

- 1 **Funding and services needed to achieve universal health coverage: Applications of global,
2 regional, and national estimates of utilisation of outpatient visits and inpatient admissions
3 from 1990 to 2016, and unit costs from 1995 to 2016**
- 4 Mark Moses, MHS, Institute for Health Metrics and Evaluation, University of Washington, 2301
5 Fifth Ave, Suite 600, Seattle WA 98121
- 6 Paola Pedroza, MPH, Institute for Health Metrics and Evaluation, University of Washington,
7 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 8 Ranju Baral, PhD, PATH, 2201 Westlake Ave, Seattle, WA 98121
- 9 Sabina Bloom, BA, Institute for Health Metrics and Evaluation, University of Washington, 2301
10 Fifth Ave, Suite 600, Seattle WA 98121
- 11 Jonathan Brown, MAIS, Institute for Health Metrics and Evaluation, University of Washington,
12 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 13 Abby Chapin, BA, Institute for Health Metrics and Evaluation, University of Washington, 2301
14 Fifth Ave, Suite 600, Seattle WA 98121
- 15 Kelly Compton, BS, Institute for Health Metrics and Evaluation, University of Washington, 2301
16 Fifth Ave, Suite 600, Seattle WA 98121
- 17 Erika Eldrenkamp, BA, Institute for Health Metrics and Evaluation, University of Washington,
18 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 19 Nancy Fullman, MPH, Institute for Health Metrics and Evaluation, University of Washington,
20 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 21 John Everett Mumford, BA, Institute for Health Metrics and Evaluation, University of
22 Washington, 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 23 Vishnu Nandakumar, BS, Institute for Health Metrics and Evaluation, University of Washington,
24 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 25 Katherine Rosettie, MPH, Institute for Health Metrics and Evaluation, University of Washington,
26 2301 Fifth Ave, Suite 600, Seattle WA 98121
- 27 Nafis Sadat, MA, Institute for Health Metrics and Evaluation, University of Washington, 2301
28 Fifth Ave, Suite 600, Seattle WA 98121
- 29 Tom Shonka, BA, Institute for Health Metrics and Evaluation, University of Washington, 2301
30 Fifth Ave, Suite 600, Seattle WA 98121
- 31 Abraham Flaxman, PhD, Institute for Health Metrics and Evaluation, University of Washington,
32 2301 Fifth Ave, Suite 600, Seattle WA 98121

33 Theo Vos, PhD, Institute for Health Metrics and Evaluation, University of Washington, 2301
34 Fifth Ave, Suite 600, Seattle WA 98121

35 Chris JL Murray, DPhil, Institute for Health Metrics and Evaluation, University of Washington,
36 2301 Fifth Ave, Suite 600, Seattle WA 98121

37 Marcia R Weaver, PhD, Institute for Health Metrics and Evaluation, University of Washington,
38 2301 Fifth Ave, Suite 600, Seattle WA 98121

39 mweaver@uw.edu

40 office phone: 206-897-2861

41 mobile phone: 206-708-0773

42

43 **Word count = 4916**

44

45

46

47

48

49 **Summary**

50 Background: To inform plans to achieve Universal Health Coverage (UHC), we estimated
51 utilisation and unit cost of outpatient visits and inpatient admissions, conducted a
52 decomposition analysis of utilisation, and estimated additional services and funds needed to
53 meet a UHC standard for utilisation.

54
55 Methods: We collated 1175 country-years of outpatient, and 2068 of inpatient data on
56 utilisation. We performed metaregression analyses of annual visits and admissions per capita
57 by sex, age, location, and year. We decomposed changes in total number of services from 1990
58 to 2016. We used data from 795 National Health Accounts to estimate shares of outpatient and
59 inpatient services in total health expenditure by location and year and estimated unit costs as
60 expenditure divided by utilisation. We identified standards of utilisation per disability-adjusted-
61 life-year and estimated additional services and funds needed.

62 Findings: In 2016, the global age-standardised outpatient utilisation rate was 5·42 (95%
63 uncertainty interval [UI] 4·88—5·99) visits per capita, and inpatient utilisation rate was 0·10
64 (95%UI 0·09—0·11) admissions. Globally, 39·29 (95%UI 35·37—43·58) billion visits, and 0·71
65 (95%UI 0·65—0·77) billion admissions were provided in 2016; 58·65% and 67·96% increases,
66 respectively, since 1990. Population growth accounted for 42·95% increase in visits over 27
67 years, population ageing for 8·09%, and higher utilisation rates for 7·63%; results for admissions
68 were 44·33%, 9·99%, and 13·5%, respectively. 2016 Unit cost estimates ranged from 2017
69 international \$2 to I\$478 for visits or 2017 United States \$1 to US\$537, and I\$87 to I\$22 543 for
70 admissions or US\$2 to US\$22 543. Annual cost of 8·2 billion additional visits (95%UI 6·24-9·95)
71 and 0·28 billion (95%UI 0·25-0·30) admissions in low and lower-middle income countries in
72 2016 was I\$503 billion (95%UI I\$404—I\$606) or US\$158 billion (95%UI US\$127—US\$190).

73 Interpretation: UHC plans can be based on utilisation and unit costs of current health systems.

74

75 **Funding**

76 Bill & Melinda Gates Foundation

77

78 Word count = 299

79

80

81 **Research in context**

82 *Evidence before this study*

83 Prospects of expanding access to quality essential health services are improving, as the World
84 Health Organization seeks to expand health coverage to one billion people by 2023,
85 and countries prepare to meet this target of the Sustainable Development Goals by 2030.
86 Researchers have made progress towards measuring Universal Health Coverage (UHC), but far
87 less is known about the utilisation and unit cost of services of health systems that will expand
88 coverage. Utilisation of outpatient visits and inpatient admissions has not been estimated
89 globally, and global estimates of unit costs are ten years old.

90 Generating a time-series of utilisation and updating unit cost estimates were needed for two
91 reasons. Utilisation estimates could describe how the volume of visits and admissions changed
92 in response to changes in population size, age structure, and health policies that affected
93 utilisation rates. These dynamics of health systems have never been reported globally. We also
94 quantified the volume of services needed to expand access for a given population, and the
95 costs to supply those services. Other researchers have used different methods to estimate the
96 cost of UHC for selected countries, but not globally. No one has quantified the additional
97 services needed.

