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ABSTRACT
Hypothesis testing plays a central role in statistical inference, and

is used in many settings where privacy concerns are paramount.

This work answers a basic question about privately testing simple

hypotheses: given two distributions P and Q , and a privacy level ε ,
how many i.i.d. samples are needed to distinguish P fromQ subject

to ε-differential privacy, and what sort of tests have optimal sample

complexity? Specifically, we characterize this sample complexity

up to constant factors in terms of the structure of P and Q and the

privacy level ε , and show that this sample complexity is achieved by

a certain randomized and clamped variant of the log-likelihood ratio

test. Our result is an analogue of the classical Neyman–Pearson

lemma in the setting of private hypothesis testing. We also give

an application of our result to the private change-point detection.

Our characterization applies more generally to hypothesis tests

satisfying essentially any notion of algorithmic stability, which

is known to imply strong generalization bounds in adaptive data

analysis, and thus our results have applications even when privacy

is not a primary concern.
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1 INTRODUCTION
Hypothesis testing plays a central role in statistical inference, anal-

ogous to that of decision or promise problems in computability and

complexity theory. A hypothesis testing problem is specified by two

disjoint sets of probability distributions over the same set, called

hypotheses, H0 and H1. An algorithm T for this problem, called a

hypothesis test, is given a sample x from an unknown distribution

P , with the requirement that T (x) should, with high probability,

output “0” if P ∈ H0, and “1” if P ∈ H1. There is no requirement

for distributions outside of H0 ∪ H1. In computer science, such

problems sometimes go by the name distribution property testing.
Hypothesis testing problems are important in their own right, as

they formalize yes-or-no questions about an underlying population

based on a randomly drawn sample, such as whether education

strongly influences life expectancy, or whether a particular med-

ical treatment is effective. Successful hypothesis tests with high

degrees of confidence remain the gold standard for publication in

top journals in the physical and social sciences. Hypothesis testing

problems are also important in the theory of statistics and machine

learning, as many lower bounds for estimation and optimization

problems are obtained by reducing from hypothesis testing.

This paper aims to understand the structure and sample complex-

ity of optimal hypothesis tests subject to strong privacy guarantees.

Large collections of personal information are now ubiquitous, but

their use for effective scientific discovery remains limited by con-

cerns about privacy. In addition to the well-understood settings of

data collected during scientific studies, such as clinical experiments

and surveys, many other data sources where privacy concerns are

paramount are now being tapped for socially beneficial analysis,

such as Social Science One [70], which aims to allow access to data

collected by Facebook and similar companies.

We study algorithms that satisfy differential privacy (DP) [32], a
restriction on the algorithm that ensures meaningful privacy guar-

antees against an adversary with arbitrary side information [47].

Differential privacy has come to be the de facto standard for the

analysis of private data, used as a measure of privacy for data

analysis systems at Google [36], Apple [25], and the U.S. Census

Bureau [24]. Differential privacy and related distributional notions

of algorithmic stability can be crucial for statistical validity even
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when confidentiality is not a direct concern, as they provide gener-

alization guarantees in an adaptive setting [29].

Consider an algorithm that takes a set of data points from a set

X—where each point belongs to some individual—and produces

some public output. We say the algorithm is differentially private

if no single data point can significantly impact the distribution on

outputs. Formally, we say two data sets x ,x ′ ∈ Xn
of the same size

are neighbors if they differ in at most one entry.

Definition 1.1 ([32]). A randomized algorithm T taking inputs in

X∗
and returning random outputs in a space with event set S is

ε-differentially private if for all n ≥ 1, for all neighboring data sets

x ,x ′ ∈ Xn
, and for all events S ∈ S, P [T (x) ∈ S] ≤ eεP [T (x ′) ∈ S].

For the special case of tests returning output in {0, 1}, the output

distribution is characterized by the probability of returning “1”.

Letting д(x) = P [T (x) = 1], we can equivalently require that

max

(
д(x)

д(x ′)
,

1 − д(x)

1 − д(x ′)

)
≤ eε .

For algorithms with binary outputs, this definition is essentially

equivalent to all other commonly studied notions of privacy and dis-

tributional algorithmic stability (see “Connections to Algorithmic

Stability”, below).

Contribution: The Sample Complexity of Private Tests for
Simple Hypotheses. We focus on the setting of i.i.d. data and

singleton hypothesesH0,H1, which are called simple hypotheses.
The algorithm is given a sample of n points x1, . . . ,xn drawn i.i.d.

from one of two distributions, P or Q , and attempts to determine

which one generated the input. That is,H0 = {Pn } andH1 = {Qn }.

We investigate the following question.

Given two distributions P and Q and a privacy param-
eter ε > 0, what is the minimum number of samples
(denoted SCP,Q

ε ) needed for an ε-differentially private
test to reliably distinguish P from Q , and what are op-
timal private tests?

These questions are well understood in the classical, nonprivate

setting. The number of samples needed to distinguish P from Q is

Θ(1/H2(P ,Q)), where H2
denotes the squared Hellinger distance

(3).
1
Furthermore, by the Neyman–Pearson lemma, the exactly

optimal test consists of computing the likelihood ratio Pn (x)/Qn (x)
and comparing it to some threshold.

We give analogous results in the private setting. First, we give a

closed-form expression that characterizes the sample complexity

up to universal multiplicative constants, and highlights the range

of ε in which private tests use a similar amount of data to the best

nonprivate ones. We also give a specific, simple test that achieves

that sample complexity. Roughly, the test makes a noisy decision

based on a “clamped” log likelihood ratio in which the influence

of each data point is limited. The sample complexity has the form

Θ(1/adv1), where adv1 is the advantage of the test over random

guessing on a sample of size n = 1. The optimal test and its sample

complexity are described in Theorem 1.2.

Our result provides the first instance-specific characterization

of a statistical problem’s complexity for differentially private algo-

rithms. Understanding the private sample complexity of statistical

1
This statement is folklore, but see, e.g., [8] for the lower bound, [18] or Corollary 2.2

for the upper bound.

problems is delicate. We know there are regimes where statisti-

cal problems can be solved privately “for free” asymptotically (e.g.

[20, 32, 45, 69]) and others where there is a significant cost, even for

relaxed definitions of privacy (e.g. [15, 35]), and we remain far from

a general characterization of the statistical cost of privacy. Duchi,

Jordan, and Wainwright [26] give a characterization for the special

case of simple tests by local differentially private algorithms, a more

restricted setting where samples are randomized individually, and

the test makes a decision based on these randomized samples. Our

characterization in the general case is more involved, as it exhibits

several distinct regimes for the parameter ε .
Our analysis relies on a number of tools of independent interest:

a characterization of private hypothesis testing in terms of cou-

plings between distributions on Xn
, and a novel interpretation of

Hellinger distance as the advantage over random guessing of a

specific, randomized likelihood ratio test.

The Importance of Simple Hypotheses.Many of the hypothe-

ses that arise in application are not simple, but are so-called com-
posite hypotheses. For example, deciding if two features are inde-

pendent or far from it involves sets H0 and H1 each containing

many distributions. Yet many of those tests can be reduced to sim-

ple ones. For example, deciding if the mean of a Gaussian is less

than 0 or greater than 1 can be reduced to testing if the mean is

either 0 or 1. Furthermore, simple tests arise in lower bounds for

estimation—the well-known characterization of parametric estima-

tion in terms of Fisher information is obtained by showing that

the Fisher information measures variability in the Hellinger dis-

tance and then employing the Hellinger-based characterization of

nonprivate simple tests (e.g. [12, Chap. II.31.2, p.180]).

Our characterization of private testing implies similar lower

bounds for estimation (along the lines of lower bounds of Duchi

and Ruan [27] in the local model of differential privacy).

