
Graph-Based Ascent Algorithms for Function Maximization

Muni Sreenivas Pydi1, Varun Jog2 and Po-Ling Loh3

Department of Electrical & Computer Engineering
University of Wisconsin - Madison

Madison, WI 53706
Email: 1pydi@wisc.edu, 2vjog@ece.wisc.edu, 3loh@ece.wisc.edu

Abstract— We study the problem of finding the maximum of
a function defined on the nodes of a connected graph. The goal
is to identify a node where the function obtains its maximum.
We focus on local iterative algorithms, which traverse the nodes
of the graph along a path, and the next iterate is chosen from
the neighbors of the current iterate with probability distribution
determined by the function values at the current iterate and
its neighbors. We study two algorithms corresponding to a
Metropolis-Hastings random walk with different transition
kernels: (i) The first algorithm is an exponentially weighted
random walk governed by a parameter gamma. (ii) The second
algorithm is defined with respect to the graph Laplacian and
a smoothness parameter k. We derive convergence rates for
the two algorithms in terms of total variation distance and
hitting times. We also provide simulations showing the relative
convergence rates of our algorithms in comparison to an
unbiased random walk, as a function of the smoothness of the
graph function. Our algorithms may be categorized as a new
class of ”descent-based” methods for function maximization on
the nodes of a graph.

I. INTRODUCTION

Social media and big data analysis have led to an explosion
of graph-structured datasets in diverse domains such as
neuroscience, economics, sensor networks, and databases.
In many important instances, the object of interest may
be expressed as a function defined on the vertices of the
graph. For example, in social network analysis, it is useful
to identify a node or nodes with a maximal centrality (or
“influence”) score relative to the other nodes, for the purpose
of performing strategic interventions [1], [2]. In electrical
network modeling, the edges of a graph correspond to
connections in an electrical grid, and the amount of power
available at each node may similarly be represented using
a graph-structured function [3]. This has led to a variety
of statistical studies in graph function estimation, including
Laplacian smoothing [4], [5] and graph trend filtering [6],
when noisy measurements of graph characteristics may be
available.

In this paper, we focus on the problem of obtaining the
maximum value of a function defined on the nodes of a
graph. We assume a setting where only local information
is available, and any algorithm must make decisions based
on graph information obtained by traversing the nodes of
the graph in a sequential manner. For instance, such a
setting may arise in web crawling [7], respondent-driven
sampling [8], or other demographic studies [9]. Although
basic properties of Markov chains imply that an unbiased

random walk on the nodes of a connected graph will eventu-
ally visit every node—hence produce a function maximum—
we wish to use information about the value of the function
on neighboring nodes to guide the path of the algorithm,
borrowing ideas from the extensive literature on function
optimization in the continuous domain.

For continuous optimization, several algorithms such as
gradient descent, stochastic gradient descent, stochastic gra-
dient Langevin dynamics, and momentum-based descent
algorithms [10], [11], [12] provide guarantees for finding
local and global optima when the function is sufficiently
smooth. Common classes of smooth functions include Lip-
schitz functions, convex functions, and Polyak-Łojasiewicz
functions [13]. Most of these notions, however, do not
have direct analogs in the discrete domain of graphs. For
instance, there is no obvious analog of a convex function
on a graph [14], [15]. In this paper, we take a step toward
systematically studying function optimization on graphs by
considering a certain class of smooth graph functions, where
the notion of smoothness is motivated by the theory of band-
limited graph signals. Such topics constitute an area of study
in graph signal-processing [16], which has become popular
within the signal processing community in recent years [17],
[18]. The algorithms we propose exploit the underlying graph
structure to construct efficient algorithms for maximizing
such smooth graph functions, producing a promising analogy
to gradient descent algorithms for continuous functions. Two
key features of all our algorithms are that they are iterative
and local; i.e., the random walk relies only on the function
values of neighboring nodes when deciding its next step.
This is a direct analogy to first-order optimization methods
in continuous domains.

