Session 6B: Mobile 1

CCS’18, October 15-19, 2018, Toronto, ON, Canada

JN-SAF: Precise and Efficient NDK/JNI-aware Inter-language
Static Analysis Framework for Security Vetting of Android
Applications with Native Code

Fengguo Wei
University of South Florida
fwei@mail.usf.edu

Xingwei Lin
University of Electronic Science and
Technology of China

Xinming Ou
University of South Florida
xou@usf.edu

xwlin.roy@gmail.com

Ting Chen
University of Electronic Science and
Technology of China
brokendragon@uestc.edu.cn

ABSTRACT

Android allows application developers to use native language (C/C++)
to implement a part or the complete program. Recent research and
our own statistics show that native payloads are commonly used in
both benign and malicious apps. Current state-of-the-art Android
static analysis tools, such as Amandroid, FlowDroid, DroidSafe, Ic-
cTA, and CHEX avoid handling native method invocation and apply
conservative models for their data-flow behavior. None of those
tools have the capability to capture the inter-language dataflow.
We propose a new approach to conduct inter-language dataflow
analysis for security vetting of Android apps and build an analysis
framework, called JN-SAF to compute flow and context-sensitive
inter-language points-to information in an efficient way. We show
that: 1) Precise and efficient inter-language dataflow analysis is
completely feasible with support of a summary-based bottom-up
dataflow analysis (SBDA) algorithm, 2) A comprehensive model of
Java Native Interface (JNI) and Native Development Kit (NDK) for
binary analysis is essential as none of the existing binary analysis
frameworks is able to handle Android binaries, 3) JN-SAF is capable
of capturing inter-language security issues in real-world Android
apps as demonstrated by our evaluation result.

CCS CONCEPTS

« Security and privacy — Software and application security;

KEYWORDS
Static Analysis; Mobile Security

ACM Reference Format:
Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang.
2018. JN-SAF: Precise and Efficient NDK/JNI-aware Inter-language Static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243835

1137

Xiaosong Zhang

University of Electronic Science and

Technology of China
johnsonzxs@uestc.edu.cn

Analysis Framework for Security Vetting of Android Applications with
Native Code. In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15-19, 2018, Toronto, ON, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243835

1 INTRODUCTION

Android continuously dominates the smartphone market with about
76% share according to Statcounter [6]. Recent study [9, 24, 29, 40,
42, 45-47] have shown that native code is a continuous threat which
might stealthily leak sensitive information or utilize Android mal-
ware to evade AV detection. Our statistics on 100,000 Google Play
applications also show that there is substantial usage (39.7%) of
native code in benign apps, and the majority (> 80%) of those na-
tive method invocations involve data communication. This raises

a major concern about how we can make sure the native code are

not malicious.

There is a long line of works [10, 12, 13, 15, 17, 21, 23, 25, 28,
30, 34, 38, 41, 43, 44] that design or utilize static analysis tools to
detect security issues in Android applications. Only a couple of
them [10, 34] address security issues related to native code. How-
ever, none of them can track precise inter-language dataflow. The
existing state-of-the-art Android static analysis frameworks, such
as Amandroid [43, 44], FlowDroid [12], DroidSafe [21], IccTA [23]
and CHEX [25], do not currently provide the capability to per-
form inter-language dataflow analysis or handle native compo-
nents. When encountering a native method invocation, all of the
existing dataflow analysis frameworks either apply a conservative
model which assumes any data flow could happen, or ignore the
side-effects produced by the native call, which will cause major
imprecision in the analysis result. There is an urgent need to de-
sign a comprehensive dataflow analysis framework that can track
dataflows across language boundaries and understand dataflow
behaviors in both the “Java world” and the “native world.”
Android Inter-language Analysis Challenges:

(1) Dataflow analysis for Dalvik-bytecode and for native binary
have totally different algorithms and representations of object
points-to information. How to have a unified representation to
integrate the dataflow analysis results from both worlds is a
significant challenge.

https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3243734.3243835

Session 6B: Mobile 1

(2) A practical dataflow analysis framework needs to find the good
balance between precision and efficiency. Precise dataflow anal-
ysis is computationally heavy for both Java world and native
world. Both worlds can influence dataflow facts with each other,
leading to many interleaving in the dataflow analysis. How to
limit the analysis context switch frequency and still keep good
precision is a major challenge.

(3) Android provides a Native Development Kit (NDK) [1] which
allows the developer to design app in native language (C/C++).
NDK enables native Activity component, provides a set of na-
tive libraries to assist native code to access Android-specific
features and uses Java Native Interface (JNI) as the communi-
cation bridge. Precisely tracking dataflows in native Activity
component and modeling NDK libraries and JNI data structures
are significant challenges.

The main contributions of this work are as follows.

(1) We adopt a summary-based bottom-up dataflow analysis (SBDA)
approach to compute flow and context-sensitive inter-language
dataflow information in an efficient way. The summary-based
nature of SBDA enables us to design unified heap manipulation
summary representation for both Java world and native world
dataflow analysis. The bottom-up approach allows us to only
visit each method exactly once to compute summary A and
reuse A when a caller method invokes it.

(2) We comprehensively model control and data flow behavior for
the Native component, NDK libraries, and JNI data structures
to enable existing binary analysis tool, such as angr [36] to
understand Android-specific data flows.
we design JN-SAF— a precise and efficient NDK/JNI-aware
inter-language analysis framework for Android apps. For the
best of our knowledge, JN-SAF is the first Android static analy-
sis framework that performs inter-language dataflow tracking.
Our evaluation result shows that FN-SAF is capable of doing
real-world app vetting, and is able to find interesting cross-
language security issues. We plan to release the executable and
source code of FN-SAF upon publication of the paper.

The rest of the paper is organized as follows. Section 2 presents

the background information with a motivating example. Section 3

discusses challenges and our solutions, whereas Section 4 describes

in detail JN-SAF architecture. We discuss evaluation results of our
approach in Section 5, limitation of JN-SAF in Section 6, related

research in Section 7, and conclude in Section 8.

2 BACKGROUND AND EXAMPLE

We provide necessary background information to understand how
Android native world works, and how the inter-language communi-
cation is handled. We also provide a motivating example to discuss
the challenges to track static data-flow for Android application with
the native world.

2.1 Native Code Usage Modes in Android

Android developers can introduce native code in two ways. In
the first mode, the developer can write certain functions in native
language (C/C++) and include the compiled binary as a shared
object as part of the application. Those functions are then called
by an Android component that is still written in Java. In the other

1138

CCS’18, October 15-19, 2018, Toronto, ON, Canada

mode, a complete component can be written in native code and
the Android runtime directly calls the life-cycle methods of the
component in the native code. Currently Android only allows the
second mode for the Activity component (called native Activity).
Whereas all four Android component types could involve native
code through the first mode.

2.2 Native Development Kit (NDK)

The Native Development Kit (NDK) [1] is a set of tools that allow
designing part of the Android application using native languages.
NDK provides platform libraries to help manage native Activity
components and access physical device components. It uses Java
Native Interface (JNI) [3] as the interface via which the Java and
C++ components talk to one another. It is mainly used in cases such
as improving performance, reusing existing third-party C or C++
libraries, and so on.

NDK together with JNI defines how Java code sends data to
native functions and receives return values, and how native code
creates/modifies/inspects Java objects and invokes Java methods.
Since Android 2.3, NDK provides a helper library which allows the
developer to design a whole Android Activity using native code.
To precisely handle inter-language dataflow in Android, JN-SAF
must have a comprehensive model for JNI related data structures
and native Activity as explained in Section 3.

2.3 A Motivating Example

A malicous app developer can make use of NDK and develop part
of the app’s functionality in the Native world. Figure 1 illustrates
an example app (named “IMEI-leaking”). It consists of two worlds,
1) Java world: An Activity component which loads a native library

“multiple_interactions” and imports two native methods propagate-

Data() and leakImei(); 2) Native world: Export two native functions

which leverage NDK libraries to read Java objects and invoke Java

methods.

Resolving native method call is different from resolving normal
Java calls. In order to find the native method callee, one has to
know which native library is loaded by the instance. From the
native library we need to know what native functions are exported,
then we can find the corresponding function as the native method
callee.

To track the data and control flow across language boundaries, a
static analyzer must understand the semantics of both languages, as
well as understanding the inter-language communication interface
and APIs.

As an example, the following sequence of events (as labeled in
Figure 1) can happen in reality:

(1) MainActivity invokes native method propagateData() and passes
an object d which carries a sensitive data.

(2) Java_test_multiple_linteractions_MainActivity_propagateData()
receives the Java object data, gets str field (sensitive data) and
then invokes Java method toNativeAgain().

(3) toNativeAgain() at MainActivity receives data and passes it to
native method leakImei().

(4) Fava_test_multiple_linteractions_MainActivity_leakImei() will
receive the imei and leaks to the log.