Connection to Algorithmic Stability. For hypothesis tests with
constant error probabilities, sample complexity bounds for differ-

ential privacy are equivalent, up to constant factors, to sample

complexity bounds for other notions of distributional algorithmic

stability, such as (ε,δ )-DP [31], concentrated DP [14, 34], KL- and

TV-stability [9, 77] (see [3, Lemma 5]). (Briefly: if we ensure that

Pr(T (x) = 1) ∈ [0.01, 0.99] for all x , then an additive change of

ε corresponds to an multiplicative change of 1 ± O(ε), and vice-

versa.) Consequently, our results imply optimal tests for use in

conjunction with stability-based generalization bounds for adap-

tive data analysis, which has generated significant interest in recent

years [9, 28–30, 37, 38, 64, 65, 78].

1.1 Hypothesis Testing
To put our result in context, we review classical results about non-

private hypothesis testing. Let P and Q be two probability distri-

butions over an arbitrary domain X. A hypothesis test K : X∗ →

{“P”, “Q”} is an algorithm that takes a set of samples x ∈ X∗
and

attempts to determine if it was drawn from P or Q . Define the

advantage of a test K given n samples as

advn (K) = P
x∼Pn

[K(x) = “P”] − P
x∼Qn

[K(x) = “P”]. (1)
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We say thatK distinguishes P fromQ with sample complexity SCP,Q (K)
if for every n ≥ SCP,Q (K), advn (K) ≥ 2/3. We say SCP,Q =

minK SCP,Q (K) is the sample complexity of distinguishing P from
Q .

Most hypothesis tests are based on some real-valued test statistic
S : X∗ → R where

KS (x) =

{
“P” if S(X ) ≥ κ

“Q” otherwise

for some threshold κ. We will sometimes abuse notation and use the

test statistic S and the implied hypothesis test KS interchangeably.

The classical Neyman–Pearson Lemma says that the exact opti-

mal test
2
for distinguishing P ,Q is the log-likelihood ratio test given

by the test statistic

LLR(x1, . . . ,xn ) =
n∑
i=1

log

P(xi )

Q(xi )
. (2)

Another classical result says that the optimal sample complexity is

characterized by the squared Hellinger distance between P ,Q , which

is defined as

H2(P ,Q) =
1

2

∫
X

(√
P(x) −

√
Q(x)

)
2

dx . (3)

Specifically, SCP,Q = SCP,Q (LLR) = Θ(1/H2(P ,Q)). Note that

the same metric provides upper and lower bounds on the sample

complexity.

1.2 Our Results
Our main result is an approximate characterization of the sam-

ple complexity of ε-differentially private tests for distinguishing P

and Q . Analogous to the non-private case, we will write SCP,Q
ε =

minε -DP K SCP,Q (K) to denote the sample complexity of ε-differentially
privately (ε-DP) distinguishing P from Q , and we characterize this

quantity up to constant factors in terms of the structure of P ,Q
and the privacy parameter ε . Specifically, we show that a privatized
clamped log-likelihood ratio test is optimal up to constant factors.

Privacy may be achieved through either the Laplace or Exponential

mechanism, and we will prove optimality of both methods.

For b ≥ a, we define the clamped log-likelihood ratio statistic,

cLLRa,b (x) =
∑
i

[
log

P(xi )

Q(xi )

]b
a
,

where [·]ba denotes the projection onto the interval [a,b] (that is,

[z]ba = max(a,min(z,b))).
Define the soft clamped log-likelihood test:

scLLRa,b (x) =

{
P with probability ∝ exp( 1

2
cLLRa,b (x))

Q with probability ∝ 1

The test scLLR is an instance of the exponential mechanism [54],

and thus scLLRa,b satisfies ε-differential privacy for ε = b−a
2

.

2
More precisely, given any test K , there is a setting of the threshold κ for the log-

likelihood ratio test that weakly dominates K , meaning that Px∼Q [LLR(x ) = P ] ≤
Px∼Q [K (x ) = P ] and Px∼P [LLR(x ) = Q ] ≤ Px∼P [K (x ) = Q ] (keeping the true

positive rates Px∼P [K (x ) = P ], Px∼Q [K (x ) = Q ] fixed). One may need to randomize

the decision when S (X ) = κ to achieve some tradeoffs between false negative and

positive rates.

Similarly, define the noisy clamped log-likelihood ratio test:

ncLLRa,b (X ) =

{
P if cLLRa,b (x) + Lap

(
1

ε (b−a)

)
> 0

Q otherwise

The test ncLLR is an instance of postprocessing the Laplace mecha-

nism [32], and satisfies ε-differential privacy.
Our main result is that, for every P ,Q , and every ε , the tests

scLLR−ε ′,ε and ncLLR−ε ′,ε are optimal up to constant factors, for

some appropriate 0 ≤ ε ′ ≤ ε . To state the result more precisely, we

introduce some additional notation. First define

τ = τ (P ,Q) ≜ max

{ ∫
X

max{P(x) − eεQ(x), 0}dx ,∫
X

max{Q(x) − eεP(x), 0}dx

}
,

(4)

and assume without loss of generality that τ =
∫
X

max{P(x) −

eεQ(x), 0}dx , which we assume for the remainder of this work.
3

Next, let 0 ≤ ε ′ ≤ ε be the largest value such that∫
X

max{P(x)−eεQ(x), 0}dx =

∫
X

max{Q(x)−eε
′

P(x), 0}dx = τ ,

whose existence is guaranteed by a continuity argument (a formal

argument is in the full version). We give an illustration of the defi-

nition of τ and ε ′ in Figure 1. Finally, define P̃ = min{eεQ, P} and

Q̃ = min{eε
′

P ,Q} and normalize by (1 − τ ) to obtain distributions

P ′ = P̃/(1 − τ ) and Q ′ = Q̃/(1 − τ ). (5)

The distributions P ′,Q ′
are such that

−ε ′ ≤ log

P ′(x)

Q ′(x)
≤ ε ,

and

P = (1 − τ )P ′ + τP ′′ and Q = (1 − τ )Q ′ + τQ ′′ ,

where P ′′ andQ ′′
are distributions with disjoint support. The quan-

tity τ is the smallest possible number for which such a representa-

tion is possible. With these definitions in hand, we can now state

our main result.

Theorem 1.2. For every pair of distributions P ,Q , and every ε > 0,
the optimal sample complexity for ε-differentially private tests is
achieved by either the soft or noisy clamped log-likelihood test, and
satisfies

SCP,Q
ε = Θ(SCP,Q (ncLLR−ε ′,ε )) = Θ(SCP,Q (scLLR−ε ′,ε ))

= Θ

(
1

ετ (P ,Q) + (1 − τ )H2(P ′,Q ′)

)
= Θ

(
1

adv1(scLLR−ε ′,ε )

)
.

When ε ≥ maxx |log P(x)/Q(x)|, Theorem 1.2 reduces to SCP,Q
ε =

Θ
(

1

H 2(P,Q )

)
, which is the sample complexity for distinguishing

between P andQ in the non-private setting. This implies that we get

privacy for free asymptotically in this parameter regime. We will

3
Forα ≥ 0, the quantityDα (P ∥Q ) =

∫
max(P (x )−αQ (x ), 0)dx is an f -divergence

and has appeared in the literature before under the names α -divergence, hockey-
stick divergence, or elementary divergence [6, 52] (for α = 1, one obtains the usual

total variation distance). Thus, τ is the maximum of the divergences Deε (P ∥Q ) and

Deε (Q ∥P ). It can also be described as the smallest value δ such that P and Q are

(ε, δ )-indistinguishable [33].
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eεP(x)

Q(x)

eεQ(x)

Figure 1: An illustration of the definition of τ , for ε = 0.2

and for two densities P ,Q over X = [0, 1]. The blue shaded
area represents

∫
max{P(x) − eεQ(x), 0}dx , while the red cor-

responds to
∫

max{Q(x)−eεP(x), 0}dx . The larger of these two
is τ (P ,Q). If the blue area is larger than the red area, the def-
inition of ε ′ corresponds to lowering the dotted blue curve
until the two are the same size.

focus on proving the first equality, a proof of the second appears in

the full version.

