in Lemma 5.2 that o,(Qx(®)) is empty, thus H? has no
point spectrum away from o(HP).

Lemma 4.2 below shows o(Qa(®P)) is a zero-measure Cantor set for irrational flux
%, Lemma 4.3 gives a measure estimate for rational flux, and Lemma 4.4 provides
an upper bound on the Hausdorff dimension of the spectrum of Q4 (®). These three
lemmas prove the topological structure part of Theorem 3.

Lemma 4.2. For 3= € R\ Q, 0(Qa(®)) is a zero-measure Cantor set.

Lemma 4.3. If 2 = £ is a reduced rational number, then o(Qx(®)) is a finite union
of intervals, with measure estimate

8v6m
97

Lemma 4.4. For generic ®, the Hausdorff dimension of o(Qa(®)) is <

|0(Qa(®))] <

N[ =

5. REDUCTION OF QA(®) TO A ONE-DIMENSIONAL JACOBI MATRIX
5.1. Symmetric property of Q,.

Lemma 5.1. The spectrum of Qx has the following properties:

(1) o(Qa(D)) is symmetric with respect to 0.
(2) 0€a(Qa(P)).

Proof. (1). Conjugating Q4 in (4.1) by

Q= (_Oid 1?1) (5.1)

shows that o(Qa(®P)) is symmetric with respect to 0 [KL14, Prop. 3.5].
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(2). If we view QA (®P) as an operator-valued function of the flux @, then

= (Qa(P)z, y), (5.2)

for x,y € cyo arbitrary, is analytic and ()5 therefore is a bounded analytic map. If there
was @y/2m € R\Q where Q5(Py) was invertible, then Q4 (P) would also be invertible
in a sufficiently small neighborhood of @, (e.g. [Ka95, Ch.7.1]). Yet, in [HKLI6,
Prop.4.1] it has been shown that for rational ®/2m, 0 € o(Qx(P)). Thus, by density
0 € 0(Qa(P)), independent of ¢ € R. O

5.2. Reduction to the one-dimensional Hamiltonian.

Relating the spectrum of @, to that of Q%, we obtain the following characterization

of U(QA).
Lemma 5.2. (1) The spectrum of the operator Qa(P) as a set is given by

_ j:\/ User, 9(Ha0) ;<H‘I”9) + % U0} (5.3)

where He g € L(I*(Z)) is the one-dimensional quasi-periodic Jacobi matriz de-
fined as in (2./1) with

c0) =14+e 2™ and v(h) = 2cos270. (5.4)

(2) QA(P) has no point spectrum.

Proof. (1). Let A := 3 (14 79+ 71). Then squaring the operator Qx(®) yields

ai@ = (1" 0

The spectral mapping theorem implies that J(Q A( )) = a(Qa(®))? and from Lemma

5.2 we conclude that o(Qa(P)) = £+/0(Q3(P)). Clearly, the operator AA*| ;e (4L
and A*Alie(a)r are unitarily equlvalent Thus, the spectrum can be expressed by

= +\/o(AA") U {0} (5.6)

where we are able to use either of the two (AA* or A*A) since 0 € o(QA(P)) due to
Lemma 5.1.

Then, it follows that

(5.5)

AA* =

|5

id
5 (o +75) + (1 +7) + 707 + 7177) - (5.7)

=:Hg

Observe that
HCDwm,n :Q/Jm—l,n + ,lvbm-l—l,n + 6_ZACmem,n—l + eiCDm,Qbm,n—&—l
+ eiq)(m_l)l/)m—lm-i—l + e_iq)md)m—i—l,n—l- (58)
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Since Hg is invariant under discrete translations in n, the operator is unitarily equiv-
alent to the direct integral operator fﬁ Hg g df, which gives the claim.

(2). Tt follows from a standard argument that the two dimensional operator Hg has
no point spectrum. Indeed, assume Hg has point spectrum at energy £, then Hg g
would have the same point spectrum E for a.e. § € T,. This implies the integrated
density of states of Hg ¢ has a jump discontinuity at £, which is impossible. Therefore
the point spectrum of Hg is empty, hence the same holds for Q,(P). O

6. PROOF OF LEMMAS 4.2, 4.3, 4.4

For a set U, let dimy (U) be its Hausdorff dimension.

Lemma 4.2 follows as a direct consequence of (5.3) and the following Theorem 7.
Let X be defined as in Section 2.2.

Theorem 7. For 5~ € R\Q, 3¢ is a zero-measure Cantor set.

We will postpone the proof of Theorem 7 till the end of this section. We will first
present the proofs of Lemmas 4.3 and 4.4, which are based on the following three
lemmas. First, we have

Lemma 6.1. Let % = § be a reduced rational number, then Yor,/, is a union of q

167

(possibly touching) bands with |Sarp/q| < 5 -

Lemma 6.1 will be proved in subsections 6.4 and 6.5 after some further preparation.
The following lemma addresses the continuity of the spectrum Y¢ in @, extending a re-
sult of [AMS90] (see Proposition 7.1 therein) from quasiperiodic Schrédinger operators
to Jacobi matrices.

Lemma 6.2. There exist absolute constants Cy,Cy > 0 such that if A € Y and
|& — &'| < 4, then there exists N € Xg/ such that

A= N| < Col® — P2,

We will prove Lemma 6.2 in Appendix C.

The next lemma provides an upper bound on the Hausdorff dimension of a set.

Lemma 6.3. (Lemma 5.1 of [L94]) Let S C R, and suppose that S has a sequence of
covers: {Sp,}>2,, S C S,, such that each S, is a union of g, intervals, g, — oo as
n — 00, and for each n,

C
‘Sn’ < _57

n
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where B and C are positive constants, then
1

Proof of Lemma 4.3. The fact that o(Qx(®)) is a finite union of intervals follows
from (5.3) and Lemma 6.1.

It suffices to prove the measure estimate. It is clear that for any € > 0, we have

VZampga 13 S [0.VE T/ (Samprs +3) ) (e.00).

Hence by Lemma 6.1, we have

| orp/ql 8
/Yon 3| < I < —
|/ Bompsq + 3| < Ve + NG _\/§+3\/Eq

Optimizing in ¢ leads to

46
37

|V Xamp/q +3| <
Then (5.3) implies

8vV o

a(Qa(2mp/q))| < . 6.1
o (@aCrp/a))] < 5 = (61)
0
Proof of Lemma 4.4. We will show that if % is an irrational obeying
® p
ol P 2

for some constant C, and a sequence of reduced rationals {p,/q,} with ¢, — oo, then
dimpg (c(Qa(P))) < 1/2. It is easy to see that the ®’s satisfying (6.2) form a dense Gs
set of R, hence is generic.

Without loss of generality, we may assume % € (0,1).
First, by (5.3), we have that

dimg (a(Qa(P))) = ?;ig dimy (:I:\/(% + é) N [%, 1]) ;

where we used a trivial bound ||Hg || < 6. Hence it suffices to show that for each

k>,
dimy <\/(% + %) " [%, 1]) < % (6.3)
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The rest of the argument is similar to that of [L94]. By Lemma 6.2, taking any
A € 3o, for n > ng, there exists X € Yoz, /4, such that A — N[ < CQ\% — ’;—"ﬁ. This
means g is contained in the 02|% — fq’—:ﬁ neighbourhood of Y57, /¢.. By Lemma 6.1,

Yonpn/gn NaS ¢y (possibly touching) bands with total measure |Xaxp,, /g, < %. Hence
Ys has cover S, such that S, is a union of (at most) ¢, intervals with total measure

1
2

167 ®  p,
S| < = 490, |— — P 6.4
5 < o + 2o o — 2 (6.4
Since ¢} |5 — Bu) < C, we have, by (6.4),
160 2C,V/C  C
1S, < 28 22V 2 (6.5)

~ 3 Gn Gn
This implies (%" + %) N [%, 1] has cover S, such that S, is a union of (at most) g,
intervals with total measure
VkC
2n
Then Lemma 6.3 yields (6.3). O

[Sn] < (6.6)

6.1. Proof of Theorem 7. Note that Lemmas 6.1 and 6.2 already imply zero measure
(and thus Cantor nature) of the spectrum for fluxes ® /27 with unbounded coefficients
in the continued fraction expansion, thus for a.e. ®, by an argument similar to that
used in the proof of Lemma 4.4. However extending the result to the remaining measure
zero set this way would require a slightly stronger continuity in Lemma 6.2, which is
not available. We circumvent this by the following strategy:

(1). Use quantization of acceleration techniques to prove the Lyapunov exponent of
operator Hg g identically vanishes on the spectrum, see Proposition 6.4;

(2). employ the singularity of the Jacobi matrix to show the absolutely continuous
spectrum of Hg g is empty, see Proposition 6.5;

(3). apply Kotani theory for Jacobi matrices, see Theorem 8.
Let X,.(Hog) be the absolutely continuous spectrum of Hgg. Let L(A, @) be the

TFESS

Lyapunov exponent of Hg g at energy A, as defined in (2.44). For aset U C R, let U
be its essential closure.

