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The Mekong River remained hydrologically unregulated until

recent decades and still harbors immense natural resources

that are the basis of rural livelihoods. Research on how dams

and climate change could alter the river has heightened in

recent years, and while this research has led to important

scientific concepts and increased discussion of sustainable

development, it has done little to prevent the rapid

environmental change in the Mekong floodplains of

Cambodia and Vietnam. Meanwhile, localized drivers of

floodplain change (including overfishing, deforestation, and

water infrastructure development) are impacting the

environment in faster and more direct ways, potentially

exacerbating the negative effects of regional factors such as

hydropower and climate change. Sustainable development

of the basin must include comprehensive science and

implementable policy programs that integrate across

regional and local scales and focus on clearly defined

societal and policy goals, collection of critical data, capacity

building of in-region scientific and policy institutions,

effective law enforcement, and adaptable implementation

strategies.

Addresses
1Department of Civil and Environmental Engineering, University of South

Florida, Tampa, FL, USA
2School of Aquatic and Fishery Sciences, University of Washington,

Seattle, WA, USA
3Fisheries Administration, Phnom Penh, Cambodia
4 Institute for Water and Environment Research, Thuy Loi University, Ho

Chi Minh City, Vietnam
5Pillar of Engineering Systems and Design, Singapore University of

Technology and Design, Singapore
6Stockholm Environment Institute, Bangkok, Thailand

Corresponding author: Arias, Mauricio E (mearias@usf.edu)

Current Opinion in Environmental Sustainability 2019, 37:1–7

This review comes from a themed issue on Sustainability challenges

Edited by Emilio F Moran and Simone Athayde

Received: 01 September 2018; Accepted: 24 January 2019

https://doi.org/10.1016/j.cosust.2019.01.002

1877-3435/ã 2018 Elsevier Ltd. All rights reserved.
www.sciencedirect.com 
Introduction
The Mekong floodplains are home to one of the largest

fisheries on the planet and provide the dominant source of

animal protein to millions of people in Cambodia and Viet-

nam. Covering approximately 70 000 km2, these floodplains

include the largest contiguous wetland in Southeast Asia (the

Tonle Sap) and paddies where more than 50% of Vietnam’s

rice is cultivated [1]. War and political turmoil in the 1970–

1980s prevented much development in the region, but more

recent decades have seen very fast economic growth fueled

by wider integration to the global economy. This has sparked

greater exploitation of basin-wide natural resources for local

consumption and export, manufacturing, and energy gener-

ation. In particular, hydropower generation has been growing

exponentially in the Mekong Basin [2], and it is expected to

continue indecadestocomeatamuchfaster rate than inmost

of the world [3,4]. Such trends have alarmed conservationists

and scientists, who perceive hydropower in the Mekong as an

existential threat to one of the last remaining gems for river

biodiversity [5] and the livelihoods of millions of people

among the rural poor who highly depend on the river and

natural resources [6].Yet,major research andmonitoring gaps

have prevented a good understanding of past and ongoing

impacts of dams on freshwater ecosystems, fisheries, and

livelihoods. Equally important, and the main argument of

this article, is that emphasis on dams alone has distracted the

discussion – and potential policy implications – from under-

appreciated local threats that have already paid a significant

toll on the Mekong floodplain environment resulting in

diminished ecosystem services including water regulation,

food production, and wildlife habitat.

Here, we illustrate recent environmental changes in the

Mekong floodplains, focusing on water resources, flood-

plain vegetation, and fish. We argue that efforts by the

international scientific community to advance knowledge

on sustainability in the Mekong has weighed the attention

on hydropower dams alone, while a number of local drivers

are rapidly transforming the floodplains and could fuel

further ecosystem deterioration. Finally, we highlight strat-

egies to improve sustainability of the Mekong floodplains.