98 *Added value of this study*

99 For the first time, health researchers and advocates can describe health systems by utilisation,
100 in addition to inputs such as number of health professionals, and outcomes such as the global
101 burden of disease (GBD). Building on the strengths of GBD methods that account for age, sex,
102 spatial, and temporal patterns in health outcomes, and adjusting for differences across
103 heterogeneous data sources, we produced estimates of utilisation per person for visits and
104 admissions by age, and sex for 195 countries from 1990 to 2016. We also decomposed changes
105 in the volume of services over time into changes in population size, age and sex structure, and
106 utilisation rates for every location.

107 We pioneered in estimating the share of Total Health Expenditure on each service using
108 mutually exclusive and collectively exhaustive National Health Account data, and the cost per
109 outpatient visit and per inpatient admission for 188 countries from 1995 to 2016. Our macro-
110 costing approach reflected current expenditures and efficiency. We also created UHC standards
111 of utilisation per disability-adjusted-life-year (DALY) based on existing health systems rather
112 than ideals to estimate the additional services and funding needed annually to expand health
113 coverage in 2016 for 188 countries.

114 *Implications of all the available evidence*

115 The decomposition analysis showed both encouraging and cautionary evidence about the
116 dynamics of health systems. In countries such as China, Indonesia, Thailand, and Turkey, the
117 analysis showed the effects of policies to expand coverage on utilisation rates. In several

118 countries in the sub-Saharan Africa super-regions, most of the change in volume of services has
119 been from population growth rather than changes in utilisation rates. The volume of services
120 increased just to keep pace with population growth among countries with low scores on the
121 GBD's UHC Index of personal health services.

122 The cost estimates for a UHC standard for utilisation of personal health services complemented
123 earlier estimates by producing estimates in the context of each country's current health system.
124 Three research groups estimated the cost of UHC with different methods and groups of
125 countries. Our global estimates made it possible to show that the estimates were similar for the
126 same groups of countries. We provided the first evidence on the additional services needed to
127 meet a UHC standard for utilisation represented by the Netherlands. Although both primary
128 and specialty services were essential, the gap in services was larger for admissions than for
129 visits. We also identified Portugal as an intermediate UHC standard for utilisation with a smaller
130 increase in admissions.

131

132

133 **Background**

134 Universal health coverage (UHC) is a global priority. It is one of three strategic priorities of the
135 World Health Organization's General Programme of Work for 2019-2023.¹ It is also target 3.8 of
136 the Sustainable Development Goals aimed at achieving "financial risk protection, access to
137 quality essential health-care services, and access to safe, effective, quality and affordable
138 essential medicines and vaccines for all."² Meeting the target will require improvements in
139 population-level interventions, and personal health services to promote health and provide
140 preventive and curative care.³ Indicator 3.8.1 on coverage of essential health services, and 3.8.2
141 on financial risk protection will monitor progress towards the target. Researchers have
142 proposed indices of essential health service coverage.^{4,5} The Global Burden of Disease (GBD)
143 2016 Sustainable Development Goal collaborators calculated a UHC index of personal health
144 services with 41 items, including coverage of nine tracer interventions and mortality from 32
145 causes that are amenable to care.⁴ The items represented essential services such as
146 reproductive, maternal, newborn, and child health care, and access to care for infectious
147 diseases, non-communicable diseases, and injuries. More research is needed however, on
148 utilisation and unit costs of personal health services in the health systems that will expand
149 coverage over the next 12 years.

150

151 Although previous researchers have reported on utilisation for multiple countries, none
152 reported on all countries over time. The Organisation of Economic Cooperation and
153 Development (OECD) reports the annual number of outpatient visits per person and inpatient
154 discharges for 35 member countries (with the exception of inpatient admissions for Canada and
155 the United States), and five non-member countries for selected years.⁶ The probabilities of
156 having general practitioner and specialist doctor visits in the past year were estimated for 18
157 OECD countries using the European Health Interview Survey or the most recent national health
158 survey.⁷ The number of outpatient visits in the past four weeks and inpatient admissions in the
159 past year were estimated for 39 countries outside of OECD using World Health Survey data.⁸
160 Systematic estimates have not been reported for more than half of countries globally, most of
161 which have low scores on the UHC indices.

162

163 The World Health Organization's Choosing Interventions that are Cost-Effective (WHO-CHOICE)
164 researchers estimated unit costs of outpatient visits and inpatient bed-days for 191 countries in
165 2007 and 2008 based on facility-level data from 30 countries.⁹ Although the WHO-CHOICE
166 estimates were standardised to reflect health systems performing at high levels of efficiency,
167 they have been used extensively in cost-effectiveness analyses when more exact micro-costing
168 estimates were neither practical nor appropriate.^{10,11} The estimates are due for an update,
169 based on nationally representative samples, and bounded by a national health expenditure
170 envelope.

171

172 The aim of the study was to support progress towards UHC. The objectives were to produce
173 global estimates of outpatient visits and inpatient admissions by age and sex for 27 years and
174 unit costs for these services for 22 years, and to demonstrate two applications of the estimates
175 to inform expansion of coverage of essential personal health services. We decomposed changes
176 in volume of services by location from 1990 to 2016 into changes in utilisation rates, population
177 size, and age and sex structure of the population to show the role of each factor in every
178 country over time. We estimated the services and funding needed to expand utilisation for the
179 2016 population size and structure to meet a UHC standard for utilisation per disability-
180 adjusted-life-year (DALY) using counterfactual DALY estimates from GBD 2016.

181

182 **Methods**

183 *Definition of utilisation*

184 We defined outpatient utilisation rate as the annual number of visits per capita to a health
185 facility that did not result in admission, and inpatient utilisation rate as the annual number of
186 admissions per capita for one night or more into a health facility. We included preventive,
187 rehabilitative, and curative care, and adhered as closely as possible to the International
188 Classification for Health Accounts' categories for Health-Care Functions (denoted as HC) so that
189 the utilisation rate would be consistent with expenditure data based on the System of Health
190 Accounts 2011.¹² For outpatient visits, our definition mapped to four categories: outpatient
191 curative and rehabilitative care (HC 1.3 and HC 2.3, respectively), facility-based preventive
192 maternal and child care (HC 6.4), and vaccinations (HC 6.2). For inpatient admissions, our
193 definition mapped to two categories: inpatient curative and rehabilitative care (HC 1.1 and HC
194 2.1, respectively). Our estimates excluded day-patient admissions (HC 1.2 and HC 2.2), and
195 long-term care (HC 3), because data on their utilisation and expenditures were not available
196 globally.