Session 6B: Mobile 1

MainActivity.java

multiple_interactions.cpp

CCS’18, October 15-19, 2018, Toronto, ON, Canada

————— libmultiple_interactions.so
compile to

J1. | package test.multiple_interactions;

J2. | public class Data {

J3. String str;

J4. |}

J5. | public class MainActivity extends Activity {

J6. static {

J7. System.loadLibrary("multiple_interactions"); //"libmultiple_interactions.sgL
Js8. }

Jo. public static native void propagateData(Data d);

J10. public static native void leakimei(String imei);

J11. @Override

J12. protected void onCreate(Bundle savedinstanceState) {
J13. super.onCreate(savedinstanceState);

J14. setContentView(R.layout.activity_main);

J15. TelephonyManager tel =

J16. (TelephonyManager) getSystemService(TELEPHONY _SERVICE);
J17. String imei = tel.getDeviceld(); // source

J18. Data d = new Data();

J19. toNative(d, imei);

J20. }

J21. private void toNative(Data d, String imej

J22. d.str = imei;

J23. propagateData(d);

Ja24. }// A(toNative) = <(arg1.str =arg2) (sink(arg1.sty
J2s. public void toNativeAgain(String data)

J26. leakimei(data);

J27. }// A(toNativeAgain) = <(sink(arg1) @C15)>

J28. |}

C1.

C3.
C4.
C5.
C6.
C7.
cs.

c10.
c11.

Cc12.

C14.
C15.
C16.
C17.

L. env->CallVoidMethod(thisObj, gd, imei);

JNIEXPORT void JNICALL
Java_test_multiple_linteractions_MainActivity_propagateData(JNIEnv *env, jobject
thisObj, jobject data) {

jclass cd = env->GetObjectClass(data);

jfieldID fd = env->GetFieldID(cd, "str", "Ljava/lang/String;");

jobject imei = env->GetObjectField(data ,fd);

cd = env->FindClass(“test/multiple_interactions/MainActivity");

jmethodID gd = env->GetMethodID(cd, "toNativeAgain", "(Ljava/lang/String;)V");

return;
}// A(propagatelmei) = <(sink(arg1.str) @C15)>

JNIEXPORT void JNICALL
Java_test_multiple_linteractions_MainActivity_leakimei(JNIEnv *env, jobject thisObj,
jstring imei) {

LOGI("%s", getCharFromString(env, imei)); // leak

return;
}// A(leakimei) = <(sink(argl)@C15)>

Figure 1: The IMEI-leaking App: The arrowed lines among the app components highlight some of the inter-language-

communication.

To track the data and control flow across language boundary, a
static analyzer needs to understand the bridge interface - JNI. For
example, when MainActivity invokes propagateData() at J23, the
static analyzer needs to know: 1) the libmultiple_interactions.so has
been loaded at J7; 2) the corresponding native function name is
Java_test_multiple_linteractions_MainActivity_propagateData via
applying naming convention. Furthermore, when native function
Java_test_multiple_linteractions_MainActivity_propagateData() in-
vokes MainActivity.toNativeAgain() at C9, the static analyzer needs
to model and analyze the reflection style JNI functions: 1) C4-C6
read str field from data and assign to imei; 2) C7 and C8 construct a
method identifier to Java method MainActivity.toNativeAgain(); 3)
C9 invokes MainActivity.toNativeAgain() with parameter imei.

After resolving the native method call at J23 and J26 and the
native reflection call at C9 we can track dataflow between the two
worlds. Then at C15 we will be able to say that the variable imei to
be written to the log is sensitive.

3 CORE CHALLENGES AND OUR SOLUTIONS

For both Java world and native world, there are already mature
static analysis tools for either one of them [12, 16, 25, 36, 37, 43, 44].
Instead of building a new analyzer from scratch, it is advantageous
to leverage these existing static analyzers to build an inter-language
dataflow analysis framework for Android. However, there are sev-
eral challenges in such an effort.

1139

3.1 Challenge 1: Inter-language Analysis
Challenge

(1) Difference in intermediate data representation: Java data
flow analysis typically tracks points-to facts, whereas binary
dataflow analysis typically uses symbolic execution. Thus the
two analysis engines use different data representations in the
analysis process, making it hard to integrate. How to design a
unified dataflow representation for both analyses is a challenge.

(2) Efficiency: Both Java dataflow analysis and binary symbolic ex-
ecution are computationally expensive. The traditional dataflow
analysis requires propagating dataflow facts continuously over
the complete program’s control flow graph until a fixed point
is reached. For inter-language analysis, this means the analysis
process need to constantly switch between the Java and binary
analysis context. This further exacerbates analysis time.

To address above challenges, we adopt the Summary-based Bottom-
up Dataflow Analysis (SBDA) algorithm introduced in [19]. The
benefit of this method is that we only need to visit each method
exactly once to generate a unified heap manipulation summary for
both Java and native procedures, while still preserving a flow and
context-sensitive dataflow analysis result.

Figure 2 illustrates the workflow of SBDA. It takes the environ-
ment method as EP and generates a call graph G from it. From G
we apply a topological sort algorithm with the reverse order to
get a list of method MList, which guarantees the callee method
always comes before the caller method. If there is a cycle in the call
graph, the algorithm will break the cycle arbitrarily to make sure
the topological sort will always hold. For each method M; in MList,
we apply a heap manipulation summary generation algorithm to

Session 6B: Mobile 1

Generate Call Graph
Ep ——b

Topological Sort and reverV 2

A

EP — A — B — C

D > C > (B EP

|

A(D) }
‘ AQ) }—»‘ A(B)

Figure 2: SBDA workflow.

> >

Generate heap
manipulation summary
left to right.

N

get summary A;. The callee method’s summary will propagate to
its caller methods until the EP is reached.

Heap Manipulation Summary. A summary A for a method
m is presented by following language:

(A) = ‘<’ (Rule)* >’

(Rule) := ‘C [(AssignRule) | (ActionRule)])’
(AssignRule) == (HeapLoc) ['="| ‘+="| °-’] (RHS)
(ActionRule) == (Action) ‘CC (RHS))’ ‘@ (Loc)
(RHS) = (HeapLoc) | (Instance)

(Action) =~ | ‘source’| ‘sink’
(HeapLoc) = (HeapBase) (Index)

(HeapBase) := ‘arg’ Digits | ‘ret’ | ID

(Index) = CID| LT

(Instance) := ID ‘@ (Loc)

(Loc) x= 1D

A consists of a list of Rules. There are two types of Rule: AssignRule

and ActionRule. AssignRule defines what kind of data propagation
happened for the given HeapLoc at which Loc, whereas ActionRule
defines what action should take for the HeapLoc. AssignRule allows
three operations: 1) ‘=" strong update for a HeapLoc; 2) ‘+=" weak
update for a HeapLoc; 3) ‘-’ kill facts from RHS. ActionRule has
three Actions: 1) ‘~’ clear all heap for RHS; 2) ‘source’ mark an
RHS as sensitive data; 3). ‘sink’” mark an RHS as a leaky point. RHS
consists of HeapLoc or Instance which represents right-hand-side
values. HeapLoc is used to represent the heap location which con-
sists of HeapBase and Index. There are three types of HeapBase a
callee method could use to create heap manipulating side-effect:
the heap of arguments, return value and global variables. Depend-
ing on the object type of HeapBase, field access or array access
can be used to present the Index. Instance represents the object in-
stance created at particular Loc. For example, the toNative() method
in Figure 1 generates a summary A(toNative) = ((argl.str
arg2)(sink(argl.str)@C15)) where the argl.str is a HeapLoc which
means the strfield of the first argument, and sink(argl.str)@C15
indicates the str field of first argument will be leaked at location
C15.

Let’s take Figure 3 as an example to walkthrough the heap
manipulation summary generation process and how we leverage
the summary A to resolve the dataflow problem for the moti-
vating example. Start from method ep() we build a Call Graph,

1140

CCS’18, October 15-19, 2018, Toronto, ON, Canada

MainActivity.java

J2. | class Data { Resolve J19. foo(d, imei)
J3. public String str; e sink(source@J17)@C15
Ja. |} —
J12.| public void ep() { Call Graph 4 —<Rakals I
J17. String imei = source();
J18.| Datad =new Data(); ep |m<| | source@I7
J19.| foo(d, imei);
J20.} l A(foo) Nst<(argl.str = arg2) (sink(argd, str)@C15)>
J21.| Data foo(d, imei) {
J22,| d.str=imei; foo o argl
J23. n_1(d);
J24.} e
J25.| void bar(imei) { 7 [
426, n_2(imei) o | @ =)= <(5'"k'a’31’@k§ \) ‘
J27} arg1

multiple_interactions.cpp \ \\\ /
C1. | void n_1(env, obj, d) {
C6. | jstringi=env-> @ A1) = <(sinklarglstr)@C15)> V1 /

GetObjectField(d , “str"); nt gl =
C9. | env->
CallVoidMethod(“bar”, i) \

c11{}
C12] void n_2(env, obj, imei) { s o A(n_2) = <(sink(argl)@§15)>
€154 sink(imei)y; - argl sink@c1s
C17}}

Figure 3: Heap Manipulation Summary of App “IMEI-
leaking”: An excerpt.!

and topological sort it in reverse order. We start generating the
summary A from the leaf function n_2(). Native function n_2()
leaks the first argument thus we generate a summary A(ng) =
((sink(arg1)@C15)) and propagate it to Java method bar(). bar()
pass first argument to n_2() and the A(ny) is applied. Therefore,
we get summary A(bar) = ((sink(arg1)@C15)) and propagate it
to native function n_1(). n_1() read str field from first argument
d and invokes method bar(). Therefore, A(bar) is applied and we
get summary A(ny) = ((sink(argl.str)@C15)). foo() puts second
argument imei into str field of first argument d, and invokes native
function n_1(). We apply A(n1) and then get A(foo) = ((argl.str =
arg2)(sink(argl.str)@C15)). Java method ep() assigns a sensitive
data to variable imei at J17 and creates a Data instance to d at J18.
J19 of Java method ep() invokes method foo(). A(foo) tells us str
field of variable d gets data in variable imei which is sensitive, and
this str field of variable d will flow to a leak point at C15. Therefore,
we capture the data leakage problem.