Comparison to Known Bounds. For ε < 1, the bounds

1

H2(P ,Q)
≤ SCP,Q

ε ≤ O

(
1

εH2(P ,Q)

)
follow directly from the non-private sample complexity. Namely,

the lower bound is the non-private sample complexity and the

upper bound is obtain by applying the sample-and-aggregate tech-
nique [59] to the optimal non-private test. They can be recovered

from Theorem 1.2 by noting that

εH2(P ,Q) =
ε

2

∥
√
P −

√
Q ∥2

2

= O

(
ε



√P −

√
P̃



2

2

+ ε





√P̃ −

√
Q̃





2

2

+ ε





√Q̃ −
√
Q





2

2

)
= O(ετ + ε(1 − τ )H2(P ′,Q ′) + ετ )

= O(ετ + (1 − τ )H2(P ′,Q ′))

and

ετ + (1 − τ )H2(P ′,Q ′)

= ε ·

∫
S

|P(x) − eεQ(x)| dx + ∥

√
P̃ −

√
Q̃ ∥2

2

≤ ε ·

∫
S

|P(x) −Q(x)| dx + ∥
√
P −

√
Q ∥2

2

≤ ε ·
1 + eε/2

eε/2 − 1

·

∫
S

(
√
P(x) −

√
Q(x))2 dx + H2(P ,Q)

= O(H2(P ,Q)),

where S = { x : P(x) − eεQ(x) > 0 }.

1.2.1 Application: Private Change-Point Detection. As an applica-

tion of our result, we obtain optimal private algorithms for change-
point detection. Given distributions P and Q , an algorithm solv-

ing offline change-point detection for P and Q takes a stream x =
(x1,x2, . . . ,xn ) ∈ Xn

with the guarantee that the there is an index

k∗ such that first k∗ elements are sampled i.i.d. from P and the latter

elements are sampled i.i.d. from Q , and attempts to output
ˆk ≈ k∗.

We can also consider an online variant where elements xi arrive
one at a time.

Change-point detection has a long history in statistics and infor-

mation theory (e.g. [50, 51, 53, 55, 56, 60–63, 67, 68, 73]). Cummings

et al. [22] recently gave the first private algorithms for change-point

detection. Their algorithms are based on a private version of the

log-likelihood ratio, and in cases where the log-likelihood ratio

is not strictly bounded, they relax to a weaker distributional vari-

ant of differential privacy. Using Theorem 1.2, we can achieve the

standard worst-case notion of differential privacy, and to achieve

optimal error bounds for every P ,Q .

Theorem 1.3 (Informal). For every pair of distributions P and
Q , and every ε > 0, there is an ε-differentially private algorithm
that solves offline change-point detection for P and Q such that, with
probability at least 9/10, | ˆk − k∗ | = O(SCP,Q

ε ).

The expected error in this result is optimal up to constant factors

for every pair P ,Q , as one can easily show that the error must be at

least Ω(SCP,Q
ε ). Theorem 1.3 can be extended to give an arbitrarily

small probability β of failure, and can be extended to the online

change-point detection problem, although with more complex ac-

curacy guarantees. Our algorithm introduces a general reduction

from private change-point detection for families of distributions

H0 andH1 to private hypothesis testing for the same family, which

we believe to be of independent interest.

1.3 Techniques
FirstAttempts.A folklore result based on the sample-and-aggregate

paradigm [59] shows that for every P ,Q and every ε > 0, SCP,Q
ε =

O( 1

ε SC
P,Q ), meaning privacy comes at a cost of at most O( 1

ε ).
4

However, there are many examples where SCP,Q
ε = O(SCP,Q ) even

when ε = o(1), and understanding this phenomenon is crucial.

A few illustrative pairs of distributions P ,Q will serve to demon-

strate the difficulties that go into formulating and proving Theo-

rem 1.2. First, consider the domainX = {0, 1} of size two (i.e. Bernoulli

distributions). To distinguish P = Ber( 1+α
2

) from Q = Ber( 1−α
2

),

the optimal non-private test statistic is S(x) =
∑
i xi , which requires

Θ( 1

α 2
) = Θ( 1

H 2(P,Q )
) samples.

To make the test differentially private, one can use a soft ver-

sion of the test that outputs “P” with probability proportional to

exp(ε
∑
i xi ) and “Q” with probability proportional to exp(ε

∑
i 1 −

xi ). This private test has sample complexity Θ( 1

α 2
+ 1

αε ), which is

optimal. In contrast, if P = Ber(0) and Q = Ber(α), then the non-

private sample complexity becomes Θ( 1

α ), and the optimal private

sample complexity becomes Θ( 1

αε ). In general, for X = {0, 1}, one

4
See, e.g., [16] for a proof.
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can show that

SCP,Q
ε = Θ

(
1

H2(P ,Q)
+

1

εTV (P ,Q)

)
. (6)

The sample complexity of testing Bernoulli distributions (6) al-

ready demonstrates an important phenomenon in private hypothe-

sis testing—for many distributions P ,Q , there is a “phase transition”

where the sample complexity takes one form when ε is sufficiently

large and another when ε is sufficiently small, and often the sam-

ple complexity in the “large ε regime” is equal to the non-private

complexity up to lower order terms. A key challenge in obtaining

Theorem 1.2 is to understand these transitions, and to understand

the sample complexity in each regime.

Since each of the terms in (6) is a straightforward lower bound

on the sample complexity of private testing, one might conjecture

that (6) holds for every pair of distributions. However, our next

illustrative example shows that this conjecture is false even for the

domain X = {0, 1, 2}. Consider the two densities

P = (0, 0.5, 0.5) and Q = (2α3/2, 0.5+α −α3/2, 0.5−α −α3/2) .

For these distributions, the log-likelihood ratio statistic is roughly

equivalent to the statistic that counts the number of occurrences

of “0,” S {0}(x) =
∑
i 1{xi = 0}, and has sample complexity Θ( 1

α 3/2
).

For this pair of distributions, the optimal private test depends on

the relationship between α and ε . One such test is to simply use

the soft version of S {0} , and the other is to use the soft version of

the test S {0,1} =
∑
i 1{xi ∈ {0, 1}} that counts occurrences of the

first two elements. One can prove that the better of these two tests

is optimal up to constant factors, giving

SCP,Q
ε = Θ

(
min

{
1

α3/2ε
,

1

α2
+

1

αε

})
.

For these distributions, (6) reduces to Θ( 1

α 3/2
+ 1

αε ), so these dis-

tributions show that the optimal sample complexity can be much

larger than (6). Moreover, these distributions exhibit that the opti-

mal sample complexity can vary with ε in complex ways, making

several transitions and never matching the non-private complexity

unless α or ε is constant.

Key Ingredients. The second example above demonstrates that

the optimal test itself can vary with ε in an intricate fashion, which

makes it difficult to construct a single test for which we can prove

matching upper and lower bounds on the sample complexity. The

use of the clamped log-likelihood test arose out of an attempt to

find a single test that is optimal for the second pair of distributions

P and Q , and relies on a few crucial technical ingredients.

First, our upper bound on sample complexity relies on a key ob-

servation that the Hellinger distance between two distributions is

exactly the advantage, adv1, of a soft log-likelihood ratio test sLLR

on a sample of size 1. The sLLR test is a randomized test that out-

puts P with probability proportional to

√
Pn (x)/Qn (x) = eLLR(x )/2

,

where LLR(x) =
∑
i log

P (xi )
Q (xi )

, and Q with probability proportional

to 1. This characterization ofH2(P ,Q) as the advantage of the sLLR

tester may be of independent interest.

This observation is crucial for our work, because it implies that

sLLR is ε-DP if supx ∈X

���log
P (x )
Q (x )

��� ≤ ε . That is, in the case that

supx ∈X

���log
P (x )
Q (x )

��� ≤ ε , we get ε-DP for free (since Hellinger dis-

tance, and thus sLLR, characterizes the optimal asymptotic sample

complexity). Thus, we use the clamped log-likelihood ratio test,

which forces the log-likelihood ratio to be bounded. Our lower

bound in a sense shows that any loss of power in the test due to

clamping is necessary for differentially private tests.