First, we are able to give a characterization of the Lyapunov exponent on the spec-
trum.

Proposition 6.4. For = € R\ Q, L(X\,®) = 0 if and only if A € S

The proof of this is similar to that for the almost Mathieu operator as given in [A15]
and the extended Harper’s model [JM12]. The general idea is to complexify 6 to 6+ ie,
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and obtain asymptotic behavior of the Lyapunov exponent when |e| — co. Convexity
and quantization of the acceleration (see Theorem 5 of [A15]) then bring us back to
the ¢ = 0 case. We will give the proof in Appendix A.

Exploiting the fact that ¢(0) = 1+ e *™ has a real zero §; = 3, we have

Proposition 6.5. ([Do78], see also Proposition 7.1 of [IM12]) For & € R\ Q, and
a.e. 0 €Ty, Xoo(Hop) is empty.

Hence our operator Hg p has zero Lyapunov exponent on the spectrum and empty
absolutely continuous spectrum. Celebrated Kotani theory identifies the essential clo-
sure of the set of zero Lyapunov exponents with the absolutely continuous spectrum,
for general ergodic Schrodinger operators. This has been extended to the case of non-
singular (that is |c(+)| uniformly bounded away from zero) Jacobi matrices in Theorem
5.17 of [Te00]. In our case |c(-)| is not bounded away from zero, however a careful
inspection of the proof of Theorem 5.17 of [Te00] shows that it holds under a weaker
requirement: log (|c(+)|) € L'. Namely, let H.,(#) acting on ¢?(Z) be an ergodic Jacobi
matrix,

(Heo(@))m = c(T™0) i1 + (T 10) 1 + 0(T™0)up,

where ¢ : M — C, v : M — R, are bounded measurable functions, and T": M — M is
an ergodic map. Let L. ,(\) be the corresponding Lyapunov exponent. We have

Theorem 8. (Kotani theory) Assume log (|c(-)|) € L'(M). Then for a.e. 6 € M,

€SS

Eac(Hc,v<0)) = {/\ : Lc,v()‘) = 0} :

Proof. The proof of Theorem 5.17 of [Te00] works verbatim. O
Proof of Theorem 7. In our concrete model, log (|c()|) = log (2| coswf|) € L*(T,),
thus Theorem 8 applies, and combining with Propositions 6.4, 6.5, it follows that ¥¢
must be a zero measure set. U

The rest of this section will be devoted to proving Lemma 6.1.

6.2. Quick Observations about Hy.p/0-

Let AM(-), AX(-), D(+), © be defined as in Section 2.2.1. We start with several quick
observations about Hazp/q.6-

Observation 1. The sampling function c¢(0) = 0 yields a unique solution 6 = % (mod
1), hence © = % + éZ. Then,

o for 6 & ©, we have c(6 +nk) # 0 for anyn € Z
o for 6 € ©, there exists ko € {0,1,...,q — 1} such that c(6 +nZ) = 0 if and only
if n =ky (mod q).
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Note that |c¢(6)] = 2| cos 0|, so a simple computation yields that H?;é |

2| sinmq(6 + 3)|. Thus (2.50) becomes
_ t(Dy(9))

tr(A)(6)) = 2|sinmg(6 + 1)|°

We have the following characterization of X, /q.6-

6.2.1. Case 1. If § € ©, we have the following

(0+72)| =

(6.7)

Observation 2. For 6 € O, the infinite matriz Hoqy/q.0 15 decoupled into copies of the

following block matriz M, of size q:

RS N CR
D ol
vzt (@—18) cz+(a—1)
c(3 +(g—1)%) v(3)
Thus
Yorp/q.0 = Leigenvalues of My},  for 0 € ©.

6.2.2. Case 2. 1f 6 ¢ O, by Floquet theory, we have
Yonp/a = 1A |tr/~12(9)| <2}

. (6.8)

(6.9)

(6.10)

Furthermore, the set {\ : tr /12(9) = 2cos 2mv} contains ¢ individual points (counting

multiplicities), which are eigenvalues of the following ¢ x ¢ matrix M, ,:
v(@+2)  fe(0+2)]
c(@+ ) v(0+2E)

627ril/‘c<9) |

M, (0)
| WO+ (q=12) [eld+(q—1)2)
e~ |c(0)] (0 + (¢ —1)%)] v(f)
(6.11)
Combining (6.10) with (6.7), we arrive at an alternative representation
) 1
Yorp/a0 = {)\ : \tr(Dé‘(@)ﬂ < 4|sinmq(f + —)|} : (6.12)

2
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6.3. Key lemmas.
Let
dg(0) = tr(D(6)). (6.13)
We have
Lemma 6.6 (Chambers’ type formula). For all 6 € Ty, we have
dy,(0) = —2cos2mgb + G,(N), (6.14)
where G,(\) (defined by (6.14)) is independent of 6.

Remark 5. Chambers’ formula is well-known for the celebrated almost Mathieu opera-
tor. It was also recently developed for various models including the tight-binding model

Qa(P) in [HKL16]. Here we do not use the Chambers’ formula for Qx(P), rather we
develop one for one-dimensional Hamiltonian Hgg.

Proof. 1t is easily seen that d,(-) is a 1/¢-periodic function, thus
d,(0) = G,(\) + aquWiqe + a_qe_Q’”qe,

in which the G,(\) part is independent of . One can easily compute the coefficients
g, 0_q, and get a; = a_y = —1. O

Lemma 6.7. For 0 € O,
det (A - Id — M,(0)) = tr(D;(6)). (6.15)

The proof of this lemma is stated in Appendix B.

Combining (6.12), (6.9) and Lemma 6.7 with the fact that |sinmg(6 + 3)| = 0 for
0 € ©, we arrive at

Saryrao = A+ |0(D)6))] < A sinmq(8 + )]} (6.16)

holds uniformly for 6 € T,.

By (6.14), we get the following alternative characterization of Yo /q.0-

1 1
Yonp/af = {/\ : —4|sinmq(6 + §)| +2cos2mgh < Gy(N\) < 4|sinmgq(f + §)| + 2cos 27rq0} :
(6.17)

Let us denote Ly(0) := 4|sinmwq(0 + 3)| + 2 cos 2mql, and 1,(0) := —4[sinmq(0 + 1)| +
2cos2mgh. Then (6.17) translates into

Yomp/a = 1A 1 1g(0) < Gg(X) < Ly(0)}. (6.18)
This clearly implies
Yomp/g = {A: r%in l,(0) < G,(\) < max L,(0)}. (6.19)
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Note that G4(A) is a polynomial of A of degree ¢ with leading coefficient 1, 3o,/
consists of ¢ non-overlapping (but possibly touching) bands and G'(\) # 0 in the
interior of each band, see e.g. Section 6 of [HKL16].

The following lemma provides estimates of |Xor,/46| and holds for any Jacobi matrix
(2.41).