3.2 Challenge 2: Resolving Native Method Calls

JNI allows two ways to resolve a native method call to a native

function:

(1) Default: Follow the naming convention in JNI specification [8]
to generate corresponding native function name. For example,
as Figure 1 illustrated, the corresponding native function name
for native method MainActivity.propagateData() is Java_test_-
multiple_linteractions_MainActivity_propagateData.

(2) Dynamic register: JNI allows developer to dynamically regis-
ter native method signature to native function mapping.

To assist dataflow analysis engine to find native method callee,
we propose a Native Method Mapping data structure. Native Method
Mapping is a map where the key is the native method signature
and the value is the corresponding native function name and the
containing so file.

'We shortened the method/function names for better presentation. First two arguments
of native functions are not counted in the summary as env is not presented in Java
method and obj is “this”.

Session 6B: Mobile 1

Algorithm 1 Resolve loaded library for class C

Input: all classes’ IR of A.
Output: Loaded library for class C, libNameSet
1: procedure RESOLVELIBNAMESET(A, C)
2: libNameSet «— empty set
3: loadSigs « Set(“System.load()”, “System.loadLibrary()”,
time.loadLibrary()”)
4 for all class € A.getAllReachableClasses(C) do
5 clinit « class.getStaticlnitializer(),
6: for all invoke € clinit.getnvokeStatements() do
7
8
9

“Runtime.load()”, “Run-

if invoke.signature € loadSigs then
libNameSet «— libNameSet :: invoke.getValueForParameter(1)
return [ibNameSet;

Algorithm 2 Generate Native Method Mapping of APK A

Input: All classes’ IR of A.
Output: A’s native method to so file map, n_map
1: procedure GENNATIVEMETHODMAP(A)
2: n_map «— empty map
3 for all class € A.getClasses() do
4 nativeMethods « class.getNativeMethods();
5 if nativeMethods # empty then
6: libnames «resolveLibNameSet(A, class)
7
8

> Invoke Algorithm 1
for all name € libnames do
: nLib « A.loadNativeLibrary(name);
9: for all method € nativeMethods do

10: funcName «— method.toJNIName();

11: if funcName € nLib.getFunctionNames() then

12: n_map(method) « (funcName, name);

13: else

14: dynamicMap < nLib .getDynamicRegisterFunctions();

15: if method € dynamicMap then

16: n_map(method) « (dynamicMap(method), name);
17: return n_map;

Algorithm 2 shows the pseudocode for generating Native Method
Mapping n_map of a given APK A. We first visit each classin A. If
class defined native methods, we then follow Algorithm 1 to find
the possible native function containing so files. For each native
method in the class, we generate its native function name funcName
following the naming convention. We then load each so file, nLib,
and see if the funcName exists in nLib. If yes, we add it into the
n_map. If not, we continue checking the dynamically registered
function list for nLib and check if the method is dynamically reg-
istered. If yes, we add it into the n_map. However, to obtain the
dynamically registered functions for nLib is a non-trivial work. We
took following approach to compute.

Dynamic Function Register Resolution. As illustrated in Fig-
ure 4, NI allows register dynamic function mapping by imple-
menting the JNI_OnLoad() method. The JNINativeMethod structure
contains the mapping information between the native method name,
signature and the corresponding native function pointer. C5-C8 de-
fines an JNINativeMethod array gMethods to indicate the mapping
for native methods foo() and bar(), then C16 invokes RegisterNa-
tives() with gMethods to register.

Dynamic function register resolution procedures:

(1) Dynamic register begins at INI_OnLoad() method, whose first
argument is JavaVM *vm. Therefore, we first construct a fake
pointer to the FNIInvokelnterface structure, which has been
modeled, and attach the initialized pointer to the first argument
(register RO) of JNI_OnLoad().

(2) We do the symbolic execution from the FNI_OnLoad(). In this
situation, we need to get the JNINativelnterface to make JNI
calls. As Figure 4 illustrated, JNI_OnLoad() method will first
declare an uninitialized JNIEnv *env variable. Then it will call

1141

CCS’18, October 15-19, 2018, Toronto, ON, Canada

jni.h
Cl. | typedef struct {
c2. const char* name;
C3. const char* signature;
ca. void* fnPtr;
C5. } ININativeMethod;

main.cpp
C5. static JNINativeMethod gMethods(] = {
C6. {"foo", "(Ljava/lang/String;)V", (void *) native_foo},
c7. {"bar", "(ILjava/lang/String;)V", (void *) native_bar},
cs8. I3
c9. JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *vm, void *reserved) {
Clo. INIEnV *env = NULL;
c11.
c12. if (vm->GetEnv((void **) &env, JNI_VERSION_1_4) !=JNI_OK) {
c13. return -1;
cia. }
C15.
Cle. if (env->RegisterNatives(clazz, gMethods, numMethods) < 0) {
c17. return -1;
cis. }
Cc19.
c2o0. |}

Figure 4: JNINativeMethod Structure

GetEnv() function from vm to initialize the env variable. We
create a SimProcedure(GetEnv) to simulate this behavior. We
construct a fake JNINativelnterface pointer outside the GetEnv()
function and then attach to it. Then the envvariable constructed
by JNI_OnLoad() can be assigned and continue to propagate.

(3) We hook SimProcedure(RegisterNatives) to JNINativelnterface’s
function pointers table. When the symbolic execution engine
executes SimProcedure(RegisterNatives), we can get the memory
address of the gMethods array. Because each element is accessi-
ble at a fixed offset through the JNINativeMethod structure. We
can resolve each element value of the gMethods based on the
address and the structure of JNINativeMethod.

(4) Each JNINativeMethod contains three elements, native method
name, native method signature, native function address. We
match the native method information from SBDA and find its
corresponding native function address. Then we can begin
Native Function Summary Builder from that address.

3.3 Challenge 3: Leveraging Existing Binary
Analyzer for Dataflow Analysis

There are a number of existing binary analysis tools [16, 36, 37].
We use angr [36] for our work. angr is a general binary analysis
platform which uses symbolic execution technique to recover precise
CFG (called CFGAccurate) in binary and allows user to perform
annotation-based analysis. However, angr is not aware of NDK
library, JNI function and Java object/method. Therefore, it cannot
be directly used to track dataflow in Android binaries.

To do NDK/JNI-aware dataflow analysis for Android binary,
we leverages angr’s symbolic execution engine and implements an
Annotation-based Dataflow Analyzer.

Annotation-based Dataflow Analysis (ADA) leverages angr’s An-
notation and SimProcedure features, and is NDK/JNI-aware. Anno-
tation is a customizable interface which angr uses to allow users to
define what kind of data needs to be carried in the state of symbolic
execution process and what’s the propagation rule. SimProcedure
allows users to replace library function calls with a fake function

Session 6B: Mobile 1

that models the original library function’s effect on the symbolic
execution state.

Custom Annotations. We design two custom Annotations to
assist NDK/JNI-aware dataflow analysis:

(1) SummaryAnnotation: Native code uses JNI functions to cre-
ate/inspect/update Java objects, invoke Java methods, catch and
throw exceptions, etc. What’s more, native code has the capa-
bility to conduct inter-component communication (ICC) with
the aid of JNI functions. Therefore, NativeDroid implements
SummaryAnnotation to capture data related to Java operations
in native code.

(2) TaintAnnotation: It annotates tainted data with information,
such as, taint type (source or sink), taint label, taint locations,
etc. There are two kinds of source and sink APIs in native world:
1) Linux system calls; 2) JNI functions which invokes Java world
methods. We annotate all of them to capture all the possible
taint information.

JNINativelnterface INIInvokelnterface

‘JNIEnv* }—» 0 reserved0 JavaVMm * }—' 0 reserved0
1 reservedl
34 *CallObjectMethod 2 reserved2
3 *DestroylavaVM
104 *SetObjectField 4 *AttachCurrentThread
5 *DetachCurrentThread
169 *GetStringUTFChars 6 *GetEnv
7 *AttachCurrentThreadAsDaemon

Figure 5: JNINativeInterface and JNIInvokeInterface struc-
tures

JNI Function Model. There are two key data structures in JNI,
JININativelnterface [4] and JNIInvokelnterface [2]. As Figure 5 illus-
trated, both of them contains a list of function pointers. INIEnv *
and JavaVM * are the pointers which points to the head of each
table.

(1) ININativelnterface provides JNI functions to create/inspect/up-
date Java objects, invoke Java methods, catch and throw excep-
tions, query Java class information, etc. For example, CallOb-
JjectMethod function is used to call a Java instance method from
a native method; SetObjectField sets the value of an instance
field of an object. As native code of Figure 1 shows, each native
function receives an JNIEnv * as its first argument, and can
invoke JNI functions based on it.