Our proposed algorithms employ random walk meth-
ods based on Monte Carlo approaches, specifically the
Metropolis-Hastings (MH) algorithm [19]. An important idea
is to reformulate the problem of graph function maximization
as a problem involving sampling vertices with high function
values. Such strategies have recently gained traction in
continuous domain optimization, as well [20], [21], [22].
Starting with a proposal probability density on the vertices
of the graph that is related to the original function values in
an appropriate manner, we construct random walk transition
kernels that converge to the desired proposal distribution. Our
approach differs significantly from comparable approaches in
the literature in the following way: In constructing the MH

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

U.S. Government work not protected by
U.S. copyright

1

random walk kernel, we exploit the graph-connectivity infor-
mation implied by the graph Laplacian matrix to construct
rapidly-mixing walks that converge to the function maxi-
mum. Through hitting time analysis, we provide theoretical
guarantees for the speed of convergence of these algorithms.

The remainder of the paper is organized as follows: In
Section II, we introduce the mathematical formulation of the
graph maximization problem and the types of local algo-
rithms and smooth functions we will consider. In Section III,
we provide a formal statement of our proposed algorithms,
which are analyzed rigorously in Section IV. In Section V,
we provide simulations demonstrating the behavior of our
algorithms. We conclude with a list of interesting open
questions in Section VI.

a) Notation: We write ‖ · ‖TV to denote the total
variation norm and ‖ · ‖2 to denote the Euclidean norm of
a vector. For a matrix A ∈ Rn×n, we write diag(A) to
denote the n × n matrix with diagonal entries equal to the
components of A and all other entries equal to zero. We
write b·c to denote the floor operator.

II. BACKGROUND AND PROBLEM SETUP

Consider an unweighted, undirected graph G with vertex
set V of size n and symmetric adjacency matrix W . For
a node i ∈ V , we write di to denote the degree of i and
N(i) to denote the neighborhood set of i. We write dmax =
maxi∈V di. We refer to a function f : V → R as a graph
function defined on the vertices of G, and sometimes write
fi to denote the function value f(i). Our goal is to design a
local algorithm that finds the maximum value of an unknown
graph function in an efficient manner.

A. Local Search Algorithms

Formally, we define a local search algorithm as a discrete
time Markov process, where the states of the process are
the n nodes, and a Markov chain in state Xt at time t
chooses the next state Xt+1 among the neighbors of Xt, with
transition probability distribution defined as a function of the
value f(Xt) and the set of values {f(Vt) : Vt ∈ N(Xt)} at
neighboring nodes in the graph.

We briefly mention some related work. Borgs et al. [23]
studied the problem of finding the first node in a preferential
attachment network, where the algorithm is given access to
all nodes in a frontier of radius r around the set of previously
queried nodes. Frieze and Pegden [24] proposed an alterna-
tive algorithm of finding the root of a preferential attachment
graph, where the algorithm is given access to a sorted list of
the highest-degree neighbors of the current iterate. Brautbar
and Kearns [7] studied algorithms for finding nodes with
high degrees or high clustering coefficients using a “jump
and crawl” method, where a crawl step consists of randomly
querying a neighbor of the existing iterate, and a jump step
allows the algorithm to query a uniformly sampled node
from the vertex set of the graph. Note, however, that our
methods differ from the studies of Borgs et al. [23] and
Frieze and Pegden [24] due to the fact that we are interested
in different classes of graph functions besides the degree

function (indeed, the degree function may not be smooth),
and from the study of Brautbar and Kearns [7] due to the fact
that successive steps may only visit immediate neighbors,
rather than jumping to an entirely different node in the graph.

B. Metropolis-Hastings Algorithm

Many of our algorithms are based on versions of the
Metropolis-Hastings Algorithm, which we review in this
section. Given a state space V and a target probability density
pf (·), the MH algorithm constructs a Markov chain with
transition probability matrix P whose stationary distribution
π is the same as the target probability density (i.e., π(i) =
pf (i) ∀ i ∈ V). The matrix P is defined in terms of a
“proposal” distribution Q, as follows:

Pij =

{
QijR(i, j), j 6= i

1−
∑
j 6=iPij , j = i,

(1)

where

R(i, j) = min

(
1,

pf (j)Qji

pf (i)Qij

)
. (2)

The general idea behind the MH algorithm is that successive
steps are guided by the proposal distribution, such that the
move from node i to node j depends on the ratio pf (j)

pf (i)
, but is

also moderated by the proposal distribution according to the
ratio Qji

Qij
. Known results in probability theory guarantee the

convergence of the MH algorithm to the target density [25].
In addition to generating samples from a desired distribu-

tion, however, the MH algorithm is also a valuable tool in
stochastic optimization [19]. The key idea is that if a function
f with domain V is encoded into an appropriate density pf ,
such that larger values of f correspond to larger values of
pf , the random walk generated by the MH algorithm will be
more likely to visit nodes with larger density values, hence
larger values of f .

