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a b s t r a c t 

Accurate reconstruction of the ensemble average propagators (EAPs) from undersampled diffusion MRI 

(dMRI) measurements is a well-motivated, actively researched problem in the field of dMRI acquisition 

and analysis. A number of approaches based on compressed sensing (CS) principles have been developed 

for this problem, achieving a considerable acceleration in the acquisition by leveraging sparse representa- 

tions of the signal. Most recent methods in literature apply undersampling techniques in the ( k, q )-space 

for the recovery of EAP in the joint ( x, r )-space. Yet, the majority of these methods follow a pipeline of 

first reconstructing the diffusion images in the ( x, q )-space and subsequently estimating the EAPs through 

a 3D Fourier transform. In this work, we present a novel approach to achieve the direct reconstruction 

of P ( x, r ) from partial ( k, q )-space measurements, with geometric constraints involving the parallelism 

of level-sets of diffusion images from proximal q -space points. By directly reconstructing P ( x, r )) from 

( k, q )-space data, we exploit the incoherence between the 6D sensing and reconstruction domains to the 

fullest, which is consistent with the CS-theory. Further, our approach aims to utilize the inherent struc- 

tural similarity (parallelism) of the level-sets in the diffusion images corresponding to proximally-located 

q -space points in a CS framework to achieve further reduction in sample complexity that could facilitate 

faster acquisition in dMRI. We compare the proposed method to a state-of-the-art CS based EAP recon- 

struction method (from joint ( k, q )-space) on simulated, phantom and real dMRI data demonstrating the 

benefits of exploiting the structural similarity in the q -space. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Diffusion-weighted MRI (dMRI) is an imaging technique that al-

lows for the inference of axonal fiber connectivity in biological tis-

sues non-invasively by sensitizing the MR signal to water diffusion.

The water diffusion process is fully characterized by the ensemble

average propagator (EAP), defined in the displacement r -space at

each location x . It is related to the dMR measurements in ( k,q )-

space through the 6D Fourier transform under the narrow pulse

assumption ( Callaghan, 1991 ): 

ˆ S (k , q ) = 

∫ 
R 3 

∫ 
R 3 

P (x , r ) exp ( −2 π j(x 

t k + q 

t r ) ) dr dx . (1)

In order to reconstruct the EAP with a reasonable angular

accuracy, one usually needs to acquire diffusion-weighted images

along a substantial number of sensitizing gradient directions,

such as in multi-shell high angular resolution diffusion imaging

(MS-HARDI) and diffusion spectrum imaging (DSI). For each of the
� Conflict of interest: None. 
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radient direction, a full 3D acquisition in the k -space follows.

he time incurred in this extensive data acquisition is the key

roblem making MS-HARDI and DSI impractical for clinical use.

hus, one particular important topic in this area is to accelerate

he acquisition of diffusion MRI (especially in MS-HARDI and DSI)

hile maintaining accurate estimation of the diffusion process via

he reconstruction of the EAPs. 

Over the past decade, various techniques have been proposed

o this end. From an acquisition perspective, faster MR imaging

echniques such as parallel imaging can be applied to maintain

ense signal measurement configurations while reducing acquisi-

ion time. On the other hand, one can strive to maintain accurate

econstruction of the EAPs by exploiting redundancies in the dif-

usion images to reduce the number of required measurements.

n this paper, we focus our attention on the application of com-

ressed sensing (CS) to achieve this goal, which may be employed

n addition to these other forms of acceleration ( Shi et al., 2015 ). 

Compressed sensing (CS) aims to recover signals from sub-

yquist sampled measurements, provided that the signal is com-

ressible in some transform domain and is sampled in an incoher-

nt manner ( Donoho, 2006 ). Following its successful application

https://doi.org/10.1016/j.media.2019.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.02.014&domain=pdf
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1 Preliminary results were published in a conference paper ( Sun et al., 2015 ). 
o the acceleration of MR image acquisition ( Lustig et al., 2007 ),

S has been utilized to accelerate diffusion tensor imaging (DTI)

rom partial k -space measurements ( Shi et al., 2015; McClymont

t al., 2016 ). In the context of HARDI/DSI, CS has been investigated

ather extensively for the reconstruction of the signal, EAP, orien-

ation distribution function (ODF) or fiber orientation distribution

unction (FOD) from partial q -space measurements ( Michailovich

t al., 2011; Landman and et al., 2012; Merlet and Deriche, 2013;

ilgic et al., 2013; Aranda et al., 2015; Auría et al., 2015; Paquette

t al., 2015; Ning et al., 2015; Daducci et al., 2015; Cheng et al.,

015b ). These methods generally assume a model for the sparse

epresentation of the diffusion signal and achieve signal recon-

truction prior to EAP/ODF/FOD estimation. Most recent attempts

mong these include ( Schwab et al., 2016 ), wherein the authors

ake into consideration the spatial redundancy of dMRI by defin-

ng a joint separable spatial-angular domain basis for the sparse

epresentation of the entirety of the signal in the ( x, q )-space. This

oint representation model was shown to achieve better sparsity in

omparison to voxel-wise angular sparsity models. Nonetheless, as

ointed out by the authors, they did not apply CS jointly to the ( k,

 )-space. On a relevant note, CS has also been applied to super-

esolution dMRI, i.e. the problem of reconstructing high-resolution

iffusion images from low-resolution ones to reduce acquisition

ime while achieving good spatial resolution ( Ning et al., 2016; Yin

t al., 2016 ). 

In the past few years, developments in the application of CS

o joint ( k, q )-space for the recovery of the signal/EAP have been

eported. In Awate and DiBella (2013) , the authors proposed an

rientation-invariant dictionary to sparsely represent the diffusion

ignal in the ( x, q )-space, which is comprised of atoms represent-

ng key types of diffusion profiles, including isotropic diffusion, sin-

le and two fiber tracts crossing at certain angles. In more recent

orks ( Mani and et al., 2015; Cheng et al., 2015a ), the CS con-

epts were applied in a similar manner to reconstruct the ( x, q )-

pace signal and then the EAPs. In both ( Mani and et al., 2015;

heng et al., 2015a ), a pre-defined basis/dictionary was used for

he sparse representation of the diffusion signal, sparsity was en-

orced on the coefficients in the representation, and the diffusion

R signal was first estimated prior to the reconstruction of the

AP. From a CS standpoint, by sparsely representing and recon-

tructing S ( x, q ) from partial ( k, q )-space samples, all three afore-

entioned methods effectively utilized the incoherence between

he 3D Fourier dual spaces of k and x , but did not exploit the in-

oherence between the pair q and r . 