197

198 *Data sources for utilisation estimates*

199 We compiled data sources from a systematic review of surveys and administrative data within
200 the Global Health Data Exchange.¹³ All data sources were nationally or subnationally
201 representative. In compliance with the Guidelines for Accurate and Transparent Health
202 Estimates Reporting (GATHER),¹⁴ we documented the methods of the systematic review, data
203 sources for each country, data processing, and estimation (appendix, p 6).

204

205 We compiled outpatient utilisation data from 130 countries, spanning 1175 country-years, and
206 inpatient data from 128 unique countries, spanning 2068 country-years (appendix, p11).

207 Administrative sources contributed 59·1% of outpatient country-years and 80·3% of inpatient
208 country-years. More data were available from administrative records in High Income and in
209 Central Europe, Eastern Europe, and Central Asia due to their well-established reporting
210 systems. More than half of the data sources were surveys for the other super-regions, except
211 for inpatient data for North Africa and the Middle East.

212

213 *Methods for utilisation estimates*

214 The unit of analysis was average utilisation by sex and age categories, where the 23 age
215 categories were: early neonatal (0-6 days), neonatal (7-27 days), infants (28-364 days), 1-4
216 years, five-year intervals from 5-9 to 90-94, and 95+ years. We estimated the age-sex specific
217 rates of utilisation for visits and admissions with DisMod-MR, version 2.1. DisMod-MR is a
218 Bayesian hierachal metaregression method and an established method to estimate age-sex
219 specific incidence and prevalence rates of diseases by location.^{15,16}

220

221 Measures of utilisation and recall periods were not consistent across surveys (appendix, p19),
222 and we used two methods to adjust for inconsistencies. When inconsistencies across data
223 sources did not differ by age category, we included dichotomous covariates in the Dismod-MR
224 models. The reference category was annually reported, administrative records from either
225 national sources or facility-level health information system data. For the outpatient utilisation
226 model, we created four covariates for recall periods, and two for inconsistent phrasing of the
227 utilisation questions. For the inpatient utilisation model, we created two covariates for survey
228 series such as the World Health Survey. When inconsistencies differed by age category such as
229 one-year recall of inpatient admissions, we used age-spline regressions to adjust for the
230 differences before estimating the DisMod-MR models (appendix, pages 23-27).

231

232 Additional covariates were the Socio-demographic index in the outpatient model, and hospital
233 beds per 1000 population in the inpatient model. The rationale for including each covariate,
234 their definition, and estimated coefficients were reported in the appendix, pages 28-29. To
235 account for geographic variation, we used random effects to nest GBD super-regions, regions
236 and countries (appendix, pages 13-18).

237

238 *Decomposition of changes in utilisation*

239 The total volume of outpatient visits and inpatient admissions was calculated by multiplying
240 age-sex specific utilisation rates for each location by the population for each category sourced
241 from GBD 2016 national estimates.¹⁷ Age-sex specific utilisation rates by GBD super-region are
242 in appendix, pages 34-36. We decomposed changes in total volume of services from 1990 to

243 2016 into changes in four factors: utilisation rates by age and sex, population growth,
244 population ageing, and sex composition. Decomposition of these factors followed the method
245 in Das Gupta¹⁸ to estimate the average marginal effect of changing one factor across all
246 combinations of changes in the other factors.

247

248 *Unit cost estimates*

249 We estimated unit costs as expenditure per capita on each service divided by utilisation per
250 capita. Expenditure per capita was the product of total health expenditures (THE) per capita in
251 2017 international dollars, and the share of outpatient services in THE for visits or share of
252 inpatient services for admissions. THE estimates from 1995 to 2015,¹⁹ and projections for
253 2016²⁰ were available for 188 countries. The shares were estimated with 795 country-years of
254 National Health Accounts data, which provided a mutually exclusive and collectively exhaustive
255 account of the flow of THE through a health system (appendix, pages 53-54). The sample
256 represented 108 of 188 (57%) countries, but fewer than half of the countries in three super-
257 regions: Southeast Asia, East Asia, and Oceania, Latin America and Caribbean, and North Africa
258 and the Middle East. Outpatient spending was estimated as the share of outpatient curative
259 and rehabilitative care (HC 1.3 and HC 2.3, respectively), and inpatient as the share of inpatient
260 curative and rehabilitative care (HC 1.1 and 2.1, respectively).

261

262 *Cost estimates to meet a UHC standard for utilisation*

263 We estimated the additional services and funds needed to meet a UHC standard for utilisation.
264 The metric for the units of service was the 2016 volume of services per DALY, using a
265 counterfactual estimate of DALY from GBD 2016. A country's burden of disease was
266 endogenous to health service utilisation, because improved access and quality of services
267 reduced the burden. We standardised the burden of disease across countries by removing the
268 effects of access and quality of services using age-specific estimates of the GBD 2016 Health
269 Access and Quality (HAQ) index.²¹ We regressed 2016 DALYs for each age and sex category on
270 the Socio-demographic index and HAQ index; counterfactual DALYs were predicted with the
271 HAQ index set to zero (appendix, pages 63-64).

272

273 Our UHC standard for utilisation, services per counterfactual DALY, was based on an existing
274 health system. For each country, we calculated the additional units of service needed, and
275 multiplied the total by their unit cost. Units of service needed for each age and sex category
276 was the difference between the standard and the country's 2016 volume per counterfactual
277 DALY, and multiplied by those DALYs to get an estimate in units of services.

278

279 To identify the standard, we calculated the global cost to reach the UHC standard for utilisation
280 using each country as the standard (see 188 global estimates on appendix, p 66). Six countries
281 formed a frontier with high value on the GBD 2016 UHC index and lowest global cost for their
282 value. We selected the Netherlands, ranked ninth on the UHC index, and in the middle of the
283 frontier as the UHC standard for the main analysis, and conducted a sensitivity analysis with
284 Portugal, ranked 34th on the UHC index as an intermediate UHC standard. The aggregate ratio
285 of total volume to counterfactual DALYs was 7·25 for visits and 0·17 for admissions for the
286 Netherlands (age-sex specific ratios on appendix, pages 69-70), and 7·01 and 0·14, respectively,
287 for Portugal.