The independent MH algorithm corresponds to the choice
of proposal distribution Qij = pg(j), where pg is some
probability measure over the state space V . In Section III,
we present a variety of algorithms for function maximization
based on running the MH algorithm with different choices
of proposal distributions and target densities, for which we
may obtain provable guarantees for the rate of convergence.

C. Smooth Graph Functions

We wish to leverage information about local changes in
the graph function across edges in the graph to guide the
movement of an algorithm. Intuitively, this will lead to
improvements in the rate of convergence of an algorithm
to the graph maximum when the function satisfies certain
smoothness properties, as a rough analog of the convergence
results of gradient descent for smooth functions on a real
domain. In order to make these notions rigorous, we now
define the smooth class of graph functions to be analyzed
in our paper, borrowing from the literature on graph signal
processing.

The unnormalized graph Laplacian for a graph G with
adjacency matrix W is given by L = D −W , where D =

2

diag
(∑n

j=1Wij

)
is the degree matrix. Since the Laplacian

is symmetric, we can calculate the eigendecomposition of
L as UΛUT , where U ∈ Rn×n is an orthonormal matrix
whose ith column ui is the eigenvector corresponding to
the eigenvalue λi, and Λ is a diagonal matrix with sorted
eigenvalues 0 = λ1 ≤ · · · ≤ λn.

Since U is unitary, the columns of U form an orthogonal
basis for any graph function f . In the basis of Laplacian
eigenvectors, the function f may be written as f = Uf̂ ,
where f̂ is defined as the graph Fourier transform f̂ = UT f .
The ith column ui of U is the ith Fourier mode of the graph,
corresponding to the ith smallest graph frequency, also equal
to
√
λi [16].

Intuitively, a “smooth” graph function is a function that
does not vary much across vertices that are connected by
edges. This notion of smoothness is captured by the term
fTLf , as shown in the following identity [26]:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2. (3)

For a smooth function, the sum of squared differences (fi−
fj)

2 across all the connected vertices is small, implying that
fTLf is small. Representing f in the Fourier basis, we have

fTLf = (f̂TUT)UΛUT (Uf̂) = f̂TΛf̂ =

n∑
i=1

λif̂i
2
.

Since the λi’s are arranged in ascending order, setting the
higher-order Fourier coefficients f̂i’s close to zero leads to a
small value for fTLf , implying that f is smooth. We have
the following definition:

Definition 1. A function f : G → R is called k-smooth if
there exists a vector α ∈ Rk such that f = Ukα, where
Uk ∈ Rn×k is the matrix consisting of the first k columns of
U .

In general, any graph function f can be decomposed as
f = fks + fr, where fks = UkU

T
k f is the k-smooth

component and fr is the residual component. Note that
fr⊥fks, so

‖f‖22 = ‖fks‖22 + ‖fr‖22.

In graph signal processing, a k-smooth function is viewed as
a band-limited graph signal restricted to the lowest k Fourier
modes of the graph. The vector α represents the projection
of f onto the lowest k graph frequencies [18].

Denote δi to be the vector with 1 in the ith coordinate and
zeros elsewhere. We then have the following definition:

Definition 2. The term ‖UTk δi‖2 is referred to as the local
cumulative coherence of order k (LC-k) at node i [27]. The
LC-k quantity satisfies

‖UTk δi‖2 =
‖UTk δi‖2
‖δi‖2

=
‖UTk δi‖2
‖UT δi‖2

. (4)

From equation (4), we see that ‖UTk δi‖2 gives the pro-
portion of the energy of the graph impulse function δi that
is concentrated on the top k Fourier modes [18]. The LC-k

Fig. 1. Examples of randomly generated smooth functions with k = 10,
k = 20, and k = 30 on a 32 × 32 2D grid graph of n = 1024 nodes.
The eigenvectors u10, u20 and u30 are plotted in the first row. A higher
intensity on a pixel indicates a higher positive value for the vector at that
node. Note that as expected, functions corresponding to a smaller value of
k have fewer undulations.

varies between 0 and 1. Whereas we do not usually associate
δi with smoothness, it may happen that for certain graph
topologies, the value of LC-k at node i is close to 1, implying
that δi is an approximately k-smooth function on the graph.
Although LC-k cannot be computed locally, methods exist
for computing the value approximately, without having to
perform an eigendecomposition of a potentially large graph
Laplacian matrix [18], [27].