.1. Motivation and overview 

In contrast to above described methods, we propose an ap-

roach to fully exploit the incoherence between the 6D Fourier

air of ( k, q ) and ( x, r )-space. To demonstrate the advantage of

arnessing such incoherence, we first present an illustrative exper-

ment in 2-dimensions. 

In this example, we aim to construct an analogy between the

D Fourier dual space (x, y) - (u, v) and the 6D Fourier dual space

e are faced with in the EAP reconstruction problem ( x, r ) - ( k, q )

expanded to be ( x i , x j , x l , r i , r j , r l ) - ( k i , k j , k l , q i , q j , q l )). A sparse

iscrete signal (of size 32 × 32) was generated in the (x, y)-space

nd the problem is to reconstruct this sparse signal from its partial

ourier samples. This is analogous to the reconstruction of EAPs

rom partial ( k, q ) samples. We perform reconstruction using two

ethods analogous to the direct reconstruction approach proposed

n this paper and the common framework (indirect method) shared

n other ( k, q )-space methods respectively. We randomly sample

he Fourier domain using variable density sampling, and recon-

truct the signal using the aforementioned two approaches from

he same set of samples. In approach-1, we directly reconstruct
he spatial domain signal by solving a l 1 minimization prob-

em enforcing the sparsity of the signal. In approach-2 (indirect

ethod), from the ( u, v ) samples, we reconstruct the ( x, v ) space

rst and then recover the spatial signal by applying inverse Fourier

ransform in the y direction for each x . In the 6D context, this is

quivalent to first reconstructing S ( x, q ) prior to estimating P ( x,

 ) by applying 3D Fourier transform at each grid ( x ). We vary the

ampling rate and perform 10 repetitions for each sampling rate

o account for the randomness in the sampling. We present the

riginal signal in Fig. 1 (a), reconstructions from an example set of

3% Fourier samples using the two methods in (b) and (c), and the

verage NMSE of reconstruction at various sampling rates in (d). 

It is clearly evident from this toy example that in a CS-

ased signal recovery framework, it is critical and beneficial to

everage the incoherence between Fourier dual spaces by making

ure the sensing and sparse representation/reconstruction occur in

ompletely dual domains and directly perform reconstruction. In

ur context, this indicates that a direct reconstruction of P ( x, r )

rom its Fourier dual space samples ˆ S (k , q ) will potentially enable

igher undersampling rates compared to reconstructing S ( x, q ) as

n intermediate step. 

In accordance to this principle, we present a CS framework

o directly reconstruct P ( x, r ) from jointly under-sampled ( k, q )

ata. 1 To illustrate, since the sampling operation in MS-HARDI oc-

urs in the ( k, q )-space, only a sparse representation in the ( x,

 )-space enables the significant reductions in sampling rates while

uaranteeing exact recovery. In this CS framework, the surfacelet

ransform is utilized to sparsely represent the EAP ( P ( x, r )) and

 total variation (TV) penalty term was included to promote the

mooth reconstruction of the entire EAP field. In lieu of this the-

retically consistent technique from the CS-theory viewpoint, we

ill use this as our baseline technique for experimental compar-

sons with the proposed improvement. Validations are performed

n both synthetic and real human brain data sets, and the results

emonstrated the value of the method. 

.1.1. Overview of the proposed improvement 

Intuitively, CS takes advantage of the redundancy in com-

ressible signals to reduce the number of necessary samples. The

edundancy manifests as sparsity in the coefficients when the

ignal is represented in a sparsifying basis. Thus it goes without

aying that the more thoroughly the redundancy is exploited, the

ore time savings are to be expected. One critical question to ask

n the dMRI context is then, have the above described existing CS

ased methods fully utilized the redundancy present in diffusion

R images? The answer is no. For each gradient direction q , a

iffusion-weighted image S ( x, q ) is acquired for the entire volume

over all voxels x ), which encodes the response of the water

olecule to the specific sensitizing magnetic gradient at each

oxel. Hence, all the diffusion-weighted images from different q ’s

re measurements taken of the same subject being imaged. It is

hen to be expected that similar structural information will be

ontained in them, especially the images corresponding to nearby

 points. In Fig. 2 , we present the entire set of q -space sample

oints used in a HARDI dataset obtained from the WuMinn–

uman Connectome Project (HCP) ( Van Essen et al., 2013 ) and

he diffusion images acquired at 3 closely located q -space points.

t is evident from these that a strikingly similar structural infor-

ation is encoded in all 3 images, resulting in an approximately

imilar visual appearance in edge locations, textures and intensity

radients at corresponding spatial locations across the image. This

rovides unequivocal evidence that redundancy exists among the

iffusion-weighted images corresponding to neighboring q ’s. 
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Fig. 1. Toy example. (a) Ground-truth sparse signal, (b) direct reconstruction from 33% Fourier samples enforcing sparsity in spatial domain, (c) indirect reconstruction from 

the same set of samples, (d) reconstruction accuracy (averaged over 10 runs) for various sampling rates using the two methods. 

Fig. 2. An example of neighboring q -space points and their corresponding diffusion images. 3 q points in a neighborhood are highlighted in (a), and their corresponding 

diffusion-weighted images are presented in (b) with the same coloring scheme. 
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Fig. 3. An overview of the proposed framework. 
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In the context of diffusion image reconstruction and denoising,

tructural similarities among images acquired at different q -space

ocations have been exploited by several researchers in the past.

n Alaya et al. (2016) , a geometrical approach was presented to

ecover diffusion images not acquired at locations in q -space

n HARDI based on the images acquired at their neighboring

 -space points (determined through Delaunay triangulation). In

aldar et al. (2013) , the authors proposed a penalized maximal

ikelihood framework to jointly reconstruct a set of diffusion

mages from their k -space samples. Within this framework, the

patial smoothness of each diffusion image (for a specific q ) is

nforced using a regularization functional, wherein a spatially

arying line-process variable is incorporated to explicitly model

he edge structure and control the power of the spatial smoothness

onstraint locally. In a later work of the same authors ( Lam et al.,

014 ), a similar edge-prior was utilized in a maximum a posterior

ramework for the denoising of diffusion images. 