288

289 Health systems differed in the quality and type of services they provided, as well as volume of
290 services. We estimated that the unit costs in the Netherlands were 28% higher for visits than
291 predicted by cost-of-living differences in gross domestic product per capita, and 24% higher for
292 admissions (appendix, p 81). We conducted a sensitivity analysis with unit costs increased by
293 these percentages as a measure of improvements.

294

295 *Uncertainty*

296 We captured and propagated uncertainty in the analysis, including all three steps of the
297 utilisation estimates: sampling uncertainty from extracted data, uncertainty from adjustments
298 to inconsistently reported data, and uncertainty estimated as part of DisMod-MR. For all
299 reported estimates, we took 1000 draws from the posterior distributions. The mean of the 1000
300 draws was the point estimate and the 2·5th and 97·5th percentile of the draws were the
301 uncertainty interval. Applications using modelled outputs were done at the draw level.

302

303 *Role of the funding source*

304 The funder of the study had no role in study design, data collection, data analysis, data
305 interpretation, or writing of the report. The corresponding author had complete access to all
306 the data in the study and had final responsibility for the decision to submit for publication.

307

308 **Results**

309 *Global, regional, and national utilisation rates*

310 The global age-standardised utilisation rates were 5·42 outpatient visits (95% uncertainty
311 interval: 4·88—5·99), and 0·10 (95%UI 0·09—0·11) inpatient admissions per capita in 2016. The
312 age-standardised utilisation rate for outpatient visits (Figure 1) was highest in the High-income

313 Asia-Pacific (15·46, 95%UI 14·02 –17·06), and Eastern European (10·29, 95%UI 9·78– 17·06)
314 regions, and lowest in the Southern sub-Saharan Africa (3·53, 95%UI 3·03–4·08), and Caribbean
315 (3·37, 95%UI 2·89–3·88). Taiwan had the highest outpatient utilisation rate (19·61, 95%UI
316 17·04–22·44), and Burkina Faso had the lowest (2·00, 95%UI 1·17–2·32). The age-standardised
317 utilisation rates for inpatient admissions (Figure 2) was highest in the Eastern Europe (0·23,
318 95%UI 0·22–0·24), and Central Europe (0·18, 95%UI 0·17–0·20) regions, and lowest in Southeast
319 Asia (0·03, 95%UI 0·02 – 0·04), and Eastern sub-Saharan Africa (0·05, 95%UI 0·05 – 0·06).
320 Bulgaria had the highest inpatient utilisation rate (0·27, 95%UI 0·26 – 0·28), and Cambodia had
321 the lowest (0·02, 95%UI 0·02 – 0·03).

322

323 Many countries were exceptions to the regional patterns, and the range of estimates within
324 some regions was broad. In Western Europe where the age-standardised outpatient rate was
325 7·33 (95%UI 6·68–8·12), the rates were below the global average in Scandinavia, England,
326 Greece, Netherlands, and Portugal. In Central Latin America where the outpatient rate was 4·6
327 (95%UI 3·99 – 5·27), the rates were above the global average in Colombia, Nicaragua, and
328 Panama.

329

330 *Decomposing changes in outpatient and inpatient volume from 1990 to 2016*

331 From 1990 to 2016, outpatient volume increased from 24·80 (95%UI 21·81 – 28·17) to 39·35
332 (95%UI 35·38–43·58) billion visits globally. Of the 58·65% increase in visits, 42·95% was from
333 population growth, 8·09% from population ageing, and 7·63% from increases in utilisation
334 rates. (Small changes in the sex composition of the population account for the difference
335 between the total change from 1990 to 2016 and the sum of three factors reported here.)
336 Changes over time in the age-sex specific outpatient utilisation rates increased volume in six
337 super-regions (Figure 3A), the exception being High Income. Inpatient volume increased from
338 0·42 (95%UI 0·38 – 0·47) to 0·71 (95%UI 0·65–0·77) billion admissions. Of the 67·96% increase
339 in admissions, 44·33% was from population growth, 10·0% from population ageing, and 13·55%
340 from increases in utilisation rates. Changes in inpatient utilisation rates decreased volume in
341 five super-regions, the exceptions being Southeast Asia, East Asia, and Oceania, and North
342 Africa and Middle East.

343

344 Increases in China's age-sex specific utilisation rates accounted for most of their sizable
345 increase in volume of services from 1990 to 2016 (Figure 3E). The 114·41% increase in
346 outpatient visits decomposed into a 69·13% increase from utilisation rates, 27·94% from
347 population growth, and 17·26% from population ageing. The 497·00% increase in inpatient
348 admissions decomposed into a 403·85% increase from utilisation rates, 59·80% from population
349 growth, and 32·73% from population ageing. Increases in age-sex specific utilisation rates also

350 accounted for large increases in outpatient visits in Thailand (19·44% of a 63·85% increase) and
351 inpatient admissions in Indonesia (62·35 % of a 141·01 % increase), and Turkey (202·22% of a
352 302·87% increase) (Figure 3F).

353

354 Central Europe, Eastern Europe, and Central Asia was the only super-region with a decrease,
355 albeit small, in the volume of inpatient admissions (Figure 3C). In the Central Asia region, the
356 9·00% decrease in inpatient admissions decomposed into a 35·30% decrease from utilisation
357 rates, offset by a 24·24% increase from population growth, and 2·00% increase from population
358 ageing. In Eastern Europe, the 7·96% decrease in inpatient admissions decomposed into a
359 4·40% decrease from utilisation rates, and 4·44 % from population decline, offset by a 0·66%
360 increase from population ageing.

361

362 *Unit cost estimates*

363 In 2016, the cost per outpatient visit ranged from 2017 international \$2 (Burundi, Eritrea,
364 Central African Republic) to I\$478 (United States). (Table 1, United States dollar estimates are in
365 appendix, pages 74-80). The cost per inpatient admission ranged from I\$87 (Central African
366 Republic) to I\$22 543 (United States). Unit cost estimates generally followed patterns of THE
367 per capita. Spearman rank correlation coefficients for THE per capita were 0·93 and 0·89 for
368 outpatient and inpatient costs, respectively. Coefficients for share of expenditure were 0·39
369 and 0·67, and for utilisation per capita were 0·26 and 0·25.

370

371 We compared our unit cost estimates to the WHO-CHOICE estimates in 2008, the year of their
372 most recent estimates. Our estimates were generally higher (Figure 4); cost per outpatient visit
373 at any health facility was 103% higher on average than the WHO-CHOICE estimates for
374 secondary hospitals, and cost per admission to any hospital was 3% higher on average than
375 WHO-CHOICE estimates for teaching hospitals (appendix, p 55).

