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ABSTRACT

Hypothesis testing plays a central role in statistical inference, and
is used in many settings where privacy concerns are paramount.
This work answers a basic question about privately testing simple
hypotheses: given two distributions P and Q, and a privacy level ¢,
how many ii.d. samples are needed to distinguish P from Q subject
to e-differential privacy, and what sort of tests have optimal sample
complexity? Specifically, we characterize this sample complexity
up to constant factors in terms of the structure of P and Q and the
privacy level ¢, and show that this sample complexity is achieved by
a certain randomized and clamped variant of the log-likelihood ratio
test. Our result is an analogue of the classical Neyman-Pearson
lemma in the setting of private hypothesis testing. We also give
an application of our result to the private change-point detection.
Our characterization applies more generally to hypothesis tests
satisfying essentially any notion of algorithmic stability, which
is known to imply strong generalization bounds in adaptive data
analysis, and thus our results have applications even when privacy
is not a primary concern.
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1 INTRODUCTION

Hypothesis testing plays a central role in statistical inference, anal-
ogous to that of decision or promise problems in computability and
complexity theory. A hypothesis testing problem is specified by two
disjoint sets of probability distributions over the same set, called
hypotheses, Hy and H;. An algorithm T for this problem, called a
hypothesis test, is given a sample x from an unknown distribution
P, with the requirement that T(x) should, with high probability,
output “0” if P € Hp, and “1” if P € H;. There is no requirement
for distributions outside of Hy U Hj. In computer science, such
problems sometimes go by the name distribution property testing.

Hypothesis testing problems are important in their own right, as
they formalize yes-or-no questions about an underlying population
based on a randomly drawn sample, such as whether education
strongly influences life expectancy, or whether a particular med-
ical treatment is effective. Successful hypothesis tests with high
degrees of confidence remain the gold standard for publication in
top journals in the physical and social sciences. Hypothesis testing
problems are also important in the theory of statistics and machine
learning, as many lower bounds for estimation and optimization
problems are obtained by reducing from hypothesis testing.

This paper aims to understand the structure and sample complex-
ity of optimal hypothesis tests subject to strong privacy guarantees.
Large collections of personal information are now ubiquitous, but
their use for effective scientific discovery remains limited by con-
cerns about privacy. In addition to the well-understood settings of
data collected during scientific studies, such as clinical experiments
and surveys, many other data sources where privacy concerns are
paramount are now being tapped for socially beneficial analysis,
such as Social Science One [70], which aims to allow access to data
collected by Facebook and similar companies.

We study algorithms that satisfy differential privacy (DP) [32], a
restriction on the algorithm that ensures meaningful privacy guar-
antees against an adversary with arbitrary side information [47].
Differential privacy has come to be the de facto standard for the
analysis of private data, used as a measure of privacy for data
analysis systems at Google [36], Apple [25], and the U.S. Census
Bureau [24]. Differential privacy and related distributional notions
of algorithmic stability can be crucial for statistical validity even
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when confidentiality is not a direct concern, as they provide gener-
alization guarantees in an adaptive setting [29].

Consider an algorithm that takes a set of data points from a set
X—where each point belongs to some individual—and produces
some public output. We say the algorithm is differentially private
if no single data point can significantly impact the distribution on
outputs. Formally, we say two data sets x, x” € X" of the same size
are neighbors if they differ in at most one entry.

Definition 1.1 ([32]). A randomized algorithm T taking inputs in
X* and returning random outputs in a space with event set S is
e-differentially private if for all n > 1, for all neighboring data sets
x,x" € X", and for all events S € S, P[T(x) € S] < eP[T(x) € S].
For the special case of tests returning output in {0, 1}, the output
distribution is characterized by the probability of returning “1”.
Letting g(x) = P[T(x) = 1], we can equivalently require that

(g(x) 1—g<x)) .
9(x) 1-g(x) ] =

For algorithms with binary outputs, this definition is essentially
equivalent to all other commonly studied notions of privacy and dis-
tributional algorithmic stability (see “Connections to Algorithmic
Stability”, below).

Contribution: The Sample Complexity of Private Tests for
Simple Hypotheses. We focus on the setting of i.i.d. data and
singleton hypotheses Hj, H1, which are called simple hypotheses.
The algorithm is given a sample of n points x1, . . ., x, drawn i.i.d.
from one of two distributions, P or Q, and attempts to determine
which one generated the input. That is, Hy = {P"} and H; = {Q"}.
We investigate the following question.