(2) INIInvokelnterface provides JNI functions to create/destroy Java
VM, and allocate/discover JNIEnv. EP of native Activity does
not have JNIEnv * parameter. Therefore, developer need to
use GetEnv() function to discover the thread’s JNIEnv *. If the
thread has not been created, developer needs to use AttachCur-
rentThread() or AttachCurrentAsDaemon() function to attach a
thread and allocate JNINativelnterface.

Understanding the semantics of the aforementioned JNI func-
tions are essential for ADA to do NDK/JNI-aware analysis. There-
fore, we need to model each of the JNI functions in JNINativeln-
terface and JNIInvokelnterface using the SimProcedure technique
provided by angr. However, the invocation instructions for JNI
functions are stripped in released version of Android applications,
and the JNI function calls happen through indirect jump in the

1142

CCS’18, October 15-19, 2018, Toronto, ON, Canada

function pointer table of those two data structures. Therefore, we
have to create a fake data structures to imitate JNINativelnterface
and JNIInvokelnterface, and set the corresponding function pointers
at each offset to address of our modeled SimProcedures.

Fake JNINativelnterface

[niEnvs f— .

169

SimProcedure(GetStringUTFChars) {
TaintAnnotation: arg1 - ret;

}

*SimProcedure(GetStringUTFChars)

—

Figure 6: GetStringUTFChars function model.

C/C++ Source Code

const char *getCharFromString(INIEnv *env,
jstring string) {
if (string == NULL)
return NULL;
return env->GetStringUTFChars(string, 0);

c1.
c2.
c3.
ca.
cs.
c6. |}

Assembly

Al. | .text:00000610 ; getCharFromString(_JINIEnv *, _jstring *)

A2. | .text:00000610 PUSH {R7,LR}
A3. | .text:00000612 ADD R7, SP, #0
A4. | .text:00000614 MoVS R2, #0
A5. | .text:00000616 P R1, #0
A6. | .text:00000618 BEQ loc_628
A7. | .text:0000061A MOVS R2, #0Xx2A4
AS. | .text:0000061E LDR R3, [RO]
A9. | .text:00000620 LDR R3, [R3,R2]
Al0.| .text:00000622 MoVS R2, #0
A11.| .text:00000624 BLX R3

A12.| .text:00000626 MoVS R2, RO
A13.| .text:00000628 loc_628

A14.| .text:00000628 MOVS RO, R2

A15.
A16.

.text:0000062A POP {R7,PC}
.text:0000062A ; End of function getCharFromString(_INIEnv *, jstring *)

Concise Process

L1.
L2.
L3.
L4.

RO
R2
R3
R3

env
Ox2A4

RO = env

R3 + R2 = env + Ox2A4 = address of GetStringUTFChars

Figure 7: getCharFromString function source code and as-
sembly

Figure 6 illustrates our model of JNINativelnterface and its Sim-
Procedure table. The model of GetStringUTFChars indicates that the
TaintAnnotation of the first argument is passed to return value.
For example, Figure 7 shows a native function getCharFromString
that receives an JNIEnv “env as its first argument at C1. It invokes
GetStringUTFChars() function from env at C5. As Figure 6 illus-
trated, GetStringUTFChars is the 170th element of JNINativelnter-
face. Therefore, its offset to NIEnv *is 169 * 4 = 676 = 0x2A4.
As the calling convention prescribed, the first argument of each
function is stored in RO register. We illustrate the register value
update process in the Concise Process of Figure 7 which simpli-
fies the procedures showed in Assembly code. First, RO register is
assigned to the value of env (a pointer) parameter at L1. Second,
R2is assigned to 0x2A4 at L2, which is the offset of GetStringUT-
FChars from JNIEnv *. Then, R3 is updated with the value of RO
at L3, which equals the env parameter. Finally, add R2 to R3 to
get the address of GetStringUTFChars. BLX R3 instruction at A11
will call the GetStringUTFChars. When ADA executes A11, it will
call SimProcedure(GetStringUTFChars), which will propagate any
TaintAnnotations from first argument to the return value.

Session 6B: Mobile 1

Java Method Summary. As showed in Figure 1, C9 invokes
CallVoidMethod() function which will make a Java method call
and callee is MainActivity.toNativeAgain(). SBDA already gener-
ated a method summary for MainActivity.toNativeAgain(), which
is A(toNativeAgain) = ((sink(argl)@C15)). The function model
SimProcedure(CallVoidMethod) takes A(toNativeAgain) and oper-
ates on its arguments to properly mark TaintAnnotations. For this
case, the data.str will be marked as leak.

Inter-Component Communication (ICC) Resolution. Native
code can make inter-component communication (ICC) by invok-
ing Java ICC APIs. Amandroid has a comprehensive model for
ICC [43, 44], thus we apply the same model in function model Sim-
Procedure(CallVoidMethod) to capture the possible ICC in native
code.

3.4 Challenge 4: Handling Native Activity

Android NDK allows the developer to develop Activity in pure
native language since Android 2.3 [1]. There are two ways to im-
plement a native Activity [7].

(1) native_activity.h: In this way, the app needs to include native_-
activity.h header to implement a native activity. It contains the
callback interface and data structures that are required to create
a native activity. The default entry point is ANativeActivity_-
onCreate function. NDK allows developers to use a customized
function name by specifying in Manifest.
android_native_app_glue.h: With include android_native_-
app_glue.h, an app can utilize android_main as entry point
function to implement a native Activity.

)

Algorithm 3 Collect Native Activity Info of APK A

Input: Manifest file and all classes’ IR of A.
Output: A’s native Activity information, native_activities
1: procedure cCOLLECTNATIVEACTIVITYINFO(A)
native_activities « empty set
manifest < A.getManifest()
for all compTag € manifest.getComponentTags() do
compName < compT ag.getAttribute(“android:name”)
compClass « A.getClass(ccompName)
if compClass.isChildOfIncluding(“android.app.NativeActivity”) then
map «— compT ag.getMetaDataMap()
9: libs «— empty set

10: libName < map(“android.app.lib_name”)

11: if libName = null then

12: libs « resolveLibNameSet(A, compClass) > Invoke Algorithm 1
13: else

14: libs « libs :: libName

15: funcName < map(“android.app.func_name”)

16: if funcName = null then

17: if libs = empty then

18: libs « A.getAllNativeLibs()

19: forall lib € libs do

20: if [ib.hasSymbol(“android_main”) then

21: libName « lib

22: funcName < “android_main”

23: else if [ib.hasSymbol(“ANativeActivity_onCreate”) then

24: libName « lib

25: funcName « “ANativeActivity_onCreate”

26: native_activities < (compName, libName, funcName)
27: return native_activities;

There are three important information needed for resolving a
native Activity: name, containing so file and entry function name.
Algorithm 3 shows the pseudocode for collecting these for all native
Activities from an app A. We first iterate each component compClass
in the AndroidManifest.xml and find the native Activities by check

1143

CCS’18, October 15-19, 2018, Toronto, ON, Canada

whether compClass is or is the child of “android.app.NativeActivity”.
If compClass is a native Activity, we then read its metadata to
obtain the libName. If did not get libName, we then evaluate comp-
Class’s static initializer <clinit> to find out the argument value for
load library method calls, System.load(), System.loadLibrary(), Run-
time.load(), and Runtime.loadLibrary(). Then assign it to libName.
We read the “android.app.func_name” from compClass’s metadata
to obtain the funcName. If “android.app.func_name” does not exist,
then the default entry function name is used. We then check if the
default name is “android_main” (the android_native_app_glue.h
case) or “ANativeActivity_onCreate” (the native_activity.h case).

C1. |static void OnStart(ANativeActivity *activity) {
Cc2. INIEnv* env = activity->env; . L
¢ i ivi ANativeActivit
C3. activity->vm->AttachCurrentThread(&env, 0); ANativeActivity Y
S . N . Callbacks
C4. jobject context = activity->clazz; ANativeActivity
CS5. jstring imei = getimei(env, context); 0| Callbacks* 0| *onStart
C6. LOGD("Device ID: %s", callbacks 1| *onResume
getCharFromString(env, imei)); 1| Javavm*vm
cr |} 2| INIEnv* env
C8. | static void OnResume(ANativeActivity *activity) {...}
C9. |void ANativeActivity_onCreate(ANativeActivity *activity, void *savedState, size_t savedStateSize) {
C10.| activity->callbacks->onStart = OnStart;
C11.| activity->callbacks->onResume = OnResume;
c12.
C13.|}

Figure 8: native_activity.h example

native_activity.h. As Figure 8 illustrated, the default EP of the
native Activity is ANativeActivity_onCreate (NDK also allows devel-
opers to use a custom EP). ANativeActivity * is the first parameter
whose first structure member is ANativeActivityCallbacks “callbacks.

ANativeActivityCallbacks structure contains the callback functions

which will be executed in the native activity lifecycle. However,

when we conduct the ADA from EP, the symbolic execution engine
cannot execute those callbacks, as there are no explicit calls.