Lemma 6.8. We have
Xonp/q0l < 4lc(0)].
Proof. For 6 € ©, by (6.9), |Xarp/q.6] = 0. It then suffices to consider § ¢ ©.
By (6.10), we have
22%79 ={\: —2< tr(flg(e)) <2}

Note that tr(fl;}(@)) is a polynomial of degree ¢ in A with leading coefficient 1. By
standard Floquet theory, see e.g. [T81, Te00], we have

d 7
a tr(Aq (9)> 7& 0,
holds for any A such that tr(fl;}(@)) € (—2,2). Hence ¥sr,/q0 is completely determined
by the \’s such that tr(flé‘(@)) = +2. By (6.10) and the explanation below it,
{{)\ : tr(AN0)) = 2} = {eigenvalues of M,(6)}

: ‘ (6.20)
{A: tr(A)(0)) = —2} = {eigenvalues of Mqé(é’)}.

Let {\(0)}, be eigenvalues of M,(0), labelled in the increasing order. Let
{Ai(0)}{_, be eigenvalues of M, 1 (0), labelled also in the increasing order. Then we

have
Sae = 321 (ul6) — ul6) (6.21)
[452] (454]
= Z (>\q—2k+2(9) - :\q—2k+2(9)) - Z (Aq—2k+1<9) - 5‘t1—2k+1(9)) :

Note the coefficient of (A,(f) — A\,(#)) is 1 rather than —1. This is due to the fact that
the leading coefficient of tr(Ap(6)) is positive.

Consider the difference matrix

2|e(0)]

2|c(8)]
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whose eigenvalues we denote by {E;(0)}L,, namely,
Ey(0) = =2[c(0)] < 0= Ex(0) = --- = E;1(0) = 0 < 2[e(0)] = E,(6).

Recall the following Lidskii inequality and dual Lidskii inequality: Let M;, j = 1,2
be n xn self-adjoint matrices, let £y (M;) < Ey(M;) < --- < E,(M;) be the eigenvalues
of M;. Then, for the eigenvalues of the sum of the two matrices, we have

{zh By (My+ Mo) < 03 iy (M) + X0,y (M) (622
Sy By (My + My) > 300 By (My) + Y00, By (Mo) '
forany 1 <ip < --- < i <n.
By Lidskii inequalities (6.22), we have
(4] [43] [43] [£4]
Z A—air2(0) O Agroisa(0) + ) Eqpa (0 Z Ag—2i42(0) +2]c(0)], (6.23)
k=1 k=1
and
= 454 45 7]
Z Ag—2k41(0) > Ng—241(0) + Z Ey(0 Z Ag—2k41(0) — 2[c(0)].  (6.24)
k=1 k=1 k=1
Hence combining (6.21) with (6.23) (6.24), we get,
Same 4| < 4/c(6)]. (6.25)
]

6.4. Proof of Lemma 6.1 for even gq.

For sets/functions that depend on 6, we will sometimes substitute 6 in the notation
with A C Ty, if corresponding sets/functions are constant on A.

Since ¢ is even, a simple computation shows

maxm, Lq(e) = Lq(%ﬁ_zl) = Lq(%) =3,

minr, [,(0) =1 (22“) —6.

A simple computation also shows [ (62;1) —1land L (QZ“) = 2. Thus we have, by
(6.19),

Yamplg ={A 1 =6 < Gg(A) < 3}
={A: =6 <G,(\) <2 (A -1<G,(\) <3}
ZE%J’% Uxmﬂ%-
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This implies
|E27rp/q| < | 2mp 2241 | + |E2mp oz41]. (6.26)
a’ 2q q ’ 6q
Now it remains to estimate |Yzrp 2241 | and |X2xp ez11]. Since ¢ is even, let us consider
g’ 2q q ’ 6q

Ezﬂm and Zzﬂ 3q+1.
q ’ 2q q ’ 6q

By Lemma 6.8, we have

Sams | < e < &,

) (6.27)
[Same s | < 4le(*EH)] < 3.
Hence putting (6.26), (6.27) together, we have
16
Som| < ——. (6.28)
q 3q

6.5. Proof of Lemma 6.1 for odd g.

Since the proof for odd ¢ is very similar to that for even ¢, we only sketch the steps
here.

For odd ¢, similar to (6.26), we have

[Yonp| < [Lamp szi1| + [L2np 2. (6.29)
q q ’ 3q q’q
By Lemma 6.8, we have
39-1 i
|32 391 | < 4c( E )| <35, (6.30)
S gr] < dle(52)] < o
Hence putting (6.29), (6.30) together, we have
167
IPE —_—. 31
[ | < 3 (6.31)
This proves the claimed result. U

7. PROOF OF LEMMA 4.1

Lemma 4.1 is the reduction from A? to the tight-binding model Q. We now present
its proof below.

Using ideas from [Pa06] and [BGPO07], we can express the resolvent of the opera-
tor AP (3.14) by Krein’s resolvent formula in terms of the resolvent of the Dirichlet
Hamiltonian and the resolvent of Q4.
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For this we need to introduce a few concepts first. The [?>-space on the vertices
I>(V(A)) carries the inner product

(f.9):= Y _ 3f(v)g(v) (7.1)

veV(A)

where the factor three accounts for the number of incoming or outgoing edges at each
vertex.

A convenient method from classical extension theory required to state Krein’s resol-
vent formula, and thus to link the magnetic Schrodinger operator H? with an effective
Hamiltonian, is the concept of boundary triples.

Definition 7.1. Let T : D(T) C  — S be a closed linear operator on the Hilbert
space F, then the triple (m,n’, F"), with €' being another Hilbert space and w, 7' :
D(T) — S, is a boundary triple for T, if

e Green’s identity holds on D(T), i.e. for all v, p € D(T)
(0, T@)ow — (T, o) = (T, 7' Q) — (TP, 7). (7.2)

e ker(m,n') is dense in J.
o (m, ") : D(T)— " & " is a linear surjection.

The following lemma applies this concept to our setting.

Lemma 7.2. The operator T2 : D(TB) c L*(€(A)) — L*(&E(N)) acting as the
mazximal Schrédinger operator (2.11) on every edge with domain

D(TP) = {1/1 € H*(E(N)) : any €1,& € E,(N) such that i(€,) = i(ey) = v satisfy
wa (’U) = wé’Q (U) and th(éi) = t(€2) =,
then eiégl 77Z}€1 (’U) = eigézwéé (’U)} (73)

is closed. The maps , 7" on D(T?) defined by

(1) é( > velv) + z%g(m)
i(€)=v t(€)=v

() é(z% @wﬂ (7.4
i(&)=v t(&)=v

form together with ' :=1>(V(A)) a boundary triple associated to TP.
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Proof. The proof follows the same strategy as in [Pa06]. The operator TZ is closed
iff its domain is a closed subspace (with respect to the graph norm) of the domain
of some closed extension of 72. Such a closed extension is given by @é.eg( A) HZ on
H2(E (A)). To see that D(T?) is a closed subspace of H2(€ (A)), observe that in terms
of continuous functionals

lee; - HHE(N) = C, lag, () = e, (i(&)) — v, (i(&)))
Koy i HAE (M) = €. ke (0) = €05 (8(&)) — ™0 (&) (75)
we obtain
D(T?) = ﬂ ker (g, &) N n ker (kzz)  (7.6)
&.,3;€€(A) with i(2;)=i(E;) &.7;€E(A) with £()=t(7;)

which proves closedness of TP. Green’s identity follows directly from integration by
parts on the level of edges. The denseness of ker(w,n’) is obvious since this space
contains P ee(A) C2°(€). To show surjectivity, it suffices to consider a single edge. On
those however, the property can be established by explicit constructions as in Lemma
2 in [Pa06]. O

Any boundary triple for 7 as in Def. 7.1 and any self-adjoint relation A C " @ "
gives rise [S12] to a self-adjoint restriction 74 of 7 with domain

D(Ta) ={¢ € D(T) : (x(¥), 7' (¢)) € A} (7.7)

The restriction of T2 satisfying Dirichlet type boundary conditions on every edge is
obtained by selecting A; := {0}®{*(V(A)) and coincides with H” (2.14). The operator
AP (3.14) is recovered from TZ by picking the relation Ay := I?(V(A)) @ {0} .

