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Forward Backward Doubly Stochastic Differential
Equations and the Optimal Filtering of Diffusion
Processes *
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Abstract

The connection between forward backward doubly stochastic differential equa-
tions and the optimal filtering problem is established without using the Zakai’s
equation. The solutions of forward backward doubly stochastic differential equa-
tions are expressed in terms of conditional law of a partially observed Markov
diffusion process. It then follows that the adjoint time-inverse forward backward
doubly stochastic differential equations governs the evolution of the unnormalized
filtering density in the optimal filtering problem.

Keywords. Forward backward doubly stochastic differential equations, optimal
filtering problem, Feynman-Kac formula, It6’s formula, adjoint stochastic processes.

1 Introduction

The goal of this work is to study the state of a noise-perturbed dynamical system, Uy,
given noisy observation on the dynamics, V;. This suggests the optimal filtering problem
of determining the conditional probability of Uy, given an observed path {V;:0<s<t}.
The pioneer work of optimal filtering problems was considered by Kallianpur and
Striebel [13] and Zakai [23]. In particular, the Kallianpur-Striebel formula provides
a continuous time framework of the optimal filtering that considers the conditional
probability density function (PDF) of the state as the solution of a nonlinear stochastic
partial differential equation (SPDE); and the approach proposed by Zakai leads to a
linear stochastic integro-differential parabolic equation, referred to as the Zakai’s equa-
tion. Under strong regularity conditions it can be shown that the solution of the Zakai’s
equation represents an unnormalized conditional density of the state process. Funda-
mental research of the optimal filtering problem was also conducted by Kalman and
Bucy [5, 15], Kushner and Pardoux [16, 18], Shiryaev [21] and Stratonovich [22], among
other extensive studies on discrete nonlinear filter solver (see [6, 7, 9, 10, 11]).

The advantage of solving the optimal filter problems with SPDEs such as the Zakai
equation is that it provides the “exact” solution for the conditional density of U; given
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{Vs}o<s<t. However, it has not been considered as an efficient method by the science
and engineering community because of its slow convergence and high complexity. In-
stead of dealing with SPDEs, the unnormalized density function can also be studied
through a system of stochastic (ordinary) differential equations (SDEs). Such a system
consists of two SDEs, one standard SDE and one backward doubly stochastic differ-
ential equation (BDSDE), and is referred to as a system of forward backward doubly
stochastic differential equations (FBDSDEs). The FBDSDE system was first studied
by Pardoux and Peng in [20], where the equivalence between FBDSDEs and certain
parabolic type SPDEs was established. Our recent work [1, 2, 3, 4] indicates that solv-
ing optimal filtering problems with FBDSDE systems can be far less costly than that
with SPDEs and more accurate than both SPDEs and discrete filter methods such as
particle filter methods.

In this paper, we establish a direct link between the optimal filtering problem and
a FBDSDE system. First we provide a FBDSDE version of Feynman-Kac formula
for the optimal filter problem and obtain the adjoint of this system. To the best of
our knowledge, similar results have been obtained before. As a consequence, we show
this adjoint, which is a a time-inverse FBDSDE system, provides a solution for the
unnormalized condition density of the optimal filter problem.

The rest of this paper is organized as follows. In Section 2 we present the math-
ematical formulation of the optimal filtering problem and provide a brief introduction
of FBDSDEs. In Section 3 we establish the connection between the FBDSDEs and
the unnormalized conditional density function. Some closing remarks will be given in
Section 4.

2 Preliminaries

In this section, we present the mathematical formulation of the optimal filtering problem
and provide a brief introduction of FBDSDEs.

Let (2, F,P) be a probability space, and let T'> 0 be fixed throughout the paper. Let
{Wi}o<i<r and {Bi}o<i<r be two mutually independent standard Brownian motions
defined on (Q,F,P), with values in R? and R!, respectively. Denote by N the class of
P-null sets of F. For each ¢t €[0,7] and any process 7, let

th::cj{nr—nszsgrgt}\/./\/

be the o-field generated by {9, —ns}s<,<: and write F :ngt.

2.1 The optimal filtering problem
Consider the following stochastic differential system on the probability space (2, F,P)

{dUt :bt(Ut)dt+ptth+ﬁtdBt7 ( )
2.1

AV =h(U;)dt +dBy,

where {U; €R%:t>0} is the “state process” that describes the state of a dynamical
system and {V; €R':¢>0} is the “measurement process” which is the noise perturbed
observations of the state U;. Given an initial state Uy with probability distribution pg(u)
independent of W; and By, the goal of the optimal filtering problem is to obtain the
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best estimate of ¢(U;) as the conditional expectation with respect to the measurement
{Vi-}o<s<t, where ¢ is a given test function.

Denote by F) :=0{V,:0<r <t} the o-field generated by the measurement process
from time 0 to ¢ and denote by M, the space of all F-measurable and square inte-
grable random variables at time ¢. The optimal filtering problem can be formulated
mathematically as to find the conditional expectation

E[6(U0|F ) =it {E[l(U) — a5 € M }.

According to [12, 14], the optimal filter is given by

(u)ptdu
E[p(Uy)|F) ] =E—— (2.2)

/ prdu
Rd

where p; is the wunnormalized filtering density. (2.2) is the well known Kallianpur—

Striebel formula.
t 1 t
Qi=ep{ [ v, [y

Define
When s=0 we denote Q¥ as Q; in short. Let P be the probability measure induced on
the space (£2,F) such that
dP

<l —a. (2.3)

F

Then according to the Cameron-Martin theorem the probability measures P and P are
equivalent when the Novikov condition is satisfied [8]. Moreover, it is straightforward
to verify that (see [17], Lemma 8.6.2)

CE[p(U)Q|FY]

E [Qb(Ut)“FtV} - fE [Qt‘]:tv] (2'4)

where E denotes the expectation with respect to P.

2.2 Forward backward doubly stochastic differential equations

For each t € (0,77, define
Fr=F ' VFlp.

Then the collection {F,:t€[0,7]} is neither increasing nor decreasing, and thus does
not constitute a filtration [20]. For any positive integer n €N, denote by M?(0,T;R")
the set of R™-valued jointly measurable random processes {1 :t € [0,7]} such that v, is
Fi measurable for a.e. ¢ €[0,7] and satisfies

T
0

Similarly, denote by S?([0,T];R™) the set of continuous R™-valued random processes
{¢y:t€]0,T]} such that ¢, is F;, measurable for any ¢ € [0,7] and satisfies

E sup [¢|* <oo.
<t<T
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We next provide a brief introduction of forward backward doubly stochastic differ-
ential equations (FBDSDEs), summarized from [20].