In this paper, we present a CS framework for direct EAP recon-

truction from highly under-sampled ( k, q ) data. ( k, q ) and ( x, r )

paces are The key ingredient enabling sparse representation for

 ( x, r ) is accomplished using surfacelet basis. The most attractive

eature of surfacelet basis is the inherent directional selectivity that

eads to a sparse representation in the r -space. The key distinction

etween our approach and existing approaches is that, enforcing

parsity in P ( x, r ) entitles us to leverage incoherent sensing, not

nly in k , but also in the q -space simultaneously. Therefore, our

pproach presented here stands to benefit from practical guaran-

ees for accurate reconstruction from partial ( k, q ) data. To further

xploit redundancy in the ( k, q ) space, we utilize the structural

imilarity in diffusion images corresponding to proximally-located

 points. To accomplish this, we propose an approach that empha-

izes the geometric correlation between these images by consider-

ng the degree of parallelism between their level sets. We consider

t as a priori knowledge and incorporate it into the 6D CS frame-

ork (described earlier) as a regularizing prior. Fig. 3 depicts a

raphical self explanatory overview of our approach. It is important

o note that the level set based constraint, the key concept in this

egularizing prior, is very distinct from an edge-based constraint

which is the emphasis of the previously discussed works in this

ontext). This is because, level sets in general do not necessarily

orrespond to edges in images, and vice versa. To the best of our
nowledge, the parallelism of the level sets (as a prior) has never

een utilized in any of the existing CS-based methods for diffusion

ignal/EAP/ODF reconstruction. Yet, a similar concept has been in-

estigated in completely different applications namely, color image

enoising/demosaicing and multi-modality medical image recon- 

truction ( Ehrhardt and et al., 2014; Ehrhardt and Arridge, 2014 ).

t has been shown in these works that the exploitation of struc-

ural similarity by enforcing the parallelism of the level sets leads

o improved results in both tasks respectively. 

The rest of the paper is organized as follows. In Section 2 , we

resent a brief overview of the general CS-based framework for

AP recovery from joint-( k, q ) space, followed by the details of

he proposed method including the problem formulation and nu-

erical solution. In Section 3 , several aspects of our experimental

esign and descriptions of the datasets used for validation of our

pproach are first presented. We then showcase the experimental

esults on the various datasets and provide a discussion. Finally, in

ection 4 we draw conclusions. 

. Material and methods 

.1. Compressed sensing for EAP reconstruction 

In general, compressed sensing (CS) recovers the unknown x

rom partial measurements y by solving an underdetermined sys-

em while enforcing the sparsity of x in a certain transform domain

long with data consistency ( Donoho, 2006 ). The three ingredients

f the CS framework necessary to guarantee accurate reconstruc-

ion are: 

• Sparsity: The function to be reconstructed needs to be sparsely

representable, possibly in some transform domain. 
• Incoherent sensing: The data for reconstruction must be ac-

quired in a domain incoherent (e.g., dual) to the domain in

which the function is sparsely representable. 
• Nonlinear reconstruction: The reconstruction problem in- 

volves an (convex) optimization process. 

One way to formulate the problem of EAP reconstruction from

artial ( k, q ) data appropriate in the CS settings is detailed in the

ollowing. Suppose we are interested in reconstructing the EAPs

ithin a 3D rectangular volume �, containing N voxels. Let P be
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Fig. 5. Average SNRs of EAP reconstruction from partial surfacelet transform coeffi- 

cients with lattices of size 32 and 64 respectively. 
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a 6D matrix formed by concatenating the N EAP examples { P n } N n =1 
(each a 3D matrix) that are to be estimated. In the case where

the sparsity is enforced on each individual EAP under a certain

sparsifying transform � , in order to reconstruct P from partial ( k,

q ) measurements, denoted by Q , one needs to solve the following

minimization problem: 

min 

P 

1 

2 

‖ F u P − Q‖ 

2 
F + μ

N ∑ 

n =1 

‖ �P n ‖ 1 (2)

where F u is the partial Fourier operator in 6-dimensions, i.e. an

undersampled 6-D Fourier transform evaluated at selected fre-

quencies corresponding to the undersampling scheme in the signal

space. The 6 dimensional Fourier dual spaces are spanned by ( k,

q ) and ( x, r ) respectively. 

In order to achieve a reconstruction of satisfactory fidelity,

various regularization terms may be added to the basic CS for-

mulation above to enforce a priori information pertaining to the

desired solution. One example of such regularization terms is the

total variation (TV) penalty, which is widely used in many inverse

problems including MR image reconstruction from partial k -space

samples ( Lustig et al., 2007 ). By taking regularization terms into

account, a more general formulation for EAP reconstruction in a

CS framework is presented below: 

min 

P 

1 

2 

‖ F u P − Q‖ 

2 
F + μ

N ∑ 

n =1 

‖ �P n ‖ 1 + 

K ∑ 

k =1 

γk R k (P ) (3)

in which, R k is the k -th regularization term and γ k is the trade-off

parameter between the data fidelity and the regularizer. 

2.2. Surfacelet transform revisited 

One of the key factors essential for the successful application of

CS is to select the basis that provides the best sparsity for the sig-

nal of interest. In the context of dMR signal/EAP/ODF reconstruc-

tion, various basis/transforms have been utilized, such as spherical

ridgelets and spherical harmonics to name a few. While spherical

ridgelets and spherical harmonics are more tailored for the repre-

sentation of dMR signals; surfaclets ( Lu and Do, 2007 ), with their

ability to efficiently capture directional information, are particu-

larly well-suited for sparse EAP representation. 

The surfacelet transform is implemented as a combination

of a multi-scale pyramid with 3D directional filter banks (3D-

DFB) ( Lu and Do, 2007 ). The basis functions are a spatial domain

representation of symmetric pyramids partitioning the frequency

space. Fig. 4 depicts one example surfacelet basis in the frequency

domain as well as spatial domain. We refer interested readers to

Lu and Do (2007) for more technical details. 

EAPs can be sparsely represented in Surfacelet basis, as de-

picted in Fig. 5 . To demonstrate this sparsity, we constructed a field

(30 × 30) of EAPs sampled on 3D Cartesian lattices of various sizes

(32 × 32 × 32 and 64 × 64 × 64), and applied the surfacelet trans-

form to the EAP at each voxel. We then sorted the coefficients of
Fig. 4. 3D renderings of an example surfacelet basis in frequency domain (left) and 

spatial domain (right) respectively. 
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he transform by absolute value and reconstructed the EAPs from

nly the top few coefficients. Fig. 5 shows the average SNRs of

he reconstruction from a fraction of the total number of coeffi-

ients. Evidently, for both lattice sizes, with less then 3% of the

oefficients, we can easily achieve an SNR of over 25, which is

ommonly used as a benchmark for high quality reconstructions.

his experiment also showed that a denser sampling grid promotes

igher sparsity. As a trade-off between sparsity and computational

osts, we chose 32 3 as the size of our sampling lattice. 