Definition 7.3. Given the boundary triple for TP as above, the gamma-field ~ :
p(HP) — L(I2(V(A)), L*(E (N))) is given by y(\) := (W!ker(TB,,\))_l and the Weyl
function M (-, ®) : p(HP) — L(I*(V(A))) is defined as M(\, @) := 7'y (N).

A computation shows that those maps are well-defined.

Lemma 7.4. For the operator T2, the gamma-field v and Weyl function M can be
explicitly written in terms of the solutions sy, cy (2.35) on an arbitrary edge € € E(A)

for X € p(HP) and z € I>(V(A)) by

(sx(Dere(@) — syo(@)en(l)) 2(i(8) + e Pesy o) 2(t(€))

sx(1) (78)

(Y(N)z)e() =

KA(®) — A(N)

M\ ®) = ox(1)

(7.9)
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where

(Ka(®)z)(v) := YooeE@) + Y ePai@) (7.10)

& i(&)=v & t(&)=v
defines an operator in L(I*(V(A))) with ||Kx(®)]| < 1.

Wl =

Proof. For A € p(HP) and z € I>(V(A)) we define for € € £(A) arbitrary

e = (Y(N)2)e = ((Tlier(rs ) ' 2)e (7.11)
with ¢ := (¢¢). In particular, ¢ is the solution to —¢%+Vzpe = Mpe with the following
boundary condition: 1z(i(€)) = z(i(€)) and &(t(€)) = e~"#z(¢(€)). The representation
(7.8) is then an immediate consequence of (2.28).

The expression for the Weyl function on the other hand, follows from the Dirichlet-
to-Neuman map (2.29).

(M(A, ®)z)(v) = (7'"7(A)2)(v)

_ (Ka(®)z — $)(1)2) (v)

) 7.12
S)\<1) ( )
here we used (2.31). The formula (7.9) then follows from (7.12) and (2.37). Since
i(A) Nt(A) =0, we have || KA (®)| < 1. O

The resolvents of H? = T and A® = T are then related by Krein’s resolvent
formula [S12, Theorem 14.18] and a unitary equivalence between A? and K (®) away
from the Dirichlet spectrum holds [Pal3, Pal4]

Theorem 9. Let (I>(V(A)), 7, 7') be the boundary triple for T2 and v, M as above,
then for X € p(HP) N p(AP) there is also a bounded inverse of M(\, ®) and
(AP = )7 = (HP = 0)' = —4 ()M, @) (V) (7.13)
In particular, c(AP)\o(HP) = {N e RN p(HP): 0 € a(M(\,®))} and for intervals
J C R\o(HP)
A (AP 1(A7)) = U [Ka(®) T (Ka(®))] U (7.14)
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with unitary operator U : ran (K (®) Ia) (Ka(®))) — ran (AP 1,(AP)) given by

U= [ VEREAO) deran(a0)

and E (@) is the spectral measure of the self-adjoint operator Kx(®).

Since all vertices are integer translates of either of the two vertices rg, 7 € W, by
basis vectors by, by, we conclude that I>(V(A)) =~ [2(Z?* C?). Our next Lemma shows

Kx(®) and Q4 (P) are unitary equivalent under this identification.

Lemma 7.5. K)(®P) is unitary equivalent to operator Qa(®P).
Proof. By (3.16), (7.10),

{(KA(‘I))Z)(%y%,TO) =1 (z(n,72,71) + 2(n1 — L,y2, 1) + e z(p1, 2 — 1,11))

1
3
% (Z(717727"°0> + Z(’Yl + 17727 TO) + 67;(}712(71772 + ]-)TO)) .

(Ka(®)z)(1,72,m1) =

In order to transform K, to Qx we use the unitary identification W : I*(V(A)) —
1*(z?,¢C?)

T
(WZ)’YL"Q = (2(7177277’0) 72(7177277'1)) : (715)
This way, Qx(P) = WK (P)W*. O

Remark 6. In terms of a € I>(Z*,C?) defined as

o 1 o 1/0 1
1 0/ "® 73 p o0
(N AT _1(0 0
o o) "0 D731 0

((1) 8) , and a~, =0 for other v € 77, (7.16)

S
o
=2
|
Wl Wl W=

a(-1,0) ‘=

we can express (4.1) in the compact form

Q@)= D ay(m)"(n), (7.17)

YEZ|y|<1

where || := |y1| + |12|. This operator has already been studied, in different contexts,
for rational flux quanta in [K114], [HKL16], and [AEG14].

Finally, we point out that Lemma 4.1 follows from a combination of Theorem 9,
Lemma 7.4 and Lemma 7.5. O
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8. SPECTRAL ANALYSIS

This section is devoted to complete spectral analysis of H?.

In view of Lemmas 4.1 and 5.1, an important technical fact is:

Lemma 8.1. The operator norm of Qa(®) for non-trivial fluz quanta ® ¢ 277 is
strictly less than 1.

Indeed, then, away from the Dirichlet spectrum o(H?), which are located on the
edges of the Hill bands (2.40), we have the following characterization of o(H?). Let
B,, and A be defined as in Section 2.1.3.

Lemma 8.2. For the magnetic Schrédinger operator HP, the following properties hold.

(1) The level of the Dirac points AEE(Bn)(O) always belongs to the spectrum of HP,
r.e. 0 € A|int(3n)(0'(HB)).

(2) A € Al (0(HP)) iff =X\ € Ay, (o(HP)). Consequently, the property
A’(A|mt 8.)(0)) # 0 implies that locally with respect to the Dirac points, the
spectrum of HB is symmetric.

(3) HP has no point spectrum away from o(HP).

(4) For non-trivial flux ® ¢ 2nZ, HP has purely continuous spectrum bounded away
from o(HP).

ni(5,)(0) belongs to the spectrum of H B,
In [BH19] the first two authors show that not only this energy belongs to the spectrum,
but also that Dirac cones actually form around this energy for any ® € 27Q.

In this paper, we only show the energy A|

Combining Lemma 8.2 with Lemma 4.4, we get

Lemma 8.3. For generic ®, dimpy(o®) < 3.

Proof of Lemma 8.3. Lemma 4.4 and Lemma 8.1, which implies that A™!| g, is Lips-
chitz on o(Q(P)) for ¢ ¢ 277, show that for generic P,

dimir (Al ((Qa(®)) < 5.

Hence since

7* = o) (e Al ((@r(®D)

we have

dimy (6®) < sup {dimH(a(HD))7 sup dimgy (A|mt(B )( (QA(CI)))>} <

1
neN 2 ’

This proves Lemma 8.3. U
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Proof of Lemma 8.2. (1), (2) follow from a quick combination of Lemma 4.1 and
Lemma 5.1, and (3) follows from Part (2) of Lemma 5.2. (4) is a corollary of Lemma
8.1 and (3). O

Proof of Lemma 8.1. Without loss of generality ® € (0,27). By (5.3), it suffices to
show ||Hgg|| < co < 6 for some constant cg independent of § € T;. Let us take
¢ € (*(Z) with ||¢||lez) = 1. Consider

(. (.

-~

—(h19)n —(ha)n —(hsp)n

in which hy, ho, hs € L(¢*(Z)). Hence

| Ho ool <3 (Il + Nheplli + Ihseliae
P o :
0 —1)— 0 —
c( + (n )27T> c( +n2ﬂ>

<12 sup (COSQTI' (9 — 22) + cos?(md) + COS2(27T(9))

0Ty ™

2
+

2

<3 sup +

neL

o
0 _
v( +n27r>

=:c2 < 36.
O

In order to investigate further the Dirichlet spectrum and spectral decomposition of
the continuous spectrum into absolutely and singular continuous parts, we start with
constructing magnetic translations.