Given 7>0, x€R? and @€ L2(Q,Fr,P), a system of forward backward doubly
stochastic differential equations (FBDSDES) can be formulated as

dXt == b(Xt)dt—f—O'(Xt)th, TStST,
—dY; = f(t, X0, Y, Z0)dt+g(t, X, Ye, Z)d B, — ZedWy, 7<t<T,
X, =z, Yr=¢(X7),

or, in the integral equation form, for any ¢ € [1,T7,

Xt x—l—/:b(Xs)ds—i-/:a(Xs)dWs, (2.5)

T T T
Ytzso(XT)+/ f(s,Xs,Ys,Zs)ds+/ g(s,Xs,Ys,Zs)dR—/ Z,dW,. (2.6)
t t t

Notice that equation (2.5) is a standard forward SDE with a standard forward It6 inte-
gral and equation (2.6) is a backward doubly stochastic differential equation (BDSDE)

involving the backward It integral [ -d%s (see [19] for details on the two types of
integrals).

Let the mappings f:[0,7] x R? x RF x R¥*4 5 RF and ¢:[0,7] x R? x RF x RF*d —
R¥*! be jointly measurable and for any (y,2) € RF x RF*4,

f('a'vyvz) €M2(O,T;Rk)7 g(.7.,y,z) €M2(O,T;Rk><l),

Denote by |-| the Euclidean norm of a vector and by || A||:=+/Tr(AA*) the norm of
a matrix A. The existence and uniqueness of solutions, moment estimates for the
solutions, and the regularity of solutions to Equation (2.6) rely on one or more of the
following assumptions.

Assumption 2.1 f and g satisfy the Lipschitz condition: there exist constants ¢>0
and 0 < &< 1 such that for any (t,z) €[0,T] x R, y1,y2 €ERF and 21,25 € RF¥9,

(@ yn,21) = f(t2,y2,22)|* < ey —yol* + |21 — 22]?),

lg(t 2,91, 21) = g(t,2,2,22)|* < clyr — ol + ¢l 21 — 22

Assumption 2.2 There exists ¢ >0 such that for all (t,7,y,2) € [0,T] x RY x R¥ x Rk*d,
99" (t,2,y,2) <zz* +c(||g(t,2,0,0) || +[y|*) 1.

Assumption 2.3 For any (t,z,y,2) €[0,T] x R x R¥ x R¥*4 gnd § e RF*4

%(t,x,y,z)@@* (%(t,x,y,z)) <006*.
The following results are due to Pardoux and Peng [20].
Proposition 2.4 Under Assumption 2.1, the BDSDE (2.6) admits a unique solution

(Y,Z) € S2([0,T];R*) x M%(0,T;RF*9).
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Proposition 2.5 Let Assumptions 2.1 and 2.2 hold, then the solution of the BDSDE
(2.6) satisfies
E sup |Y;|?<oo.
0<t<T
For any positive integer k, denote by Cl’fb the collection of C* functions with bounded
partial derivatives of all orders less than or equal to k, and denote by C;f the collection of

C* functions with partial derivatives of all orders less than or equal to k which grow at
most like a polynomial function of x as z — co. It is well known that given b € C3, (R?,R?)

and JECﬁb(Rd,RdXd), for each (7,2)€[0,T] x R%, the SDE (2.5) has a unique strong

solution, denoted as X;"*. Consequently denote by (Y,*,Z"") the unique solution to
the BDSDE

T T T
Yt:gp(X;’z)—l-/ f(S,X;’x,YS,ZS)dS—l-/ g(S,X;-"z,YS,ZS)dgs—/ ZdW,. (2.7)
t t t

Proposition 2.6 Let ¢€C§(Rd;Rk). Under Assumptions 2.1 — 2.8, the random field
{Y7*:7€[0,T],xeR?} admits a continuous version such that for any 7€[0,T], x+>
Y% is of class C? a.s..

The following regularity result can be obtained by using standard techniques of
SDEs, FBSDEs and BDSDEs (see Proposition 1 in [3])
Lemma 2.7 In addition to the Assumption 2.1, assume that f,gECl{b. Then the solu-
tion (Y;"",Z]°") to the BDSDE (2.7) satisfies
E [(Y[’””—Yﬁ)ﬂ <C(t-7), E (Z[“—Z;@)Q} <O(t—7), 0<7<t<T,
where C' is a positive constant independent of T and t.

Note that with the convention above, the unique solution to the FBDSDE system
(2.5) — (2.6) can be written as (X,"",Y,"", Z"). Denote
X, ay, " oz"
or or ' or
Then (VY,”",VZ;"") is the unique solution to variational form of the BDSDE (2.6) (see
[20])

VX" = VY, "= VZ[ "=

VY = (XEO) VXL + / (af VX" 4 of ZL YT 4 i) —Lvzn z) ds

0 BY 6Z
89 T, 89 T, I 89 T,T T,T
+/t ((%VX + oI VY I+ 520 ) dB, / VZ7rAW,,
In addition, the random field {Zt”c ten,T),x eRd} has an a.s. continuous version
ZDT =Y (VXD e (X)), ZDT=VY "o (x). (2.8)

The following Lemma follows directly from Lemma 2.7 and Proposition 2.5.

Lemma 2.8 Assume that bECﬁb, fGCl%b, gEClQ)b and gDEClQ)b. Then there exists C'>0
such that
E[(VY, " =VY ") <C(t—7), E[(VZ]*-VZI")<C(t—7), 0<7<t<T.

Moreover,

E sup |VY,"? <oo.
0<t<T
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3 FBDSDEs and Optimal Filtering

In this section, we establish the connection between the optimal filtering problem and
a FBDSDE system. In particular, we will first prove a Feynman-Kac formula in the
filtering context. Then we present the adjoint relationship between standard FBDSDEs
and time-inverse FBDSDESs. In the end we will show that the solution of a time-inverse
FBDSDE is the unnormalized filtering density sought in the optimal filtering problem.
For simplicity of exposition, we only discuss the one dimensional case with d=1 and
[=1. The same method can also be applied to multi-dimensional cases with more
complicated calculations.

3.1 Feynman-Kac type formula for optimal filtering

For 7€ [O,T]~ and z €RY, consider the following FBDSDE system on the probability
space (Q,F,P)

dXt:bt(Xt)dt+Utth, TStST (SDE)
—dYtz—thWtJr(h(Xt)YtJrﬁZt)d‘Vt, 7<t<T (BDSDE)  (3.9)
Ot

X-,—:J;, YT:¢(XT)7

where 02 =p?+p?, and b, p, p , h are the functions appeared in the optimal filtering
problem (2.1). Here W; is the same Brownian motion as in the nonlinear filtering
problem (2.1), while V; is the measurement process which becomes a standard Brownian
motion independent of W; under the induced probability measure P defined by (2.3).