376

377 *Cost estimates to meet a UHC standard for utilisation*

378 Globally, 10·45 billion additional outpatient visits (95%UI 7·83—12·79) per year in 161 countries
379 at a cost of 2017 I\$362 billion (95%UI I\$212—I\$527) were needed in 2016 to meet the UHC
380 standard for utilisation, and 0·35 billion additional inpatient admissions (95%UI 0·31—0·38) in
381 184 countries at a cost of I\$816 billion (95%UI I\$584—I\$1056). Additional services in each
382 country can be calculated with results in Tables 1, S10, and S11. Low income countries for
383 I\$47 billion (95%UI I\$37—I\$56) (4%; [I\$47 billion/I\$1177 billion]) of the total additional cost for
384 reaching the UHC standard, lower-middle for I\$456 billion (95%UI I\$366—I\$551) (39%; [I\$456
385 billion/I\$1177 billion]), upper-middle for I\$408 billion (95%UI I\$314—I\$500) (35%; [I\$408

386 billion/[I\$1177 billion]), and high for I\$266 billion (95%UI I\$152—I\$381) (23%; [I\$266
387 billion/[I\$1177 billion]).

388

389 Four of 21 regions each accounted for ten percent or more of additional cost of reaching the
390 UHC standard for utilisation: Southeast Asia (25·48%; [I\$300.05 billion /I\$1177.69 billion]), High
391 Income North America (14·17%; [I\$166.93 billion /I\$1177.69 billion]), South Asia (12·34%;
392 [I\$145.30 billion /I\$1177.69 billion]), and North Africa and the Middle East (10·01%; [I\$119.28
393 billion /I\$1177.69 billion]). Much of the additional cost in Southeast Asia was due to high unit
394 costs and large gaps in admissions per DALY in Indonesia and the Philippines, as well as large
395 populations. In South Asia it was due to the large gaps in utilisation per DALY and population in
396 India, whereas in High Income North America it was due to high unit costs and large population
397 in the United States. For North Africa and the Middle East, much of the additional cost was
398 driven by Iran's large gap in inpatient utilisation, high inpatient costs, and large population. The
399 share of High Income North America increased to 28·97% (I\$166·71 billion/I\$575·57 billion) in
400 the United States dollar estimates (appendix, pages 74-80).

401

402 In sensitivity analysis, the additional cost to meet an intermediate UHC standard for utilisation
403 was 63.3% (745.58 billion/1177.69 billion] of the full standard (appendix, pages 83-89). It was
404 25·2% (1474·8 billion/1177·69 billion) higher with higher unit costs to reflect the cost of
405 improving the quality and types of services offered (appendix, pages 91-97).

406

407 **Discussion**

408 We reported the first global estimates of utilisation of outpatient visits and inpatient
409 admissions, and unit costs for these services where the cost estimates were based on
410 expenditures from the National Health Account. In our decompositions analysis, we highlighted
411 examples of countries with substantial changes in utilisation rates, and showed results for
412 countries where increased volume was driven by population growth. Using the population and
413 age structure in 2016, we estimated the additional services and funds needed to meet a UHC
414 standard for utilisation.

415

416 The decomposition analysis captured the effects of known trends in UHC, as well as other
417 changes in health systems since 1990. China's increase in visits and admissions due to changes
418 in utilisation rates was consistent with the expansion of insurance coverage to hospital services
419 in 2003 and comprehensive care in 2008.²² Similarly, the increase in admissions in Indonesia
420 due to changes in utilisation rates was consistent with a social security law in 2004 that
421 included national health coverage.²³ Although Indonesia's comprehensive health insurance

422 scheme was not finalised until 2014, coverage of inpatient services expanded for some
423 populations beginning in 2003. The increase in visits in Thailand due to changes in the
424 utilisation rates was consistent with their UHC Scheme that extended coverage in 2002 to the
425 30% of population who previously was uninsured.²⁴ The increase in services in Turkey reflected
426 the additional primary health care teams and hospital beds from their Health Transformation
427 Program.²⁵ Age-sex specific inpatient utilisation rates decreased in 21 of 29 countries in the
428 Central Europe, Eastern Europe, and Central Asia super-region, reflecting the decline in hospital
429 beds in Central Europe and Eastern Europe from 1990 to 2005.²⁶

430

431 The unit cost results for 188 countries were higher than the upper range of the widely-
432 referenced WHO-CHOICE estimates in 2008.⁹ The WHO-CHOICE researchers estimated cost
433 functions with available unit cost estimates from 30 countries, where the unit of analysis was a
434 facility-year.⁹ Our expenditure estimates included ancillary services such as diagnostic exams
435 and medical supplies such as drugs provided during the visit or admission, consistent with the
436 National Health Account categories,¹² whereas the WHO-CHOICE estimates excluded them. Our
437 unit costs estimates used utilisation as the denominator and reflected current efficiency. The
438 WHO-CHOICE researchers sought to compare interventions across WHO locations and countries
439 at a standard level of efficiency where all facilities operated at the 80th percentile of measured
440 capacity. In the absence of estimates of actual unit costs however, many researchers relied on
441 the WHO-CHOICE estimates as if they represented actual health systems, and underestimated
442 the cost of interventions in the majority of countries.^{10,11} Health facilities in Kenya, Uganda, and
443 Zambia operated at 40% of capacity or less.²⁷

444

445 To our knowledge, only two other studies estimated comprehensive unit costs at the national
446 level. Dieleman and colleagues reconciled the data from multiple sources with the United
447 States' National Health Expenditure Account.²⁸ Their 2013 cost per visit was 2017 US\$557
448 compared to our estimate of US\$457 (95% UI: US\$397-US\$525), and per admission was
449 US\$18,626 compared to our estimate of US\$21,000 (US\$19,303-US\$ 22,721). The Australian
450 Independent Pricing Authority reported a 2016 cost per overnight admission of 2017 US\$7429
451 compared to our estimate of US\$8050 (95% UI: US\$7310-US\$8865).²⁹

452

453 Our unit cost estimates were macro-costing estimates, which the second United States Panel on
454 Cost-Effectiveness and Medicine (Panel) referred to as "gross costing."³⁰ Approaches to
455 estimating unit costs ranged from our unit costs per visit and admission to micro-costing
456 estimates that directly enumerate and cost every input, and neither approach is always more
457 accurate or precise. The Panel recommended the macro-costing approach for some analyses,
458 because of its "simplicity, practicality, and if data are obtained broadly, robustness to
459 geographic, institutional, and other sources of variation." For example, a macro-costing