Given two distributions P and Q and a privacy param-
eter ¢ > 0, what is the minimum number of samples

(denoted SCf’Q) needed for an e-differentially private
test to reliably distinguish P from Q, and what are op-
timal private tests?

These questions are well understood in the classical, nonprivate
setting. The number of samples needed to distinguish P from Q is
O(1/H%(P, Q)), where H? denotes the squared Hellinger distance
(3).1 Furthermore, by the Neyman-Pearson lemma, the exactly
optimal test consists of computing the likelihood ratio P™(x)/Q™(x)
and comparing it to some threshold.

We give analogous results in the private setting. First, we give a
closed-form expression that characterizes the sample complexity
up to universal multiplicative constants, and highlights the range
of ¢ in which private tests use a similar amount of data to the best
nonprivate ones. We also give a specific, simple test that achieves
that sample complexity. Roughly, the test makes a noisy decision
based on a “clamped” log likelihood ratio in which the influence
of each data point is limited. The sample complexity has the form
©(1/advy), where adv; is the advantage of the test over random
guessing on a sample of size n = 1. The optimal test and its sample
complexity are described in Theorem 1.2.

Our result provides the first instance-specific characterization
of a statistical problem’s complexity for differentially private algo-
rithms. Understanding the private sample complexity of statistical

! This statement is folklore, but see, e.g., [8] for the lower bound, [18] or Corollary 2.2
for the upper bound.
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problems is delicate. We know there are regimes where statisti-
cal problems can be solved privately “for free” asymptotically (e.g.
[20, 32, 45, 69]) and others where there is a significant cost, even for
relaxed definitions of privacy (e.g. [15, 35]), and we remain far from
a general characterization of the statistical cost of privacy. Duchi,
Jordan, and Wainwright [26] give a characterization for the special
case of simple tests by local differentially private algorithms, a more
restricted setting where samples are randomized individually, and
the test makes a decision based on these randomized samples. Our
characterization in the general case is more involved, as it exhibits
several distinct regimes for the parameter e.

Our analysis relies on a number of tools of independent interest:
a characterization of private hypothesis testing in terms of cou-
plings between distributions on X", and a novel interpretation of
Hellinger distance as the advantage over random guessing of a
specific, randomized likelihood ratio test.

The Importance of Simple Hypotheses. Many of the hypothe-
ses that arise in application are not simple, but are so-called com-
posite hypotheses. For example, deciding if two features are inde-
pendent or far from it involves sets Hj and H; each containing
many distributions. Yet many of those tests can be reduced to sim-
ple ones. For example, deciding if the mean of a Gaussian is less
than 0 or greater than 1 can be reduced to testing if the mean is
either 0 or 1. Furthermore, simple tests arise in lower bounds for
estimation—the well-known characterization of parametric estima-
tion in terms of Fisher information is obtained by showing that
the Fisher information measures variability in the Hellinger dis-
tance and then employing the Hellinger-based characterization of
nonprivate simple tests (e.g. [12, Chap. I1.31.2, p.180]).

Our characterization of private testing implies similar lower
bounds for estimation (along the lines of lower bounds of Duchi
and Ruan [27] in the local model of differential privacy).

Connection to Algorithmic Stability. For hypothesis tests with
constant error probabilities, sample complexity bounds for differ-
ential privacy are equivalent, up to constant factors, to sample
complexity bounds for other notions of distributional algorithmic
stability, such as (¢, §)-DP [31], concentrated DP [14, 34], KL- and
TV-stability [9, 77] (see [3, Lemma 5]). (Briefly: if we ensure that
Pr(T(x) = 1) € [0.01,0.99] for all x, then an additive change of
¢ corresponds to an multiplicative change of 1 + O(¢), and vice-
versa.) Consequently, our results imply optimal tests for use in
conjunction with stability-based generalization bounds for adap-
tive data analysis, which has generated significant interest in recent
years [9, 28-30, 37, 38, 64, 65, 78].