Then X; is a F}V adaptive stochastic process and the pair (Y;,Z;) is adaptive to F}V v

Fi'p. For any single-variable function F'= F(x), denote F’:= 4E and F"' = CLI;TE.

Lemma 3.1 Assume that by and o are bounded and h € C?(R;R). Then for any 0<
s<t<T, there exists a positive constant C independent of s and t such that

E[(h(X:) = h(X,))?|Fir] < C(t ). (3.10)
Proof. The application of It6’s formula to h(X;) results in

h(Xt)_h(Xs)—i-/st (bT(XT)h’(XT)+%’%h”(XT)) dr—i—/:arh’(XT)dWT,

and hence
2

t 2 t
- wxt= ([ (seCeon )+ G )ars [ onxoam) . e
Taking expectation E of the above gives

E[(h(X,)—h(X.))?] =E {(/t (b (X, )W (X)) + %zh”(Xr))dr)z] +E [/:(orh’(Xr))2dr] .

The inequality (3.10) then follows immediately from the assumptions of the lemma. [J

With Proposition 2.5, and Lemmas 2.7 and 3.1, we establish the following Feynman-
Kac formula in the optimal filtering context.
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Theorem 3.2 Assume that ¢ is bounded, by, pe,pr €Cip and hECfb(R). Then, V1€
[0,T] and x € R? the following equality holds a.s.

Y7 =E7[o(Ur)QT, (3.12)

where EX[]:= INE[-|]-"XT, U, =x].

Proof. 'We prove the statement (3.12) for 7=0 only, the general case follows from
the 7=0 case trivially. First it is straightforward to verify that under assumptions
in Theorem 3.2, all the assumptions of Proposition 2.5, and Lemmas 2.7 and 3.1 are

fulfilled. Since Y"* and ZI* are functions of x, we write Y"* =Y, (x) and Z2* = Z,(x)
in the sequel.

Let 0=tp<ti <te--- <ty =T be an equidistant temporal partition with ¢,11 —1, =
T /N := At and define

A" = IE‘(z) [Qtn+1 }/tn+1 (Utn+1) - Qtn }/tn (Utn )]

It follows immediately that
Eg[¢(Ur)Qr —Yo(z)] = Z Ap.

Denote P, :=P(-|Uy=x). To prove (3.12) it suffices to verify that

N—-1 ~
3T A 50 in £Y(Q,P,).
n=0

For each n>0, let U, be the solution of the state for (2.1) at time step ¢, and
consider the FBDSDEs system (3.9) on [t,,t,41] with initial condition Uy, :

dXt:bt(Xt)dt—FO'tth,

dY, = — Z,dW, ¢+ 2 z,)aV

—dY,=—-Z, dWi + | h( X)) Y+ —2Z; | dV 4, (3.13)
Ot

th = Utn’ }/%714»1 = X/tn#»l (th+1)'

From the definition of the state process Uy in (2.1) and the SDE X, in (3.13), we have

the relation between Uy and Xt

n+1 n+1:

R tnt1 tn+t1 R tnt1
Uy, =Xi 0 + / psdW, — / oo (X )dW, + / fs (Ve — h(U,)ds) + R
Ly t

tn n

where
tn+1 tn+1 N
R}“:/ bs(Us)ds—/ bs(X,)ds.
t ¢

n n

To simplify presentation, for any process ¢; we write 1&,5 :zz/Jt(Xt) throughout the
rest of this proof. Let 7,41 ="Uy,,, —Xi,,, Then from the above we have that

tnt1 tn+t1 tnt1
- / ped W, — / o dIV, + / P (dV —h(U)ds)+ R (3.14)
t tn t

n n
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Applying the Taylor expansion to Y; ., we have that

ntl
A A~/ 1 A1
}/tn+1 (Utn+1) = }/tn+1 +}/tn+1 “Mn+1+ 5}/tn+1 : (7771+1)2 +€n+1a (315)

where &,41 is the Taylor remainder such that EE[(&,41)%] <C(At)3. Then for each
n=0,1,2,---,N—1,

An = EJOC [Qtn+1 Y;5n+1 (Utn+1) - Qtn Y;fn+1 + Qtn f/;fn+1 - Qtn Y;fn (Utn )}

=B [(Qus —Qu) Voo | +EE [Qu (Voo — Y2 )]
() (ii)

(3.16)

’ "

T ¥ lo
+Eq [Qmm (thmnﬂ 5V (Mnt1)? +§n+1>} :

(iii)
We next estimate terms (i), (ii) and (iii) in (3.16) one by one.
(i) Write hy =h(U;) and hy = h(Xt), and apply Ito’s formula to @, we obtain

~ tn+1 ~
Ef [(Quys = Qe Ve | =E [ / hsczsdvsml]

lnt1 . tnt1 R R
:EJOC [/ hSQSdVSKan] +Eg |:/ (hs _hs)QstsY;fnﬂ :
tn t

’ (3.17)
Applying It6 formula to function A yields

hs—iLS:h’(Utn) </ prdWT—l-/ [)TdVT—/ UTdWT>+O(At),
tn t Ly

n

and consequently with h;n = h/(Utn) we have

tnt1 R R
o [ / (hs —hs)Qsd‘/sYtn+1]
tn

, tn+1 S S
=E§ [htn Qi Y1, (Utn)/ dVs </ prdW, — UTdWT)]
tn tn

tn

, R tn+1 S S
+Eg [htn (Qs B Qtn) (nn+1 Y, (Utn)> /t dvs (/t prdW, — UTdWT)]

tn
(3.18)
First noting that h; Q,Y;, (Uy,) [{*** AV, is independent of [ p,dW, — [ o,dW,,

we have .
, n+1 S S
ES [hthtnYtn(Utn)/ dVy </ pTdWT—/ aTdWT)] =0. (3.19)
¢ tn tn

n

n

[N

, R tni1 S
R [htncztnml [ ﬁrdVrst} +o((an
tn trn

Second, it’s straightforward to verify that

E2 {h;n Q=) (s ~ Y2 (U1)) /dv ( /tsprdwr_ /:ardWTﬂNo((At)%),
n n ’ (3.20)
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Putting (3.19) and (3.20) in (3.18), it follows from the regularity condition of p, that

tnit R R , . tnit S 3
B | [ e hQuviTi, o <8 | @i, [ [ avav] vo(@n?).
tn tn tn

Define .
, . n+1 S
by, @ Y, [ [ aviav. (3:21)
t'Vl tn

Then by using the facts [,"* [ dV,dV, =1 ((Vi,,, — Vi)~ At) and hy Qi Yi, ., fu,
is independent of §((V,., — V4, )? — At) we have

N-1 N-1
Z Vn= Z h Qt Ytn+1ptn 2 ((‘/tn+1 _th)2 _At) Nj}oo in £ (QvPr)' (3'22)
n=0 n=0

In summary (3.17) gives the estimate of the term (i) in (3.16) as

wjw

tnit .
(i) =E§ [/t thsd‘/sY;fn+1:| +EE v, + 0O ((A)

n

) : (3.23)

with ZN 1Ex[un] —0in £(Q,P,) as N — co.