8.1. Magnetic translations.
Below, let v = (71,72) be in Z? and € = (71, 72, [€]) an arbitrary edge.

In general, A® does not commute with lattice translations T,it. Yet, there is a
set of modified translations, introduced by [Z64], that do still commute with A%,
although they in general no longer commute with each other. We define those magnetic
translations 77 : L*(€ (A)) — L*(£€ (A)) as unitary operators given by

(TYY)e = uy (€)(T5')e (8.1)
for any ¢ := (Ye)ece(n) € L*(€ (A)) and v € Z*. The lattice translation 75" is defined

by (T5)e() = Yo 5, iy (T — Y1by — Y2bs) as before. The function ul’ is constant

on each copy of the fundamental domain, and defined as follows

uf(%,%a [€]) = e for €] = ﬁﬁor ﬁa v =(1,7) € z. (8.2)



CANTOR SPECTRUM OF GRAPHENE IN MAGNETIC FIELDS 37

By the definition (8.1), (8.2), it is clear that for any ¢ € L*(£(A)),

d d
%szp = Tfaw and VI = TPV (8.3)

In order to make sure D(APTY) = D(TJAP), it suffices to check T(D(AF)) =
D(AP), which translates into

U (€1) = u~y(€3) whenever i(e)) = i(€)

(8.4)

e —  whenever t(é€1) = t(é3).

iBg. _ B, = -
e 2 u~ (&) e €2—71b1—72b2
) e €1—7161—72by

This, by (3.16) is in turn equivalent to the following: for any 7y, 32 € Z:

— -

u’Y(’?h’?Qa f) = u"/(&lvﬁ/%g_f) = u’y(?la&?a h)

—

U’Y(’?b’?% f) = u7<’~}/1 + 17’7275) = e_i(l)vlu"/(/?h;j? + 17 E)

The definition of uf (8.2) clearly satisfies this requirement.

Therefore, although magnetic translations do not necessarily commute with one
another, they commute with A2

B AB BB
TPAP = APTP. (8.5)

8.2. Dirichlet spectrum.

In this subsection, we will study the energies belonging to the Dirichlet spectrum
o(HP). Lemma 8.4 below shows that o(H?P) is contained in the point spectrum of
HP . hence the only point spectrum of HZ, due to Part (3) of Lemma 8.2.

Consider a compactly supported simply closed loop, which is a path with vertices
of degree 2 enclosing ¢ hexagons, see e.g. Fig. 7. Then this loop passes (proceeding in
positive direction from the center of an edge €; such that the first vertex we reach is
t(e1)) n edges €, ..., €, in E(A), where n is an even number. For a solution vanishing
outside this loop, the boundary conditions imposed by (3.15) on the derivatives can
be represented in a matrix equation

Ty(n)¢'(n) = 0, (8.6)
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where

P e 0 0 0 L (1)
0 1 1 0 0 0 L (1)
_— 0 0 ebs eiBa g 0 4 9n) & (1)

n) .= an n) .= ]

® ) L0 0 :
0 0 0 0 P b e (1)
1 0 0 0 0 0 1 (1)

(8.7)

Remark 7. We observe that Te(n) can be row-reduced to an upper triangular matriz
with diagonal

<€i/§al7 1 eiﬁ}g’ 1, 6i555 1, ei,éan_l’ 1—¢ Z?:l(—l)jﬁaj)

)
=(ePer 1,e% 1, e 1, ePenr 1 — e,

where q is the number of enclosed hexagons. Hence rank(Te(n)) = n iff ¢® ¢ 277 and
rank(Tp(n)) = n — 1 otherwise.

Lemma 8.4. The Dirichlet eigenvalues X € o(HP) are contained in the point spectrum
of HB.

Proof. For ® € 277 the statement is known [KP07, Theroem 3.6], thus we focus on
® ¢ 27Z. By unitary equivalence, it suffices to construct an eigenfunction to AZ. We
will construct an eigenfunction on two adjacent hexagons I' as in Fig. 6. Thus, ¢ = 2,
the total number of edges is m = 11, of which n = 10 are on the outer loop. Let us
denote the slicing edge by € and the edges on the outer loop by €, é, ..., €19 (see Fig.
6). Recall that sy ¢ is the Dirichlet eigenfunction on €.

By Remark 7, for 2& € 277, operator T4 (10) has a non-trivial nullspace. We could
take
a = (a;) € ker (T5(10)) \{0}, (8.8)
and an eigenfunction ¢ on I' such that 1z = 0 and ¥z, = a;sxg;.
If 20 ¢ 277, we take a vector y € C!° such that yo = —1, y; = —e'* and y; =0
otherwise. Since in this case T4 (10) is invertible, there exists a unique solution a = (a;)
to the following equation:

To(10)a = y. (8.9)
Let us take ¢ on I' such that vz, = a;s\ ¢, and ¥z = s, ¢, then one can easily check ¢
is indeed an eigenfunction on I. O

As a corollary of Lemma 8.1 and Lemma 8.4, we have the following:
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FIGURE 6. Black arrows describe the double hexagon with slicing edge
¢ indicated by the dashed arrow.

Corollary 8.5. The spectrum of HP must always have open gaps for ® ¢ 277 at the
edges of the Hill bands.

Remark 8. If the magnetic fluz is trivial, i.e. ® € 277, then there do not have to be
gaps. In particular, for zero potential in the non-magnetic case discussed in Theorem
6 all gaps of the absolutely continuous spectrum are closed and o4.(HP) = [0, 00).

The next lemma concerns the general feature of eigenspace of H?. Before proceed-
ing, let us introduce the degree of a vertex in order to distinguish different types of
eigenfunctions.

Definition 8.6. An eigenfunction is said to have a vertex of degree d if there is a
vertex with exactly d adjacent edges on which the eigenfunction does not vanish.

Lemma 8.7. For the point spectrum of HP it follows that

(1) Every eigenspace of HP is infinitely degenerated.

(2) Eigenfunctions of HP vanish at every vertex and are thus eigenfunctions of HY
as well.

(3) Eigenfunctions of HP with compact support cannot have vertices of degree 1.
In particular, they must contain loops and the boundary edges of their support
form loops as well.

Proof. (1). This follows immediately using magnetic translations (8.1) and study-
ing A?, instead. Assume there was a finite-dimensional eigenspace of A®. Because
magnetic translations commute with A?, they leave the eigenspaces of AP invariant.
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Magnetic translations are unitary, thus there is for any magnetic translation a nor-
malized eigenfunction ¢ with eigenvalue A on the unit circle in C. For v, there is a
sufficiently large ball B(0, R) such that

191l L2eaynpo,ry > 1 — & (8.10)

Upon n-fold application of the magnetic translation, the point 0 gets translated to
some point x,, whereas the eigenfunction v acquires only a complex phase A". Thus,
(8.10) still holds and we must also have that

1 2 AnBEn,r) =1~ € (8.11)

Yet, there exists n such that B(0, R) N B(x,, R) = 0. Therefore, (8.10) and (8.11)
cannot hold at the same time for arbitrarily large n. This contradicts the existence of
an eigenfunction to magnetic translations and thus the existence of a finite-dimensional
eigenspace.

(2). If there is an eigenfunction to H? with eigenvalue A that does not vanish at
a vertex, by (modified) Peierls’ substitution (3.13), there is one to AP, denoted as ¢,
as well. We may expand the function in local coordinates on every edge ¢ € £(A) as
e = agzcyz+ besy ¢ according to (2.35). Recall also that the Dirichlet eigenfunction sy
is either even or odd. Thus, using (2.31) we conclude that |c)(0)| = |ea(1)] and thus ¢
cannot be compactly supported. In particular, ¢ has the same absolute value at any
vertex by boundary conditions (3.15). Due to

> leeli@)F < llelle < oo (8.12)

eeg(N)
¢ has to vanish at every vertex. Thus ¢ is also an eigenfunction to HP.
(3) clearly follows from (2) and (3.15). O

8.2.1. Dirichlet spectrum for rational flux quanta.

In this section, the flux quanta are assumed to be reduced fractions % = 75’.