To comprehensively model this type of native Activity we take a

two fold approach:

(1) Resolve callback function address: As illustrated in Figure 8,
the ANativeActivity_onCreate function assigns the callbacks to
corresponding index of ANativeActivityCallbacks structure. We
apply symbolic execution on this EP to get addresses of those
callbacks and its index in ANativeActivityCallbacks structure.
We first construct a fake ANativeActivityCallbacks structure.
We then construct a fake ANativeActivity structure and map
the fake ANativeActivityCallbacks structure’s pointer to the
ANativeActivity structure. Finally, we assign the pointer to the
fake ANativeActivity structure to the first argument (RO regis-
ter) of ANativeActivity_onCreate. We do the under-constrained
symbolic execution from ANativeActivity onCreate function.
After the symbolic execution has finished, the elements of ANa-
tiveActivityCallbacks will be assigned real addresses of those
callbacks.

(2) Explicitly invoke callback functions: We hook each call-
back function to ANativeActivity_onCreate and apply ADA from
ANativeActivity_onCreate as the EP. One challenge here is when
native Activity invokes JNI functions. As illustrated in Figure 8,
there are no JNIEnv * in the EP, and the ANativeActivity struc-
ture’s JNIEnv * is uninitialized. The developers need to invoke

Session 6B: Mobile 1

AttachCurrentThread on JavaVM * to assign env like in C2 and
C3.In ADA, we apply SimProcedure(AttachCurrentThread) to
assign env element. After the env element is assigned, the ADA
will be able to correctly resolve JNI functions.

c1.

-

int32_t handle_input(struct android_app* app, AlnputEvent* event) {...}
C2.| void handle_cmd(struct android_app* app, int32_t cmd) {...}

C3.| void android_main(struct android_app* state) { android_app

C4.| .. 0
C5.| state->onAppCmd = handle_cmd; e
C6.| state->onlnputEvent = handle_input; 1 void (*onAppCmd)
C7. 2 int32_t (*onlnputEvent)
C8.| //Read all pending events. 3 | ANativeActivity* activity
C9.| while (1) {..}

}

Figure 9: android_native_app_glue.h example

android_native_app_glue.h. Asillustrated in Figure 9, android_-
main is the EP, and the only argument is the android_app * state.
There are two important callback function pointers in android_-
app structure, onAppCmd and onlnputEvent. onAppCmd is used for
activity lifecycle events and onlnputEvent is used for input events.
Developers need provide their own processing functions to the two
callbacks. These callbacks will be triggered when an activity and
an input event occur, respectively.

To comprehensively model this native Activity type we apply
similar approach as we used to resolve ANativeActivity_onCreate.
Firstly, We run symbolic execution from android_main to resolve the
two callbacks value. Then, we hook the two callbacks to android_-
main function and run ADA.

4 THE JN-SAF FRAMEWORK

JN-SAF consists of JavaDroid, NativeDroid and NI Bridge. JavaDroid
is responsible for Dalvik-bytecode (Java world) analysis. It is im-
plemented on top of Amandroid [43, 44], which provides various
static analysis modules to perform custom analysis of Android apps.
However, Amandroid does not readily have inter-language analysis
capability. Thus, we have to implement the Summary-based Bottom-
up Dataflow Analysis (SBDA) algorithm as described in Section 3.1.
NativeDroid is responsible for binary code (native world) analysis,
which is built on top of angr [36]. NativeDroid implements the ADA
algorithm described in Section 3.3. JNI Bridge is the middle layer
that assists the control and data communication between JavaDroid
(implemented in Scala?) and NativeDroid (implemented in Python).
JNI Bridge leverages jpy [5], a bi-directional Java-Python bridge to
enable JavaDroid and NativeDroid transfer control and data.

Figure 10 illustrates the pipeline of JN-SAF which consists of
three major steps: 1) APK Preprocess: collects useful information
from an app; 2) Environment Model: generates environment model
for both Java and native components; 3) Summary-based Bottom-
up Dataflow Analysis (SBDA): computes information flow for each
Android component in a native-aware fashion and apply inter-
component analysis to evaluate security problems.

2Scala is a JVM-based language.

1144

CCS’18, October 15-19, 2018, Toronto, ON, Canada

4.1 APK Preprocess

JN-SAF takes an APK as the analysis input. It decompiles the
APK into three parts, dex files, Manifest&Resource files and so files.
JavaDroid leverages the DEX2IR and Resources Parser components
in Amandroid to decompile Dalvik bytecode into Intermediate Rep-
resentation (IR) language Pilar [44] and collect component infor-
mation. NativeDroid uses pyvex from angr to translate binary into
VEX IR [35].
The Native Info Analyzer receives information from DEX2IR and
Resources Parser to compute native world related information:
(1) Generate Native Method Mapping following Algorithm 2 de-
scribed in Section 3.2.
(2) Collect Native Activity Info following Algorithm 3 described in
Section 3.4.

4.2 Environment Model

Android is an event-based system, and as such no single method
can be used as EP for the dataflow analysis. To capture all lifecycle
and event control-/data-flow of an Android Java component, and to
generate EP for dataflow analysis, APK Preprocessor reuses Environ-
ment Builder from Amandroid to build environment model for each
Android Java component as described in [43, 44], and generates an
Environment Method as the EP for each Java component.

We implement Native Component Environment Builder following
the solution described in Section 3.4 to generate an Environment
Function as the EP for each native Activity component.

The Environment Method/Function explicitly invokes the even-
t/lifecycle callbacks as the Android runtime would.

4.3 Summary-based Bottom-up Dataflow
Analysis (SBDA)

JN-SAF implements the Summary-based Bottom-up Dataflow Anal-
ysis (SBDA) algorithm by following the techniques described in
Section 3.1. It consists of the following components.

Call Graph Builder. It receives the environment method/func-
tion from Environment Model and uses it as the EP to compute a
native-aware call graph. Unlike traditional Java call graph build-
ing algorithm, our call graph will not stop at native method calls.
Instead, it will evaluate the corresponding native function to ad-
dress possible reflection call from native to Java and add those call
target as callee of this native method. The native reflection style
call is resolved by following the JNI function model described in
Section 3.3.

Bottom-up Summary Propagator. It receives the call graph
CG from Call Graph Builder and applies a topological sort with the
reverse order to get a list of method/function MList. It iterates the
MList to send the work order to corresponding Method/Function
Summary Builder to compute summary A, and propagate to their
callers.

Java Method Summary Builder. Amandroid provides a flow
and context-sensitive monotonic dataflow analysis engine [44].
We can leverage this engine to compute the summary for a given
method. However, Amandroid is not aware of our summary repre-
sentation and it always does a inter-procedural analysis. We thus

Session 6B: Mobile 1

CCS’18, October 15-19, 2018, Toronto, ON, Canada

APK Preprocess Environment Model

APK

Native
Activity .
Native

Info
Component
ex IR_VEX Environment
.S0 Py Builder

Summary-based Bottom-Up Dataflow Analysis (SBDA)

Java Method

JNI Bridge

i Summary Builder Dataflow
IR_Pilar Native Analysis
.dex DEX2IR))
1 | o || s [[uemoss RS | b | e
Native Info pping Component
Analyzer Environment Env call cG Bottom-up Analyzer
Resources Builder Graph Summary
Parser Builder Propagator
Component Info JavaDroid

NativeDroid

Function Info Function A

Native Function
Summary Builder

Figure 10: The JN-SAF pipeline.

significantly modified its dataflow analysis engine. When the en-
gine reaches a method call, it will not flow the points-to facts into
the callee. Instead, it will obtain the summary A(callee) and apply
such summary on current points-to facts to imitate the heap manip-
ulation behaviors. When dataflow analysis finishes, we collect the
heap manipulation behavior of the current method and generate a
summary A(method).

Native Function Summary Builder. Upon receiving a work
order with native method signature and its containing so file, the
Native Function Summary Builder first identifies the binary address
for the corresponding native function of the native method. Then
it applies ADA (as described in Section 3.3) to generate A starting
from such EP as follows.

(1) Add SummaryAnnotation to each argument including argument
index and type information, because from EP’s perspective all
mutable arguments are considered as HeapBase.

(2) Add SimProcedure to all NI functions which might create/delete/-
manipulate the heap of Java objects. When ADA evaluates, those
SimProcedures will properly update and propagate SummaryAn-
notation. As an example, native code can construct Java String
with the aid of JNI function NewString() or NewStringUTF(), JNI
function SetObjectField() will set data to a Java object.

(3) When ADA encounters any method/function invocation, it will
check whether it is a source or sink APL If so ADA will add
TaintAnnotation to proper HeapLocs. For method invocation,
we will also check with SBDA to obtain its A and apply it on
the arguments SummaryAnnotations.

(4) When ADA is over, we extract the SummaryAnnotation together
with TaintAnnotation related to each arguments and return node
(if the JNI function returns a Java object) to build the summary.

We take Java_test_multiple_linteractions_MainActivity_propagat-
eData() function at Figure 1 as an example to walkthrough the na-
tive function A building process. Java_test_multiple_linteractions_-
MainActivity_propagateData() function receives one argument data.
We assign SummaryAnnotation(arg1, test. multiple_interactions.Data)
to data and SummaryAnnotation(arg1.str, java.lang.String’) to data.str.
C6 invokes GetObjectField() to read str field of data to variable
imei. SimProcedure(GetObjectField) get SummaryAnnotations from

1145

data.str and propagate it to variable imei. C9 invokes Java method
toNativeAgain() and pass imei as the first argument. SimProce-
dure(CallVoidMethod) obtain A(toNativeAgain) from SBDA, and
apply on SummaryAnnotations of imei, we then get TaintAnnota-
tion(sink(arg1.str), ‘C15°). After finish running ADA, we collect the
SummaryAnnotations and TaintAnnotations related to each argu-
ment (there are no return value in this case). Finally, we check the
heap changes of each HeapBase and taint informations to construct
the summary A(propagateImei) = {(sink(argl.str)@C15)).