The lower bound proof proceeds by finding a coupling ρ of Pn

and Qn
with low expected Hamming distance E(X ,Y )∼ρ [dH (X ,Y )],

which in turn implies that the sample complexity is large (see

e.g. [3]). The coupling we use essentially splits the support of P

and Q into two subsets, those elements with log
P (x )
Q (x ) ≥ ε and the

remaining elements. To construct the coupling, given a sample X ∼

Pn , the high-ratio elements for which log
P (x )
Q (x ) ≥ ε are resampled

with probability related to the ratio. The contribution of this step

to the Hamming distance gives us the ετ part of the lower bound.

The data set consisting of them ≤ n elements that have not yet

been resampled is then coupled using the total variation distance

coupling between Pm and Qm
. Therefore, with probability 1 −

TV(Pm ,Qm ) this part of the data set remains unchanged. This part

of the coupling results in the H2(P ′,Q ′) part of the lower bound.

The proof of the upper bound also splits into two parts, roughly

corresponding to the same aspects of the distributions P and Q as

above. That is, we view our tester as either counting the number of

high-ratio elements or computing the log-likelihood ratio on low-

ratio elements. A useful observation is that this duality between the

upper and lower bounds is inevitable. In Section 3, we characterize

the advantage of the optimal tester in terms of Wasserstein distance

between P and Q with metric min{εdH (X ,Y ), 1}. That is, the ad-
vantage of the optimal tester must be matched by some coupling of

Pn and Qn
.

1.4 Related Work
Early work on differentially private hypothesis testing began in

the Statistics community with [72, 74]. More recently, there has

been a significant number of works on differentially private hy-

pothesis testing. One line of work [17, 21, 40, 44, 49, 71, 76] designs

differentially private versions of popular test statistics for testing

goodness-of-fit, closeness, and independence, as well as private

ANOVA, focusing on the performance at small sample sizes. Work

by Wang et al. [75] focuses on generating statistical approximat-

ing distributions for differentially private statistics, which they

apply to hypothesis testing problems. A recent work by Awan and

Slavkovic [5] gives a universally optimal test when the domain size

is two, however Brenner and Nissim [13] shows that such univer-

sally optimal tests cannot exist when the domain has more than

two elements. A complementary research direction, initiated by

Cai et al. [16], studies the minimax sample complexity of private

hypothesis testing. [3] and [4] have given worst-case nearly optimal

algorithms for goodness-of-fit and closeness testing of arbitrary

discrete distributions. That is, there exists some worst-case distribu-

tion P such that their algorithm has optimal sample complexity for

testing goodness-of-fit to P . Recently, [2] designed nearly optimal

algorithms for estimating properties like support size and entropy.

Another related area [1, 41, 66] studies hypothesis testing in the

local model of differential privacy. In particular, Duchi, Jordan, and

Wainwright [26] proved an analogue of our result for the restricted
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case of locally differentially private algorithms. Their characteri-

zation shows that, the optimal sample complexity for ε-DP local

algorithms is Θ(1/(ε2TV (P ,Q)2)). This characterization does not

exhibit the same phenomena that we demonstrate in the central

model—privacy never comes “for free” if ε = o(1), and the sample

complexity does not exhibit different regimes depending on ε . More

generally, local-model tests are considerably simpler, and simpler

to reason about, than central-model tests.

There are also several rich lines of work attempting to give tight

instance-specific characterizations of the sample complexities of

various differentially private computations, most notably linear
query release [11, 43, 48, 57, 58] and PAC and agnostic learning [10,

39, 46]. The problems considered in these works are arguably more

complex than the hypothesis testing problems we consider here,

the characterizations are considerably looser, and are only optimal

up to polynomial factors.

There has been a recent line of work [9, 23, 28–30, 37, 38, 64, 65,

78] on adaptive data analysis, in which the same dataset is used

repeatedly across multiple statistics analyses, the choice of each

analysis depends on the outcomes of previous analyses. The key

theme in these works is to show that various strong notions of algo-

rithmic stability, including differential privacy imply generalization

bounds in the adaptive setting. Our characterization applies to all

notions of stability considered in these works.

As an application of our private hypothesis testing results, we

provide algorithms for private change-point detection. As discussed

in Section 1.2.1, change-point detection has enjoyed a significant

amount of study in information theory and statistics. Our results are

in the private minimax setting, as recently introduced by Cummings

et al. [22]. We improve on their results by improving the detection

accuracy and providing strong privacy guarantees for all pairs of

hypotheses.

2 UPPER BOUND ON SAMPLE COMPLEXITY
OF PRIVATE TESTING

In this section, we establish the upper bound part of Theorem 1.2,

establishing that the soft clamped log-likelihood ratio test scLLR

and the noisy clamped log-likelihood ratio test ncLLR achieve the

stated sample complexity. In more detail, we begin in Section 2.1

by characterizing the Hellinger distance between two distributions

as the advantage, adv1, of a specific randomized test, sLLR. Besides

being of independent interest, this reformulation also yields some

insight on its privatized variant, scLLR. In Section 2.2, we introduce

the noisy clamped log-likelihood ratio test (ncLLR), and show that

its sample complexity is at least that of scLLR. We then proceed in

Section 2.3 to upper-bound the sample complexity of ncLLR, which

also implies that same bound on that of scLLR.

2.1 Hellinger Distance Characterizes the Soft
Log-Likelihood Test

Recall that the advantage of a test, advn , was defined in Equation (1)

and the squared Hellinger distance,H2(P ,Q), between two distribu-

tions P and Q is defined as H2(P ,Q) = 1

2

∫
X
(
√
P(x) −

√
Q(x))2 dx .

It has long been known that the Hellinger distance character-

izes the asymptotic sample complexity of non-private testing (see,

e.g., [12]). In this section we show that the Hellinger distance ex-

actly characterizes the advantage of the following randomized test

given a single data point:

sLLR(x) =

{
P with probability д(x)

Q with probability 1 − д(x)

where

д(x) =
exp

(
1

2
log

P (x )
Q (x )

)
1 + exp

(
1

2
log

P (x )
Q (x )

) ∈ [0, 1].

Considering the advantage of sLLR might seem puzzling at first

glance, since the classic likelihood ratio test LLR enjoys a better

advantage. More specifically, the value of adv1 for these two tests

is H2(P ,Q) (Theorem 2.1) and TV (P ,Q) (by the definition of total

variation distance), respectively, and H2(P ,Q) ≤ TV (P ,Q) (see,
e.g., [42]), so it would appear that LLR is the better test. There

are two relevant features of sLLR which will be useful. First, as

mentioned before, sLLR is naturally private if the likelihood ratio

is bounded. Second, a tensorization property of Hellinger distance

allows us to easily relate the advantage of the n-sample test to the

advantage of the 1-sample test.

Theorem 2.1. For any two distributions P ,Q , the advantage, adv1,
of sLLR is H2(P ,Q).

Proof. Note that we can rewrite

H2(P ,Q) =
1

2

∫
X

(
√
P(x) −

√
Q(x))2 dx

=
1

2

∫
X

(P(x) −Q(x))

√
P(x) −

√
Q(x)√

P(x) +
√
Q(x)

=
1

2

∫
X

(P(x) −Q(x))

√
P(x)/Q(x) − 1√
P(x)/Q(x) + 1

dx .

Now,д(x) =
√

P (x )
Q (x )/

(√ P (x )
Q (x ) +1

)
= 1

2

(√ P (x )
Q (x ) −1

)
/
(√ P (x )

Q (x ) + 1+1

)
,

and therefore H2(P ,Q) =
∫
X
(P(x) −Q(x))д(x)dx = Ex∼P [д(x)] −

Ex∼Q [д(x)] = Px∼P [sLLR(x) = P] − Px∼Q [sLLR(x) = P]. Thus,

the advantage of sLLR is H2(P ,Q), as claimed. □

This tells us the advantage of the test which takes only one

sample. As a corollary, we can derive the sample complexity of

distinguishing P and Q using sLLR.

Corollary 2.2. SCP,Q (sLLR) = O
(

1

H 2(P,Q )

)
.