(ii) Tt follows directly from the FBDSDESs system (3.13) that term (ii) in (3.16) satisfies

tnt1 tng1 /| F
(ii) =E§ [Qtn/ ZsdWs —Qy, / (ths + %ZS> dﬁ]
t tn s

thtr /0 FIER
tn Ts

(iii) By splitting term (iii) in (3.16) and using the definition of 7,41 in (3.14) we obtain

(3.24)

cee x A~ 1 T A1 x
(iii) = Ej |:Qtn+1}/tn+1nn+1:| +5Eo {QthYth : (77n+1)2} +E§ [Qt, 1 Ent1]

tn+1 tn+1 tn+1
=E§ [Qtnﬂ i (/ ps AWy — odes)] +E [Qtn f +1/ ﬁsts}

n tn

(iii—1) (iii—2)
tn+1 B ~ tn+1 B

+Eq [(Qtnﬂ Qu.)Y; +1/ Psts} —Eg [QthYth/ pshst]
tn tn

(iii—3)
xr n 1 xT xT
+EO [Qtn+1}/t +1R +1] +2 E [Qtn+1 tnt1 (77n+1)2} 'HEO [Qtn+1€n+1} .

(iii—4) (iii—5)

(3.25)
We next estimate terms (iii-1) — (iii-5).
Denote
. OX[m" ) . 0zZ""
VX i=—F—l|s=0,,, VY, = |lz=U,, » VZ:= 3 |lz=us,, -

ox ox



Bao, Cao & Han 10

Then term (iii-1) can be written as

tni1 tnt1 . -1
(i —1) = E; [Qtnﬂ( Vi) < / ped WV, — / anWS> (VX.) }
tn ln

) (3.26)
By using the fact that |[(VX,,,,)"!|=14O(At) and the following variational equation
(see [20])

R tnit N R R R ﬁ R tnit R
VY=Y, VX + / <hSYSVXS+hSVYS+—SVZS) av.— / VZ.dW.,
t Os t

we deduce that (3.26) becomes

R tnt1 tnt1
(iii_l):Eg |:Qtn+1 ( t +1Vth+1 vnn) (/ pdes - Udes)]
t’Vl

tn

N tnt1 n+1 3
LE [Qwvs@n < [ .- / oudIW, )] Lo(an?)
tn

tnit R tni1 n+1 3
=E2 KQ%/ v Z,dW, +)\tn> : (/ psdTV, / oo dWV, )] FO((AY)?),
tn t

n

where A, =—Qy, [} frt (WY, VX +h VY, + 2 VZ )stJervatn is independent
of ft”“ psdWy — ft”“ osdW, and hence gives

trn41 tnt1
Eg [)\tn ( / psdWs — Udesﬂ =
tn tn
AS a consequence

tni1 . tnya tnya 5
(iii—1) =K [Qtn/ VZ AW, - (/ psdW, —/ ades)] +O((At)5)
t t tn

n n

n

_E2 [Qtnvzw - / o —os)ds} ro(@an?).

(3.27)

Let C represent a generic constant while the context is clear. By the definition of
R it is straightforward to verify that

(it —4) =Ef | Q0. V7, RY | < (a0, (3.28)
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Applying Itd formula to @y, in term (iii-3) we obtain

., tni1 ~ ., tni1 ~
(18 =5 (@1~ Qu)Vi,, [ V] 55| Quntl, [ s
t t

n

tnt1

tnt1 ., ., tnt1
—E { / heQudVs ﬁststh] ~EZ {anm / ﬁshsds]
tn tn

t’Vl
tnt1

< ﬁsdv;s?;;ﬂ}

tnt1
EZ [ /t n(@=Qu v, |

-, tnt1 tn+t1 tn+t1
[thnm ( / BV, / FadVy— / ﬁshsds)] ’
t tn tn

n

+ |Eg

(=}

<C(At)3.
(3.29)

By using the definition of 7,41 in (3.14), we deduce that

1 . tnt1
(1ii—5) = S Eg [Qtnth / (p§+ﬁ§+a§—2psas)ds] +<9((At)%)

Ny tn+1 9 5
=Eg [Qtnytnﬂ/ (o3 —psos)dS] +0 ((At)f) .
2%

As a simple corollary of the assertion (2.8), we have Ytl,iﬂatnﬂ = VZA,gn+1 +O(At) and

thus -
(iii—5) =E§ {Qtn VZAtn+1 / (05— ps) ds] +0O ((At)%) . (3.30)
tn

It then remains to estimate term (iii-2). Notice that due to equations (2.8) and

(3.1) we have Z, /oy =VY,(VX,)'. Hence for any s € [t,,t, 1] it holds

n+1 -

tnit FN R R R ﬁ R
:—/ <hTYTVXT+hTVYT+—TVZT

el Zs S 2 S\ —
Y, —=Y, VY (VX,)™!

tni1 R
>d<\7r— / V2, dW, +O(At),

Or

and therefore

thi1 R ., tni1
Q.. / L GdVo=—Qu ¥, / 5dV,
g
tn s tn
tnt tngr /. R R R P R
—Q.. / Ge / (hrnvxr+hrvn+&vzr) av,av,
tn s

lnt1 tnt1 R .