460 estimate may be appropriate for an intervention that changed the quantity of services,^{10,11} or
461 when its effect on the cost of services was known. Our macro-costing estimates were average
462 costs, which would be the same as the marginal costs in stable health systems. Average costs
463 may be less than marginal costs when initiating interventions or serving remote locations or
464 populations. Researchers should consider the nature of the interventions, locations, and
465 populations in their analyses and adjust the average costs as appropriate. Macro-costing
466 estimates can be adjusted for specific diagnoses, using a country's weights for service intensity
467 or other representative weights.³¹

468

469 The total cost of meeting a UHC standard for utilisation was 2017 I\$1178 billion or 2017 US\$576
470 billion and similar to previous UHC cost estimates for the same countries,^{32,33} but our methods
471 differed. Stenberg and colleagues estimated that progress towards UHC in 67 low-income and
472 middle-income countries would cost 2017 US\$287 billion per year by 2030, and I\$391 billion for
473 an ambitious scenario.³² Our total cost for the same 67 countries was 2017 US\$297 billion in
474 2016. They used benchmarks such as the numbers of facilities and laboratories per person, and
475 human resource targets to estimate the cost of platforms, rather than the WHO-CHOICE unit
476 costs, and added the commodity costs for 187 interventions. Jamison and colleagues estimated
477 that a high priority package of interventions in 83 low income and lower-middle income
478 countries would cost 2017 US\$113 billion in 2015 and US\$223 billion for essential UHC.³³ Our
479 total cost for the same 83 countries was 2017 US\$158 billion in 2016. They produced unit cost
480 estimates for 218 interventions, using the best unit cost estimates in the literature with
481 adjustments for health professional salaries across countries. Both previous estimates included
482 the cost of population and community platforms, which was 15%³² and from 12·6 to 18·6%³³ of
483 cost. Our estimates of the additional cost of personal health services did not include these
484 platforms.

485

486 We reported the first estimate of the additional services needed to meet a UHC standard. Using
487 the Netherlands as the standard, the gaps in inpatient services were larger than outpatient,
488 with a 49% (0·35 billion/0·71 billion) increase in admissions, and 26% (10·42 billion/39·35
489 billion) increase in visits. Equally important, our metric of utilisation per counterfactual DALY
490 made it possible to compare health systems with different combinations of visits and
491 admissions. We identified countries such as the Netherlands and Portugal whose combination
492 achieved high values on GBD's UHC index at lower costs than other combinations. In our
493 sensitivity analysis using Portugal as the standard, the gap in admissions was 33·0% (0·23
494 billion/0·71 billion) and in visits was 19·5% (7·67 billion/39·33 billion), providing an intermediate
495 UHC standard requiring relatively fewer admissions.

496

497 Our cost estimate was based on additional services at the current quality and type of service,
498 and was 25.2% (I\$1474.8 billion/I\$1177.69 billion) higher in the sensitivity analysis with higher
499 unit costs to reflect improvements, similar to the additional cost of commodities in previous
500 estimates.³² Like previous estimates, ours was the starting point for national assessments that
501 would benefit from country-specific information; quality improvement would be substantially
502 more in some countries, and minimal in others. When improvements in the quality of essential
503 personal health services are delivered during visits and admissions, the additional cost of
504 diagnostic exams and medical goods would be calculated using data on the country's burden of
505 disease, current purchases, and lowest available prices available, and then added to total
506 expenditure for a service to calculate a country-specific estimate of higher unit costs.
507

508 To put our estimates in perspective, we used Dieleman and colleagues estimate of pooled
509 resources for health,²⁰ which were prepaid revenues through government financing, social
510 health insurance, private insurance, or development assistance for health (DAH). Pooled
511 resources were THE minus out-of-pocket spending. The additional cost of reaching the UHC
512 standard for utilisation in 2016 was 105.97% (2017 I\$71 of I\$67 per capita) of pooled resources
513 for low income countries, 129.66% (I\$153 of I\$118 per capita) for lower-middle, 23.59% (I\$159
514 of I\$674 per capita) for upper-middle, and 4.66%, (I\$227 of I\$4876 per capita) for high. As they
515 reported, some expansion of coverage in low and lower-middle income countries may be
516 possible with improvements in efficiency as well as additional funds.

517

518 *Future directions*

519 Health systems need to expand to accommodate population growth and ageing at the same
520 time that they expand coverage. Population growth accounted for the majority of the increase
521 in the volume of services from 1990 to 2016 globally, and among four super-regions where the
522 GBD's UHC index in many countries was low: Latin America and the Caribbean, North Africa and
523 the Middle East, South Asia, and Sub-Saharan Africa. Our cost of meeting a UHC standard for
524 utilisation was based on population in 2016, but future estimates could include the additional
525 cost associated with population growth and ageing.

526

527 Our methods for estimating utilisation and unit costs lend themselves to calculating the costs of
528 future changes in health policy such as expansion in coverage. Utilisation could be forecast with
529 global projections of population growth and age structure,³⁴ and forecasts of the Socio-
530 demographic index,³⁵ which are available, as well as hospital capacity. Our analysis from 1990
531 to 2016 showed that hospital capacity was relatively stable over-time in the absence of changes
532 in health policy, and could be forecast. Health expenditures on services could be forecast with
533 available forecasts of THE and gross domestic product per capita,²⁰ and the share of

534 expenditures on each service. Again, the shares were relatively stable, and could be forecast.
535 Estimates of the costs of changes in health policy would be modelled in this context.