Proof. Our analysis is similar to that of [18]. Observe that the

test sLLR which gets n samples from either P or Q is equivalent

to the test sLLR which gets 1 sample from either Pn or Qn
. By

Theorem 2.1, we have that the advantage of either (equivalent) test

is adv = H2(Pn ,Qn ). We will require the following tensorization

property of the squared Hellinger distance: H2(P1 × · · · × Pn ,Q1 ×

· · · × Qn ) = 1 −
∏n

i=1
(1 − H2(Pi ,Qi )). With this in hand, adv =

H2(Pn ,Qn ) = 1−(1−H2(P ,Q))n = 1−exp

(
n log(1 − H2(P ,Q))

)
≥

1− exp(−nH2(P ,Q)). Setting n = Ω(1/H2(P ,Q)), we get adv ≥ 2/3,

as desired. □
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2.2 The Noisy Log-Likelihood Ratio Test
We now consider the noisy log-likelihood ratio test, which, similar

to scLLR−ε ′,ε , is also ε-differentially private.

ncLLR−ε ′,ε (X ) =
∑
i

[
log

P(xi )

Q(xi )

]ε
−ε ′
+ Lap(2)

Here Lap(2) denotes a Laplace random variable, which has den-

sity proportional to exp(−|z |/2). Readers familiar with differential

privacy will note that scLLR corresponds to the exponential mecha-

nism,while ncLLR responds to the report noisymaxmechanism [33],

and thus the two should behave quite similarly. In particular, we

have the following lemma.

Lemma 2.3. For any P and Q :

(1) SCP,Q (ncLLR−ε ′,ε ) = Ω(SCP,Q (scLLR−ε ′,ε )).
(2) Furthermore, if −ε ′ ≤ log

P
Q ≤ ε then SCP,Q (ncLLR−ε ′,ε ) =

Θ(SCP,Q (scLLR−ε ′,ε )).

Proof. Recall that

scLLR−ε ′,ε (X ) =

{
P with probability дε (X )

Q with probability 1 − дε (X )

where дε (X ) = e
1

2
cLLR−ε′,ε (X )

1+e
1

2
cLLR−ε′,ε (X )

. If we let the threshold κ = 0 then

the test based on the test statistic ncLLR−ε ′,ε is

ncLLR−ε ′,ε (X ) =

{
P with probability hε (X )

Q with probability 1 − hε (X )

where

hε (X ) =


1 − 1

2
e−

cLLR−ε′,ε (X )

2 if cLLR−ε ′,ε (X ) > 0

1

2
e

cLLR−ε′,ε (X )

2 if cLLR−ε ′,ε (X ) < 0

.

Now, we will use the following two inequalities: if x < 0, then

1

2
e
x
2 ≤ e

1

2
x

1+e
1

2
x

≤ 2
1

2
e
x
2 , and if x > 0,

8

9
(1 − 1

2
e−

x
2 ) ≤ e

1

2
x

1+e
1

2
x
≤

1 − 1

2
e−

x
2 . Therefore, noting that PX∼Pn

[
scLLR−ε ′,ε (X ) = P

]
=

EPn [дε (X )] and PX∼Pn
[
ncLLR−ε ′,ε (X ) = P

]
= EPn [hε (X )] are

the probabilities of success, we have
8

9
EPn [hε (X )] ≤ EPn [дε (X )] ≤

2EPn [hε (X )] and 8

9
EQn [hε (X )] ≤ EQn [дε (X )] ≤ 2EQn [hε (X )].

Therefore, if ncLLR has a probability of success of 5/6 then scLLR

has a probability of success of 2/3. This implies that SCP,Q (ncLLR) ≥

SCP,Q (scLLR).

If log
P
Q ∈ [−ε ′, ε] then cLLR−ε ′,ε (X ) = LLR(X ) so we have

Pn (X ) > Qn (X ) iff LLR(X ) > 0 iff дε (X ) ≤ hε (X ) and therefore

EPn [дε ] − EQn [дε ] =

∫
(Pn (X ) −Qn (X ))дε (X )dX

≤

∫
(Pn (X ) −Qn (X ))hε (X )dX = EPn [hε ] − EQn [hε ],

which completes the proof. □

Corollary 2.4. If ncLLR has asymptotically optimal sample com-
plexity then scLLR has asymptotically optimal sample complexity.

2.3 The Sample Complexity of ncLLR

In this section we prove the upper bound in Theorem 1.2 for the

case where TV(P ,Q) < 1 (i.e., the supports of P and Q have non-

empty intersection). This assumption ensures that P̃ , Q̃ , 0, so that

P ′,Q ′
are well defined. A proof of the case where TV(P ,Q) = 1 is in

the full version. In order to prove the upper bound in Theorem 1.2,

we restate it as follows.

Theorem 2.5. The ncLLR−ε ′,ε test is ε-DP and SCP,Q (ncLLR−ε ′,ε ) ≤

O
(

1

ετ+(1−τ )H 2(P ′,Q ′)

)
= O

(
min

{
1

ετ ,
1

(1−τ )H 2(P ′,Q ′)

})
.

Theorem 2.5 combined with a matching lower bound (given later

in Theorem 3.4) imply that ncLLR
ε
−ε ′ has asymptotically optimal

sample complexity. Thus, by Corollary 2.4, scLLR
ε
−ε ′ has asymptot-

ically optimal sample complexity.

Before proving the bound, we pause to provide some intuition

for its form. As discussed in the introduction, we can write P and

Q as mixtures P = (1− τ )P ′ + τP ′′ andQ = (1− τ )Q ′ + τQ ′′
where

P ′′,Q ′′
have disjoint support. Now consider a thought experiment,

in which the test that must distinguish P from Q using a sample

of size n is given, along with the sample x , a list of binary labels

b1,b2, ...,bn that indicate for each record whether it was sampled

from the first component of the mixture (either P ′ or Q ′
), or the

second component (either P ′′ or Q ′′
). Of course this can only be a

though experiment—these labels are not available to a real test.

Because the mixture weights are the same for both P and Q ,
the number of labels of each type would be distributed the same

under P and under Q , and so the tester would be faced with two

independent testing problems: distinguishing P ′′ from Q ′′
using

a sample of size about τn, and distinguishing P ′ from Q ′
using a

sample of size about (1 − τ )n. It would suffice for the tester to solve

either of these problems.

Theorem 2.5 shows that the real tests (scLLR and ncLLR) do as

well as the hypothetical tester that has access to the labels. The

two arguments to the minimum in the theorem statement corre-

spond directly to the ε-DP sample complexity of distinguishing

P ′′ from Q” (which requires nτ ≥ 1/ε) or distinguishing P ′ from
Q ′

(which requires n(1 − τ ) ≥ 1/H2(P ′,Q ′)). The proof proceeds

by breaking the clamped log-likelihood ratio into two pieces, each

corresponding to one of the two mixture components (again, this

decomposition is not known to the algorithm). These two pieces

correspond to the test statistics of the optimal testers for the two

separate sub-problems in the thought experiment. We show that

the test does well at distinguishing P from Q as long as either of

these pieces is sufficiently informative.

On a more mechanical level, our proof of Theorem 2.5 bounds

the expectation and standard deviation of the two pieces of the test

statistic. We use the following simple lemma, which states that a

test statistic S performs well if the distribution of the test statistic

on P and Q , S(P) and S(Q), must not overlap too much. The proof

is a simple application of Chebyshev’s inequality.

Lemma 2.6. Given a function f : X → R, constant c > 0 and
n > 0, if the test statistic S(X ) =

∑
i f (xi ) satisfies

max

{√
VarPn [S(X )],

√
VarQn [S(X )]

}
≤ c |EPn [S(X )]−EQn [S(X )]|

then S can be used to distinguish between P and Q with probability
of success 2/3 and sample complexity at most n′ = 12c2n.
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The definitions of P̃ and Q̃ lend naturally to consider a partition of

the space X, depending on which quantities achieve the minimum

in min(eεQ, P) and min(eε
′

P ,Q). This partition will itself play a

crucial role in both the proof of the theorem, and later in our lower

bound: accordingly, define

S =
{
x : P(x) − eεQ(x) > 0

}
T =

{
x : Q(x) − eε

′

P(x) > 0

}
(7)

and set A = X \ (S ∪ T).