- Qtn / ﬁs/ VZrdWrdvs +0 ((At)a) .
tn S

Since W and V are two independent Brownian motions,
lnt1 tnt1 R
Ej {Qtn / fs / VZTdWTd‘VS]
tn s
(3.31)

tnt1 tnt1 R . 3
—E2 [Qtn / Go / (VZT—VZtn)dWTde} <o(Aab)s.
tn S
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As a result,
thy1 5
(iii — 2) =E2 {Qt / psz av }
t'Vl
tn+1 tngr /| R R . p . 3
_EE [Qtn / / (hTYTVXmLhTVYT—F—TVZT) dVTdVS] +o(@an?)
tn a.

tn 1 = tn 1 tn 1
:Eg[Qtn/+ Zdv} EO[At/+/+dVdv}+O(At3>
tn t
(3.32)
) is independent of

where A, =Q. pr. s (ﬁ;nfan“vxt +he, VY, ’“”“ LVZ,

n+1

t”“ t"“dv dV 2 (Vipsr = V2, )?—At). By an argument similar to (3.22), we
bt
obtain Nol r s i ]
> E [/\tn / / dVTst} "N2800 i £1(Q,P,). (3.33)
n=0 tn S

Collecting estimates (3.27), (3.28), (3.29), (3.30) and (3.32) into (3.25); then insert-
ing (3.25), (3.23) and (3.24) into (3.16) we finally obtain

n+1

. tn+1/\ N tn+1/\ N v 3
A, =E / haQudViYi ., — Q. / ¥V v | +0((a0?)
in in (3.34)

—E§ o] + B[] + 5 1] + B3 [va] + O (A1)},

where {v,,} is defined as in (3.21) satisfying (3.22), and

tn41 R R R
Qp 1= / (Qshs —Q, hm) Y;?nﬂdvsv
t

n

tnt1

B, = Q.. (i}tn“ o —h Y)st,

in

Tn = Qtnﬁn+1 (iLtn _;Ltn+1) .(‘/tn+1 _V;fn)

The last steps are to show that ZN 1E¢”[ n] — 0, ZN le[ﬁn] and
SN VEE [y] = 0 in £1(Q,P,) as N — oo,

First write «,, = a%l) —i—aSI ) —i—a( ) with

lnt1 R N
04511) = / (Qs_Qtn)hstS'Y;an’
t

n

tni1 R R R
al? = Qi (hs—hy, )dVs Yy,
tn
tnt1 R . R R
o = [ Qulhe—hu,)aV (Vi = Ya,).

tn

Denote by E, the expectation with respect to P,, where ]f’); :=P(-|Uy=2) is the induced
probability measure. Notice that Y; =Y;, (Uy,) due to Xy, =U, given in (3.13), and
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that h; is a bounded function, we apply It6’s formula to (Qs —Qy, ) in o'V to get

N—-1 N-1 tn+1
ES[D " all] Eg[Z/t / heQrdV, hedVy - Vi, ]
n=0 n

tn

tn+1
<E / / DAV hdVs Yy,
tn t’!l
tn41 s N B
thtnd‘/rhsd‘/s'}/tn+l
N—-1 N—1
< O;(At)a +CE, nZ%Qt VA 5 ((thﬂ Vi.)? — Af) ] .

and from the fact that

— - 1 . ~
Z Qtn}/tn+1 : 5 ((‘/tn+1 _‘/tn)2 _At) —>0 mn Ll (Q,Px)

n=0
we have
N—-1 ~
E§[ > al]—=0in £1(Q,P,). (3.35)
n=0

For ag), we apply [to’s formula to hg to get

@, (2) x frt S gy (UT)2 Tn ) 7 %
Ef ey ] =E§ [ Q¢ - [br'hr+T'hr]dr+ oy - h.dW, -Ytnst}
tn tn

tn
tnt1 R s (UT)2A
=E7 [ ) Qt, Yz, - /t [br- by + 5 K!]drdVs].

Since by, o¢, b/ and h” are all bounded, we have
EL[[Bf [oP]]] <CAE2.

Moreover, it follows from Hoélder’s inequality, Lemma 2.7 and Lemma 3.1 that

tnt1

B, (B 09]) =E. B3
<(E:[(

Qtn (ils - Btn)d‘/s ' (Ytnﬂ - Ytnﬂ H
t’!l

tnt1 1

Qt, s =l )aVe)*]) "+ (Ba[(Vio = ¥2,)])

=

tn

<CA*/?,
Hence,
N—-1 ~
= Ef[elP]—0in £Y(Q,Py), (3.36)
n=0
and
N—-1 _
> E§laP]—0in £1(Q,P,). (3.37)
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Then, from (3.35), (3.36) and (3.37), we get

N—-1
EZ[r,] — 0 in LY, Py). (3.38)
>

n=0
For the term (3, in (3.34), we have

tnt1

ﬂn: Qtn ((}Altn+1 _}ALS)Y/thA +}ALS(Y/tn+1 _}A/S))d(vs
tn
tng1 R o tnt1 A R
= Qb bV dVet [ Qub(Vi., V)V
tn tn
tn+1 N N
+ Qtn htn+1 - dv (}/;n#»l - }/%n)
tn
=B+ 6+ 5
with .
n+1 N N N
/87(11) - Qtn (h’tn+1 _hs)}/tn dvsv
tn
tnit R
ﬂ@)i Qt ( n+1_}/s)d(Vs
tn
and .
n41
ﬂr(zg) = Q. ( Ptin = d(V ( tng1 n)
tn

Following the similar the approaches to 04512) and oY, we have

n o

E,[|E5[80)] < CAtY/?

and )
EL[|BF[8M]] < CAY2.
Hence,
N—1 )
S EGBMN] 0 in £1(Q, Py), (3.39)
n=0
and
N-—1 )
> EGBY] =0 in £1(Q, Py). (3.40)
n=0

From the BDSDE in (3.9), Lemma 2.7, Lemma 2.5 and estimate (3.31), we get

N-1 N-1 . B . .
S =S ms[ [ ([ g [ Gk B a7
n=0 n=0 ln s s Or

N—1

tn+1 R tn+1 A 5
=> w5 Qtnhs(—/ (hTY}nﬂ—i—?ZtM)dvT)dvs}—|—O((At)%)

tnt1 R tn+1/\ R R
e B[ [ Q[ b (i~ T+ 2 2, - 204V
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Next, we take conditional expectation E, to the absolute value of the above equation.
Since

B (Vi — Y2 <CAYS, By[(Zs,,, — 20)?] <O(AL)?

and

_ N-—1 tot1 . tnt1 o
LY [ Quii(- [ R dV )b
n=0""'n S

N—-1
- A 1
<CFE, [| § QtnYth ’ 5 ((‘/tn+l _th)Q _At) ” ’
n=0

it follows from the fact

N—-1
N 1 ) -
Z Qi Vi, 5((th+1 —V;, )2 = At) =0 in L1(Q,P,)

n=0

that
N-1

ES1Y 87 —=0in £1(Q,P,). (3.41)
n=0

Hence,
N-1

E§[> Bal—0in LY(Q,Py). (3.42)
n=0

For ~,, applying It6 formula to hy, it’s easy to verify that
|E8 [iLtn+1 - ;Lth <CAt. (3.43)

