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The Mekong River remained hydrologically unregulated until
recent decades and still harbors immense natural resources
that are the basis of rural livelihoods. Research on how dams
and climate change could alter the river has heightened in
recent years, and while this research has led to important
scientific concepts and increased discussion of sustainable
development, it has done little to prevent the rapid
environmental change in the Mekong floodplains of
Cambodia and Vietnam. Meanwhile, localized drivers of
floodplain change (including overfishing, deforestation, and
water infrastructure development) are impacting the
environment in faster and more direct ways, potentially
exacerbating the negative effects of regional factors such as
hydropower and climate change. Sustainable development
of the basin must include comprehensive science and
implementable policy programs that integrate across
regional and local scales and focus on clearly defined
societal and policy goals, collection of critical data, capacity
building of in-region scientific and policy institutions,
effective law enforcement, and adaptable implementation
strategies.
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Introduction

The Mekong floodplains are home to one of the largest
fisheries on the planet and provide the dominant source of
animal protein to millions of people in Cambodia and Viet-
nam. Covering approximately 70 000 km?, these floodplains
include the largest contiguous wetland in Southeast Asia (the
Tonle Sap) and paddies where more than 50% of Vietnam’s
rice is cultivated [1]. War and political turmoil in the 1970-
1980s prevented much development in the region, but more
recent decades have seen very fast economic growth fueled
by wider integration to the global economy. This has sparked
greater exploitation of basin-wide natural resources for local
consumption and export, manufacturing, and energy gener-
ation. In particular, hydropower generation has been growing
exponentially in the Mekong Basin [2], and it is expected to
continue in decades to come ata much faster rate than in most
of the world [3,4]. Such trends have alarmed conservationists
and scientists, who perceive hydropower in the Mekong asan
existential threat to one of the last remaining gems for river
biodiversity [5] and the livelihoods of millions of people
among the rural poor who highly depend on the river and
natural resources [60]. Yet, major research and monitoring gaps
have prevented a good understanding of past and ongoing
impacts of dams on freshwater ecosystems, fisheries, and
livelihoods. Equally important, and the main argument of
this article, is that emphasis on dams alone has distracted the
discussion —and potential policy implications — from under-
appreciated local threats that have already paid a significant
toll on the Mekong floodplain environment resulting in
diminished ecosystem services including water regulation,
food production, and wildlife habitat.

Here, we illustrate recent environmental changes in the
Mekong floodplains, focusing on water resources, flood-
plain vegetation, and fish. We argue that efforts by the
international scientific community to advance knowledge
on sustainability in the Mekong has weighed the attention
on hydropower dams alone, while a number of local drivers
are rapidly transforming the floodplains and could fuel
further ecosystem deterioration. Finally, we highlight strat-
egies to improve sustainability of the Mekong floodplains.

Background on Mekong floodplains

The Mekong is a river basin covering approximately
748000 km? in China, Myanmar, Thailand, Lao PDR,
Cambodia, and Vietnam (Figure 1). The river runs for
approximately 4800 km and a total elevation drop of over
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Figure 1
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Mekong river basin map, highlighting hydropower dam locations and floodplains (left frame) and flood prevention projects in the Mekong Delta in

Vietnam (right frame).

5000 m. The floodplain proper only begins once the river
reaches Central Cambodia, nearly 600 km before the river
discharges into the Sea. The floodplain is generally
divided in three regions: the central floodplains, which
span along the Mekong in Cambodia from the town of
Kratie to the border with Vietnam, the Tonle Sap flood-
plain, which covers an area of approximately 15000 km?
along the river and around the lake with the same name,
and which are directly connected to the Mekong at
Cambodia’s capital, Phnom Penh. Farthest downstream,
the heavily farmed and populated region is referred as the
Vietnam Delta. River discharge and floodplain inundation
are strongly seasonal as 80-90% of the rainfall falls in the
months of May to October [7].

Facts on impacts of hydropower dams on the
Mekong floodplains

A number of extensive reviews on impacts of hydropower
dams on the Mekong hydrology have been recently
published [8-11]. We refer the reader to these recent
publications for detail analyses of effects of Mekong dams
on river flows and sediments, as well as their interplay
with other regional drivers such as climate change and
land use conversion.

Most of the documented dam-induced changes along the
Mekong and its floodplains relate to water levels and
discharge. Increases in mean dry season flows and water
level fluctuations have been evident in Central Cambodia
down to the Tonle Sap River since the early 1990s, when
the first large dam was built in the upper Mekong in
China [2,12,13]. These observed alterations in the hydro-
logical records are in agreement with patterns of change
demonstrated with water resources numerical models
[12,14-16], providing good evidence that dams in the
upper basin and tributaries have indeed been responsible
for hydrological changes in the lower Mekong.