Proof of Theorem 2.5. Observe that for all x ∈ A, P̃(x) = P(x)
and Q̃(x) = Q(x) (so that P ′(x)/Q ′(x) = P(x)/Q(x)), that for all x ∈

S, log(P ′(x)/Q ′(x)) = ε and that for all x ∈ T , log(P ′(x)/Q ′(x)) =
−ε ′. To show that the test works, we first show that the clamped

log likelihood ratio (without noise) is a useful test statistic. In order

to apply Lemma 2.6, we first calculate the difference ∆gap in the

expectations of cLLR−ε ′,ε under P and Q . For the remainder of the

proof, we omit the −ε ′, ε subscript (since clamping always occurs

to the same interval).

1

n
∆gap =

1

n
E
Pn

[cLLR(X )] − E
Qn

[cLLR(X )]

=

∫
X

(P(x) −Q(x)) log

P ′(x)

Q ′(x)
dx

= (P(S) −Q(S))ε +

∫
A

(P̃(x) − Q̃(x)) log

P ′(x)

Q ′(x)
dx

+ (Q(T ) − P(T ))ε ′

= (P̃(S) − Q̃(S) + τ )ε +

∫
A

(P̃(x) − Q̃(x)) log

P ′(x)

Q ′(x)
dx

+ (Q̃(T ) − P̃(T ) + τ )ε ′

where the last equality follows by the definition of τ . Moreover,

nKL
(
P ′∥Q ′

)
+ nKL

(
Q ′∥P ′

)
= n

∫
X

(P ′(x) −Q ′(x)) log

P ′(x)

Q ′(x)
dx

= n(P ′(S) −Q ′(S))ε + n

∫
A

(P ′(x) −Q ′(x)) log

P ′(x)

Q ′(x)
dx

+ n(Q ′(T ) − P ′(T ))ε ′

=
n

1 − τ

(
(P̃(S) − Q̃(S))ε +

∫
A

(P̃(x) − Q̃(x)) log

P ′(x)

Q ′(x)

+ (Q̃(T ) − P̃(T ))ε ′
)
.

Therefore, ∆gap = (1−τ )n(KL (P ′∥Q ′)+KL (Q ′∥P ′))+nτε +nτε ′ ≥

2n
(
(1 − τ )H2(P ′,Q ′) + τε

)
, where the last inequality follows since

H2(P ,Q) ≤ KL (P ∥Q) for any distributions P and Q .
We now turn to bounding the variance of the noisy clamped LLR

under P and Q . Noting that VarPn [ncLLR] = VarPn [cLLR] + 8, by

Lemma 2.6 it suffices to show thatmax{VarQn [cLLR]+8,VarPn [cLLR]+

8} ≤ O(∆2

gap
); or, equivalently, thatmax{VarQn [cLLR],VarPn [cLLR]} ≤

O(∆2

gap
) and ∆gap = Ω(1). Recall that P ′′ is a distribution such that

P = τP ′′ + (1 − τ )P ′ and the support of P ′′ is contained in S. Thus,

Var

Pn
[cLLR] ≤ n

∫
X

P(x) log
2
P ′(x)

Q ′(x)
dx

= n

∫
X

(τP ′′(x) + (1 − τ )P ′(x)) log
2
P ′(x)

Q ′(x)
dx

= n
(
τP ′′(S)ε2 + (1 − τ )

∫
X

P ′(x) log
2
P ′(x)

Q ′(x)
dx

)
Since log

P ′(x )
Q ′(x ) ≤ ε ≤ 1, |log

P ′(x )
Q ′(x ) | ≤ 3 · |1−

√
Q ′(x)/P ′(x)|. There-

fore,

∫
X
P ′(x) log

2 P ′(x )
Q ′(x ) dx ≤ 9

∫
X
P ′(x)(1 −

√
Q ′(x)/P ′(x)

2

dx =

18·H2(P ′,Q ′). Also, P ′′(S) = 1 and thuswe have that VarPn [cLLR] =

O(nτε2 + (1 − τ )nH2(P ′,Q ′)) = O(nτε + (1 − τ )nH2(P ′,Q ′). Sim-

ilarly, VarQn [cLLR] ≤ O(nτε ′2 + (1 − τ )H2(P ′,Q ′)) ≤ O(nτε +

(1 − τ )nH2(P ′,Q ′)). Finally, max{VarQn [cLLR],VarPn [cLLR]} =

O
(
(nτ ε+n(1−τ )H 2(P ′,Q ′))2

nτ ε+n(1−τ )H 2(P ′,Q ′)

)
= O

(
∆2

gap
/n(τε + (1 − τ )H2(P ′,Q ′))

)
.

Therefore, if n ≥ C
τ ε+(1−τ )H 2(P ′,Q ′))

for some suitably large con-

stant C > 0, this implies that max{VarQn [cLLR],VarPn [cLLR]} ≤

O(∆2

gap
) and ∆gap = Ω(1), which concludes our proof. □

3 LOWER BOUND ON THE SAMPLE
COMPLEXITY OF PRIVATE TESTING

We now prove the lower bound in Theorem 1.2. We do so by con-

structing an appropriate coupling between the distributions Pn and

Qn
, which implies lower bounds for privately distinguishing Pn

from Qn
. This style of analysis was introduced in [3], though we

require a strengthening of their statement. Specifically, the lower

bound of Acharya et al. involves d ′ε (X ,Y ) = εdH (X ,Y ), whereas
we have dε (X ,Y ) = min(εdH (X ,Y ), 1).

For X ,Y ∈ Xn
, let dH (X ,Y ) be the Hamming distance between

X ,Y (i.e., | { i : xi , yi } |). Given a metric d : Xn × Xn → R≥0,

we define the Wasserstein distance Wd (P ,Q) to be Wd (P ,Q) =
infρ E(X ,Y )∼ρ [d(X ,Y )], where the inf is over all couplings ρ of Pn

and Qn
. Let dε (X ,Y ) = min{εdH (X ,Y ), 1}.

Lemma 3.1. For every ε-DP algorithmM : Xn → {0, 1}, if X and
Y are neighboring datasets then E[M(X )] ≤ eεE[M(Y )], where the
expectations are over the randomness of the algorithmM .

Lemma 3.2. For every ε-DP algorithm M : Xn → {P ,Q}, we
have the following bound on the advantage:

��PX∼P [M(X ) = P] −

PX∼Q [M(X ) = P]
�� ≤ O(Wdε (P ,Q)).

Proof. Let ρ : Xn ×Xn → R≥0 be a coupling of P
n
andQn

and

M be an ε-DP algorithm. We have

P
X∼P

[M(X ) = P] − P
X∼Q

[M(X ) = P]

=

∫
Xn

∫
Xn

(
ρ(X ,Y )P

M
[M(X ) = P] − ρ(X ,Y )P

M
[M(Y ) = P]

)
dX dY

≤

∫
Xn

∫
Xn

ρ(X ,Y )min{1, (eεdH (X ,Y ) − 1)P
M
[M(Y ) = P]}dX dY

≤ 2

∫
Xn

∫
Xn

ρ(X ,Y )min{1, εdH (X ,Y )}dX dY

= O( E
(X ,Y )∼ρ

[dε (X ,Y )]),
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where PM [·] denotes that the probability is over the randomness of

the algorithmM , and the first inequality follows from Lemma 3.1.

□

The upper bound in Lemma 3.2 is in fact tight. We state the

converse (whose proof appears in the full version) below for com-

pleteness, although we will not use it in this work.

Lemma 3.3. There is a ε-DP algorithm M : Xn → {P ,Q} such
that

��PX∼P [M(X ) = P] − PX∼Q [M(X ) = P]
�� ≥ Ω(Wdε (P ,Q)).