Since he, — hy, . is independent from Q;, Vi, (Ve., — Vi),

nt1
B [ynl = B§ [Qe, Ve, (ht =Bt yy) - (Vinsy — Vi)
"’E(g)ﬁ [Qtn (Ytnﬂ - Ytn) ’ (Btn - ﬁtwl) ’ (th+1 - th)]
= E§ [he, —he, ] E§[Qe Ve, - (Ve = Vi)
+E5 Q. (Ytnﬂ - Ytn) : (iLtn - iLth) (Vi = Vi)

Then, from estimate (3.43), lemma 2.7, lemma 3.1, we get

n+1

B, [|ES [ya]l] € CAt-E, [|Qe, Ve, - (Vinsy — Vi) ]

+E$ [|Qtn (Y;fn+1 - Y;fn) : (;Ltn - iLtn+1) ' (‘/tn+1 - Wn)” (34‘4‘)
<C(At)?
and therefore
N-1 )
E§[> n]— in LY(Q,Py). (3.45)
n=0

Finally with convergence results in (3.38), (3.42) and (3.45), we have

N—-1 ~
> A, —0in LY(Q,P,)

n=0

as required. O
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3.2 Adjoint FBDSDESs

In this subsection, we consider the following FBDSDEs system, in which the “forward
SDE” (2.5) goes backward and the “Backward SDE” (2.6) goes forward

d?t :bt(§t)dt—0tdwt, OStST (SDE)

AV = —b,(X )V dt— ZTdiV, + (h(?t)?t - ??t) dV;, 0<t<r (BDSDE)
y‘I' =z, 70 :po(yo)a
(3.46)

where 0<7<T, ftT-dWS is a backward It6 Integral and ftT-dVS is a standard forward
It6 integral. Write the solution to (3.46) as (§3z7731773m) Then by inverting
the time index in the standard FBDSDEs system, ytTm is a ftWT adaptive stochastic

process and the solution (?Ew,731) of the BDSDE in (3.46) is adaptive to 7%,V F.

Similar to the notation used in Section 2.1, we denote ?t(x) = ?ix and 7t(x) = 7?

In addition, for any non-negative integer m and function 7;(xz) we write nt(m) = %.

We need the following regularity properties for b and o.
Assumption 3.3 For 0<s<t<T, functions b and o satisfy
b () = bs ()| + by (2) = by ()| < Clt=s|,  |ov—os|<Clt—s],
where C' is a given positive constant independent of b, o, s and t.

Lemma 3.4 can be proved by using repeatedly the variational form of BDSDEs [20].

Lemma 3.4 Assume that bECffb, gbGCEb, hECf’:b and every derivative of b, ¢ and h

has bounded support in R. Then for each my=0,1,2 and mo=0,1,2,3, Yt(ml), ?§m2)
have bounded support and satisfy

E ° E (m2)
/E[ sup ]dx<oo and /E[ sup ‘?tmz
R Lo<t<T R

0<t<T
Denote by (-,-) the standard inner product in £2. The following theorem shows that
¢ is the adjoint stochastic process of Y; defined in the FBDSDESs system (3.9).

}/t(ml)

2] dz < cc. (3.47)

Theorem 3.5 Assume that, in addition to Assumption 3.3holds, o is uniformly
bounded, beCf‘)b, qSEC?)b, hECl?jb and each derivative of b, ¢ and h has bounded support

in R. Then the process Ry := <Yt,?t>, t€1]0,T] is a constant for almost all trajectories.

Proof. According to [20], R; has a.s. continuous paths, it suffices to show that Vs,t €
[0,T], Rs=R; a.s..

For 0<s<t<T let s=tg<t;<---<ty=t be a temporal partition with uniform

stepsize tp,4+1 —tp = t_TS = At. For simplification of notations, we denote

AV, =V ~Vioo  Yoi=Yi,  Zn=Zi,. Yai=Yi, Zni=Z4,
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By Corollary 2.2 in [20], we have
Yo () :Y;fimwv ?n(x) 7%,17 Yot ( X:mm) vers 7n(§§:+1,w) :?izﬂwa

n+1 tny1?
tn,T tn,T tn,T t, tnt1,T tny1,x
Za(@)=Z0%, Zu(a) =207, Zup(Xint)=zin 2 Xy =l
Denote conditional expectations
E[]:=E[FY], Ei[]:=E[FY X, =a], E2[=E[FL X, =q.

It then follows from the definitions of E!' and Eg that
Y, =Ya(@),  E2V.]=V.@).

Without loss of generality suppose that At <sA (T —t) and define

Y, dr, ? = i 7Tdr.

0=
At s—At

1 t+At

Vy=—
NTAL Y,

-
For n=0,1,...,N —1, taking the conditional expectations E? and E?*! of temporal
discretized approximations of the BDSDEs in (3.9) and (3.46), respectively, we have
that (see [3])

EZ [Yn] = EZ [Yn-‘rl] +EZ [hn-i-l Yn+1] A‘/}n —|—EZ {TAZ"'H} AV}M (3.48)
[
Erot (V) = Boo () + Bo [ 9,7 ac
FE (17 an, - B[22, an, )

Ot,,

where -

%
hoi=h(Xe, ) b=t (K

Wi=h(X,).
-
By the definition of expectations E? and EP*+1,

bl -eprtn]. B[R] -eufn]. £ (R -s e

tnt1

Multiplying (3.49) by Ef[?n] and (3.49) by EIT1[Y,, 1], then taking integral with
respect to dz, we obtain

(B2 Val B2V 1) = (B2 o] B2V ]} + (B2 i Yara] B2V T AV,
+ (B 2oz, Bu¥ o,

0tn+1

(3.50)

and

(B2 Y i) B2 Yl
:<En+1[?n],1@"+ [Yosa] )+ <E"+1[ b ?] T Vo) ) At

x

+<<E;;+1 [R?n] B [Yai]) AV, <§Eg+1 [@771} EnH [Yn+1]>Ath.

(3.51)
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Subtraction of (3.51) from (3.50) results in

(B2 Val, B2V 0)) — (B2 Y ) B (Yo ])

x

_ <Eg Vo], EP[Y - En+t ?n]>+<3€g+1[?n],w [Yn+1]—]EZ+1[Yn+1]>

x

)
+ (B o1 Yo, Er Y] ) AV, <E"+1[h % o] B V] ) AV,
RS

<E”[pt"“ Zn+1] ErY,) >Ath <E"+1["t 7n],1Eg+ [ n+1]>Ath

Oty

(vi)
%
— (Bt -0V ] B Y ) At
(3.52)
In what follows, we prove that by taking the sum of equation (3.52) from n=0 to

n= N —1, the right hand side of the resulting equation converges to 0 as At—0. To
this end we estimate terms (iv), (v) and (vi) one by one.