1.1 Hypothesis Testing

To put our result in context, we review classical results about non-
private hypothesis testing. Let P and Q be two probability distri-
butions over an arbitrary domain X. A hypothesis test K: X* —
{“P”,“Q”} is an algorithm that takes a set of samples x € X* and
attempts to determine if it was drawn from P or Q. Define the
advantage of a test K given n samples as

adva(K) = B [K(x)="P"- XN]P;)n [KGx)="P]. (1)
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We say that K distinguishes P from Q with sample complexity SC™Q (K)
if for every n > SCPQ(K), adv,(K) > 2/3. We say SCPQ =
ming SCP>Q(K) is the sample complexity of distinguishing P from
0.
Most hypothesis tests are based on some real-valued test statistic
S: X* — R where

P FS(X) > K

“Q” otherwise

Ks(x) = {

for some threshold k. We will sometimes abuse notation and use the
test statistic S and the implied hypothesis test K interchangeably.

The classical Neyman—-Pearson Lemma says that the exact opti-
mal test® for distinguishing P, Q is the log-likelihood ratio test given
by the test statistic

& P(x;)
LLR(x1,...,Xn) = log —— . (2)
" Z; £ 00
Another classical result says that the optimal sample complexity is
characterized by the squared Hellinger distance between P, Q, which
is defined as

(0.0 = [ (VP69 - VOw) . ®

Specifically, SCPQ = SCPQ(LLR) = ©(1/H%(P,Q)). Note that
the same metric provides upper and lower bounds on the sample
complexity.

1.2 Our Results

Our main result is an approximate characterization of the sam-
ple complexity of e-differentially private tests for distinguishing P
and Q. Analogous to the non-private case, we will write SCE’Q =
min,.pp g SCPQ(K) to denote the sample complexity of e-differentially
privately (e-DP) distinguishing P from Q, and we characterize this
quantity up to constant factors in terms of the structure of P, Q
and the privacy parameter . Specifically, we show that a privatized
clamped log-likelihood ratio test is optimal up to constant factors.
Privacy may be achieved through either the Laplace or Exponential
mechanism, and we will prove optimality of both methods.
For b > a, we define the clamped log-likelihood ratio statistic,

P(x;) ]”
o@xi)|,’

cLLR, p(x) = Z [log
i

where []Z denotes the projection onto the interval [a, b] (that is,
[z]Z = max(a, min(z, b))).
Define the soft clamped log-likelihood test:

P with probability o exp(% cLLR, p(x))

scLLR, p(x) =
a.b(®) {Q with probability o 1
The test scLLR is an instance of the exponential mechanism [54],

and thus scLLR,, ; satisfies e-differential privacy for ¢ = %.

ZMore precisely, given any test K, there is a setting of the threshold x for the log-
likelihood ratio test that weakly dominates K, meaning that P,.o[LLR(x) = P] <
Pyx~o[K(x) = P] and Py-p[LLR(x) = Q] < Py.p[K(x) = Q] (keeping the true
positive rates Px.p[K(x) = P],Px~o[K(x) = Q] fixed). One may need to randomize
the decision when S(X) = k to achieve some tradeoffs between false negative and
positive rates.
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Similarly, define the noisy clamped log-likelihood ratio test:

weLIR, 4(X) = {P if cLLR, 5 (x) + Lap (m) >0

Q otherwise
The test ncLLR is an instance of postprocessing the Laplace mecha-
nism [32], and satisfies e-differential privacy.

Our main result is that, for every P, Q, and every ¢, the tests
scLLR_, , and ncLLR_ ./ , are optimal up to constant factors, for
some appropriate 0 < ¢’ < ¢. To state the result more precisely, we
introduce some additional notation. First define

7 =7(P,Q) £ max {/ max{P(x) — e“Q(x), 0} dx,

! ®)

/ max{Q(x) — e*P(x), 0} dx},
X

and assume without loss of generality that 7 = / X max{P(x) —

e?Q(x), 0} dx, which we assume for the remainder of this work.>
Next, let 0 < ¢’ < ¢ be the largest value such that

/ max{P(x) —efQ(x),0} dx = / max{Q(x) — e P(x),0} dx = T,
X X

whose existence is guaranteed by a continuity argument (a formal
argument is in the full version). We give an illustration of the defi-
nition of 7 and ¢’ in Figure 1. Finally, define P = min{e?Q, P} and
0= min{eflP, Q} and normalize by (1 — 7) to obtain distributions

P'=P/(1-7) and Q' =0Q/(1-71). (5)
The distributions P’, Q” are such that
P’(x)
-’ <lo <e,
80/

and
P=(1-7)P +7P” and Q=(01-7)Q +7Q”,

where P”” and Q” are distributions with disjoint support. The quan-
tity 7 is the smallest possible number for which such a representa-
tion is possible. With these definitions in hand, we can now state
our main result.