Background on Mekong floodplains
The Mekong is a river basin covering approximately

748 000 km2 in China, Myanmar, Thailand, Lao PDR,

Cambodia, and Vietnam (Figure 1). The river runs for

approximately 4800 km and a total elevation drop of over
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Figure 1
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Mekong river basin map, highlighting hydropower dam locations and floodplains (left frame) and flood prevention projects in the Mekong Delta in

Vietnam (right frame).
5000 m. The floodplain proper only begins once the river

reaches Central Cambodia, nearly 600 km before the river

discharges into the Sea. The floodplain is generally

divided in three regions: the central floodplains, which

span along the Mekong in Cambodia from the town of

Kratie to the border with Vietnam, the Tonle Sap flood-

plain, which covers an area of approximately 15 000 km2

along the river and around the lake with the same name,

and which are directly connected to the Mekong at

Cambodia’s capital, Phnom Penh. Farthest downstream,

the heavily farmed and populated region is referred as the

Vietnam Delta. River discharge and floodplain inundation

are strongly seasonal as 80–90% of the rainfall falls in the

months of May to October [7].

Facts on impacts of hydropower dams on the
Mekong floodplains
A number of extensive reviews on impacts of hydropower

dams on the Mekong hydrology have been recently

published [8–11]. We refer the reader to these recent

publications for detail analyses of effects of Mekong dams

on river flows and sediments, as well as their interplay

with other regional drivers such as climate change and

land use conversion.
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Most of the documented dam-induced changes along the

Mekong and its floodplains relate to water levels and

discharge. Increases in mean dry season flows and water

level fluctuations have been evident in Central Cambodia

down to the Tonle Sap River since the early 1990s, when

the first large dam was built in the upper Mekong in

China [2,12,13]. These observed alterations in the hydro-

logical records are in agreement with patterns of change

demonstrated with water resources numerical models

[12,14–16], providing good evidence that dams in the

upper basin and tributaries have indeed been responsible

for hydrological changes in the lower Mekong.

Several modeling projections have argued that dams

could trap a significant amount of sediments and nutrients

feeding the floodplains [17–19]. Indeed, evidence from

monitoring stations supports that suspended sediment

load in the lower Mekong has declined since 2009 [11].

Several other studies have suggested an eventual impact

of dams on fish migration connectivity [20], aquatic

primary production [17], habitat suitability [21], and

nutrition value [22]. While there is evidence of impacts

of dams on fish populations in the lower Mekong tributar-

ies [23], there is no undisputable scientific evidence
www.sciencedirect.com
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Figure 2

Anthropogenic
drivers of regional

change

Local drivers of change

Overfishing

Dams Climate

Sand mining

Mekong
Floodplains

environmental
sustainablity

F
lo

od
pl

ai
n 

fo
re

st
cl

ea
ra

nc
e

F
loodplain w

ater
infrastructure

Current Opinion in Environmental Sustainability

Conceptual integration of major local and regional drivers of change in

the Mekong floodplains. Note that there are several other drivers that

are not included in this diagram or discussed in this opinion paper due

to space limitation.
directly supporting such ecological impacts – beyond

hydrological alterations – have begun in the floodplains.

Current drivers of drastic floodplain
environmental changes
Much attention from international scientific and environ-

mental communities have focused on hydropower and

climate change, drivers of change that are dictated by

processes and decisions at the global to multi-country

scales. Meanwhile, more local and immediate threats

driven by decisions and actions at the subnational to

household scale have been causing serious – and arguably

irreversible – damage to the floodplain environment since

the 2000s. Despite the difference in the scale where these

drivers originate, they eventually have an effect on the

floodplain environment, and the interactions between

them could actually exacerbate impacts more than if

regional or local drivers were to occur in isolation. A clear

example of this multiscale interconnection described

elsewhere in detail is sand mining [11,24], a practice

now banned in Cambodia and the Vietnam Mekong

Delta. The mining and transport of river sand allow rapid

development to reclaim land and elevate roads and levees

above flood level in the low land areas. Without effective

monitoring and enforcement, sand mining will continue

to have a great impact in the Mekong’s river bed geo-

morphology, sediment load, and wetland areas, which in

combination with sediment trapping in reservoirs and

other drivers could further exacerbate the issue of sedi-

ment limitation in the floodplains [24]. While we attempt

to represent conceptually the interactions between dams

and other drivers of floodplain environmental change in

the Mekong (Figure 2), this is a rather simplistic model

that does not illustrate the non-linearity of connections

among hierarchies and exclude equally important local

drivers such as wastewater and urbanization.