If magnetic fields are absent, the point spectrum is spanned by hexagonal simply
closed loop states, i.e. states supported on a single hexagon [[KP07]. We will see in the
following that similar statements remain true in the case of rational flux quanta and
derive such a basis as well. The natural extension of loop states supported on a single

. . . . P
hexagon, in the case of magnetic fields, are simply closed loops enclosing an area qB—O
rather than just é%, see Fig. 7.

Lemma 8.8. Any simply closed loop enclosing an area of % has a unique (up to
normalization) eigenfunction of HP supported on it.
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F1GURE 7. Simply closed loop state supported on black arrows encloses
4P

area 3.
Proof. The existence of eigenfunctions on simply closed loops enclosing this flux follows
directly from the non-trivial kernel of (8.7), see Remark 7. Due to dim(ker(Ts)) = 1,

such eigenfunctions are also unique (up to normalization). 0

Lemma 8.9. The nullspaces ker(H? —\) where A € a(HP) are generated by compactly
supported eigenfunctions.

Proof. Unitary equivalence allows us to work with A® rather than HZ. Without loss
of generality, we assume that the Dirichlet eigenfunction to A is even. Due to Lemma
8.7, eigenfunctions of A® to Dirichlet eigenvalues vanish at every vertex. Thus, on
every edge € € £(V), they are of the form ¢z = ags, ¢ for some ae.

Let ¢ be such a function. We define the sequence (u(v))yev(a) as follows

{ u(y1,72, o) = @;17«,2,57(71;727 7o)

wl(v,72,m1) =@l 72, )

Observe that the sequence (u(v)) determines the eigenfunction on every edge. Indeed,
Uy a5 = U(11,72,70) and a7 = u(y1,72,71), since s)(1) = s)(0). At the same
time, a,, ., can be determined in two different ways, one for each endpoint, from the
boundary condition (3.15). Let us now introduce an operator A € L(I?(V(A))) that
has precisely the sequences (u(v)) with matching boundary conditions for a, _, 7 in
its kernel. Then,

(Au) (71,72, 70) == u(1, 72, T0) + u(v1, 72, 71)

2ri PL

—e <U(71 + 1,7 —1,719) +u(y1,72 — 177°1)> and
(Au) (71,72, 1) == 0. (8.13)
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The operator A is then a Z2-periodic finite-order difference operator. Any eigenfunction
o satisfying (A —\)¢ = 0 leads by standard arguments to a square-summable sequence
(u(v)) as defined above in the nullspace of A. Conversely, any such element in the
nullspace of A uniquely defines an eigenfunction ¢ = agsy z to AP. Theorem 8 in [K05]
implies then that the nullspace of A is generated by sequences in coo(V(A)). It suffices
now to observe that those compactly supported sequences also give rise to compactly
supported eigenfunctions to conclude the claim. 0

Lemma 8.10. Let ® ¢ 27Z. The eigenspaces are spanned by the set of double hexag-
onal states, see Fig. 0.

Proof. By Lemma 8.7, all eigenfunctions vanish at every vertex. Compactly supported
eigenfunctions are dense in the eigenspace by the previous Lemma 8.9. Thus, it suf-
fices, as in the non-magnetic [KP07] case, to show that any compactly supported
eigenfunction is a linear combination of double hexagonal states. Let ¢ be a com-
pactly supported eigenfunction of A® to some Dirichlet eigenvalue A\. Consider an
edge de & (A) on the boundary loop of the support of . It exists due to (3) of Lemma
8.7. The boundary loop, which cannot be just a loop around a single hexagon, as this
one does not support such eigenfunctions, necessarily encloses a double hexagon I', as
in Fig. 6, which contains the chosen edge d. Then, there is by the proof of Lemma 8.4
a state ¢ on I' so that the wavefunction ¢ ; on d coincides with @z Subtracting ¢ from
¢ leaves us with an eigenfunction to A” that encloses at least one single hexagon less
than ¢. Thus, iterating this procedure shows that compactly supported eigenfunctions
are spanned by double hexagonal states which implies the claim. 0

8.2.2. Dirichlet spectrum for irrational flux quanta.

After proving Theorem 4 for rational flux quanta, we now prove the analogous result
for irrational magnetic fluxes. We start by introducing the following definition.

Definition 8.11. The Hilbert space I*(E(A)) is defined as

PEWN) = {2 EA) = C, 2y = Y. 2@ <oop. (8.14)

eeE(A)

Theorem 10. The double hexagonal states generate the eigenspaces of Dirichlet spec-
trum of HP for irrational flux quanta.

We will give a proof of this theorem after a couple of auxiliary observations. For
this entire discussion to follow we consider a fixed A € o(HP).

Definition 8.12. We denote the closed L*(E(A)) subspace generated by linear combi-
nations of all double hexagonal states on the entire graph A by DHga)(P).
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There is a countable orthonormal system of states V(®) C DHg(y)(®) such that
span(V(®)) = DHga)(P). (8.15)

We may label elements of V(®) by ¢ (®) with v € Z?. Without loss of generality,
©~(®) can be chosen to depend analytically on ® € (0,1). Every element ¢ (®) €
V(@) is due to Lemma 8.7 of the form

Z Pr.e(P)sae (8.16)
eeE(A
because it is an element of ker(H? — )).

Now assume that the statement of Theorem 10 does not hold, this is equivalent to
saying that Z(®) := ker(H” — X) N DHg,)(®)* is not the zero space, i.e. there are
eigenfunctions not spanned by double hexagonal states. Our goal is to characterize
Z(®) as the nullspace of a suitable operator we define next.

Definition 8.13. Let A(®) € L(I*(E(A))) be defined as

—

)= uly, f) +u(y, §) + uly, b)

(A(@)u)( 9) = u(y,%2 — L) +uly + 1,72 — 1,§) + e u(yi, 32, b)) (8.17)
)= (s (or A e

for any u € I*(E(N)).

Remark 9. The first two lines of this definition resemble the boundary conditions for
the derivatives at outgoing/incoming vertices (3.17) and with the third line we monitor
the orthogonality of E€€£(A) uesxe to DHep)(P).

In particular, there is an isometric isomorphism 7 € L(ker(A(®)), Z(P)) with

Ug

n(u) = S)é- (8.18)

geE(A) lsxéll 2(ey

We observe that by Lemma 8.9 and the isomorphism (8.18) the operator A(®) is
injective for % € QN (0,1). To prove Theorem 10 we only need the following Lemma:

Lemma 8.14. The operator A(®) is surjective for % € (0,1). In particular, for any
(a(€)) € I(E(A)), there exists (u(€)) € I*(E(N)) such that A(®P)u = a and

C
[ulleey < T_iﬂHaHz?(e(A)) (8.19)

|1

holds for a universal constant C'.
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Combining Lemma 8.14 with the already established injectivity result, we have A(®)
is continuously invertible for & € QN (0,1) with the following control of its norm

C

|1 —ei®|

JA(®) | < (8.20)

Now let us give the proof of Theorem 10, assuming the result of Lemma 8.14.

Proof of Theorem 10. Since ||A(®)]| is uniformly bounded by a constant and ¢
(z, A(®)y) is analytic for z,y € coo(E(A)), A(P) is an analytic operator in ®. Thus
for any 5= € (0,1), there exists £1(®) and C(®) such that

|A(®) — A(B)]| < C(®)|® — |, for | — D] < £,(D). (8.21)

Also by (8.20), for any irrational % € (0,1) and rational 5= with |® — D| < £4(P), we
have
2C

AP) M < ——
@< =

(8.22)

Hence, taking & € QN(0, 1) that is close to % such that |®—®| < min(e,(P), e5(P), ‘;gg;?),

we would get
JA(@) " (A@®) — A@))] < 1.
This implies that
A(®) = A@) (1d + A(®@)1(A(@) - A(@)))

is invertible. Thus, we conclude that also for irrational fluxes ker(A(®)) = {0} and by
(8.18) therefore Z(®) = {0} which shows the claim. O

Proof of Lemma 8.14. We prove this Lemma by showing that there is a sufficiently
sparse set of elements in [2(£(A)) that gets mapped under A(®) on the standard basis
of I2(E(A)).