THEOREM 1.2. For every pair of distributions P, Q, and every e > 0,
the optimal sample complexity for e-differentially private tests is
achieved by either the soft or noisy clamped log-likelihood test, and
satisfies

scPQ = o(scPQnelLR_, ) = O(SCPQ(scLLR_, ,))

1 1
=9 (ET(P, Q)+ (1-1)H%(P, Q’)) =9 (advl(scLLR_gr,g) '

When ¢ > maxy |log P(x)/Q(x)|, Theorem 1.2 reduces to SCI;’Q =

€] (m), which is the sample complexity for distinguishing
between P and Q in the non-private setting. This implies that we get
privacy for free asymptotically in this parameter regime. We will

3For a > 0,the quantity Do (P||Q) = f max(P(x)—-aQ(x), 0) dx is an f-divergence
and has appeared in the literature before under the names «a-divergence, hockey-
stick divergence, or elementary divergence [6, 52] (for & = 1, one obtains the usual
total variation distance). Thus, 7 is the maximum of the divergences D& (P||Q) and
D.e(Q||P). It can also be described as the smallest value § such that P and Q are
(&, &)-indistinguishable [33].



STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

— P(x)
--- e“P(x)
2+ — Q)
\ o
15 N
1 - ~—»;;;7;;7_7;77
0.5
, 2
0 1

Figure 1: An illustration of the definition of 7, for ¢ = 0.2
and for two densities P,Q over X = [0, 1]. The blue shaded
area represents f max{P(x) — eQ(x), 0} dx, while the red cor-
responds to f max{Q(x)—efP(x), 0} dx. The larger of these two
is 7(P, Q). If the blue area is larger than the red area, the def-
inition of ¢’ corresponds to lowering the dotted blue curve
until the two are the same size.

focus on proving the first equality, a proof of the second appears in
the full version.
Comparison to Known Bounds. For ¢ < 1, the bounds
P,Q 1
———= <SC.° L0 | —7—=
H%(P,Q) ‘ (sz(P,Q))
follow directly from the non-private sample complexity. Namely,
the lower bound is the non-private sample complexity and the
upper bound is obtain by applying the sample-and-aggregate tech-
nique [59] to the optimal non-private test. They can be recovered
from Theorem 1.2 by noting that
2
2

eH'(P.Q) = = VP - VI
- o Ve~V

-\
= O(er + ¢(1 — 1)H?(P', Q') + ¢7)
= O(er + (1 - 1)HA(P', Q"))

Ja- o

2
+¢
2

and

et + (1 - D)HA(P', Q')

= oo [ 1P - el dx+ VP - Jouz

<e / IP(x) - Q)] dx + [P ~ QI

S
e/
<o - / (VP(x) = VQ(x))* dx + H*(P, Q)
el —1 S

= O(H*(P, Q)),

where S = { x : P(x)—¢e“Q(x) >0 }.
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1.2.1  Application: Private Change-Point Detection. As an applica-
tion of our result, we obtain optimal private algorithms for change-
point detection. Given distributions P and Q, an algorithm solv-
ing offline change-point detection for P and Q takes a stream x =
(x1,x2,...,xp) € X" with the guarantee that the there is an index
k* such that first k* elements are sampled i.i.d. from P and the latter
elements are sampled i.i.d. from Q, and attempts to output k~ k.
We can also consider an online variant where elements x; arrive
one at a time.

Change-point detection has a long history in statistics and infor-
mation theory (e.g. [50, 51, 53, 55, 56, 60-63, 67, 68, 73]). Cummings
et al. [22] recently gave the first private algorithms for change-point
detection. Their algorithms are based on a private version of the
log-likelihood ratio, and in cases where the log-likelihood ratio
is not strictly bounded, they relax to a weaker distributional vari-
ant of differential privacy. Using Theorem 1.2, we can achieve the
standard worst-case notion of differential privacy, and to achieve
optimal error bounds for every P, Q.