536

537 *Limitations*

538 A major limitation was the availability, quality, and scope of the data. Our systematic search for
539 utilisation data revealed gaps, particularly before the year 2000 in countries outside of the High
540 Income, and Central Europe, Eastern Europe, and Central Asia super-regions. Further, the data
541 sources for the other super-regions were primarily surveys, and utilisation questionnaires were
542 not standardised. Despite the gaps, 330 of 1175 country-years of outpatient data, and 275 of
543 2068 country-years of inpatient data were from countries in the other super-regions, and our
544 estimates adjusted for inconsistencies across questionnaires. In countries that continue to rely
545 on surveys, it is important to standardise utilisation questions, as well as collect additional data
546 (appendix, p 10). Second, some of the decrease in inpatient admissions in the High Income
547 super-region may have been associated with an increase in day hospital admissions, but these
548 services were not included in our analysis. Utilisation and expenditure data for these services
549 were not generally available, even though Day curative (HC 1.2) and rehabilitative care (HC 2.2)
550 were categories of the System of Health Accounts. Third, although the utilisation estimates
551 included facility-based preventive maternal and child care (HC 6.4), and vaccinations (HC6.2),
552 the expenditure shares did not, because they were not reported in 649 of 795 (81%) of National
553 Health Accounts. Their omission may have underestimated the unit cost of outpatient visits, but
554 the effects would have been substantial for only 16 country-years in which these categories
555 exceeded 3% of THE.

556

557 **Conclusions**

558 Plans to expand health coverage can be based on utilisation and unit costs of current health
559 systems and guided by standards of performance of actual health systems.

560

561

562

563

564

565

566

567

568 **Table 1: National unit costs of outpatient visits and inpatient admissions, utilisation per**
569 **counterfactual disability-adjusted-life-year, and additional visits, admissions, and funds**
570 **needed to achieve a Universal Health Coverage standard for utilisation in 2016 in 2017**
571 **international dollars**

572 Table displays four sets of national estimates organised by GBD region: 1) cost per outpatient
573 visit and inpatient admission by country, 2) ratio of total inpatient admissions to counterfactual
574 DALYs, where the counterfactual DALYs standardised the burden of disease across countries by
575 removing the effects of access and quality of health care, 3) estimates of additional services
576 needed to achieve the UHC standard for utilisation calculated by age and sex category, and 4)
577 total cost of additional services in 2017 international dollars and as a percentage of 2016 gross
578 domestic product. For each result, the mean of 1000 draws is reported, and in parenthesis the
579 uncertainty interval defined as the 2·5th and 97·5th percentile of draws. DALY = disability-
580 adjusted-life-year. GBD= Global Burden of Disease, UHC = Universal Health Coverage.

581

582 **Figure 1: Annual outpatient visits per capita, age-standardised, and both sexes combined by**
583 **country in 2016**

584 Map displays the age-standardised estimated annual number of outpatient visits per person in
585 2016 for all ages and both sexes combined. The rate ranged from 2·5 to 7·0 visits per person for
586 the majority of countries, and the key shows 0·5 visit increments in this range to present
587 differences among these countries. ATG = Antigua and Barbuda. VCT = Saint Vincent and the
588 Grenadines. TTO = Trinidad and Tobago. FSM = Federated States of Micronesia.

589

590 **Figure 2: Annual inpatient admissions per capita, age-standardised, and both sexes combined**
591 **by country in 2016**

592 Map displays the age-standardised estimated annual number of inpatient admissions per capita
593 in 2016 for all ages and both sexes combined. ATG = Antigua and Barbuda. VCT = Saint Vincent
594 and the Grenadines. TTO = Trinidad and Tobago. FSM = Federated States of Micronesia.

595

596 **Figure 3: Decomposition of the percentage change in volume of outpatient visits and**
597 **inpatient admissions from 1990 to 2016 for all ages and both sexes summarised by GBD**
598 **super-region (A) and by region and country in GBD high Income (B), Central Europe, Eastern**
599 **Europe, and Central Asia (C), Latin America and Caribbean (D), South East Asia, East Asia, and**
600 **Oceania (E), North Africa and Middle East (F), South Asia (G), and Sub-Saharan Africa (H)**

601 Changes in the volume of outpatient visits and inpatient admissions from 1990 to 2016 were
602 decomposed into changes in four factors: age-sex specific utilisation rates, total population, the
603 share of the population in each age category, and the share of the population of each sex

604 within each age category. The black dots represent the overall percentage change in volume of
605 each service. Colours represent the percentage that each factor contributed to overall
606 percentage change. Bars to the left of zero show that the factor contributed to a decrease and
607 bars to the right show an increase. GBD = Global Burden of Disease

608

609 **Figure 4: Comparison of 2008 IHME unit cost estimates to 2008 WHO-CHOICE estimates for**
610 **(A) outpatients, and (B) inpatients**

611 Figure 4a is a scatter plot of the unit costs by country, where the vertical axis reports the WHO-
612 CHOICE estimate and the horizontal reports our estimates. The solid diagonal line represents
613 where the points would lie if the two estimates were identical. The majority of points were
614 lower and to the right of the line, showing that our estimates were higher. All unit costs are in
615 2010 international dollars. IHME= Institute for Health Metrics and Evaluation. WHO-CHOICE=
616 World Health Organization Choosing Interventions that are Cost-Effective.

617

618

619 **References**

- 620 1 Horton R. Offline: WHO—a roadmap to renewal? *The Lancet* 2017; **390**: 2230.
- 621 2 Goal 3 : Sustainable Development Knowledge Platform.
622 <https://sustainabledevelopment.un.org/sdg3> (accessed April 29, 2017).
- 623 3 Schmidt H, Gostin LO, Emanuel EJ. Public health, universal health coverage, and Sustainable
624 Development Goals: can they coexist? *The Lancet* 2015; **386**: 928–30.
- 625 4 GBD 2016 SDG Collaborators. Measuring progress and projecting attainment on the basis of
626 past trends of the health-related Sustainable Development Goals in 188 countries: an
627 analysis from the Global Burden of Disease Study 2016. *Lancet* 2017; **390**: 1423–59.
- 628 5 Hogan DR, Stevens GA, Hosseinpoor AR, Boerma T. Monitoring universal health coverage
629 within the Sustainable Development Goals: development and baseline data for an index of
630 essential health services. *The Lancet Global Health* 2018; **6**: e152–68.
- 631 6 OECD Statistics. <http://stats.oecd.org/#> (accessed June 24, 2017).
- 632 7 Devaux Marion. Income-related inequalities and inequities in health care services utilizations
633 in 18 selected OECD countries. *European Journal of Health Economics* 2015; **16**: 21–33.
- 634 8 Saksena P, Xu K, Elovainio R, Perrot J. Utilization and expenditure at public and private
635 facilities in 39 low-income countries. *Trop Med Int Health* 2012; **17**: 23–35.
- 636 9 Stenberg K, Lauer JA, Gkountouras G, Fitzpatrick C, Stanciole A. Econometric estimation of
637 WHO-CHOICE country-specific costs for inpatient and outpatient health service delivery. *Cost
638 Effectiveness and Resource Allocation* 2018; **16**: 11.
- 639 10 Floyd J, Wu L, Hay Burgess D, Izadnegahdar R, Mukanga D, Ghani AC. Evaluating the impact
640 of pulse oximetry on childhood pneumonia mortality in resource-poor settings. *Nature* 2015;
641 **528**: S53-59.
- 642 11 Gu D, He J, Coxson PG, *et al*. The Cost-Effectiveness of Low-Cost Essential Antihypertensive
643 Medicines for Hypertension Control in China: A Modelling Study. *PLOS Medicine* 2015; **12**:
644 e1001860.
- 645 12 OECD, WHO, Eurostat. A System of Health Accounts. Paris: Organisation for Economic Co-
646 operation and Development, 2011 <http://www.oecd-ilibrary.org/content/book/9789264116016-en> (accessed April 29, 2017).
- 648 13 Global Health Data Exchange | GHDx. 2017; published online April 29.
649 <http://ghdx.healthdata.org/> (accessed April 29, 2017).