Let a5y = <p%g||s,\,g||12(é.) . Since functions ¢, satisfy the continuity conditions
(3.17) and form an L? orthonormal system, we obtain the standard basis vectors
Oy (yiiy € P(E(A)) under A(P)

o, (v,h
(A(@)a, ()Y ) =0,
(A(P)ay (i)Y' §) =0, and (8.23)
(A(q))a.,(7,ﬁ))(’7/> E) = Oy

To obtain also the remaining basis vectors, let us define L? functions @2(7 B and

Y(~,5 supported on a single hexagon I'y as shown in Figure 8. The indices of 1, )
are chosen to indicate the standard basis vectors de () € (*(£(A)) in the range of
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(7.9,
(v = (1,0), f) (v, h)
vy
(v = (1,0), k) (v—=(0,1), f)
(v —(0,1),9)

FIGURE 8. Labelling of hexagon I',.

A(®) that we will construct from those functions. To define zﬂ(,y 7 and z/;(%g), we
introduce coefficients ¢, . h and C (4,5 such that w(,y A= 2565(1“7) Cé.’(%};‘)S)\g and
zﬁ(%g) =D e (1) Gé,(v,9) Sx,&> Tespectively.

We do this in such a way that all continuity conditions for 1/?(7 7 at the vertices of

', are satisfied up to a single one at the (initial) vertex vy := i((7, §)) = i((, h)), see
Fig. 8. We define for fixed &= (v, f)

1 —e P e~ i®n

Sy = T g Sr-00fe = T = S-009)€ = T i

o o » (8.24)
—e ! e’ —e "

C(‘Y*(lvo):ﬁ)vé: 1 — —7,@7 C 1 0 f g = 1 _ e—zﬁ)’ <(7)§)7€ = 1 _ 6_1@

and all other (, # are taken to be zero. Since for 1/) all but one continuity conditions
are satisfied, we obtain for the first two Components of (8.17)

(A(é)Cg('y,f))(’Y/? f) = 5’77’7’ and (A(¢)>Co,(fy,f_‘))(’7/a g) = 0. (825)

To ensure that we also get constant zero in the third component of (8.17), we project
onto the orthogonal complement of the double hexagonal states w(., o= w(., e

2

Ppag (@ )z/J( B where Ppp, (@) is the orthogonal projection onto DHg(p)(®). Let
now g ., be uch that

() = Z Qg (. /)51& (8.26)
ec&(T)
then it follows that
(A@)a, o, )V J) i= Gy
(A(@)a, , 5)(¥.5) =0, and
(A(®)ay, (., 7)) (¥ 1) = 0. (8.27)
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Similarly, we choose coefficients (, z with € = (7, §), such that the boundary con-
ditions are satisfied up to the one at the (terminal) vertex vy := t((,h)) = t((y —
(0,1), f)), see Fig. 8.

]_ _1 eiq)('}/l_l)
S0 = T gmmr So-00.92 = T om0 Sv-0he = T @
_ei(b('ylfl) eiq)(’ylfl) _67"(1)(7171)
Cy—ofie = Tz Sde = T See T 1 o (8.28)

and all other coefficients (, # equal to zero. Thus, we get for the first two components
of (8.17)

(A(®)Co ) (Vs ) = 0 and (A(®)Ca,3.0)) (V5 §) = G, (8.29)

To ensure that we also get constant zero in the third component of (8.17), we project
again on the orthogonal complement of the double hexagonal states 1, g = V(4,5 —

Ppirg @) Y(rd)- Let noW Yy = 3 seer. ) Qe (rgSra then
(A(®)ta,)) (V' ) =
(A(P) e (4.5) (Y, §) = 054, and (8.30)
(A(q’)oé-,(, ) h) =
Hence, we obtained in (8.23), (8.27), and (8.30) sequences

{O‘%(mf)’ Qo (v,), and @ 7y € ZZ} (8.31)

in [2(£(A)) that get mapped under A(®) onto the standard unit basis of I2(£(A)

).
To conclude surjectivity of A(®) from this, it suffices to show that for all (a(€)) €
I2(£(A)) we can bound u(€) := Dodeen) a(d) ag g as follows

Z la(@)[*. (8.32)

ez eay <
|1

We then define
oo = Z a(d) g g and vg = Z a(d) Cad- (8.33)

de&(A);[d]#h de€(A);[d]#h

Since ¢, 71, Viy,g) € DHg5)(®)* and () forms an orthonormal system in D Hg(x)(®),
to prove (8 32) it suffices to show

02
||0||?2<5<A))S|—.2 > la@f. (8.34)

_ p—i®
Loe |€e€(A);[é]¢H

Due to o] ;2gay < ¥llizeeay + lo = Vllizea)) We may establish estimate (8.32) for
each term on the right-hand side of the triangle inequality, individually.
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For two edges d, & € E(A) we define a function M(d, €) := 1 if there are ~,~' € Z>
and two hexagons I'., T, satisfying Iy NI,y # 0 such that d e I'y and € € Ty,
and M(d, @) := 0 otherwise. Choosing 71 such that D dee(n)dl M(d, &) < 7 for any
g€ E(AN), then

) .
Wi s 3 (@) ey NGl (€. )
d.ec€(A);(d],[e1#h S ~-
< T _
Ti—emi®)? (8.35)
6’7'1
S Temp 2 l@F
eeE(A);[e#h

For the second term |lo — vl|;2(g(y)), we use that functions 12(%[5]) with [6] # [h] are
supported on hexagons I' and can therefore only overlap with finitely many linearly
independent double hexagonal states. Thus, we define a function N with N (J; e):=1
if cf, € belong to two hexagons I'y, 'y, for which there are two double hexagons I'y, I'
with the property that all intersections I', N I'y, I't NIy, Iy, N T'y are not empty.
Otherwise, we set N(d,&) := 0. Choosing 7 such that D dee(A(digh N(d,&) < 7 for
any € € £(A), then

N(d, &)a(d) a(é) . -

2 )

||0 — V”l?(S(A)) = Z ||S ||2 <PDH£(A)(¢)¢J7 PDHE(A) 1/}
decs(N);[dl,[d#h A ZI((5))

>L2 (E(A))

< Z a(d)| |a( N ||C-,é‘||z2(g(/\)) N(d,€)
d.ge€ (A);[d] [e1#h
67'2
< m Z la(@)]*.
ge€ (A);[el#h (8.36)
8.36
(]

8.3. Absolutely continuous spectrum for rational flux quanta.

Lemma 8.15. For &= = £ € Q, the spectrum of HE away from the Dirichlet spectrum
15 absolutely continuous and has possibly touching, but non-overlapping band structure.
An interval I C [—1,1] is a band of Qa(P) if and only if its pre-image under A, on
each fized band of the Hill operator, is a band of HE.

Proof. That the bands of Qx(®) do not overlap is shown in Section 6 of [HKLI16].
Thus, the unique correspondence between bands of Qx(®) and HZ, following from the
unitary equivalence (7.14), shows that the non-overlapping of bands holds true for H?
as well. O
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1.5

15
05 o5 05 0°
ko 1.5 15 ky

F1GUurRE 9. Touching bands for % = % on the first Hill band of a

Schrodinger operator with Mathieu potential V' (¢) = 20 cos(27t). Differ-
ent bands are differently colored.

Remark 10. For % = % the spectral bands of Qa(P) are touching and given by

[HKL16]

Hg, _@ , Hg 0} , [0, @  and Ng \/% | (8.37)
Thus, by Lemma 8.15 the bands of H® on each Hill band are touching as well, see Fig.
9. Bands belonging to different Hill bands do, as a rule for ® € (0,27), not touch by
Lemma 8.1.
In the case of % = L however, only the bands at the Dirac points touch, see also Fig.

3
10. The touching at the Dirac points is always satisfied by Lemma 8.2.