We will also rely on the following standard fact characterizing

total variation distance in terms of couplings:

Fact 1. Given P and Q , there exists a coupling ρ of P and Q such
that Pρ [X , Y ] = TV(P ,Q). We will refer to this coupling as the
total variation coupling of P and Q .

We can now prove the lower bound component of Theorem 1.2.

Recall that P ′ and Q ′
were defined in Equation (5).

Theorem 3.4. Given P andQ , every ε-DP test K that distinguishes

P and Q has the property that SCP,Q (K) = Ω
(

1

ετ+H 2(P ′,Q ′)

)
.

Proof. Consider the following coupling of Pn and Qn
: Given

a sample X ∼ Pn , independently for all xi ∈ S5
label the point 1

with probability
eεQ (xi )
P (xi )

, otherwise label it . Label all the points in

A∪T as 1. (In particular, this implies that each xi is labeled 1with

probability 1−τ , and with probability τ .) Each point labeled is then

independently re-sampled from T with probability distribution

Q−eε
′
P

τ 1T . Let Λ ⊆ [n] be the set of points labeled 1, and n′ be

its size; and note that this set is distributed according to (P ′)n
′

.

We transform this set to a set distributed by (Q ′)n
′

using the TV-

coupling of (P ′)n
′

and (Q ′)n
′

. The result is a sample from Qn
.

Now,we can rewritedH (X ,Y ) =
∑
i<Λ 1{Xi=Yi }+

∑
i ∈Λ 1{Xi=Yi } =

dH (XΛ̄,YΛ̄) + 1{XΛ=YΛ } ·
∑
i ∈Λ 1{Xi=Yi } , and therefore

E [min{εdH (X ,Y ), 1}]

= E
[
min{εdH (X ,Y ), 1}1{XΛ=YΛ }

]
+ E

[
min{εdH (X ,Y ), 1}1{XΛ,YΛ }

]
≤ εE

[
dH (X ,Y )1{XΛ=YΛ }

]
+ E

[
1{XΛ,YΛ }

]
= εE

[
dH (XΛ̄,YΛ̄)

]
+ P [XΛ , YΛ] .

Recalling now that the distribution of (XΛ,YΛ) is that of the TV-

coupling of (P ′)n
′

and (Q ′)n
′

, and that |Λ̄| = n − n′, we get

E [min{εdH (X ,Y ), 1}] ≤ E
[
ε(n − n′) + TV((P ′)n

′

, (Q ′)n
′

)

]
≤ ετn + E

[√
n′

]
H (P ′,Q ′) ≤ ετn +

√
(1 − τ )n · H (P ′,Q ′)

Therefore, by Lemma 3.2, we have that for every ε-DP testM ,���� PX∼P
[M(X ) = P] − P

X∼Q
[M(X ) = P]

���� ≤ ετn+
√
(1 − τ )n ·H (P ′,Q ′).

Thus, in order for the probability of success to be Ω(1), we need

either ετn or

√
(1 − τ )nH (P ′,Q ′) to be Ω(1). That is, n ≥

Ω
(
min

{
1

ετ ,
1

(1−τ )H 2(P ′,Q ′)

})
. □

5
Recall the definitions of S, T and A from Section 2.3 (Equation (7)).

4 APPLICATION: DIFFERENTIALLY PRIVATE
CHANGE-POINT DETECTION

In this section, we give an application of our method to differen-

tially private change-point detection (CPD). In the change-point

detection problem, we are given a time-series of data. Initially, it

comes from a known distribution P , and at some unknown time

step, it begins to come from another known distribution Q . The
goal is to approximate when this change occurs. More formally, we

have the following definition.

Definition 4.1. In the offline change-point detection problem, we

are given distributions P ,Q and a data setX = {x1, . . . ,xn }. We are

guaranteed that there exists k∗ ∈ [n] such that x1, . . . ,xk∗−1
∼ P

and xk∗ , . . . ,xn ∼ Q . The goal is to output
ˆk such that | ˆk − k∗ | is

small.

In the online change-point detection problem, we are given dis-

tributions P ,Q , a stream of data points X = {x1, . . . }. We are

guaranteed that there exists k∗ such that x1, . . . ,xk∗−1
∼ P and

xk∗ , · · · ∼ Q . The goal is to output
ˆk such that | ˆk − k∗ | is small.

We study the parameterization of the private change-point de-

tection problem recently introduced by Cummings et al. [22].

Definition 4.2 (Change-Point Detection). An algorithm for a (on-

line) change-point detection problem is (α , β)-accurate if for any
input dataset (data stream), with probability at least 1 − β outputs

a
ˆk such that | ˆk − k∗ | ≤ α , where the probability is with respect

to the randomness in the sampling of the data set and the random

choices made by the algorithm.

Our main result is the following:

Theorem 4.3. There exists an efficient ε-differentially private and
(α , β)-accurate algorithm for offline change-point detection from dis-

tribution P to Q with α = Θ
(

1

ετ (P,Q )+H 2(P ′,Q ′)
· log(1/β)

)
.

Furthermore, there exists an efficient ε-differentially private and
(α , β)-accurate algorithm for online change-point detection from dis-
tribution P to Q with the same value of α . This latter algorithm also

requires as input a value n such that n = Ω
(
SCP,Q

ε · log

(
k∗

nβ

))
. If

the algorithm is accurate, it will observe at most k∗ + 2n data points,
and with high probability observe k∗ +O(n logn) data points.

For constant β , the accuracy of our offline algorithm is optimal

up to constant factors, since one can easily show that the best

accuracy achievable is Ω(SCP,Q
ε ). A similar statement holds for our

online algorithm when the algorithm is given an estimate n of k∗

such that n = poly(k∗).
As one might guess, this problem is intimately related to the

hypothesis testing question studied in the rest of this paper. Indeed,

our change-point detection algorithm will use the hypothesis test-

ing algorithm of Theorem 1.2 as a black box, in order to reduce to a

simpler Bernoulli change-point detection problem (see Lemma 4.4

in Section 4.1). We then give an algorithm to solve this simpler

problem (Lemma 4.5 in Section 4.2), completing the proof of The-

orem 4.3. In Section 4.3, we show that our reduction is applicable

more generally, as we describe an algorithm change-point detection

in a goodness-of-fit setting.
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4.1 A Reduction to Bernoulli CPD
In this section, we provide a reduction from private change-point

detection with arbitrary distributions to non-private change-point

detection with Bernoulli distributions.

Lemma 4.4. Suppose there exists an (α , β)-accurate algorithm
which can solve the following restricted change-point detection prob-
lem: we are guaranteed that there exists ˜k∗ such that z1, . . . , z ˜k∗−1

∼

2 Ber(τ0) − 1 for some τ0 > 2/3, z
˜k∗+1
, · · · ∼ 2 Ber(τ1) − 1 for some

τ1 < 1/3, and z
˜k∗ ∈ {±1} is arbitrary.

Then there exists an ε-differentially private and ((α+1)·SCP,Q
ε , β)-

accurate algorithm which solves the change-point detection problem,
where SCP,Q

ε is as defined in Theorem 1.2.

Proof. We describe the reduction for the offline version of the

problem, the reduction in the online setting is identical. The reduc-

tion is easy to describe.

We partition the samples into intervals of length SCP,Q
ε . Let

Yj = {x
(i−1)SCP,Qε +1

, . . . ,xiSCP,Qε
}, for j = 1 to ⌊n/SCP,Q

ε ⌋, and

disregard the remaining “tail” of xi ’s. We run the algorithm of

Theorem 1.2 on each Yj , and produce a bit zj = 1 if the algorithm

outputs that the distribution is P , and a zj = −1 otherwise.

We show that this forms a valid instance of the change-point

detection problem in the lemma statement. Let k∗ be the change-
point in the original problem, and suppose it belongs to Y

˜k∗ . For

every j < ˜k∗, all the samples are from P , and by Theorem 1.2, each

zj will independently be 1 with probability τ0 ≥ 2/3. Similarly

for every j > ˜k∗, all the samples are from Q , and each zj will
independently be −1 with probability at least 1 − τ1 ≥ 2/3.