Water infrastructure development

Irrigation canals, drainage channels and flood preven-

tion dykes are now widespread throughout the flood-

plains [25,26]. There has been a significant increase in

agricultural productivity in areas where early flood-

protection low dykes have been converted to high

dykes, thus allowing three rice crops per year (Fig-

ure 3). However, this conversion has led to drastic and

fast alterations to water and sediment fluxes into the

agricultural dominated regions of the floodplains.

Between 2000 and 2013, for instance, the construction

of dykes in the Vietnam Mekong Delta, reduced the

flooding area in the Long Xuyen Quadrangle by 36%,

which has subsequently exacerbated flooding in unpro-

tected regions downstream [26]. Further development

of the dyke systems would reduce water transfer capac-

ity through the floodplains, resulting in an increase of

water levels locally [27]. In terms of sedimentation,

satellite data analysis showed that low dykes have little

impact on sedimentation in fields in early August,
www.sciencedirect.com 
while high dykes have prevented nutrients-rich sedi-

ments from going into agricultural fields [28]. Besides

the evident physical alterations, the widespread and

fast construction of water infrastructure happening in

Vietnam has brought several management challenges,

including lack of coordination, conflicting interests,

and unwanted impacts among planning departments

and provinces [29].

Overfishing

The core of the highly productive and diverse Mekong

fisheries is in the Tonle Sap (Figure 4), a complex system

of rivers, a lake, and a floodplain covering 11% of Cam-

bodia. For over a century, large-scale fishing occurred in

concessions (a.k.a., fishing lots) covering most of the

Tonle Sap floodplain. The lot system prevented access

to prime fishing grounds by the rural poor, but centralized

control of fishing among a relatively small number of

individuals. These private concessions were abolished in

2012, allowing nearly unfettered fishing and few viable

mechanisms to control fishing effort [30].

The Indiscriminate Fishery the Tonle Sap portrays [31,32]

employs a variety of fishing gears across seasons, habitats,

fish species, and sizes [32,33]. The result is that slower

growing, larger-bodied, and higher tropic riverine species

are declining in the catch, while faster growing, smaller-

bodied, and lower trophic fishes are increasing [34]. The

declining catch of medium-bodied and large-bodied spe-

cies as well as the reduction in mean fish weight [34] are

indeed consistent with fishers’ perception [35,36]. Theory
Current Opinion in Environmental Sustainability 2019, 37:1–7
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Figure 3
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River and floodplain cross-section highlighting the effect of flood prevention infrastructure in the floodplains.

Adapted from [1].
suggests dominance of smaller, more productive fishes is

likely to increase fish productivity overall, but at the cost

of reduced biodiversity and lower reliance to environ-

mental perturbation [32]. In practice, it is clear that

intensive indiscriminate fishing has led to dramatic

changes in the Tonle Sap food web; however, the lack

of systematic monitoring data means the ecological

impacts of biodiversity reduction through fishing and

the sustainable level of harvest for the fishery over the

long-term remain unknown.
Figure 4

Left: Demonstration of intensive fishing activity in the Tonle Sap River (Phot

the floodplain, but the extent of recent fires is unprecedented, while chance

patterns and agricultural activity (Photo credit: M.E. Arias).

Current Opinion in Environmental Sustainability 2019, 37:1–7 
Deforestation

Burning of agricultural lands has been a historical practice

in the Mekong, but recent large-scale clearance of low-

land forests has transformed the floodplain landscape at

an unprecedented rate and magnitude. There is evidence

of sporadic fires throughout the Tonle Sap floodplain

(Figure 4), in particular near agricultural areas and per-

manent water bodies [37]. However, the non-agricultural

region of the floodplain remains inundated for 5–9 months

annually [38], providing moisture for the remaining of the
Current Opinion in Environmental Sustainability

o credit: Zeb Hogan). Right: Local fires are a common occurrence in

s of natural vegetation recovery is highly influenced by inundation
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year when conditions are much drier. The El Niño phase

in 2016 brought one of the driest years in the hydrological

record in the floodplains, which facilitated widespread

fires in some of the wettest, most biologically diverse, and

protected areas. Unpublished estimates indicate that

approximately 8000 ha burned in the Prek Toal Protected

Area alone [39]. On the basis of global datasets of defor-

estation [40], recent deforestation rates in areas surround-

ing the Tonle Sap watershed were estimated at 0.9–1.7%

annually, one of the highest on the planet. The regionally

important Tonle Sap fishery is based to a large degree on

floodplain forests as habitats and food resources derived

from organic matter from the surrounding vegetation [41].