Several modeling projections have argued that dams
could trap a significant amount of sediments and nutrients
feeding the floodplains [17-19]. Indeed, evidence from
monitoring stations supports that suspended sediment
load in the lower Mekong has declined since 2009 [11].
Several other studies have suggested an eventual impact
of dams on fish migration connectivity [20], aquatic
primary production [17], habitat suitability [21], and
nutrition value [22]. While there is evidence of impacts
of dams on fish populations in the lower Mekong tributar-
ies [23], there is no undisputable scientific evidence
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directly supporting such ecological impacts — beyond
hydrological alterations — have begun in the floodplains.

Current drivers of drastic floodplain
environmental changes

Much attention from international scientific and environ-
mental communities have focused on hydropower and
climate change, drivers of change that are dictated by
processes and decisions at the global to multi-country
scales. Meanwhile, more local and immediate threats
driven by decisions and actions at the subnational to
household scale have been causing serious — and arguably
irreversible — damage to the floodplain environment since
the 2000s. Despite the difference in the scale where these
drivers originate, they eventually have an effect on the
floodplain environment, and the interactions between
them could actually exacerbate impacts more than if
regional or local drivers were to occur in isolation. A clear
example of this multiscale interconnection described
elsewhere in detail is sand mining [11,24], a practice
now banned in Cambodia and the Vietnam Mekong
Delta. The mining and transport of river sand allow rapid
development to reclaim land and elevate roads and levees
above flood level in the low land areas. Without effective
monitoring and enforcement, sand mining will continue
to have a great impact in the Mekong’s river bed geo-
morphology, sediment load, and wetland areas, which in
combination with sediment trapping in reservoirs and
other drivers could further exacerbate the issue of sedi-
ment limitation in the floodplains [24]. While we attempt
to represent conceptually the interactions between dams
and other drivers of floodplain environmental change in
the Mekong (Figure 2), this is a rather simplistic model
that does not illustrate the non-linearity of connections
among hierarchies and exclude equally important local
drivers such as wastewater and urbanization.

Water infrastructure development

Irrigation canals, drainage channels and flood preven-
tion dykes are now widespread throughout the flood-
plains [25,26]. There has been a significant increase in
agricultural productivity in areas where early flood-
protection low dykes have been converted to high
dykes, thus allowing three rice crops per year (Fig-
ure 3). However, this conversion has led to drastic and
fast alterations to water and sediment fluxes into the
agricultural dominated regions of the floodplains.
Between 2000 and 2013, for instance, the construction
of dykes in the Vietnam Mekong Delta, reduced the
flooding area in the Loong Xuyen Quadrangle by 36%,
which has subsequently exacerbated flooding in unpro-
tected regions downstream [26]. Further development
of the dyke systems would reduce water transfer capac-
ity through the floodplains, resulting in an increase of
water levels locally [27]. In terms of sedimentation,
satellite data analysis showed that low dykes have little
impact on sedimentation in fields in early August,

Figure 2
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Conceptual integration of major local and regional drivers of change in
the Mekong floodplains. Note that there are several other drivers that
are not included in this diagram or discussed in this opinion paper due
to space limitation.

while high dykes have prevented nutrients-rich sedi-
ments from going into agricultural fields [28]. Besides
the evident physical alterations, the widespread and
fast construction of water infrastructure happening in
Vietnam has brought several management challenges,
including lack of coordination, conflicting interests,
and unwanted impacts among planning departments
and provinces [29].

Overfishing

The core of the highly productive and diverse Mekong
fisheries is in the Tonle Sap (Figure 4), a complex system
of rivers, a lake, and a floodplain covering 11% of Cam-
bodia. For over a century, large-scale fishing occurred in
concessions (a.k.a., fishing lots) covering most of the
Tonle Sap floodplain. The lot system prevented access
to prime fishing grounds by the rural poor, but centralized
control of fishing among a relatively small number of
individuals. These private concessions were abolished in
2012, allowing nearly unfettered fishing and few viable
mechanisms to control fishing effort [30].

"The Indiscriminate Fishery the Tonle Sap portrays [31,32]
employs a variety of fishing gears across seasons, habitats,
fish species, and sizes [32,33]. The result is that slower
growing, larger-bodied, and higher tropic riverine species
are declining in the catch, while faster growing, smaller-
bodied, and lower trophic fishes are increasing [34]. The
declining catch of medium-bodied and large-bodied spe-
cies as well as the reduction in mean fish weight [34] are
indeed consistent with fishers’ perception [35,36]. Theory

www.sciencedirect.com

Current Opinion in Environmental Sustainability 2019, 37:1-7



4 Sustainability challenges

Figure 3
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River and floodplain cross-section highlighting the effect of flood prevention infrastructure in the floodplains.

Adapted from [1].

suggests dominance of smaller, more productive fishes is
likely to increase fish productivity overall, but at the cost
of reduced biodiversity and lower reliance to environ-
mental perturbation [32]. In practice, it is clear that
intensive indiscriminate fishing has led to dramatic
changes in the Tonle Sap food web; however, the lack
of systematic monitoring data means the ecological
impacts of biodiversity reduction through fishing and
the sustainable level of harvest for the fishery over the
long-term remain unknown.