Finally, we show that the existence of an (α , β)-accurate algo-
rithm that solves this problem also solves the original problem.

Suppose that the output of the algorithm on the restricted change-

point detection problem is j . Tomap this to an answer to the original

problem, we let
ˆk = (j − 1)SCP,Q

ε .

First, note that
ˆk will be ε-differentially private. We claim that

the sequence of zj ’s is ε-differentially private. This is because the

algorithm of Theorem 1.2 is ε-differentially private, we apply the

algorithm independently to each component of the partition, and

each data point affects only one component (since they are disjoint).

Privacy of
ˆk follows since privacy is closed under post-processing.

Finally, we establish accuracy. In the restricted change-point

detection problem, with probability at least 1 − β , the output j will

be such that |j − ˜k∗ | ≤ α . In the original problem’s domain, this

corresponds to a
ˆk such that | ˆk−k∗ | ≤ (α +1)SCP,Q

ε , as desired. □

4.2 Solving Bernoulli CPD
In this section, we show that there is a (Θ(log(1/β))+1, β)-accurate
algorithm for the restricted change-point detection problem. Com-

bined with Lemma 4.4, this implies Theorem 4.3.

Lemma 4.5. There exists an efficient (O(log(1/β), β)-accurate al-
gorithm for the offline restricted change-point detection problem (as
defined in Lemma 4.4).

Similarly, there exists an efficient (O(log(1/β), β)-accurate algo-
rithm for the online restricted change-point detection problem. This

algorithm requires as input a value n such that n = Ω
(
log

(
k∗

nβ

))
. If

the algorithm is accurate, it will observe at most k∗ + 2n data points,
and with high probability observe k∗ +O(n logn) data points.

Proof. We start by describing the algorithm for the offline ver-

sion of the problem. We then discuss how to reduce from the online

problem to the offline problem.

Offline Change-Point Detection. We define the function ℓ(t) =∑n
j=t zj . The algorithm’s output will be

ˆk = arg min1≤t ≤n ℓ(t).

Let k∗ be the true change-point index. To prove correctness

of this algorithm, we show that ℓ(k∗ + 1) − ℓ(t) < 0 for all t ≥

k∗ + 1 + Θ(log(1/β)), and that ℓ(k∗ − 1) − ℓ(t) < 0 for all t ≤ k∗ −
1−Θ(log(1/β)). Together, these will show that arg min1≤t ≤n ℓ(t) ∈
[k∗ − 1 − Θ(log(1/β)),k∗ + 1 + Θ(log(1/β))], proving the result.

For the remainder of this proof, we focus on the former case, the

latter will follow symmetrically. Specifically, we will show that

ℓ(k∗ + 1) − ℓ(t) < 0 for all t ≥ k∗ + 1 + c log(1/β), where c > 0 is

some large absolute constant.

Observe that for t ≥ k∗ + 1, ℓ(k∗ + 1) − ℓ(t) =
∑t−1

j=k∗+1
zj

forms a biased random walk which takes a +1-step with probability

τ1 ≤ 1/3 and a −1-step with probability 1 − τ1 ≥ 2/3. Define

Mi = ℓ(k
∗ + 1) − ℓ(k∗ + 1+ i)+ i(1− 2τ1) for i = 0 to n −k∗ − 1, and

note that this forms a martingale sequence. We will use Theorem 4

of [7], which provides a finite-time law of the iterated logarithm

result. Specialized to our setting, we obtain the following maximal

inequality, bounding how far this martingale deviates away from 0.

Theorem 4.6 (Follows from Theorem 4 of [7]). Let c > 0 be
some absolute constant. With probability at least 1 − β , for all i ≥

c log(1/β) simultaneously, |Mi | ≤ O
(√

i (log log(i) + log(1/β))
)
.

This implies that, with probability at least 1 − β , we have that
for all i ≥ c log(1/β), ℓ(k∗ + 1) − ℓ(k∗ + 1 + i) = Mi − i(1 − 2τ1) ≤

O
(√

i (log log(i) + log(1/β))
)
− i

3
. Note that the right-hand side is

non-increasing in i , so it is maximized at i = c log(1/β), and thus

ℓ(k∗+1)−ℓ(k∗+1+i) ≤ O
(√

log(1/β) (log log log(1/β) + log(1/β))
)
−

c log(1/β )
3

< 0, where the last inequality follows for a sufficiently

large choice of c .

Online Change-Point Detection. The algorithm will be as follows.

Partition the stream into consecutive intervals of length n, which
we will draw in batches. If an interval has more −1’s than +1’s,

then call the offline change-point detection algorithm on the final

2n data points with failure probability parameter set to β/4, and

output whatever it says.

Let k∗ be the true change-point index. First, we show that with

probability ≥ 1−β/4, the algorithmwill not see more−1’s than+1’s

in any interval before the one containing k∗. The number of +1’s in

this interval will be distributed as Binomial(n,τ0) for τ0 > 2/3. By a

Chernoff bound, the probability that we have > n/2 −1’s is at most

exp(−Θ(n)). Taking a union bound over allO(k∗/n) intervals before

the change point gives a failure probability of
k∗

n exp(−Θ(n)) ≤ β/4,

where the last inequality follows by our condition on n.
Next, note that the interval following the one containing k∗ will

have a number of +1’s which is distributed as Binomial(n,τ1) for

τ1 < 1/3. By a similar Chernoff bound, the probability that we have

> n/2 +1’s is at most exp(−Θ(n)) ≪ β/4. Thus, with probability
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1 − β/2, the algorithm will call the offline change-point detection

algorithm on an interval containing the true change point k∗.
We conclude by the correctness guarantees of the offline change-

point detection algorithm. Note that we chose the failure probablity

parameter to be β/4, as the offline algorithm may either be called

at the interval containing k∗, or the following one, and we take a

union bound over both of them. □

4.3 Private Goodness-of-Fit CPD
Our reduction above is rather general, and it can apply to more

general change-point detection settings. For instance, the above

discussion assumes we know both the initial and final distributions

P and Q . Instead, one could imagine a setting where one knows

the initial distribution P but not the final distribution Q , which we

term goodness-of-fit change-point detection.

Definition 4.7. In the offline γ -goodness-of-fit change-point de-
tection problem, we are given a distribution P over domain X and

a data set X = {x1, . . . ,xn }. We are guaranteed that there exists

k∗ ∈ [n] such that x1, . . . ,xk∗−1
∼ P , and xk∗ , . . . ,xn ∼ Q , for

some fixed (but unknown) distributionQ over domain X, such that

TV(P ,Q) ≥ γ . The goal is to output
ˆk such that | ˆk − k∗ | is small.

We note that analogous definitions and results hold for the online

version of this problem, as in the previous sections.

We omit the full details of the proof, but it proceeds by a very

similar argument to that in Sections 4.1 and 4.2. In particular, it is

possible to prove an analogue of Lemma 4.4, at which point we can

apply Lemma 4.5. The only difference is that we need an algorithm

for private goodness-of-fit testing, rather than Theorem 1.2 for

hypothesis testing. We use the following result from [3].

Theorem 4.8 (Theorem 13 of [3]). Let P be a known distribution
over X, and let Q be the set of all distributions Q over X such that
TV(P ,Q) ≥ γ . Given n samples from an unknown distribution which
is either P , or some Q ∈ Q, there exists an efficient ε-differentially
private algorithm which distinguishes between the two cases with

probability ≥ 2/3 when n = Θ
(
|X |1/2

γ 2
+

|X |1/2

γ ε1/2
+

|X |1/3

γ 4/3ε2/3
+ 1

γ ε

)
.

With this in hand, we have the following result for goodness-of-

fit changepoint detection.

Theorem 4.9. There exists an efficient ε-differentially private and
(α , β)-accurate algorithm for offline γ -goodness-of-fit change-point

detection with α = Θ
( ( |X |1/2

γ 2
+

|X |1/2

γ ε1/2
+

|X |1/3

γ 4/3ε2/3
+ 1

γ ε

)
· log(1/β)

)
.
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