III. ALGORITHMS

We now describe the local algorithms that we will compare
in this paper. A theoretical analysis of the relative conver-
gence rates is provided in the next section.

A. Vanilla Random Walk

Algorithm 1 Vanilla RW

Require: Local access to graph G (i.e., at every node, all
its neighbors are accessible) and number of iterations T .

1) initialize:
i← Unif{1, . . . , n} (Uniform sampling from V)
imax ← i
fmax ← fi

2) repeat for T iterations:
i← Unif{j : wij = 1}
if fi > fmax:

fmax ← fi
imax ← i

return imax

We begin by formally writing out the algorithm for an
unbiased random walk on the vertices of the graph. The
random walk proceeds around the nodes of the graph that
are connected by edges. The transition kernel for the vanilla
random walk is given by P = D−1W . Thus, the transition
probability from node i to node j is given by Pij =

wij

di
,

3

where wij = 1 if an edge exists between i and j, and wij = 0
otherwise.

The vanilla random walk is agnostic to the function f , and
converges to a stationary distribution that is proportional to
the degrees of the graph nodes [28]. Note, however, that we
cannot immediately conclude that such a function-agnostic
random walk will not optimize the function efficiently—
the class of k-smooth functions on graphs does not have
a simple description, and it may happen that optimizers of
such functions lie at high-degree nodes, which are precisely
those nodes that attract the vanilla random walk.

B. Exponentially-Weighted Walk

The second algorithm involves biasing the choices of
each move in the vanilla random walk according to the
function values on the neighboring nodes. We choose an
exponential weight function, so that the target probability
density is defined by pf (i) ∝ exp (γfi). Starting with a
proposal distribution Q = D−1W , we use the MH method
in equation (1) to construct the transition kernel for the
exponentially-weighted walk, as follows:

Pij =

{
1
di
wijR(i, j) j 6= i,

1−
∑
j 6=iPij j = i,

(5)

where

R(i, j) = min

(
1,

pf (j)(1/dj)

pf (i)(1/di)

)
= min

(
1, eγ(fj−fi)

di
dj

)
.

Thus, the transition probability between any two nodes in
the exponentially-weighted walk depends on the difference
in function value fi − fj and the degrees of the nodes. The
parameter γ determines the “peakiness” of the target density
pf .

Unlike in the vanilla random walk, we assume that at
every node, it is possible to access the function value and the
degree of its neighbors. However, we do not make use of the
smoothness constraint on the function. The parameter γ may
be viewed as controlling the greedy nature of this algorithm.
When γ = +∞, the random walk always ascends; i.e., if
f(j) < f(i), then P (i, j) = 0. However, such a greedy walk
is susceptible to getting stuck at local maxima and failing to
find the global maxima quickly. At the other extreme, when
γ = 0, the exponential random walk is function-agnostic (as
in the vanilla random walk), and converges to the uniform
distribution over vertices.

C. Graph Laplacian Walk

For the third algorithm, we use a proposal distribution that
is derived from the graph Laplacian, instead of the vanilla
random walk proposal distribution Q = D−1W that we used
for the exponentially-weighted walk.

Let Uk represent the matrix containing k eigenvectors
corresponding to the smallest k eigenvalues of the graph
Laplacian. Let δi ∈ {0, 1}n represent the indicator vector
for node i. The proposal distribution for the graph Laplacian

Algorithm 2 Exponential RW(γ)

Require: Local access to graph G and function f (i.e., at
every node, all its neighbors and their function values are
accessible), number of iterations T , and tuning parameter
γ.