Figure 4

Deforestation

Burning of agricultural lands has been a historical practice
in the Mekong, but recent large-scale clearance of low-
land forests has transformed the floodplain landscape at
an unprecedented rate and magnitude. There is evidence
of sporadic fires throughout the Tonle Sap floodplain
(Figure 4), in particular near agricultural areas and per-
manent water bodies [37]. However, the non-agricultural
region of the floodplain remains inundated for 5-9 months
annually [38], providing moisture for the remaining of the

Current Opinion in Environmental Sustainability

Left: Demonstration of intensive fishing activity in the Tonle Sap River (Photo credit: Zeb Hogan). Right: Local fires are a common occurrence in
the floodplain, but the extent of recent fires is unprecedented, while chances of natural vegetation recovery is highly influenced by inundation

patterns and agricultural activity (Photo credit: M.E. Arias).
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year when conditions are much drier. The El Nifio phase
in 2016 brought one of the driest years in the hydrological
record in the floodplains, which facilitated widespread
fires in some of the wettest, most biologically diverse, and
protected areas. Unpublished estimates indicate that
approximately 8000 ha burned in the Prek Toal Protected
Area alone [39]. On the basis of global datasets of defor-
estation [40], recent deforestation rates in areas surround-
ing the Tonle Sap watershed were estimated at 0.9-1.7%
annually, one of the highest on the planet. The regionally
important Tonle Sap fishery is based to a large degree on
floodplain forests as habitats and food resources derived
from organic matter from the surrounding vegetation [41].
The loss of flooded forests and wetlands also jeopardizes
numerous bird species [21,42] that use these critical
habitats, as well as ecosystem services to local people
including water purification, raw materials, and food.

The way forward

Sustainable development of the lower Mekong Basin
through integrated water resources management has been
a shared goal of Cambodia, L.ao PDR, Thailand, and
Vietnam since the signing of the Mekong Agreement
in 1995, at which time the Mekong River Commission
(MRC) was also established as the mechanism for imple-
mentation [43]. The MRC and its member countries have
had notable successes at advancing sustainable water
resources development on both the scientific and policy
fronts — for example, long-term hydrologic monitoring
and flood forecasting — however, a number of critical steps
in science, policy, and implementation still need to occur
to achieve a sustainable Mekong.

Expanded long-term and short-term data sets quantifying
biological resource dynamics and their environmental dri-
vers are desperately needed to assess changes and develop
concrete management actions to protect floodplain ecosys-
tems. Currently, the longest continuous record of a biologic
resource comes from the seasonal Tonle Sap River station-
ary trawl (dai) fishery monitoring program initiated in
1994 [44,45]. Advances in sensor technology, remote sens-
ing, data capture, and management now offer the potential
for distributed, continuous monitoring of populations and
environmental conditions that can be used for real-time
forecasting and management of resources. For example,
remotely sensed bioacoustics monitoring of fishes migrat-
ing into and out of the Tonle Sap River could provide
continuous estimates of fishing mortality, which can then
be used to manage fisheries dynamically to achieve survival
targets and, over multiple generations, provide the popula-
tion-level and environmental information needed to
achieve sustainable yields.

Concurrent with new technologies, local scientific capac-
ities must also be developed to manage the data infra-
structure and utilize the information being acquired.
Specifically, there is acute need for advanced training

in data science, computing, environmental science (e.g.
fisheries, hydrology, forestry), science communication,
and natural resource management and economics. Highly
motivated students are increasingly being trained in
competitive educational programs globally, but ulti-
mately the educational capacity within these fields must
be established locally for long-term success.

Lastly, even the best science and technology will do little to
improve sustainability unless subnational, national and
regional policy-makers set clear and measurable societal
goals for natural resources and economic development
and promote legal and institutional frameworks for their
management. Policies already exist to address several, if not
all, of the individual threats discussed in this article; ensuring
that these policies are not conflicting with each other and
realizing full implementation and effective enforcement is a
necessary first step. For example, the policy change from
private commercial concessions to community fisheries co-
management was a promising pathway for more sustainable
floodplain fisheries in Cambodia [30], but such a policy
suffers from governance challenges, including unclear
stakeholders’ roles and responsibilities, poor coordination
among responsible agencies, limited decentralization of
roles and responsibilities, corruption, and strong livelihoods
dependency of local communities on fisheries [46]. As a
result, conflicts over access rights to natural resources, clear-
ance of flooded forest amid dry season rice farming expan-
sion, fish exploitation and water use are intensifying. To
successfully implement such policy, a clear and coherent
legal framework is needed to enhance effective law enforce-
ment, improve planning, coordination and cooperation
among stakeholders at all levels across multiple agencies
and sectors, and diversify local communities’ alternative
livelihoods. As new information and tools become available,
so do opportunities for partnership between multiple sectors
to promote shared benefits and minimize conflicts. A sus-
tainable future for the Mekong is only achievable with well-
defined policy objectives, critical new data, highly trained
science professionals, and robust policy implementation
institutions.
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