Inter-component Analyzer. Resolving Inter-component com-
munication (ICC) is essential for any Android static analysis tool.
JN-SAF’s ICC resolution is empowered by Amandroid’s Summary
Table (ST) based ICC resolution model [44]. The Inter-component
Analyzer collects ICC information from all Java components and
native Activity components. Then, it computes ST for each compo-
nent and uses Amandroid’s Component-based Analysis to address
ICC dataflow.

5 EVALUATION

We evaluated JN-SAF extensively on benchmark and real world
apps. Our dataset includes: (1) NativeFlowBench created by us
which consists of 22 hand-crafted benchmark apps, each testing
one perspective of the inter-language challenges; (2) 100,000 ran-
domly selected popular apps from AndroZoo [11] (ZOO); (3) 24,553
malware apps from the AMD dataset [42] (AMD).

We perform experiments to answer the following research ques-
tions (RQ):

RQ1: What is the statistics of native library usage in real
world Android apps?

RQ2: How does the running time of JN-SAF scale?

RQ3: How does JN-SAF perform on Benchmark apps?
RQ4:Is JN-SAF capable of discovering crucial security issues
to aid in real-world app vetting?

We ran our experiments on a machine with 2.20 GHz, 48-core
Xeon, and 256 GB RAM.

Session 6B: Mobile 1

5.1 RQ1: What is the statistics of native library
usage in real world Android apps?

Table 1: Native library statistics for datasets.

(a) Native library usage.

Z0O AMD Z00 AMD
Total App ¢ 99,910 24,384
Has Native ° 39,661 5,365 / Total App 39.7% 22.0%
Has .so File 35,705 5,164 / Has Native 90.0% 96.2%
Has Native Method 32,576 3,867 / Has Native 82.1% 72.1%
Has Native Activity 583 29 / Has Native 1.5% 0.5%
Total Native Method 4,232,699 | 112,000 / Has Native Method 106.7 29.0
Pass Data 3,661,881 | 90,212 / Total Native Method | 86.5% 80.5%
Pass Object 1,496,911 | 45,981 / Pass Data 35.4% 51.0%

“We failed to analyze a few apps that use advanced obfuscation.
YHas Native = Has .so File U Has Native Method U Has Native Activity.

(b) Architecture.

700 AMD Z00 AMD
Total .so File 235,616 16,116
ARM 162,356 13,792 / Total .so File 69.0% 85.6%
ARM 64 10,111 2 / Total .so File 4.3% 0.01%
X86 37,745 1,149 / Total .so File 16.0% 7.1%
X86 64 8,511 2 / Total .so File 3.6% 0.01%
MIPS 9,658 770 / Total .so File 4.1% 4.8%
MIPS 64 2,477 2 / Total .so File 1.1% 0.01%
Other 4,758 399 / Total .so File 2.0% 2.5%

(c) Reflection call.

Z00 AMD Z00 AMD
Total Reflection Call 7,664% 33,497
Resolved Call 4,744 29,336 / Total Reflection Call | 61.9% 87.6%
Library API Call 2,555 24,249 / Resolved Call 53.9% 82.7%
App Method Call 2,189 5,087 / Resolved Call 46.1% 17.3%

“Due to time constraint we only finished analyzing 37,781 native functions from ZOO.

We collect native library usage on both ZOO and AMD. As Ta-
ble 1a indicates, the overall native library usage is reasonably high
no matter in benign dataset or malware dataset. ZOO has much
higher native library usage than AMD which means there are many
benign use cases for native libraries, so native library existence is
not a good indicator for detecting Android malware. We really need
to dig into the native library and understand its behavior. We also
found cases where an app has native methods but no .so files. This
means the .so file is probably downloaded at runtime (in which
case no static analyzer will be able to identify). We found native
Activity usage in both ZOO and AMD, which shows the necessity
of handle such case.

Table 1b lists the usage of different architectures. Overall, 32 bit
architecture has much higher percentage over 64 bit architecture.
ARM is the most popular architecture for Android. Not surprisingly
most of the binaries are in ARM architecture.

Native library can invoke Java method through reflection style
function calls. We conducted an experiment to study the capability
of NativeDroid to resolve such calls, and the results are shown in
Table 1c. We also studied the distribution of those reflection call
targets, and found that the majority of the reflection calls (espe-
cially from AMD) are targeted to library APIs as oppose to App
methods. We experience poor performance on ZOO reflection call
resolving due to the larger code base and complex logic in market
apps as opposed to malware apps. From the obtained reflection

1146

CCS’18, October 15-19, 2018, Toronto, ON, Canada

call list, we see many interesting library APIs being called, such
as SmsManager.sendDataMessage(), ClassLoader.loadClass(), which
might raise red flags.

5.2 RQ2: How does the running time of JN-SAF
scale?

10000

Time (second)

100
#Analyzed Methods

Figure 11: Time to run SBDA.

1000 10000

10000 1000000

= = 10000 o

: g et
8 §

! o Live

£ £ ﬂ

= = 1

1 100
#Analyzed Instructions

10000 1000000

100 10000 1000000 100000000
#Analyzed Instructions

(a) Function Summary Builder (b) Native Activity Analysis

Figure 12: Native code analysis performance.

SBDA is the core engine and the most computation-intensive step
in JN-SAF. Figure 11 presents the time taken to construct SBDA
for 10,000 randomly picked real-world app components. These
components reach 144 methods on average. The average running
time for computing the SBDA for each component is 42.288 seconds;
the minimum is 0.001 seconds whereas the maximum is 86 minutes.

We constructed a separate experiment focused on the running
time for native code analysis. Figure 12a illustrates the time taken to
build function summary for 2,000 randomly picked real-world app
native functions. These native functions reach 4,417 instructions on
average. The average running time is 88.982 seconds; the minimum
is 0.107 seconds whereas the maximum is 136 minutes. Figure 12b
illustrates the time taken to construct native Activity analysis for
all 579 native activities (failed to analyze 33 due to path explosion
problem). These native activities reach 41,285 instructions on aver-
age. The average running time is 570.513 seconds; the minimum is
0.247 seconds whereas the maximum is 438 minutes.

5.3 RQ3: How does JN-SAF perform on
Benchmark apps?

For evaluation purpose, we designed NativeFlowBench since there
is no existing benchmark for evaluating inter-language dataflow
analysis capability of Android static analysis tools. NativeFlowBench
contains a set of hand-crafted apps designed to test specific anal-
ysis features. Since those apps are hand-crafted, the ground truth
is known and we can compute metrics like precision and recall.

Session 6B: Mobile 1

Table 2: Results on NativeFlowBench.

App Name JN-SAF | Amandroid ‘ ilg;fmzd ‘ DroidSafe
Part A: Inter-language Dataflow
native_source (¢} X X X
native_nosource
native_source_clean * *
native_leak (0] X X X
native_leak_dynamic_register (0] X X X
native_dynamic_register_multiple | O X X X
native_noleak
native_noleak_array *
native_method_overloading
native_multiple_interactions (0] X X X
native_multiple_libraries (0] X X X
native_complexdata o X X X
native_complexdata_stringop *
native_heap_modify o X X X
native_set_field from_native 00 XX XX XX
native_set_field from_arg 00 XX XX XX
native_set_field_from_arg_field 00 XX XX XX
Part B: Native Activity Resolve
native_pure o X X X
native_pure_direct (0] X X X
native_pure_direct_customized (0] X X X
Part C: Inter-component Communication
icc_javatonative ‘ o ‘ X ‘ X ‘ X
icc_nativetojava ‘ o ‘ X ‘ X ‘ X
Sum, Precision and Recall
O, higher is better 19 0 0 0
* lower is better 2 1 1 0
X, lower is better 0 19 19 19
Precision p = O/(O + *) 90.5% 0.0% 0.0% N/A
Recall r = O/(0 + X) 100% 0.0% 0.0% 0.0%
F-measure 2pr/(p + r) 95.0% N/A N/A N/A

O = True Positive, * = False Positive, X = False Negative.
We applied IccTA for handle part C: Inter-component Communication.

NativeFlowBench contains 22 apps categorized in three parts: Part
A focuses on inter-language dataflow analysis challenges: native
source and sink finding, native method to native function resolving,
JNI library function modeling, native dataflow analysis with Java
objects, etc. Part B focuses on the native Activity resolving. Part C
focuses on inter-component communication between Java and na-
tive components. We will make NativeFlowBench publicly available.
The apps in these testsuites are not crafted to favor a particular
tool. They present common scenarios one will find when reasoning
about the relevant security issues.