1) initialize:
i← Unif{1, . . . , n} (Uniform sampling from V)
imax ← i
fmax ← fi

2) repeat for T iterations:
Generate j according to Pij given in equation (5)
i← j
if fi > fmax:

fmax ← fi
imax ← i

return imax

walk is given by

Q′ij =
‖UTk δj‖22∑

j:wij=1 ‖UTk δj‖22
wij . (6)

Note that the Laplacian-based proposal distribution Q′ is
indeed “local,” since Q′ij = 0 whenever Qij = 0. For
the Laplacian walk, we choose a target probability density
according to pf (i) ∝ f2i . The squaring of the function
restricts our analysis to maximizing positive functions. Using
the MH method in equation (1), we derive the transition
kernel for graph Laplacian walk, as follows:

Pij =

{
Q′ijR(i, j) j 6= i,

1−
∑
j 6=iPij j = i,

(7)

where we set R(i, j) = 0 if wij = 0; and if wij = 1, we
have

R(i, j) = min

(
1,
pf (j)Q′ji
pf (i)Q′ij

)
(8)

= min

(
1,
f2j
f2i

‖UTk δi‖22
‖UTk δj‖22

∑
j:wij=1 ‖UTk δj‖22∑
i:wji=1 ‖UTk δi‖22

)
.

An important difference between the exponentially-
weighted walk and the graph Laplacian walk is that the
former algorithm is truly a local algorithm. Indeed, only
the function values of the neighboring nodes are needed to
determine the probability distribution for the next step of
Algorithm 2. This differs from Algorithm 3, for which we
assume knowledge of the graph Laplacian (or at least its
top k eigenvectors) in order to compute ‖UTk δi‖22 for the
neighboring nodes of every iterate.

We now describe a variant of Algorithm 3 applicable to
approximately smooth functions. We begin with a definition:

Definition 3. A function f is ε-approximately k-smooth if
for the decomposition f = fks + fr where fks = UTk Ukf ,
we have

|fr(i)| ≤ ε‖fks‖2,

4

Algorithm 3 Laplacian RW(k)

Require: Function smoothness k, local access to graph G,
function f and LC-k (i.e., at every node, all its neighbors,
their function values, and their LC-k values are accessi-
ble/computable), and number of iterations T

1) initialize:
i← Unif{1, . . . , n} (Uniform sampling from V)
imax ← i
fmax ← fi

2) repeat for T iterations:
Generate j according to Pij given in equation (7)
i← j
if fi > fmax:

fmax ← fi
imax ← i

return imax

for all i ∈ V and some ε > 0.

For the class of ε-approximate k-smooth functions, the
proposal distribution for the graph Laplacian walk given in
equation (6) is replaced by

Q′ij =

(
‖UTk δj‖2 + ε

)2∑
j:wij=1

(
‖UTk δj‖2 + ε

)2wij . (9)

The transition kernel for the Laplacian walk will remain
the same as in equation (7), with the modified Q′ij in
equation (9).

IV. THEORETICAL ANALYSIS

In this section, we provide results concerning the con-
vergence rate of the local search algorithms. For both of
our algorithms, we derive bounds on (i) the total variation
distance between the probability distribution at time t and the
stationary distribution of the Markov chain; and (ii) bounds
on the hitting time of the algorithm in expectation and in high
probability. A practical consequence of the total variation
bounds is that if we run the corresponding local algorithms
for sufficiently many steps, we are guaranteed that taking the
maximizer of the empirically constructed distribution will be
provably close to the function maximizer. The hitting time
bounds may be interpreted as a bound on the amount of
time needed to first visit a maximum—thus, if we halt the
algorithms after a prescribed number of steps and choose the
node with the largest function value so far, we are guaranteed
to obtain a maximum with high probability. In fact, if we are
given slightly more knowledge (i.e., that we have located a
function maximizer upon visiting it for the first time), the
theorems provide stronger guarantees for a variant of the
local algorithms that halt once they identify a maximum.

A. Exponentially-Weighted Walk

In this section, we analyze the exponentially-weighted
random walk in Algorithm 2.

1) Convergence: In the first theorem, we show the con-
vergence of the exponentially-weighted random walk to the
target density pf in total variation norm.