Following the notations introduced previously, P n ( r ) ( n =
 , . . . , N), the EAP at the n th voxel, can be expanded in terms of

urfacelet basis functions ϕ 

(l) 
m 

(. ) , corresponding to different scales

 l ) and spectral directions ( m ) as: 

 n (r ) = 

∑ 

m,l 

c m,l ϕ 

(l) 
m 

(r ) (4)

Let c n := [ c m,l ] be the surfacelet coefficient vector for P n and de-

ote the surfacelet transform by � , we can then write c n = �P n 
nd seek a sparse coefficient vector by minimizing the � 1 norm of

 n for each voxel. 

.3. Parallel level sets 

Equipped with an appropriate sparsifying transform for the rep-

esentation of the EAP, what remains to guarantee an accurate re-

onstruction is the enforcement of the most valuable a priori infor-

ation at hand. As we have illustrated, there exists considerable

tructural similarities within diffusion MR images corresponding

o adjacent q ’s, which leads to a high degree of (similarity) par-

llelism between the level sets of these neighboring images. We

ropose to design and incorporate a regularization term to empha-

ize such geometric correlations by aligning the gradients (which

re perpendicular to the level sets) between the corresponding im-

ges. 

Consider S ( q i ) and S ( q j ), the diffusion-weighted image (across

ll voxels in �) for two closely located q points. We denote S ( q i )

nd S ( q j ) by S i and S j for simplicity. The level sets of the image

air are considered parallel if the gradients � S i and � S j form an

ngle of 0 degrees at each voxel x ∈ �. We measure the degree of

arallelism between the gradients at location x by, 

∇ S i (x ) ‖‖∇ S j (x ) ‖ − |〈∇ S i (x ) , ∇ S j (x ) 〉| . (5)

t is a well known fact that | 〈� u , � v 〉 | ≤‖� u ‖‖� v ‖ for arbitrary

ectors u, v and equality only occurs when u and v are parallel,
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Fig. 6. FA map of the selected slice and ROI. 
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ence the above defined term is always nonnegative and reaches

inimum 0 if and only if the gradients are parallel at location x . It

easures how parallel the gradients or level sets are locally, with

reater values indicating greater angles between the gradients and

urther distance from parallelism. Now we can define the global

easure for the degree of parallelism of two diffusion-weighted

mages as 

L (∇ S i , ∇ S j ) := 

∫ 
�
(‖∇ S i (x ) ‖‖∇ S j (x ) ‖ − |〈∇ S i (x ) , ∇ S j (x ) 〉| ) dx 

(6) 

We want to guarantee that all pairs of images corresponding to

eighboring q points have level sets that are close to or parallel to

ach other. Denote the entire 6D S ( x, q ) volume as S . One possi-

le form of the regularization term to be incorporated into the CS

ramework can be defined on S as: 

 (S) = 

M ∑ 

m =1 

∑ 

l∈ N (m ) 

PL (∇ S m , ∇ S l ) (7)

here N (m ) represents the index set of all the q points in q m 

’s

eighborhood and M is the total number of q sampling points.

ote that the regularizer is defined on S while the EAP, P , is what

e desire to reconstruct. However, S and P are related at each voxel

 through a 3D Fourier transform, which will serve as the link that

akes the incorporation of R (S) appropriate in the CS framework.

lso, note that the gradients in the parallel-level set constraint are

ot computed from the raw data but from the updated estimates

f S presented in step-2 of the Split Bregman technique in the next

ection. Details are presented in the following section. 

.4. Problem formulation and solution 

In addition to the parallelism of level sets in adjacent q vol-

mes, another prior we have is that the reconstructed EAP field

ust be smooth across the grid. To this end, a TV penalty can

e included as another regularizer to enforce spatial homogeneity

n the reconstruction. Finally, we formulate the EAP reconstruction

roblem from ( k, q ) data Q as the following optimization prob-

em: 

min 

P 

1 

2 

‖ F u P − Q‖ 

2 
F + μ

N ∑ 

n =1 

‖ �P n ‖ 1 + γ1 ‖ P ‖ T V + γ2 R (S) 

s. t. S n = F 3 D P n , n = 1 , 2 , · · · , N (8) 

In the above formulation, S n denotes the diffusion signal S ( x,

 ) measured at a fixed voxel x n for all M q points. It is related to

he EAP at the voxel through a 3D Fourier transform. S is formed

y stacking all the S n ’s for each voxel n = 1 , 2 , · · · , N. On the other
and, S m (see notation introduced in Section 2.3 ) denotes the dif-

usion signal across all N voxels for a fixed q ( q m 

). 

We solve the above optimization problem using a Split Bregman

cheme ( Goldstein and Osher, 2009 ). After converting it into an

nconstrained problem with a Lagrange multiplier, we introduce

uxiliary parameters as replacements c n ← �P n , d m ← ∇S m for all

 and m . Substituting in to Eq. (7) , the split formulation of the

roblem becomes 

min 

P,S,c n ,d m 

1 

2 

‖ F u P − Q‖ 

2 
F + μ

N ∑ 

n =1 

‖ c n ‖ 1 + γ1 ‖ P ‖ T V 

+ γ2 

M ∑ 

m =1 

∑ 

l∈ N (m ) 

PL (d m , d l ) + 

λ

2 

N ∑ 

n =1 

‖ F 3 D P n − S n ‖ 

2 
F 

+ 

λ1 

2 

N ∑ 

n =1 

‖ �P n − c n ‖ 

2 
2 + 

λ2 

2 

M ∑ 

m =1 

‖ d m − ∇S m ‖ 

2 
2 . 

e then decompose this into subproblems using the split Bregman

terations to alternatively update P, S and the auxiliary parameters

ntil convergence. 