THEOREM 1.3 (INFORMAL). For every pair of distributions P and
Q, and every ¢ > 0, there is an e-differentially private algorithm
that solves offline change-point detection for P and Q such that, with

probability at least 9/10, |l€ —-k*| = O(SCE’Q)-

The expected error in this result is optimal up to constant factors
for every pair P, Q, as one can easily show that the error must be at
least Q(SC?’Q), Theorem 1.3 can be extended to give an arbitrarily
small probability f of failure, and can be extended to the online
change-point detection problem, although with more complex ac-
curacy guarantees. Our algorithm introduces a general reduction
from private change-point detection for families of distributions
Hp and H; to private hypothesis testing for the same family, which
we believe to be of independent interest.

1.3 Techniques
First Attempts. A folklore result based on the sample-and-aggregate

paradigm [59] shows that for every P, Q and every ¢ > 0, SCE’Q =
O(%SCP’Q), meaning privacy comes at a cost of at most O(%).4

However, there are many examples where SCf’Q = 0(5CP-Q) even
when ¢ = 0(1), and understanding this phenomenon is crucial.

A few illustrative pairs of distributions P, Q will serve to demon-
strate the difficulties that go into formulating and proving Theo-
rem 1.2. First, consider the domain X = {0, 1} of size two (i.e. Bernoulli
distributions). To distinguish P = Ber(HT"‘) from Q = Ber(l_Ta),
the optimal non-private test statistic is S(x) = );; x;, which requires
@(ﬁ) = @(m) samples.

To make the test differentially private, one can use a soft ver-
sion of the test that outputs “P” with probability proportional to
exp(e X; xi) and “Q” with probability proportional to exp(e >,; 1 —
x;). This private test has sample complexity @(ﬁ + %), which is
optimal. In contrast, if P = Ber(0) and Q = Ber(«), then the non-
private sample complexity becomes ®(é), and the optimal private
sample complexity becomes @(%). In general, for X = {0, 1}, one

4See, e.g., [16] for a proof.
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can show that

1 1
HX(P.Q) | ¢TV(P,Q))

schQ - o )

The sample complexity of testing Bernoulli distributions (6) al-
ready demonstrates an important phenomenon in private hypothe-
sis testing—for many distributions P, Q, there is a “phase transition”
where the sample complexity takes one form when ¢ is sufficiently
large and another when ¢ is sufficiently small, and often the sam-
ple complexity in the “large ¢ regime” is equal to the non-private
complexity up to lower order terms. A key challenge in obtaining
Theorem 1.2 is to understand these transitions, and to understand
the sample complexity in each regime.

Since each of the terms in (6) is a straightforward lower bound
on the sample complexity of private testing, one might conjecture
that (6) holds for every pair of distributions. However, our next
illustrative example shows that this conjecture is false even for the
domain X = {0, 1, 2}. Consider the two densities

P =(0,0.50.5) and Q= (20(3/2, 0.5+a— a3/2, 05—a— a3/2) .

For these distributions, the log-likelihood ratio statistic is roughly
equivalent to the statistic that counts the number of occurrences
of “0 {0y (x) = X; 1{x; = 0}, and has sample complexity @(#).
For this pair of distributions, the optimal private test depends on
the relationship between « and ¢. One such test is to simply use
the soft version of S (0}> and the other is to use the soft version of
the test S 1} = 2; 1{x; € {0, 1}} that counts occurrences of the
first two elements. One can prove that the better of these two tests
is optimal up to constant factors, giving

1 1 1
schQ -e min{—, =+ —
a32e a ae
For these distributions, (6) reduces to ®(+/2 + L), so these dis-
a ae
tributions show that the optimal sample complexity can be much
larger than (6). Moreover, these distributions exhibit that the opti-
mal sample complexity can vary with ¢ in complex ways, making
several transitions and never matching the non-private complexity
unless & or ¢ is constant.

Key Ingredients. The second example above demonstrates that
the optimal test itself can vary with ¢ in an intricate fashion, which
makes it difficult to construct a single test for which we can prove
matching upper and lower bounds on the sample complexity. The
use of the clamped log-likelihood test arose out of an attempt to
find a single test that is optimal for the second pair of distributions
P and Q, and relies on a few crucial technical ingredients.