Theorem 1 (Convergence of Algorithm 2). For a connected
graph G with diameter r, and for a graph function f that is
nonzero on all vertices, the rate of convergence of the random
walk proposed in Algorithm 3 to its stationary distribution
pf is given by

||Pti∗ − pf ||TV ≤

(
1−

δr−1f

(dmax∆f)r

)b t
r c
, ∀ i ∈ V, (10)

where Pti∗ is the ith row of Pt (the transition probability
matrix after t steps), δf = mini pf (i), ∆f = maxi pf (i).

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

2) Results on Hitting Times: In the next theorem, we
prove an upper bound on the expected number of steps it
takes for Algorithm 2 to reach the function maximum.

Theorem 2 (Expected hitting time). For Algorithm 2, let
vt ∈ V be the state at time t, and define Thit = min{t ≥
0 : fvt = fmax} to be the number steps it takes for
Algorithm 2 to reach the function maximum. Let fmin denote
the minimum value of the function f . Then the expected value
of the hitting time is bounded by

EThit ≤ drmaxeγ(r−1)(fmax−fmin). (11)

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

We now derive a high-probability bound on the hitting
time.

Theorem 3 (High-probability bound on hitting time). For
any initial distribution µ and any s > 0, we have

Pµ[Thit > t] ≤
(
t?hit
s

)bt/sc
, (12)

where t?hit = drmaxe
γ(r−1)(fmax−fmin) and t > 0.

Proof: For any integer m ≥ 1, we have

Pµ[Thit > ms | Thit > (m− 1)s] ≤ max
j

Pj(Thit > s)

≤ Ej(Thit)
s

=
t?hit
s
.

By induction on m, we obtain Pµ[Thit > ms] ≤
(
t?hit

s

)m
,

which implies inequality (12).

B. Graph Laplacian Walk

We begin by proving a few lemmas concerning the pro-
posal distribution Q′ used in Algorithm 3 for k-smooth
and ε-approximately k-smooth functions. We establish the
following envelope condition:

1

M
pf (j) ≤ Q′ij , (13)

5

for an appropriate constant M , when wij = 1.

Lemma 1 (Dominance for k-smooth graph functions). Sup-
pose f is k-smooth. For the proposal distribution Q′ given in
equation (6), the envelope condition (13) holds with M = k.

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

Lemma 2 (Dominance for ε-approximate k-smooth graph
functions). Suppose f is ε-approximate k-smooth. For the
proposal distribution Q′ given in equation (9), the envelope
condition (13) holds with

M = k + 2k
√
nε+ nε2. (14)

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

1) Convergence: The first theorem concerns convergence
in TV distance.

Theorem 4 (Convergence of Algorithm 3). For a connected
graph G with diameter r, and for a k-smooth graph function
f (either exact or ε-approximate) that is nonzero on all
the vertices, the rate of convergence of the random walk
proposed in Algorithm 3 to its stationary distribution pf is
given by

‖Pti∗ − pf‖TV ≤

(
1−

δr−1f

Mr

)b t
r c
, ∀ i ∈ V, (15)

where Pti∗ is the ith row of Pt, δf = mini pf (i), and M is
the dominance constant established in Lemmas 1 and 2.

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

2) Results on Hitting Times: In the next theorem, we
prove an upper bound on the expected number of steps it
takes for Algorithm 3 to reach the function maximum.

Theorem 5 (Expected hitting time). For Algorithm 3, sup-
pose vt ∈ V be the state at time t, and define Thit =
min{t ≥ 0 : fvt = fmax}. The expected value of the hitting
time is bounded by

EThit ≤
(M ||f ||2)r

f2maxf
2(r−1)
min

. (16)

Proof: We refer the reader to the full verison of the
paper: https://arxiv.org/abs/1802.04475.

The high-probability bound on expected time would be
same as that in Theorem 3, with

t?hit =
(M ||f ||2)r

f2maxf
2(r−1)
min

.

Fig. 2. An example run of the algorithms on a 20-smooth function on a
32×32 2D grid graph. White pixels in rows 2 to 5 indicate nodes that have
been visited by the algorithm. White pixels in the function plot denote high
function values. Notice that the Laplacian RW is very effective at traversing
regions of the graph where the function takes large values. The exponential
RW with γ = 1 is also effective at reaching the function peaks located at
the coordinates (15,10). The vanilla random walk covers a large area but
without any preferred direction, as expected.