tep 1 : P (t+1) = arg min 

P 

1 

2 

‖ F u P − Q‖ 

2 
F + γ1 ‖ P ‖ T V 

+ 

λ

2 

N ∑ 

n =1 

‖ F 3 D P n − S (t) 
n ‖ 

2 
F 

+ 

λ1 

2 

N ∑ 

n =1 

‖ �P n − c (t) 
n − b (t) 

n ‖ 

2 
2 

tep 2 : S (t+1) = arg min 

S 

λ

2 

N ∑ 

n =1 

‖ F 3 D P 
(t+1) 
n − S n ‖ 

2 
F 

+ 

λ2 

2 

M ∑ 

m =1 

‖ d m 

(t) − ∇S m − b m 

(t) ‖ 

2 
2 

tep 3 : c (t+1) 
n = shrink 

(
�P (t+1) 

n + b (t) 
n , 

μ

λ1 

)

b (t+1) 
n = b (t) 

n + �	 c (t+1) 
n − P (t+1) 

n , n = 1 , . . . , N 

d m 

(t+1) = arg min 

d m 

γ1 

M ∑ 

m =1 

∑ 

l∈ N (m ) 

PL (d m , d l ) 

+ 

λ2 

2 

M ∑ 

m =1 

‖ d m − ∇S m 

( t+1) − b m 

(t) ‖ 

2 
2 

b m 

(t+1) = b m 

(t) + ∇S m 

( t+1) − d m 

(t+1) 

, m = 1 , . . . , M 

In the above, b n and b m are the Bregman parameters introduced

or the updates of c n and d m respectively, �	 denotes the inverse

urfacelet transform. Most of the steps can be solved analytically,

hile for the d m update in step 3, we used a limited-memory BFGS

ased Quasi-Newton method for a numerical solution. 

. Experiments and discussions 

.1. Experimental design 

In this section, we preset several aspects of the experimental

esign used in this work. This involves: the choice of the method/s

or comparison, the sampling scheme used in the ( k, q ) space for

ata acquisition and finally the evaluation metrics used to perform

he comparisons. 
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Fig. 7. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from synthetic data jointly undersampled in the ( k, q )-space at various sampling 

rates and noise levels. 
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3.1.1. Comparison to the state-of-the-art 

We demonstrate the power of employing the structural similar-

ity in q -space for direct EAP reconstruction from highly undersam-

pled ( k, q )-space data via performance comparison of the proposed

method (denoted by PLS for brevity) with the CS method used in a

preliminary conference version of this work ( Sun et al., 2015 ) (de-

noted by baseline). This method is the choice for baseline com-

parisons because, to date, it is the only method in the literature

that directly reconstructs EAP from partially sensed 6D ( k, q )-space

without signal reconstruction as an intermediate step. Further, by

directly reconstructing the EAPs from signal in its Fourier dual

space, this method, when compared to other existing CS-based

methods, better utilizes the CS principles and more thoroughly ex-

ploits the incoherence in the 6D Fourier dual (see Section 1 for a

more detailed explanation). 

3.1.2. Sampling scheme 

Experiments are conducted on diffusion MR images acquired

using the DSI scheme, which has been widely used as the bench-

mark for comparisons in reported literature (CS related reconstruc-

tion in dMRI). Since DSI sampling is designed on a Cartesian grid,

in our current implementation the neighborhood of any given q

point is chosen to consist of its 6-connected points in q -space. Yet,

the framework is general in the sense that it is independent of the

choice of neighborhood. The optimal choice of q -space neighbor-

hood will be a topic of our future work. 

The undersampling of the 6D space is performed in the 3D k

and q -space independently. The level of undersampling is set to be

equal in both spaces, for example, to achieve a sampling rate of

25% in the joint space, the sampling rate for both k and q -space

is 50%. Such a choice was based on extensive experimentation on

data undersampled with varying ratios between the two spaces.

Two extreme cases are when the undersampling only takes place

in one of the two spaces, which will henceforth be referred to as,

“k -only” and “q -only” undersampling respectively. In the experi-

ments to follow, in addition to the EAP reconstruction results from

joint ( k, q )-undersampled data, we will also showcase the results
btained from partial data sampled with the k -only and q -only un-

ersampling methods respectively. 

In each of the 3D k and q -spaces, we select samples ran-

omly with the sampling density scaled according to a power of

he distance from the origin. This power law sampling scheme

as been very widely used in related literature, including CS-

ased MR image reconstruction ( Donoho, 2006 ) for the k -space

nd EAP/ODF/signal reconstruction from dMRI ( Bilgic et al., 2013;

heng et al., 2015a ) for the q -space. It was shown to yield good

S-based recovery in both contexts. 

.1.3. Evaluation 

Evaluations are carried out both quantitatively, using normal-

zed mean squared error (NMSE) with respect to the ground-truth

APs, and qualitatively through visual inspection. The reference

round-truth EAPs are obtained through conventional DSI recon-

truction using the fully sampled data, also labeled by some in

iterature as “gold standard” data. In DSI reconstruction, the zero-

adding in q -space is performed to the size of 16 × 16 × 16. No

anning filter is applied prior to reconstruction to ensure fair

omparison between the ground-truth and the various reconstruc-

ions. For visualization purpose, we interpolate the ground-truth

nd the reconstructed EAPs (which are continuous 3D functions

valuated on a Cartesian grid) onto a sphere before perform-

ng fitting with spherical harmonics. Visualization of the spheri-

al harmonic representations of the EAPs is done using a Java-

ased diffusion MRI processing software fanDTasia ( https://www.

ise.ufl.edu/ ∼abarmpou/lab/fanDTasia/ ). For synthetic and phantom

ata where underlying fiber configuration is known, we also per-

orm angular analysis based on the peaks detected in the recon-

tructed EAPs. The peak directions are estimated using function

eak_directions_nl in Dipy ( Garyfallidis et al., 2014 ) ( http://nipy.

rg/dipy/ ), a popular open source diffusion MRI toolbox developed

n Python. For the 3 parameters in the function, we kept the de-

ault value for min_separation_angle (25) and xtol ( 1 e − 07 ), and

hose 0.75 as relative_peak_threshold to suppress subsidiary peaks.

https://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/
http://nipy.org/dipy/
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Fig. 8. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from synthetic data undersampled using joint-( k, q ), k -only and q -only schemes 

at various rates, for (a) noise-free and (b) noisy data with SNR = 5. 

Fig. 9. EAP reconstructions and angular analysis results for noise-free synthetic data using the PLS and the baseline methods respectively. (a) Ground-truth EAPs estimated 

from gold standard noise-free data, EAP reconstructions using 5% of the data using (b) the PLS method and (c) the baseline method. (d-e) Crossing angle errors within fiber 

crossing regions for the reconstructions displayed in (b-c) respectively. (f-g) Errors in the number of peaks detected from the reconstructions displayed in (b-c) respectively. 
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Fig. 10. EAP reconstructions and angular accuracy analysis results obtained using the PLS and the baseline methods respectively, from noisy synthetic data (SNR = 5) 

undersampled with various schemes. (a) Ground-truth EAPs estimated from gold standard noise-free data, EAP reconstructions from 15% jointly undersampled ( k, q )-space 

data using (b) the PLS method and (c) the baseline method. (d-e) EAP reconstructions using the PLS method from 15% of the data undersampled in k and q -space only. 