First, our upper bound on sample complexity relies on a key ob-
servation that the Hellinger distance between two distributions is
exactly the advantage, adv, of a soft log-likelihood ratio test sSLLR
on a sample of size 1. The sLLR test is a randomized test that out-
puts P with probability proportional to 4/P*(x)/Q"(x) = eLLR()/2,
where LLR(x) = }}; log Z(();’l )) and Q with probability proportional
to 1. This characterization of H2(P, Q) as the advantage of the SLLR
tester may be of independent interest.

This observation is crucial for our work, because it implies that

SLLR is e-DP if sup, .y |log % < ¢. That is, in the case that
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SUP, e x ‘log %) < ¢, we get e-DP for free (since Hellinger dis-
tance, and thus sLLR, characterizes the optimal asymptotic sample
complexity). Thus, we use the clamped log-likelihood ratio test,
which forces the log-likelihood ratio to be bounded. Our lower
bound in a sense shows that any loss of power in the test due to
clamping is necessary for differentially private tests.

The lower bound proof proceeds by finding a coupling p of P"
and Q" with low expected Hamming distance E(x, y)~,[du(X, V)],
which in turn implies that the sample complexity is large (see
e.g. [3]). The coupling we use essentially splits the support of P

Plx) > ¢ and the

remaining elements. To construct the coupling, given a sample X ~

(x)
P(x

P", the high-ratio elements for which log QTX; > ¢ are resampled

with probability related to the ratio. The contribution of this step
to the Hamming distance gives us the ¢z part of the lower bound.
The data set consisting of the m < n elements that have not yet
been resampled is then coupled using the total variation distance
coupling between P™ and Q™. Therefore, with probability 1 —
TV(P™, Q™) this part of the data set remains unchanged. This part
of the coupling results in the H2(P’, Q") part of the lower bound.

The proof of the upper bound also splits into two parts, roughly
corresponding to the same aspects of the distributions P and Q as
above. That is, we view our tester as either counting the number of
high-ratio elements or computing the log-likelihood ratio on low-
ratio elements. A useful observation is that this duality between the
upper and lower bounds is inevitable. In Section 3, we characterize
the advantage of the optimal tester in terms of Wasserstein distance
between P and Q with metric min{edg (X, Y), 1}. That is, the ad-
vantage of the optimal tester must be matched by some coupling of
P™ and Q".

and Q into two subsets, those elements with log

1.4 Related Work

Early work on differentially private hypothesis testing began in
the Statistics community with [72, 74]. More recently, there has
been a significant number of works on differentially private hy-
pothesis testing. One line of work [17, 21, 40, 44, 49, 71, 76] designs
differentially private versions of popular test statistics for testing
goodness-of-fit, closeness, and independence, as well as private
ANOVA, focusing on the performance at small sample sizes. Work
by Wang et al. [75] focuses on generating statistical approximat-
ing distributions for differentially private statistics, which they
apply to hypothesis testing problems. A recent work by Awan and
Slavkovic [5] gives a universally optimal test when the domain size
is two, however Brenner and Nissim [13] shows that such univer-
sally optimal tests cannot exist when the domain has more than
two elements. A complementary research direction, initiated by
Cai et al. [16], studies the minimax sample complexity of private
hypothesis testing. [3] and [4] have given worst-case nearly optimal
algorithms for goodness-of-fit and closeness testing of arbitrary
discrete distributions. That is, there exists some worst-case distribu-
tion P such that their algorithm has optimal sample complexity for
testing goodness-of-fit to P. Recently, [2] designed nearly optimal
algorithms for estimating properties like support size and entropy.

Another related area [1, 41, 66] studies hypothesis testing in the
local model of differential privacy. In particular, Duchi, Jordan, and
Wainwright [26] proved an analogue of our result for the restricted
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case of locally differentially private algorithms. Their characteri-
zation shows that, the optimal sample complexity for e-DP local
algorithms is ©(1/(e2 TV(P, )?)). This characterization does not
exhibit the same phenomena that we demonstrate in the central
model—privacy never comes “for free” if ¢ = 0(1), and the sample
complexity does not exhibit different regimes depending on ¢. More
generally, local-model tests are considerably simpler, and simpler
to reason about, than central-model tests.

There are also several rich lines of work attempting to give tight
instance-specific characterizations of the sample complexities of
various differentially private computations, most notably linear
query release [11, 43, 48, 57, 58] and PAC and agnostic learning [10,
39, 46]. The problems considered in these works are arguably more
complex than the hypothesis testing problems we consider here,
the characterizations are considerably looser, and are only optimal
up to polynomial factors.