8.4. Singular continuous Cantor spectrum for irrational flux quanta.

Proof. By Lemma 4.2, the spectrum of Q4 (®) for irrational % is a Cantor set of mea-
sure zero. Thus, the pullback of o(Qx) by Aline(s,) is still a Cantor set of zero measure
that coincides with o(H?)\o(HP). Therefore, the absolutely continuous spectrum of
H?® has to be empty. The Cantor spectrum part of (3) of Theorem 1, and (1) of
Theorem 2 then follows from (4) of Lemma 8.2. O
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D ————

Dirac point Dirac point

;—h‘T‘T?‘T‘ rf*r-TTﬁ‘TfTTWT A
05 0 05 4.4 05 0
ks b

F1GURE 10. Only the third and fourth band touch at the Dirac points
for % = % on the first Hill band of a Schrodinger operator with Mathieu
potential V'(t) = 20 cos(2nt). Different bands are differently colored.

8.5. Proofs of Theorem 1-4. This section serves as an index to the proofs of our
main theorems that are distributed in different sections throughout the paper.

Proof of Theorem 1.
(1). Follows from (1) of Lemma 8.7.

(2). Combine (3) of Lemma 8.2 with Lemma 8.4.

(3). This is proved in Sections 8.3 and Sections 8.4.

(4). Follows from (4) of Lemma 8.2.

(5). This is Lemma 8.3. O

Proof of Theorem 2.
This is proved in Sections 8.3 and Sections 8.4. O

Proof of Theorem 3.
This is proved in Lemmas 4.2, 4.3 and 4.4. U

Proof of Theorem /.
This is proved in Lemma 8.10 and Theorem 10. U
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Hofstadter butterfly-Graphene
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FIGURE 11. The Hofstadter butterfly for H? with V' = 0 on the first
five Hill bands By = [7%(k — 1)%,7%k?] for k € {1,..,5} and magnetic
flux quanta 5= = £ €10,1] with g < 50.

APPENDIX A. PROOF OF PROPOSITION 6.4

The proof of this result is very similar to that for the almost Mathieu operator and
the extended Harper’s model. We will present it briefly here for completeness. Readers
could refer to Theorem 3.2 (together with its proof in Appendix 2) of [AJM17] for a
more detailed discussion.

Let D be defined as in (2.49), in which v(#) = 2 cos 270 and c¢(f) = 1+e~ 2 hence

\ _ 270 _ —2mif 1 627ri(0—%)

D) = . . Al

Let us complexify § and define D2 for ¢ € R as follows
D) := DM + ie). (A.2)

Let
1
A — T o A _

L(DZ,®) = lim _ | log| H D20+ >|| de, (A.3)

Jj=n—1
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be the complexified Lyapunov exponent. By Hardy’s convexity theorem, see e.g. The-
orem 1.6 in [D70], L(D2, ®) is convex in e.

Let
1 LD, ®) — L(D)®)

27 h—04 h

(A.4)

be the right-derivative of the complexified Lyapunov exponent, which has been dubbed
acceleration in [A15].

By Theorem 1 of [JM13], since det(D*(0 + ig)) # 0 for € # 0, we have
w(A, @;e) € Z, fore #0. (A.5)

This is usually referred to as quantization of acceleration.

One can also easily compute the following asymptotic behaviour

N _627rs 0
DXO) = ome ) +O(), o0
_e~2me  _ o—i®,—2me (A’6)
D?(Q) = + 0(1)7 € — —00Q,
0 0
hence by (A.5),
L(D», ®) = > g9 >0
( R ) g, € €0 ) (A?)
L(DX,®) = —¢, &< —&.

Hence convexity of L(D2,®) and quantization of acceleration force either
o L(D}),®)=0 or
o (D}, ®) > 0 with w(0, ®;¢) = 0.
By Theorem 1.2 of [AJS14], the second case is equivalent to (5=, D}) inducing a dom-
inated splitting. This is equivalent to A ¢ g, by [M14].

Finally note that we always have

L\, ®) = L(Dy, ®) — / log |14 72" d§ = L(D}, ®). (A.8)
Ty
Hence L(A, ®) = 0 if and only if A € ¥g. O

APPENDIX B. PROOF OF LEMMA 6.7

Assume 0 = % + k0§. Let (Haxp/q,0)|[0,6—1) be the restriction of Hyrp/q e onto interval
[0,k — 1] with Dirichlet boundary condition. Let Py(0) = det (A — (Harp/q.0)l10,6-1])



52 SIMON BECKER, RUI HAN, AND SVETLANA JITOMIRSKAYA

be the determinant of this £ x k£ matrix. One can prove by induction (in k) that the
following holds

A . Pk(Q) —C(Q — g)Pk_l(é’ —|— %)
Di(6) = <c(e +(k=1)2)P1(9) —c(0 —2)e(f + (k — 1)2) Py 2(6 + g)) - (B

q
Thus
p p
tr(D; (0)) = Py(0) — |e(6 — E)VPH(@ + 5)- (B.2)

It then suffices to note that

tr(D;‘(G — (ko — 1)5)) = tr(Dé‘(@)),

c(0 — kog) =0, (B.3)

(HZ’jTP,e—(ko—ng))hO,q—l] = M.

ApPPENDIX C. 1/2-HOLDER CONTINUITY OF SPECTRA OF JACOBI MATRICES

Proof of Lemma 6.2. We will prove the following general result for quasi-periodic
Jacobi matrices. Let H, g € L(I*(Z)) be defined as

(Hopt)n = c(0 + na)upr + c(0 + (n — Da)u,—1 + v(0 + na)u,. (C.1)
Let 04 1= Uper,0(Hayp)-

Lemma C.1. Let ¢(-),v(-) € CY(Ty,C). There exist constants C(c,v),C(c,v) > 0
such that if X € o, and o € Ty is such that |a — /| < C(e,v), then there is a X € o4
such that

A= N| < Cle,v)|a— |2

Lemma 6.2 follows from Lemma C.1 by taking ® = 2ra and ' = 27a’/. Lemma C.1
is in turn the argument of [AMS90] adapted to the Jacobi setting.

Proof of Lemma C.1. Let L > 1 be given. There exists ¢7 € [*(Z) and 6 such that

|(Hao — Nzl < ~l162]]. (C2)

Let 7,1, be the test function centered at j,

g 0, In—j| > L.
Then for large L,
(L—1)(2L - 1)

Z(Uj,L(”))2 =1+ T =ar. (C.3)
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is independent of n. Clearly,
ary, 1
Iy (Hog = Noul? = asll(Hao = Mool < Fllorl® = 75> Imaonl®. (C4)
J J

Since ||u + v||* < 2[|v[]* + 2||ul|?, by (C.4), we get

> [(Hap = Mmjorl® <2 Z 11,0 (Hao — N @rll* + 22 17,2, Hoplorll?
- : :

<72 Z Inszécll® + 22 )2, Hagl o], (C.5)

where [1;,1, Hap) = nj1Hao — Ha’gnj7L is the commutator. Note that

(7505 Hap]@)n = c(0 + na)(n;L(n)=n;(n + 1)) dni1
+c(0 + (n = Da)(njL(n) —njc(n —1))dn_1,

which implies

8||C||oo 8||C||oo
> i, Haglorl® < lozll* < Z Inj.eocl®
J

Combining this with (C.5) and taking into account that ar ~ 2L, we get

2+25 ||z
ZH o = Naon|? < 2Bl Zum bl

for L > Ly. Hence for certain j, 7;,¢r # 0 and

(2+25)1c]%)?

|(Hap — AN)njcéc| < 7

1n;,.0c]l- (C.6)

Given o' near «, choose ¢’ such that
0+ ja=0+jd.
Then on supp(;,.6.),
|f(6 +na) = f(6" +na)| < LI f'l|ocler — o (C.7)
holds for f = ¢,v. Thus, by (C.6) and (C.7),
[(Hor g = A)nj01]] < Cr(e,v)llnjcocll,
where

(2 +251¢]2)?

T (6l 4 Bl 12) 2 Lo — o],

Ci(c,v) =

Finally, taking

L = Cy(c,v)|a — /|2 > Ly,
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we get

|(Hargr = MNmjoLl| < Cle,v)|a — |2 ||1n; 0oLl
]
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