(iv) By the definitions Ef and E”, we have
B2V - B2 [V =E[Y @) - Vu(Xir),
B2 Vo1 =Bt Vasa] =E Vi1 (X[723) = Yara (2)] .

tn41

It follows from Ito’s formula that

?n(§§:+1t) _ ?n(x)+/tn+l (_bs(y?ﬂ z ? ?tn+1 = s ?// ?tn“ - )
+/tn+10s7%(§2"*”)dﬁ/s, (3.53)

n

tnit
Yor (X173 = Yn+1(17>+/ (bs (X5 7) Y1 (X ®) + l 2> Yl (X)) ds
t

n

ot
+/t oY, (X" dW. (3.54)
Taking conditional expectation E to Equations (3.53) and (3.54), we obtain
tn
ErY. ) -ErY. = -E [ / (b (Bt ) T (Bt ) 4 L92) ?n Frs))d ]
t’Vl
=-E [—bn(yif””)7;(§§z*1””)+ (UtQ") 7;{(?2:*1’2)] At+ R,

tnt1 o 2
E7 Vo] —EJT Vo] = E [/ (bS(X?“m)Yvi+l(X£"’m)+ ( 2) n+1(Xt"’ ))d ]
t’Vl
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where

B, = —IE[ /t:”“(—bs(?;"“r? ey 4 (2 ?" (Ktnie))d ]
E{—bn(f?igﬂm? (Xte) 4 tn) 7” 22*”]. ,

— e tn,x / tn,x (US) " tn,r
Rn =E ] (bS(Xs )Yn-l—l(Xs )+ Yn-l—l(Xs ))dS

—E[bn (XM7Y (X7 x)+%yrg’ﬂ(xt )] - At.

As a consequence

(Bg Vo], LE Y- B Y. )
_ _/E[Ynﬂ(xﬁﬂ ) (B[=bu(Xi) Y (Kmr) + o6 g gtnsny). At=T, )dz.

(3.55)
Similarly

(B2 Y 0B o]~ B2 [Yaa])
- /RE{?,LC?;ZW)} (B bu (X[ )Y (X7 G Vi (X(0T)] - At Ry ) de.

i (3.56)
Adding (3.55) to (3.56) we have that
1= (= [ B[z BB P (Rl
(ivo1)
+/RIE[7,L(§§:“")}E[bn (X[ )Yy (X[ dw ) At
=2 (o0 )2 (3.57)
+( = [ B[t B PR
(iv-3)
+/R]E[7n(§§:*”)}E[(UtT")Y,iﬁrl(Xt Mde )-At+ RS,
(iv_4)

where

R:@:/E[ e (X[m0 B d:v—i—/ E[Y ,(X)| Ry da.
R
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Again by using the It6 formula we obtain

VK = Vi@ [ (o Fenn PuRenn + EEPO K ron)as
-/ " P (e )afp,,

n

@+ [ (R PO (Ko 1 TP Ry

2

.

n

n

+/tn+1US?;g)(%ZnH,I)dWS,
tn
tn 2
b (X127) = bu() + / bu (Tt (Kr) + T L g (o)) as

n

tn
+ / Vo (Xt )aiy,.
t

n

Hence, the term E[b, yt"“ ¢ 7 ytzﬂ””)] on the right hand side of (3.57) can be
written as E[b, ?t”“ ¢ ? ?t”“ )] :bn(x)?il(a:)—l—Pn(x) with

P =B[n@) [ (0K VUK + T (K as

n

tnt1 o 2
£ 7@ [ (n e (K + Tl Keas

tn

[ oS By + E iy
t'Vl
[ P P
2
[2%
tnt1
e [ o T Eas]
t'Vl

As a result the terms on the right hand side of (3.57) can be rewritten as

(iv—l):/R(Yn+1(a:)-bdx)?%(:z:))d:z:—l—Hé, (3.58)

(iv=2) = [ (Vola)ba @)Y s ) o+ 122 (3.59)
Ot 2 "
(iv-3) = —/R( 2") Yoir ()Y (2)de+ HE, (3.60)

(iv—4)=/R(Ut2") ?n(x)Yé'H(x)dx—i—Hg, (3.61)
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where

= [ {(Ynr()+E] / bty ) + Ty (30 as))) - Pate)

+IE[/ T b)Y (X ) 4 (@)% (X)) ds)] by (2) Y (2) bz,

2 n+1

sz/ {E/ (=0 () V(i) + LTI 00 ] b)Y L) e,
2= [ o) el [ (e 7<3 Ry + 2L P00 (Fpo))ay

1
fr tn,T / tn,x ( ) "
E[ ] (b (X )Yn-l-l (Xsm ) 2 Yn+1

fnt (US)
4B b e+
t’Vl

Loy [ (o P4 EET T

2

Hﬁ:/R{E[/t n+1(_bs(§2n+l,z)?;(§zn+l,z) 7s) ?” ytnﬂ ))]ds 2) Y (z) fda.

(xte))as))- Tl P )

n

Y (X0T))ds)]

Integrating by parts, we obtain

/ (Yoy1(2) bn (2) ¥ (2)) da = — / Yy (2)bn (1) Y () dz
R R

- /R Yoir (@), (2) Y n(2)de, (3.62)
‘/R%Ym(x)?x(x)dw— /R( 2> Y ()Y ()de, (3.63)

Ot 2 1 o 2 , ,
/R( 5) 7n(w)Yn+1(w)d:E= —/R%?n(x)lfnﬂ(x)dx. (3.64)

Adding (3.58) to (3.59) and applying (3.62), the sum of the first two terms on the right
hand side of (3.57) becomes

_ /R E[Yy 1 (X[ B[ = b (XY, (X4 dae
+ [ BT (Rl B b (XL )Y, (X (3.6)
/Yn+1 )bl (x x)dr+ H} +H2.