V. EXPERIMENTS

In this section, we consider various graph topologies
and approximately k-smooth functions defined on the nodes
of the graphs and compare the algorithms described in
Section III. We simulated Algorithms 1, 2 and 3 on the
following graph models: (i) 2D Grid graph, (ii) Erdős-Renyi
(ER) graph, (ii) and Barabasi-Albert (BA) graph. For the
2D grid graph, we ran the algorithms on a 32 × 32 grid of
n = 1024 nodes. For the ER graph, we generated a random
graph with n = 1000 nodes with the probability of an edge
between any two nodes being p = 1.1 logn

n , and discarded the
graphs with isolated nodes so that the entire graph formed
one connected component. For the BA graph, we generated
a random graph with n = 1000 nodes starting with a seed
set of m = 3 nodes.

For each of these graphs, we generated random smooth
functions for varying values of k. For each value of k,
we sampled α from a k × 1 vector of standard normal
random variables, and constructed the smooth function as

6

f = Ukα, where U ∈ Rn×k is the matrix containing the top
k eigenvectors of the graph Laplacian matrix. The functions
were then made nonnegative by lifting the function value at
every node by the minimum. Since the constant vector is
the first eigenvector of the graph Laplacian, this process of
adding a constant vector does not affect the smoothness of
the function.

The algorithms were run till the random walk “hit” the
maximum, or up to a maximum of 10, 000 steps. The hitting
times were then averaged over 100 iterations for each value
of k, and for 10 randomly chosen functions (i.e., a total of
1000 iterations for each value of k). For Algorithm 2, we
ran the experiments with two different values of γ. The case
γ = 0 corresponds to a function-agnostic random walk that
converges to a uniform stationary distribution across all the
nodes. The case γ = 1 corresponds to a moderately greedy
random walk that converges to a stationary distribution pro-
portional to eγf . A high value of γ would reduce Algorithm
2 to a ‘greedy’ walk that gets stuck in local minima, which
is not desirable. For instance, in our experiments, γ = 10
led to very poor performance due the algorithm often being
unable to move out of local minima.

Figure 3 reports the results for various random graph
models. As can be seen, the Laplacian walk of Algorithm 3
consistently outperformed all other algorithms for all the
three classes of graphs we considered. It is also worth noting
that changing the comparison criterion from hitting the global
maximum to hitting the top 1% of nodes did not change the
performance of the algorithms in our simulations.

VI. DISCUSSION

We have presented two new algorithms for graph function
maximization based on local movements around the nodes
of a graph. Our first algorithm concerns an exponentially
weighted random graph, and our second algorithm uses in-
formation about the spectrum of the graph Laplacian matrix.
We have provided theoretical results concerning the rate of
convergence of our algorithms in terms of total variation
distance and hitting time when the graph function belongs
to a certain smoothness class.

The algorithms we have studied in this paper only involve
local movements along edges, from one node to an adjoining
neighbor. However, one might imagine variants of the algo-
rithms that allow “jump” movements that reinitialize the walk
at a randomly drawn vertex, either uniformly selected from
all the nodes or all the nodes previously explored in previous
time steps. It would be interesting to see how incorporating
the option of a jump move might affect the convergence
analysis of the algorithms.

Another question to explore is the tightness of our bounds
on rates of convergence of the algorithms. Our results are
derived based on a seemingly coarse analysis, and it would
be interesting to see if it is possible to find worst-case
graphs and classes of smooth functions for which one can
also derive lower bounds for the rate of convergence of any
local algorithm. This also gives rise to the important related

Fig. 3. Comparison of hitting times as a function of smoothness for various
random graph models

question of the landscape of local and global optima of a k-
smooth function, where the smoothness is defined in terms
of eigenvalues of the graph Laplacian. This appears to be
a challenging problem even for k = 2 and for Erdős-Renyi
random graphs. Ideally, we would also like to be able to
translate the bounds on total variation distance and hitting
time into precise recommendations regarding the number
of iterates required for each of our algorithms to locate a
maximum.

A final question concerns improving the convergence rate
of local algorithms when the next iterate is allowed to depend

7

on the values of the function in a neighborhood of radius
r around the current iterate. The algorithms described in
this paper are limited to the case when r = 1. However, if
the local algorithm were given information about a larger
neighborhood at each step, perhaps it would be possible
to devise an analog of higher-order descent algorithms,
which are known to exhibit faster rates of convergence in
continuous optimization settings.