The loss of flooded forests and wetlands also jeopardizes

numerous bird species [21,42] that use these critical

habitats, as well as ecosystem services to local people

including water purification, raw materials, and food.

The way forward
Sustainable development of the lower Mekong Basin

through integrated water resources management has been

a shared goal of Cambodia, Lao PDR, Thailand, and

Vietnam since the signing of the Mekong Agreement

in 1995, at which time the Mekong River Commission

(MRC) was also established as the mechanism for imple-

mentation [43]. The MRC and its member countries have

had notable successes at advancing sustainable water

resources development on both the scientific and policy

fronts – for example, long-term hydrologic monitoring

and flood forecasting – however, a number of critical steps

in science, policy, and implementation still need to occur

to achieve a sustainable Mekong.

Expanded long-term and short-term data sets quantifying

biological resource dynamics and their environmental dri-

vers are desperately needed to assess changes and develop

concrete management actions to protect floodplain ecosys-

tems. Currently, the longest continuous record of a biologic

resource comes from the seasonal Tonle Sap River station-

ary trawl (dai) fishery monitoring program initiated in

1994 [44,45]. Advances in sensor technology, remote sens-

ing, data capture, and management now offer the potential

for distributed, continuous monitoring of populations and

environmental conditions that can be used for real-time

forecasting and management of resources. For example,

remotely sensed bioacoustics monitoring of fishes migrat-

ing into and out of the Tonle Sap River could provide

continuous estimates of fishing mortality, which can then

be used to manage fisheries dynamically to achieve survival

targets and, over multiple generations, provide the popula-

tion-level and environmental information needed to

achieve sustainable yields.

Concurrent with new technologies, local scientific capac-

ities must also be developed to manage the data infra-

structure and utilize the information being acquired.

Specifically, there is acute need for advanced training
www.sciencedirect.com 
in data science, computing, environmental science (e.g.

fisheries, hydrology, forestry), science communication,

and natural resource management and economics. Highly

motivated students are increasingly being trained in

competitive educational programs globally, but ulti-

mately the educational capacity within these fields must

be established locally for long-term success.

Lastly, even the best science and technology will do little to

improve sustainability unless subnational, national and

regional policy-makers set clear and measurable societal

goals for natural resources and economic development

and promote legal and institutional frameworks for their

management. Policies already exist to address several, if not

all, of the individual threats discussed in this article; ensuring

that these policies are not conflicting with each other and

realizing full implementation and effective enforcement is a

necessary first step. For example, the policy change from

private commercial concessions to community fisheries co-

management was a promising pathway for more sustainable

floodplain fisheries in Cambodia [30], but such a policy

suffers from governance challenges, including unclear

stakeholders’ roles and responsibilities, poor coordination

among responsible agencies, limited decentralization of

roles and responsibilities, corruption, and strong livelihoods

dependency of local communities on fisheries [46]. As a

result, conflicts over access rights to natural resources, clear-

ance of flooded forest amid dry season rice farming expan-

sion, fish exploitation and water use are intensifying. To

successfully implement such policy, a clear and coherent

legal framework is needed to enhance effective law enforce-

ment, improve planning, coordination and cooperation

among stakeholders at all levels across multiple agencies

and sectors, and diversify local communities’ alternative

livelihoods. As new information and tools become available,

so do opportunities for partnership between multiple sectors

to promote shared benefits and minimize conflicts. A sus-

tainable future for the Mekong is only achievable with well-

defined policy objectives, critical new data, highly trained

science professionals, and robust policy implementation

institutions.
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