- 650 14 Stevens GA, Alkema L, Black RE, *et al.* [Guidelines for Accurate and Transparent Health
651 Estimates Reporting: the GATHER Statement]. *Epidemiol Serv Saude* 2017; **26**: 215–22.
- 652 15 Flaxman AD, Vos T, Murray CJL, Kiyono P, editors. An Integrative Metaregression Framework
653 for Descriptive Epidemiology, 1 edition. Seattle: University of Washington Press, 2015.
- 654 16 GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and
655 national incidence, prevalence, and years lived with disability for 328 diseases and injuries
656 for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study
657 2016. *Lancet* 2017; **390**: 1211–59.
- 658 17 GBD 2016 Mortality Collaborators. Global, regional, and national under-5 mortality, adult
659 mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for
660 the Global Burden of Disease Study 2016. *Lancet* 2017; **390**: 1084–150.
- 661 18 Das Gupta Prithwis. Decomposition of the difference between two rates and its consistency
662 when more than two populations are involved. *Mathematical Population Studies* 1991; **3**:
663 105–25.
- 664 19 Dieleman JL, Haakenstad A, Micah A, *et al.* Spending on health and HIV/AIDS: domestic
665 health spending and development assistance in 188 countries, 1995–2015. *The Lancet* 2018;
666 **391**: 1799–829.
- 667 20 Dieleman JL, Sadat N, Chang AY, *et al.* Trends in future health financing and coverage: future
668 health spending and universal health coverage in 188 countries, 2016–40. *The Lancet* 2018;
669 **391**: 1783–98.
- 670 21 GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the
671 Healthcare Access and Quality Index for 195 countries and territories and selected
672 subnational locations: a systematic analysis from the Global Burden of Disease Study 2016.
673 *Lancet* 2018; **391**: 2236–71.
- 674 22 Blumenthal D, Hsiao W. Lessons from the East — China’s Rapidly Evolving Health Care
675 System. *New England Journal of Medicine* 2015; **372**: 1281–5.
- 676 23 Pisani E, Olivier Kok M, Nugroho K. Indonesia’s road to universal health coverage: a political
677 journey. *Health Policy Plan* 2017; **32**: 267–76.
- 678 24 Tangcharoensathien V, Witthayapipopsakul W, Panichkriangkrai W, Patcharanarumol W,
679 Mills A. Health systems development in Thailand: a solid platform for successful
680 implementation of universal health coverage. *Lancet* 2018; published online Jan 31.
681 DOI:10.1016/S0140-6736(18)30198-3.
- 682 25 Atun R. Transforming Turkey’s Health System — Lessons for Universal Coverage. *New
683 England Journal of Medicine* 2015; **373**: 1285–9.

- 684 26 Healy J, McKee M. Implementing hospital reform in central and eastern Europe. *Health Policy*
685 2002; **61**: 1–19.
- 686 27 Di Giorgio L, Moses MW, Fullman N, *et al.* The potential to expand antiretroviral therapy by
687 improving health facility efficiency: evidence from Kenya, Uganda, and Zambia. *BMC*
688 *Medicine* 2016; **14**: 108.
- 689 28 US Spending on Personal Health Care and Public Health, 1996-2013 | Health Care Economics,
690 Insurance, Payment | JAMA | JAMA Network.
691 <https://jamanetwork.com/journals/jama/fullarticle/2594716> (accessed July 26, 2018).
- 692 29 IHPA. National Hospital Cost Data Collection, Public Hospitals Cost Report, Round 20
693 (Financial year 2015-16). 2018; published online April 23.
694 <https://www.ihpa.gov.au/publications/national-hospital-cost-data-collection-public->
695 [hospitals-cost-report-round-20-0](https://www.ihpa.gov.au/publications/national-hospital-cost-data-collection-public-hospitals-cost-report-round-20-0) (accessed July 26, 2018).
- 696 30 Cost-Effectiveness in Health and Medicine, Second Edition, New to this Edition: Oxford, New
697 York: Oxford University Press, 2016.
- 698 31 Reed SD, Friedman JY, Gnanasakthy A, Schulman KA. Comparison of hospital costing
699 methods in an economic evaluation of a multinational clinical trial. *Int J Technol Assess
700 Health Care* 2003; **19**: 396–406.
- 701 32 Stenberg K, Hanssen O, Edejer TT-T, *et al.* Financing transformative health systems towards
702 achievement of the health Sustainable Development Goals: a model for projected resource
703 needs in 67 low-income and middle-income countries. *The Lancet Global Health* 2017; **5**:
704 e875–87.
- 705 33 Jamison DT, Alwan A, Mock CN, *et al.* Universal health coverage and intersectoral action for
706 health: key messages from Disease Control Priorities, 3rd edition. *Lancet* 2017; published
707 online Nov 24. DOI:10.1016/S0140-6736(17)32906-9.
- 708 34 World Population Prospects - Population Division - United Nations. 2018; published online
709 Jan 15. <https://esa.un.org/unpd/wpp/Download/Standard/Population/> (accessed Jan 15,
710 2018).
- 711 35 Foreman, Kyle, *et. al.* Forecasting life expectancy, years of life lost, all-cause and cause-
712 specific mortality for 250 causes of death: reference and alternative scenarios 2016-2040 for
713 195 countries and territories. *The Lancet*; **forthcoming**.
- 714