(f-i) Crossing angle errors within fiber crossing regions for the reconstructions displayed in (b-e) respectively. (j-m) Errors in the number of peaks detected from the 

reconstructions displayed in (b-e) respectively. 
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3.2. Implementation 

The proposed approach was implemented in Matlab and all

computations were performed on a workstation with an Intel

Core(TM) i7 CPU930 2.80 GHz x 8 processor and 24GB RAM. We

have observed that the main bottleneck of the computation speed

of our proposed method is in the updates of d m (which is a part of

Step 3 in the algorithm outlined in Section 2 ). In our current im-

plementation, we solve the optimization problem involved in this

update step using a BFGS-based Quasi-Newton method. We believe

further acceleration can be achieved if an analytical solution is de-

rived and used instead. This will be an immediate focus for our

future work. The sparsity/regularization trade-off parameters μ, γ 1 
nd γ 2 in the objective function are tuned through a grid search

ithin range [0.01,1]. 

.3. Description of data sets 

Various data sets used in our experiments are described in the

ollowing paragraphs. 

.3.1. Synthetic data 

We simulated a gold standard DSI dataset using a mixture of

aussian functions. As discussed above, the ( k, q ) measurements

ere then generated by applying a 3D Fourier Transform on the

iffusion image simulated for each gradient direction. This simula-
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Fig. 11. NMSE of EAP reconstructions, using the PLS and the baseline method respectively, from phantom data jointly undersampled in the ( k, q )-space at various sampling 

rates and noise levels. 
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ion process does not take into consideration the various practical

ssues involved in obtaining the magnitude MR images from the

omplex valued k space acquisitions (in MR scanners), yet it is very

ommonly used in the literature for the study of (CS-based) MR

mage reconstruction from k -space measurements ( Donoho, 2006 )

s well as the recovery of diffusion signal or EAP/ODF from ( k, q )-

pace ( Cheng et al., 2015a ). In order to assess the proposed method

n the presence of noise, we contaminated the gold standard data

ith various levels of Rician noise in the ( x, q )-space. Noise levels

re measured by SNR = 1 /σ, with σ being the standard deviation

f the noise. 

.3.2. ISBI HARDI challenge 2013 phantom data 

We also evaluated our method on the phantom data provided

t the IEEE ISBI (Intl. Symp. on Biomedical Imaging) HARDI chal-

enge 2013 ( Daducci et al., 2013 ). The advantage of employing this

ata lies in the fact that the phantom is created in a more re-

listic setting and the ground-truth is available which makes the

uantitative assessments of the results possible. The phantom con-

ists of a set of fiber bundles with a wide range of configurations

branching, crossing, kissing), fiber bundles radii, and fiber geome-

ry. The diffusion MR signal is simulated in each voxel considering

indered and restricted diffusion, to account for extra-axonal and

ntra-axonal diffusion. Depending on the position in space, there is

lso an isotropic compartment, to account for the CSF contamina-

ion close to the ventricles in brain imaging. Finally, the magnitude

R signal is corrupted by Rician noise resulting in SNR of 10, 20

nd 30 respectively. The generation of ( k, q )-space measurements

as performed in the same manner as described for the synthetic

ata. We selected our ROI within a slice where the various types

f fiber configurations can be best observed, the FA map of which

s presented in Fig. 6 . 

.3.3. MGH-USC HCP human brain data 

The MGH-USC HCP dataset ( Setsompop et al., 2013; McNab

t al., 2013; Fan et al., 2016; Keil et al., 2013; Polimeni et al.,

016; van der Kouwe et al., 2008; Fan et al., 2014; Fischl, 2012;

reve and Fischl, 2009; Andersson and Sotiropoulos, 2015; 2016;
rawford et al., 2016 ) we used in our real data experiment was col-

ected on a Siemens 3T Connectome scanner using the DSI scheme.

he images were acquired at 2 mm isotropic resolution with a

aximum b-value of 10, 0 0 0 s/mm 

2 and TE/TR = 77 / 590 0 ms , re-

ulting in a 104 × 104 × 55 volume. We pick our ROI in centrum

emiovale where projection, commissural and association tracts in-

eract, and present the Fractional Anisotropy (FA) map of the se-

ected slice with the ROI highlighted in Fig. 17 (a). 

.4. Results and discussions 

.4.1. Analysis of synthetic data 

We demonstrate the performance of our method on synthetic

ata in this section. In Fig. 7 , for noise-free and noise contami-

ated data, we plot the NMSE of the EAP reconstructions (with re-

pect to the ground-truth EAPs) obtained by applying the proposed

ethod (PLS) and the baseline method on partial data undersam-

led jointly in the ( k, q ) space at various sampling rates (from 5%

o 25%). Overall, the proposed method provides a decrease of the

MSE by 16%–50% with respect to the reconstructions using the

aseline method at corresponding sampling rate and noise level.

his improvement in the reconstruction accuracy is solely due to

he exploitation of the structural similarity between diffusion im-

ges acquired at nearby q locations. 

At SNRs higher than 15, we observed in our experiments that

he reconstruction accuracy is maintained quite well by both meth-

ds (with respect to performance on noise-free data). Hence, here

e present the results only for low SNRs. It can be seen from the

lots that at lower sampling rates (below 20%), the effect of the

dded noise on the reconstruction accuracy is less pronounced for

he proposed PLS method than it is for the baseline method. This

s an indication that the incorporation of the parallel level set prior

urther assists in suppressing the noise, in addition to the TV reg-

larization used in both approaches. Another rather promising be-

avior we observed is that at extremely low sampling rates (such

s 5%–10%), the most significant gain is brought forth by the PLS

ethod. 
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Fig. 12. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from partial phantom data with different SNRs, undersampled using joint-( k, q ), 

k -only and q -only schemes at various rates. (a) SNR = 30, (b) SNR = 20 and (c) SNR = 10. 
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In Fig. 8 , we present the comparison of the reconstruction ac-

curacy using both approaches on partial data undersampled using

joint-( k, q ), k -only and q -only schemes. The results for noise-free

and noisy data (SNR = 5) are shown in sub-figure (a) and (b) re-

spectively. It is consistent with the findings reported in our prelim-

inary version of this paper, Sun et al. (2015) , that the joint under-

sampling demonstrates advantage over undersampling performed

in individual spaces in the context of CS-based reconstruction. For

each sampling scheme, the proposed method consistently provides

improvement in the reconstruction accuracy compared to baseline

( Sun et al., 2015 ). Note that the wide range of the y-axis in the

figure (necessary for the presentation of the error for baseline re-

construction using q -only undersampling at low sampling rates)

causes the difference in the NMSE between the reconstructions

from jointly undersampled data using the two methods to appear

less significant than it actually is (as is already shown in Fig. 7 ). 