We compare the effectiveness of JN-SAF with all other major
Android static analysis tools: Amandroid [43, 44], FlowDroid [12],
IccTA [23], DroidSafe [21]. We run each tool against each of the
benchmark apps to check if the tool can report the correct data
leak paths, and the detailed comparison is reported in Table 2. The
results are shown in terms of True Positive (O), False Positive (*)
and False Negative (X), if any. If an app has more than one leakage
path, then the result is shown for each of them. Not surprisingly,
JIN-SAF outperforms all other tools as none of the existing An-
droid static analysis tools have inter-language analysis capability.
DroidSafe is outdated and failed to analyze any of the benchmark
apps. Amandroid and FlowDroid both identified one false path at
native_source_clean. This is caused by their conservative model for
native method calls — if one of the argument is tainted all other
arguments will also be considered as tainted. IccTA failed to handle
the inter-component communication cases due to the lack of native

1147

CCS’18, October 15-19, 2018, Toronto, ON, Canada

code resolution. JN-SAF has false alarm on native_noleak_array
because JN-SAF cannot distinguish different index of an Java array.
JN-SAF has false alarm on native_complexdata_stringop because
JN-SAF does not do precise string analysis.

5.4 ROQ4:Is JN-SAF capable of discovering
crucial security issues to aid in real-world
app vetting?

We evaluated JN-SAF on AMD [42] dataset to examine its capacity

of real-world app security vetting. AMD is an Android malware

ground truth dataset which contains 24,553 samples categorized in

71 malware families. AMD reported 9 malware families that contain

native payload [42], and JN-SAF is able to detect 8 of them. The

missed one is Lotoor which is a family of all the rooting tools®. We
discuss in detail our findings in the following 4 case studies.

5.4.1

Sensitive information leakage has been a widespread security issue
in Android platform. To make detection harder, malware moves the
leaky behavior into native world. JN-SAF detected two malware
families which has such behavior.

Triada obtains the IMSI of device in Java layer. Then it passes the
IMSI to native method nativeSayTest(). The corresponding native
function will then leak IMSI by invoking SmsManager.sendTextMess-
age(). IN-SAF detects this issue by generate a summary A(nativeS-
ayTest) = ((sink(arg2)@Cx)) and feed back to SBDA. SBDA marks
the IMSI as source and when nativeSayTest() is invoked with such
source the leak issue is reported.

Similar to Triada, Gumen gains the IMEI of device in Java layer.
Then it propagates the IMEI taint source to the third argument
of native method stringFromJNI(), which leaks IMEI by invoking
SmsManager.sendTextMessage(). JN-SAF utilizes the same detection
procedure for detecting Triada family. The generated summary is
A(stringFromJNI) = ((sink(arg3)@Cx)).

Case Study 1: Inter-language Data Leakage

5.4.2 Case Study 2: Stealthy Command Execution

Malware writers love to use shell command to execute malicious
behaviors. For example, DroidKungFu is a backdoor malware that
try to root device and execute malicious code. It roots the device
with the aid of secbino program. If the device has not been rooted,
it will copy secbino to /data/data/pkg/secbino and chmod 4755 to get
the execution permission. Then it executes secbino to get the root
privilege and start a service to download other malware apks to
install.

JN-SAF detects these behaviors by modeling those Linux pro-
grams that can execute shell command, such as, popen, system, execv
etc. JN-SAF is able to get the parameters of those system API and
know what shell commands are executed.

5.4.3 Case Study 3: Stealthy C&C Communication

Command and Control(C&C) server is frequently used in malware
to conceal the malware command and control information genera-
tion process into network communication. This process can also
move to native world. N-SAF detected a malware familty Bogx
which hide its C&C communication in the native payload.

3Rooting behavior is hard to detect since each rooting method has complex and quite
different semantics.

Session 6B: Mobile 1

Bogx launches a thread to exec native code in StatService class. In
the native world, it enables the WIFI to ensure the success of com-
municating with a server. Then it communicates with the server to
get the malicious payload and then dynamicly loads these payloads.
All these behaviors are completed by native reflection calls. JN-SAF
models all the JNI functions from JNINativelnterface structure. After
running ADA, we can know what kind of reflection calls are made
in the native world.

5.4.4 Case Study 4: Malicious Identity Hiding

Malicious identity such as server URL and premium number is
important for many malware analysis techniques. JN-SAF detects
two malware families Ogel and UpdtKiller that hide those identities
in the native world.

Ogel encapsulates its C&C server URL in native code, and when
it starts running it will reads the URL data by invoking a native
function Java_com_googlle_cn_ni_u(). Java_com_googlle_cn_ni_u()
uses NewStringUTF() to create a Java String of its URL. JN-SAF is
able to obtain the value of the C&C server URL. When malware
returns the server URL from native world to Java world through
native method, NativeDroid can generate summary that illustrates
this process A(u) = ((ret = URL@Cx)(source(URL)@Cx)). Then
JavaDroid will continue SBDA with the summary information.

UpdiKiller executes commands remotely to steal personal in-
formation, add artificial SMS messages to the inbox and intercept,
auto-reply and block SMS/MMS messages without user’s consent.
All the sensitive data required by communicating with the remote
server, including numbers and URLs, are stored in the native code.
UpdtKiller get these sensitive data via invoking native methods
with Get prefix, such as, GetNumber(), GetUrlHost() etc. These na-
tive methods invoke NewStringUTF to encapsulates the sensitive
data into Java String and return to Java world. NativeDroid gener-
ates summary A(GetNumber) = ((ret = N@Cx)(source(N)@Cx)),
and feed back to JavaDroid.

6 DISCUSSION

The inter-language related operations such as JNI reflection call
construction, dynamic function registration, and Intent value reso-
lution, all require precise resolution of string values. JN-SAF does
constant string propagation in both JavaDroid and NativeDroid. If
the string is manipulated JN-SAF will not be able to construct the
precise value. Precise string analysis is expensive and non-trivial
in both Java analysis and binary analysis as mentioned in prior
research [18, 22, 33]. We leave this for future research.

JavaDroid inherits some limitations from Amandroid [44]: 1) It
does not handle Java reflection and dynamic class loading in the
Java world; 2) The precision and soundness of summary genera-
tion depends on the faithfulness of the library API models; 3) It
cannot handle fine-grained concurrent execution. NativeDroid in-
herits path explosion issues from angr [36]. Control-/Data-flow
analysis of NativeDroid is mainly based on the symbolic execution
engine of angr. Path&State explosion are the natural defect of any
symbolic execution techniques when encountering large programs
as the analysis need to separate all the states for different execu-
tion paths. To alleviate explosion problem, NativeDroid needs to
better constrain the possible execution paths and states which are
non-trivial [14]. We will handle these limitations in future work.

1148

CCS’18, October 15-19, 2018, Toronto, ON, Canada

To evade detection of static analysis, both Java and native code
can be obfuscated with techniques such as string encryption and
dynamic code loading. JN-SAF currently does not provide a solution
for such obfuscation. Anti-obfuscation techniques such as [30]
could be applied to improve the detection capability of JN-SAF.

7 RELATED WORK

JN-SAF is a static and cross-layer analysis framework that includes
analysis for the native world of Android apps. Below we describe
three categories of works that are most closely related to ours.

7.1 Android Static Analysis

FlowDroid [12] is a dataflow analysis framework for taint detection
of the Android application. FlowDroid has an app-level dummy-
Main model to capture Android system events, then uses a flow
and context-sensitive IFDS [31, 32] algorithm to do taint detection.
FlowDroid avoids to handle native method invocation and applies a
comprehensive model for native method calls.

Epicc [28] leverages IFDS on FlowDroid to computes Android
Intent call parameters. However, it cannot resolve Intent call pa-
rameters if it presents in the native code.

IccTA [23] extends FlowDroid and uses IC3 [27] as the Intent
resolution engine. IccTA is able to track data flows through reg-
ular Intent calls and returns. IccTA shares the same limitation as
Flowdroid which does not handle any native method invocations.

DroidSafe [21] is yet another dataflow analysis framework for
Android application which tracks Intent communication and RPC
calls. DroidSafe adopted a flow-insensitive points-to analysis algo-
rithm which aims to handle all possible runtime event ordering.
DroidSafe does not handle native method call as well.

CHEX [25] is designed to detect component hijacking problem in
Android. CHEX is built on top of Wala [20], it first constructs app-
splits, each of which is a code segment reachable from an EP, then
uses the dataflow engine from Wala to computes the dataflow sum-
mary for each of the app-split. The app-splits summaries are then
linked in all possible permutations to detect possible information
flows. CHEX does not handle native method call.

SInspector [34] is designed to detect UNIX domain socket misuses.
SInspector uses Amandroid to generate Java layer dataflow and uses
IDA Pro to capture native dataflow. However, SInspector does not
track inter-language data flows nor model JNI functions.

Amandroid [43, 44] is a general flow and context-sensitive ICC-
aware dataflow analysis framework for security vetting of Android
applications. Amandroid generates environment model for each
Android component and applies a component-based analysis al-
gorithm to capture all possible intra-/inter-component data flows.
However, like all other Android static analysis framework, Aman-
droid does not handle native method calls. JavaDroid of JN-SAF
is built on top of Amandroid, which leverages many features from
Amandroid and provides a naive and comprehensive approach to
handle native method invocations and inter-language data flows.

7.2 Binary Code Analysis

BitBlaze [37] is a hybrid binary analysis platform, which contains
three components: 1) Vine: a static analysis component that trans-
lates assembly to IR, which supports x86 and ARMv4 architectures;
2) TEMU: 1t enables whole-system monitoring and dynamic binary

Session 6B: Mobile 1

instrumentation; 3) Rudder: It utilizes Vine and TEMU to conduct
symbolic execution.