REFERENCES

[1] D. Chen, L. Lü, M.-S. Shang, Y.-C. Zhang, and T. Zhou, “Identi-
fying influential nodes in complex networks,” Physica A: Statistical
Mechanics and Its Applications, vol. 391, no. 4, pp. 1777–1787, 2012.

[2] M. O. Jackson, Social and Economic Networks. Princeton University
Press, 2010.

[3] N. K. Vishnoi, “lx = b laplacian solvers and their algorithmic ap-
plications,” Foundations and Trends in Theoretical Computer Science,
vol. 8, no. 1–2, pp. 1–141, 2013.

[4] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in ICML, vol. 2, 2002, pp. 315–322.

[5] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Learning Theory and Kernel Machines. Springer, 2003, pp. 144–158.

[6] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, “Trend
filtering on graphs,” Journal of Machine Learning Research, vol. 17,
no. 105, pp. 1–41, 2016.

[7] M. Brautbar and M. J. Kearns, “Local algorithms for finding interest-
ing individuals in large networks,” 2010.

[8] D. D. Heckathorn, “Respondent-driven sampling: A new approach to
the study of hidden populations,” Social Problems, vol. 44, no. 2, pp.
174–199, 1997.

[9] A. Banerjee, A. G. Chandrasekhar, E. Duflo, and M. O. Jackson,
“Gossip: Identifying central individuals in a social network,” National
Bureau of Economic Research, Tech. Rep., 2014.

[10] D. P. Bertsekas, Nonlinear Programming. Athena Scientific Belmont,
1999.

[11] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient
Langevin dynamics,” in Proceedings of the 28th International Confer-
ence on Machine Learning, 2011, pp. 681–688.

[12] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate o(1/k2),” in Soviet Mathematics Doklady,
vol. 27, no. 2, 1983, pp. 372–376.

[13] ——, Introductory Lectures on Convex Optimization: A Basic Course.
Springer Science & Business Media, 2013, vol. 87.

[14] Y. Lin, L. Lu, and S.-T. Yau, “Ricci curvature of graphs,” Tohoku
Mathematical Journal, Second Series, vol. 63, no. 4, pp. 605–627,
2011.

[15] H. Hirai, “Discrete convex functions on graphs and their algorithmic
applications,” in Combinatorial Optimization and Graph Algorithms.
Springer, 2017, pp. 67–100.

[16] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–
98, 2013.

[17] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection
for bandlimited graph signals using graph spectral proxies,” IEEE
Transactions on Signal Processing, vol. 64, no. 14, pp. 3775–3789,
2016.

[18] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random
sampling of bandlimited signals on graphs,” Applied and Computa-
tional Harmonic Analysis, 2016.

[19] P. R. Christian and G. Casella, Monte Carlo Statistical Methods.
Springer New York, 1999.

[20] A. S. Dalalyan, “Theoretical guarantees for approximate sampling
from smooth and log-concave densities,” Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), vol. 79, no. 3, pp.
651–676, 2017.

[21] Y. Zhang, P. Liang, and M. Charikar, “A hitting time anal-
ysis of stochastic gradient Langevin dynamics,” arXiv preprint
arXiv:1702.05575, 2017.

[22] M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning
via stochastic gradient Langevin dynamics: a nonasymptotic analysis,”
arXiv preprint arXiv:1702.03849, 2017.

[23] C. Borgs, M. Brautbar, J. Chayes, S. Khanna, and B. Lucier, “The
power of local information in social networks,” in International
Workshop on Internet and Network Economics. Springer, 2012, pp.
406–419.

[24] A. Frieze and W. Pegden, “Looking for vertex number one,” The
Annals of Applied Probability, vol. 27, no. 1, pp. 582–630, 2017.

[25] G. Grimmett and D. Stirzaker, Probability and Random Processes, ser.
Probability and Random Processes. OUP Oxford, 2001.

[26] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[27] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, “Com-
pressive spectral clustering,” in International Conference on Machine
Learning, 2016, pp. 1002–1011.

[28] D. Aldous and J. Fill, “Reversible Markov chains and random walks
on graphs,” 2002.

8