To demonstrate the value of the proposed method in further

reducing the amount of data needed for satisfactory EAP recon-

structions, we showcase in Fig. 9 , visual comparisons of the EAP

reconstructions from as little as 5% of gold standard data using

the proposed and baseline methods. The ground truth EAP field

and EAPs reconstructed from 5% of the noise-free gold standard

data using both methods are displayed in the first row. The error

in the crossing angles estimated (in the fiber bundle crossing re-

gions) and the number of peaks detected (within the entire slice)
rom the two reconstructions are shown in the second and third

ow of the figure respectively. With the minimum amount of data

iven, our PLS-based approach successfully recovered most of the

rossings present in the slice while achieving a significant accu-

acy in crossing angle estimation, with an average angular error

f less than 4 degrees. On the other hand, the angular analysis re-

ults for the baseline reconstruction show a higher degree of errors

ithin the crossing regions (brighter color in Fig. 9 (e) compar-

ng to (d)). Further, at certain locations where only a single fiber

asses through, spurious lobes were introduced more often in the

APs reconstructed using the baseline method than the proposed.

his can be clearly observed in both the EAP visualizations in sub-

gure (c) and the error image for number of peaks (g). 

We present the results of similar analysis for noise contami-

ated data (SNR = 5) in Fig. 10 . Here in addition to reconstructions

rom jointly undersampled data, we also display the reconstructed

APs from data undersampled in the k and q -space individually

sing the proposed PLS approach (labeled as PLS-konly and PLS-

only in the figure). 15% of the gold standard data was used in all

he reconstructions. When joint-( k, q ) undersampling is used, both

LS and baseline EAP reconstructions present considerable visual

imilarity to the ground-truth EAPs, yet further angular and peak

nalysis reveal the subtle differences. Com paring sub-figure (f) and

g), we see that while the 90 ◦ crossings in the center of the slice

ppear to be slightly better recovered in the baseline results, the
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Fig. 13. EAP reconstructions and angular accuracy analysis results for the ROI in the phantom dataset with SNR = 30 using the PLS and the baseline methods respectively. 

(a) Ground-truth EAPs estimated from gold standard data, EAP reconstructions using 5% of the data using (b) the PLS method and (c) the baseline method. (d-e) Error in the 

fiber orientations estimated from the reconstructions displayed in (b-c) respectively. 

Fig. 14. EAP reconstructions and angular accuracy analysis results for the ROI in the phantom dataset with SNR = 10 using the PLS and the baseline methods respectively. 

(a) Ground-truth EAPs estimated from gold standard data, EAP reconstructions using 10% of the data using (b) the PLS method and (c) the baseline method. (d-e) Error in 

the fiber orientations estimated from the reconstructions displayed in (b-c) respectively. 
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Fig. 15. EAP reconstructions and angular analysis results for the ROI in the phantom dataset from ( k, q )-space data undersampled using different schemes. (a) Ground-truth 

EAP estimated from gold standard data at SNR = 20, EAP reconstructions using 20% of the data undersampled in the manner of (b) joint-( k, q ), (c) k -only and (d) q -only 

manner. Error in the fiber orientations estimated from the reconstructions displayed in (b-d) are presented in (e-g) respectively. 
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angular errors are more prominent in the peripheral crossing re-

gions where the geometric structure of the fiber bundles are more

complex. It is also shown in sub-figure (k) that a larger number

of false peaks were introduced in the baseline reconstruction com-

pared to PLS. Switching the focus to the results presented in the

two columns on the right, we see how performing undersampling

in k and q -space individually effects the proposed CS-based EAP

reconstruction. Apparently, discarding a larger portion of the q -

space data (which takes place in q -only undersampling compared

to the joint undersampling) substantially impacts the recovery of

angular information in the EAP estimations. Nonetheless, the re-

construction appears spatially smoother to some extent compared

to the k -only reconstruction. 

3.5. Analysis of the ISBI HARDI challenge 2013 phantom data 

In this section, we present the evaluation of our method on the

ISBI HARDI challenge 2013 phantom data, the chosen ROI for anal-

ysis was depicted in Fig. 6 in Section 3.3 . 

The numerical results for this dataset are presented in

Figs. 11 and 12 in a similar fashion as in the case of synthetic data.

Fig. 12 comprehensively depicts the performance of the proposed

and baseline technique with respect to EAP reconstruction accu-

racy from various percentages of the gold standard data undersam-

pled with different schemes, while Fig. 11 is dedicated to the illus-

tration of the difference in the two methods’ performance when

used in conjunction with joint-( k, q ) undersampling (which is the

sampling scheme of interest). Overall, it appears that the deterio-

ration in the EAP estimation accuracy caused by the corruption of

noise is more substantial for this dataset than it is for the synthetic

data. Yet it is consistent across these two datasets that the pro-

posed method better maintains its accuracy when noise level in-

creases (shown in the figure as smaller vertical distances between

the two orange dash lines compared to that between the corre-

sponding pair of lines in blue). As the sampling rate increases, the

gap between the performance of the two methods gradually di-

minishes, especially in the less noisy data case (SNR = 10). 

We further support our numerical findings via visualizations of

the reconstructed EAPs and results of fiber orientation analysis. In

the visualizations, the EAP profiles are superimposed on the gray

scale FA map of the ROI. The fiber orientations in the reconstruc-
ions are determined at each voxel by performing peak detection

sing Dipy as previously mentioned. The error in the fiber orienta-

ions (in degrees) are then computed with respect to the ground-

ruth fiber structure and mapped to a color according to its value. 