BAP [16] is binary analysis platform which supports x86 and
ARM architectures. BAP re-designs Vine to assist its front-end fea-
tures. After the IR translations process finished, BAP conducts its
back-end analysis in the IR granularity.

angr [36] is a binary analysis framework that combines many
existing program analysis technique into a single, coherent frame-
work, such as, Dynamic Symbolic Execution, Veritesting, Value-Set
Analysis (VSA). angr leverages the IR lifter of Valgrind [26] to trans-
late assembly to VEX IR, With the aid of VEX IR, angr provides
analysis support for many architectures including 32-bit and 64-bit
versions of ARM, MIPS, PPC, x86. NativeDroid of JN-SAF is built on
top of angr and uses its SimProcedure and Annotation features to
model NDK libraries and JNI functions.

7.3 Dynamic&Hybrid Analysis with Native
Information Tracking

DroidScope [46] is an Android application dynamic analysis tool
that reconstructs OS level and DVM level information. DroidScope
collects detailed native and Dalvik instruction traces, profile API-
level activity, and track information leakage through both the Java
and native components using dynamic taint analysis.

NDroid [29] performs dynamic taint analysis based on QEMU
and tracks information flows through JNI. NDroid instruments
important related JNI functions to resolve information flows, such
as JNI entry, JNI exit, object creation. Moreover, It models the system
library instead of instrumenting those standard functions to reduce
overhead. However, similar to all dynamic analysis systems, NDroid
has the path coverage issue and it does not track control flows.

TaintART [39] applies dynamic taint tracking by instrumentation
the ART compiler and runtime. TaintART follows NDroid’s method
to handle JNI calls.

Harvester [30] employs hybrid analysis for extracting runtime
values. When encountered with native methods, Harvester monitors
them as logging points to extract runtime values instead of stepping
into the native code to conduct the analysis.

Going Native [9] conducts static analysis to filter apps containing
native code firstly and then perform dynamic analysis to study the
native code usage of real-world Android apps. Then it generates
native code sandboxing security policy.

Malton [45] is a dynamic analysis platform aimed to do malware
detection that runs on ART runtime. Malton conducts multi-layer
monitoring including native layer and information flow tracking to
provide a comprehensive view of the Android malware behaviors.

DroidNative [10] utilizes specific control flow patterns to reduce
the impact of obfuscations and use it as semantic-based signatures
to detect malware in ART runtime.

8 CONCLUSION

In this paper, we presented the first Android static analysis frame-
work JN-SAF which can track precise control and data flow across
language boundary. JN-SAF provides a comprehensive model for
JNI functions, NDK libraries, and native Activities, which enables
dataflow analysis on Android binaries. IN-SAF leverages a summary-
based bottom-up scheme to do precise and compact inter-language

1149

CCS’18, October 15-19, 2018, Toronto, ON, Canada

dataflow analysis and provides unified summary representation to
integrate Java and binary analysis results. Our experiments result
shows that JN-SAF can be readily applied to effectively address
real-world Android security issues which involve native payload
and inter-language communication.

ACKNOWLEDGMENTS

This research was partially supported by the U.S. National Sci-
ence Foundation under grant no. 1622402 and 1717862, the Chinese
National Science Foundation under grant no. 61572115, and the Chi-
nese National Key R&D Plan under grant no. 2016QY04X000. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the above agencies.

REFERENCES

[1] 2018. Android NDK. https://developer.android.com/ndk/. (2018).

[2] 2018. The Invocation APL https://docs.oracle.com/javase/8/docs/technotes/
guides/jni/spec/invocation.html. (2018).

2018. Java Native Interface Specification. https://docs.oracle.com/javase/7/docs/
technotes/guides/jni/spec/jniTOC.html. (2018).

2018. JNI Functions. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/
spec/functions.html. (2018).

2018. jpy - a Python-Java Bridge. https://github.com/bcdev/jpy. (2018).

2018. Mobile Operating System Market Share Worldwide.
http://gs.statcounter.com/os-market-share/mobile/worldwide. (2018).

2018. Native Activities and Applications. https://developer.android.com/ndk/
guides/concepts. (2018).

2018. Resolving Native Method Names. https://docs.oracle.com/javase/1.5.0/
docs/guide/jni/spec/design.html. (2018).

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016. Going native:
Using a large-scale analysis of android apps to create a practical native-code
sandboxing policy. In Proceedings of the NDSS.

Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017.
DroidNative: Automating and optimizing detection of Android native code mal-
ware variants. computers & security (2017).

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
Proceedings of the ACM MSR.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the ACM PLDL

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In Proceedings of the IEEE ICSE.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (2018).

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving Apps to Test the Security of Third-party Components. In Proceedings of
the USENIX Security Symposium.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A Binary Analysis Platform. In International Conference on Computer Aided
Verification. Springer, 463-469.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the
ACM Mobisys.

Aske Christensen, Anders Moller, and Michael Schwartzbach. 2003. Precise
analysis of string expressions. Static Analysis (2003).

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise and compact
modular procedure summaries for heap manipulating programs. In Proceedings
of the ACM PLDL

Stephen Fink and Julian Dolby. 2012. WALA-The TJ Watson Libraries for Analy-
sis. http://wala.sf.net/.

Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe. In Proceedings of the NDSS.

(1]

[12]

[13

[14

(15]

[16

(17

(18]

=
)

[20

[21

https://developer.android.com/ndk/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://github.com/bcdev/jpy
https://developer.android.com/ndk/guides/concepts
https://developer.android.com/ndk/guides/concepts
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/design.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/design.html

Session 6B: Mobile 1

Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. 2015. String analysis
for Java and Android applications. In Proceedings of the ACM FSE.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
Proceedings of the IEEE ICSE.

Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. 2014. Andrubis—1,000,000
apps later: A view on current Android malware behaviors. In Proceedings of
the Third International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). IEEE.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:
Statically vetting Android apps for component hijacking vulnerabilities. In Pro-
ceedings of the ACM CCS.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices. ACM.
Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In Proceedings of the IEEE ICSE.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-component Communica-
tion mapping in Android with Epicc: An Essential Step towards Holistic Security
Analysis. In Proceedings of the USENIX Security Symposium.

Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. 2014. On Tracking
Information Flows through JNI in Android Applications. In Proceedings of the
IEEE Dependable Systems and Networks (DSN).

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.
Harvesting Runtime Values in Android Applications That Feature Anti-Analysis
Techniques.. In Proceedings of the NDSS.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the ACM POPL.
Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical Computer
Science (1996).

Daryl Shannon, Sukant Hajra, Alison Lee, Daigian Zhan, and Sarfraz Khurshid.
2007. Abstracting Symbolic Execution with String Analysis. In Testing: Academic
and Industrial Conference Practice and Research Techniques-MUTATION. IEEE.
Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z Morley Mao. 2016. The
Misuse of Android Unix Domain Sockets and Security Implications. In Proceedings
of the ACM CCS.

(35]

[36]

(37]

[39

[40

[41

[42

[43

[44

[45

[46]

[47

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the NDSS.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the IEEE S&P.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
International Conference on Information Systems Security. Springer.

David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqgiang Lin, and Latifur
Khan. 2014. SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-
in-the-Middle Vulnerabilities in Android Apps. In Proceedings of the NDSS.
Mingshen Sun, Tao Wei, and John Lui. 2016. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the ACM
CCs.

Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.
CopperDroid: Automatic Reconstruction of Android Malware Behaviors.. In
Proceedings of the NDSS.

Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick
Tague. 2014. A5: Automated Analysis of Adversarial Android Applications. In
Proceedings of the SPSM. 39-50.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’17).
Springer, Bonn, Germany, 252-276.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps. In Proceedings of the ACM CCS.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A
Precise and General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps. ACM Transactions on Privacy and Security (TOPS) (2018).
Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for ART. In Proceedings of the
USENIX Security Symposium.

Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing

the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.. In
Proceedings of the USENIX Security Symposium. 569-584.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets.
In Proceedings of the NDSS.

	Abstract
	1 Introduction
	2 Background and Example
	2.1 Native Code Usage Modes in Android
	2.2 Native Development Kit (NDK)
	2.3 A Motivating Example

	3 Core Challenges and Our Solutions
	3.1 Challenge 1: Inter-language Analysis Challenge
	3.2 Challenge 2: Resolving Native Method Calls
	3.3 Challenge 3: Leveraging Existing Binary Analyzer for Dataflow Analysis
	3.4 Challenge 4: Handling Native Activity

	4 The JN-SAF Framework
	4.1 APK Preprocess
	4.2 Environment Model
	4.3 Summary-based Bottom-up Dataflow Analysis (SBDA)

	5 Evaluation
	5.1 RQ1: What is the statistics of native library usage in real world Android apps?
	5.2 RQ2: How does the running time of JN-SAF scale?
	5.3 RQ3: How does JN-SAF perform on Benchmark apps?
	5.4 RQ4: Is JN-SAF capable of discovering crucial security issues to aid in real-world app vetting?

	6 Discussion
	7 Related Work
	7.1 Android Static Analysis
	7.2 Binary Code Analysis
	7.3 Dynamic&Hybrid Analysis with Native Information Tracking

	8 Conclusion
	Acknowledgments
	References