Similarly, adding (3.60) to (3.61) and applying (3.64), (3.64) yields

- [ R R T V e [ BV e T (R e
R R

= Hs +H;4w
(3.66)
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which is the sum of the last two terms on the right hand side of (3.57).
For first two terms on the right hand side of equation (3.52), we insert (3.65) and
(3.66) into (3.57) to obtain the following equation

(B2 Y], B2V o) - BEH V) + (B2 (Y ) B Vo]~ B2 Y]

3.67
= (—/Yn+1(x)b;(x)?n(x)dx)At+(H;+H§+H2+H;§)At+32. 307
R

Next, we consider the term

(B 1 Vo), BV ) AV, <E"+1 (Y], BV QLARING
in (3.52). From the definition of E' and Eg“, one has
(B 1 Yoy, EY,) )Av, <<E"+1 (Y o EVHY, n+1]>Ath

= [ BBV (XY @] =BT T (K o (@)},

77.+1 77.+1
(3.68)
We apply It6 formula to h on time interval [t,,t,11] to get

h th,m =h tn+lb th,z h/ th,z (05)2 h// Xtmac d
(X)) =h(z)+ (X (X ) 4 2= (X)) ds
t

n

tnt1
+ / osh/ (X" dwy,
tn

and

h(§::+lt) :h(:E) /tn+1 ?tn#»l x h/ ?tn+1 z %h”(??ﬁlm))ds

+ / " (Rl

Thus

E[R(X!"" ) Vi (X W)?n(x)]

— h(@)Yii1 (@)Y n(2) + Y o () E[(B(X[7)  h()) Yo ()

+h($)( n+1 X:;lfl Yn+1($)) (h(X::fl)_h(x)) (Yn-i-l(stﬁ)_Yn-i-l(x))]

and

B )Y LX) Yo (@)
— W(@)Y () Yoy (= )+Yn+1 E[(h(X %) — h(2)) ¥ (x)
() (¥ o (X2 _?nx) +(h( Yﬁ:*” —h(@)) (P (X5 ¥ (2)) ]

With the above equations, (3.68) becomes

<E”[hn+1Yn+1] Er Y] >AVt <En+1 R Y o) ETHLY, +1]>Avtn:G;Avtn,
(3.69)
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where

Gh= [T @) E[(XKL ) ~he) Va0
+h(@) (Yo (X055) — Yn+1<w>)+(h<X§:;ﬁ> h(2)) (Va1 (X375) = Yo (2))]
+1(2)-E[(h yt"“’ )—h(z))Y ,(2)
() (7 o (B = F o @) 4 () = h(a)) (o (F0) = F @) o

Finally, we consider the term

<Eg[ﬁt"+l Zora) BT [? >AVt <E"H pt L, LESH n+1]>AVt

0tn+1

on the right hand side of equation (3.52). From the relation between Z; and 8 t given
n (2.8), we know that

Y (X)) m
%(th ) Loy

tni1

ZnJrl(Xtmz)

tnt1 n41

and

tni1,T
Zu(Xi)= —a?"(a%j" Jwi
Therefore we have

(B2l 2, B2(7 )

E| /R %ZnH(Xf"’z)-?n(x)dx}

Otpi1 Otpi1 o
. aYn 1( m) T
-£[[ o D) 3 ). wxtnn) e
(3.70)
and
(B2 s ) = B[ [ 222, (%07 Yoo >dw}
Utn Rgt
tn+1,x
_ ]E|:/p~tn 8?77,(%1% n+1 ytwrl, 1d.’IIi|,
R 8$
(3.71)

Adding (3.70) and (3.71) together, we obtain

Utn+1

W R, 2 (3.72)
IE{/p,gn+1 D (x) n(gc)dgc—i-/]Rptn+1 . (x) Yn+1(:v)d:v] +Gz,

Ox tnt1 Ox

oY, 1 1 9y,
—I—E[/ptn o §§Z+ ) Yo (x yt“ ” 1d:1c—/Rptn+1W(x)-Yn+1(:v)d:v}.

~ oY, . . 5 oY,
G2 =E| / P L (XY Y (@) (VXL ) e~ / ptn+1—“<x>-7tn<w>dx}
R R
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Integrating by parts gives,

Y, oY,
[T @V u@ito=— [ 5t T2 @) Y 0

Therefore

62 =(mles 2, BF ) AV + (B 2 B Wn]). ()

Otnia tn

From (3.67), (3.69) and (3.73), equation (3.52) becomes
(B2 E2(Y ) — (B2 ¥ M) B2 [V o)

=(- / Yn+1(x)b;(x)7n(x)dx)m+ (HY+H2+H32+ Hp)At+RY
R

(3.74)
n / b, (XY (X 9)Y,, o () deAt+ G AV,
R
where
H,=H)+H2+H3+H}, G,=GL+G?
and
F, /Yn+1 b (X Y (X — 1 ()Y (1)) dz.
Next, we sum (3.74) from n=0 to n=N —1 to get
(E20va], B[V ol ) — (BN Y v, EN [vv])
(3.75)

N—-1
=Y (HnAt+RE+GuAV,, +F,At).
n=0

From definitions of H,, , RZ, G, and F,, it’s easy to verify that E[(H,)?] < C(At)?,
E[(R®)?] <C(AHYE(G,)? ]SC( t)? and E[(F,)?] < C(At). Therefore,

N-1

dim > (HoAt+ R +GnAV;, +F,At) =0, a.s..

n=

Also, since lima; oYy =Y; and lima; .o Yy =Y;, we have
<YS7?S> = <K77t>

as required. [J

Now are ready to state the main result in this paper. It is a direct consequence of
Theorems 3.2 and 3.5.

Theorem 3.6 Assume that the ssumptions in Theorem 8.2 and Theorem 3.5 hold.
Then

(Yr,6)=EloUnQr|FL],  VoeL=(®R?).
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Proof. Applying Theorem 3.5, one has
<7T7YT> = <70,Y0> :

Since Y7 = ¢ as given in (3.9), Yo= po as given in (3.46) and Yo = E, [¢(S7)Qr|FY¥ ]
as proved in Theorem 3.2, we have

(V1.6) = [ (o) Eulo(Un)Qu| 7 da.
R
Let ¢ be any bounded ]-':‘p/ measurable random variable,

B.1(Vr.6)¢1= [ () Eu [oUn)Qrelds.
R
It then follows from the fact that P,(:|F})=P(:|F)), and definition of P

E(Y 1.6) ¢l = El6(Ur)Qré]

as required in the theorem. [J
Remark. From (2.4), we can see that

(7o)

E[o(Un)|Fr]==r-rmr
R )

Thus the solution 7T of the FBDSDE (3.46) indeed provides an unnormalized solution

for the optimal filter problem.

4 Closing Remarks

In this paper, we derived a Feymann-Kac type BDSDE formula for optimal filter prob-
lems and its adjoint. Then we show that the adjoint provides a unnormalized solution
for the optimal filter problem (BSDE filter). As our preliminary work has shown, the
BSDE filter has the potential to solve the optimal filter problem with more accuracy
and less complexity than traditional filter methods.
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