Fig. 13 showcases the methods’ ability to recover the ground-

ruth EAP profiles and correct underlying fiber orientations from

inimum amount of the relatively clean data (5% of the data with

NR = 30), undersampled jointly in the ( k, q )-space. It is evident

hat for this particular dataset (with a very high SNR), a sampling

ate of 5% is sufficient for both methods to achieve EAP reconstruc-

ions of satisfactory quality. The majority of the fiber bundle cross-

ngs in the ROI are recovered quite accurately with both methods.

et, in some regions where two fiber bundles cross, the subordi-

ate direction in the EAP tends to get underestimated in the base-

ine method. Such phenomenon can be observed within the green

ectangular box in the EAP visualizations. Further, when the two

ber bundles cross at a relatively small angle, the EAP profile could

otentially get smeared in the baseline reconstruction (see blue

ox enclosed area). Comparing the error maps for the two recon-

tructed fields, we see that the orientations of the fiber bundles in

hese above-mentioned regions are more precisely estimated when

he notion of PLS is incorporated as well. In addition, the proposed

ethod demonstrates superiority in suppressing the introduction

f spurious lobes caused by the severe undersampling of the data,

ne example of which is highlighted with a purple/orange box in

he EAP visualizations/orientation error images. 

To investigate how the two methods differ when applied to data

ith high noise contamination, in Fig. 14 we present visual com-

arisons of the EAP reconstructions from 10% jointly undersam-

led phantom data of which the SNR is 10. As shown in the top

eft sub-figure, the ground-truth EAP field estimated using the full

SI dataset appear very noisy. The two reconstructed fields, on the

ther hand, present more spatial smoothness primarily due to the

V regularization in both frameworks. In fact, striking similarity is

emonstrated in the spherical harmonic based visualizations of the

wo EAP fields. Nonetheless, further insights are provided by the

ber orientation analysis. Quantitatively, the fiber orientation error

ithin the ROI is reduced by 1.3 degrees on average with the PLS

ethod. This can be visually observed in the error maps (bottom

ow) as darker color in the PLS results compared to the baseline

esults for corresponding voxels across the field. 
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Fig. 16. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from the HCP data undersampled using joint-( k, q ), k -only and q -only schemes 

at various rates. 

Fig. 17. EAP reconstructions from jointly undersampled HCP data using the PLS and the baseline methods respectively. (a) FA map of the selected slice with ROI highlighted 

in a red box, (d) ground-truth EAPs, (b-c) EAP reconstructions using 5% of the data using the PLS and the baseline methods respectively. (e-f) EAP reconstructions using 15% 

of the data using the PLS and the baseline methods respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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EAPs reconstructed using the proposed approach from 20%

f the data with SNR = 20, undersampled in joint-( k, q )-space,

 -space and q -space only are displayed in Fig. 15 . Evidently from

he visualizations, joint-( k, q ) undersampling provides major ad-

antage compared to individual space undersampling. The recov-

red EAP profiles from jointly undersampled data are of great vi-

ual similarity to the ground-truth EAPs, and the fiber orientations
stimated from the reconstructions have an average error of less

han 5 degrees. Reconstructions from k -only undersampled data

ail to preserve some of the subsidiary components in multi-fiber

oxels, while q -space undersampling leads to serious distortions

f the EAP shapes and poor accuracy in fiber orientation estima-

ions. Regions where this above-mentioned behavior can be best

bserved are highlighted with rectangular boxes. 
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3.6. Analysis of the MGH-USC HCP data 

Comprehensive numerical evaluations of the EAP reconstruction

for the MGH-USC HCP data are presented in Fig. 16 . It is clearly

shown here that the proposed structural correlation promoting

method outperforms the baseline method at every sampling rate.

A similar trend that was observed in the numerical results for

both the synthetic and phantom dataset can also be seen here

namely, that the incorporation of the notion of parallel level sets

brings forth greater reconstruction accuracy at lower sampling

rates (for the case of joint undersampling). Such an attribute is

of immense value in our context as it is our ultimate goal to

achieve good/acceptable reconstruction at sampling rates as low

as possible. 

We show visual comparisons of the EAP reconstruction perfor-

mance of the proposed and baseline algorithm from jointly under-

sampled HCP data in Fig. 17 . With 5% of the data, the EAPs can

be recovered at considerably good quality with the PLS method

(as shown in (b)). Marginal smearing/blurring effect can be seen

in the EAP profiles but one can still easily distinguish the orien-

tations of the crossing fiber bundles. However, this effect appears

far more pronounced in the baseline reconstruction, for example

in the blue box region where crossings are most noticeable within

the slice in the ground-truth. In certain areas where the crossings

are less predominant, the EAPs reconstructed using baseline ap-

proach can be indistinguishable from the EAPs with a single fiber

direction (see orange upside-down L-shaped region). Sub-figures in

the second row (e-f) show that both methods are able to achieve

highly accurate estimation of the EAPs from 15% of the data. The

PLS method demonstrates advantage in precisely recovering the

primary direction in the EAP profiles (with respect to the ground-

truth), which can be observed in the blue rectangle highlighted re-

gion. (The EAPs are colored based on the orientation of the pri-

mary lobe in the profile, hence a similar color of the profile in-

dicates a closer approximation in the orientation). These results

on HCP data quantitatively and qualitatively demonstrate the value

of the proposed method in producing satisfactory EAP reconstruc-

tions from a small amount of real diffusion data which can be ac-

quired in a much shorter time than when employing conventional

methods. 

4. Conclusions 

In this paper, we proposed a novel CS based approach for direct

EAP reconstruction from heavily undersampled ( k, q )-space dMR

measurements utilizing the sparsity promoting surfacelet basis and

in addition imposed the structural similarity constraint between

the diffusion-weighted images corresponding to proximally-located

q points. By directly reconstructing P ( x, r )) from ( k, q )-space data,

we exploit the incoherence between the 6D sensing and recon-

struction domains to the fullest, which is consistent with the

CS-theory. Further, by incorporating a prior favoring parallelism

of level sets at corresponding spatial locations between the dif-

fusion images into a 6D CS framework, we take advantage of

the redundancy in the ( x, q )-space which in this context has

never been utilized in this form (employing the notion of parallel

level sets) before. We presented extensive set of experiments

involving synthetic, phantom and real data, demonstrating the

power of the proposed method over the baseline method, wherein

the structural similarity among diffusion-weighted images were

not exploited. Our experiments show that the exploitation of

this inherent geometric correlation considerably enhances the

reconstruction accuracy and hence leads to additional sav-

ings in dMRI acquisition time over state-of-the-art. Our future

work will focus on implementation of the algorithm on clinical

scanners. 
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