There has been a recent line of work [9, 23, 28-30, 37, 38, 64, 65,
78] on adaptive data analysis, in which the same dataset is used
repeatedly across multiple statistics analyses, the choice of each
analysis depends on the outcomes of previous analyses. The key
theme in these works is to show that various strong notions of algo-
rithmic stability, including differential privacy imply generalization
bounds in the adaptive setting. Our characterization applies to all
notions of stability considered in these works.

As an application of our private hypothesis testing results, we
provide algorithms for private change-point detection. As discussed
in Section 1.2.1, change-point detection has enjoyed a significant
amount of study in information theory and statistics. Our results are
in the private minimax setting, as recently introduced by Cummings
et al. [22]. We improve on their results by improving the detection
accuracy and providing strong privacy guarantees for all pairs of
hypotheses.

2 UPPER BOUND ON SAMPLE COMPLEXITY
OF PRIVATE TESTING

In this section, we establish the upper bound part of Theorem 1.2,
establishing that the soft clamped log-likelihood ratio test scLLR
and the noisy clamped log-likelihood ratio test ncLLR achieve the
stated sample complexity. In more detail, we begin in Section 2.1
by characterizing the Hellinger distance between two distributions
as the advantage, advy, of a specific randomized test, sSLLR. Besides
being of independent interest, this reformulation also yields some
insight on its privatized variant, scLLR. In Section 2.2, we introduce
the noisy clamped log-likelihood ratio test (ncLLR), and show that
its sample complexity is at least that of scLLR. We then proceed in
Section 2.3 to upper-bound the sample complexity of ncLLR, which
also implies that same bound on that of scLLR.

2.1 Hellinger Distance Characterizes the Soft
Log-Likelihood Test
Recall that the advantage of a test, adv,,, was defined in Equation (1)
and the squared Hellinger distance, H Z (P, Q), between two distribu-
tions P and Q is defined as H%(P, Q) = % f/\,(\/}% - \/@)Z dx.
It has long been known that the Hellinger distance character-
izes the asymptotic sample complexity of non-private testing (see,
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e.g., [12]). In this section we show that the Hellinger distance ex-
actly characterizes the advantage of the following randomized test
given a single data point:

LLR(x) P with probability g(x)
s xX) =
Q  with probability 1 — g(x)
where
P(x)
- eXP( log Q(x)) c[0.1]
yo= Py <
1+ exp ( log Q(x))

Considering the advantage of sSLLR might seem puzzling at first
glance, since the classic likelihood ratio test LLR enjoys a better
advantage. More specifically, the value of adv; for these two tests
is H2(P, Q) (Theorem 2.1) and TV (P, Q) (by the definition of total
variation distance), respectively, and H2(P,Q) < TV(P,Q) (see,
e.g., [42]), so it would appear that LLR is the better test. There
are two relevant features of sLLR which will be useful. First, as
mentioned before, sLLR is naturally private if the likelihood ratio
is bounded. Second, a tensorization property of Hellinger distance
allows us to easily relate the advantage of the n-sample test to the
advantage of the 1-sample test.

THEOREM 2.1. For any two distributions P, Q, the advantage, advy,
of sSLLR is H2(P, Q).

Proor. Note that we can rewrite

.0 = / (VPG - VOG)? dx

3 [ o - g Y ED
VP(x) \/Q(x

1 VP(x)/Q(x) -

z P(x) — NS -

3 J o -0 EEEE e
Now, o) = y/gey/ (Vg +1) = 3 (Y g =1/ 5((’8 +141)
and therefore H2(P, Q) = fX(P(x) Q(x))g(x)dx = Ex-p [g(x)] —
Ex~o [9(x)] = Py.p[sLLR(x) = P] = Py [sLLR(x) = P]. Thus,
the advantage of sLLR is H2(P, Q), as claimed. O

This tells us the advantage of the test which takes only one
sample. As a corollary, we can derive the sample complexity of
distinguishing P and Q using sLLR.

COROLLARY 2.2. SCPQ(SLLR) = O (m)

ProoF. Our analysis is similar to that of [18]. Observe that the
test SLLR which gets n samples from either P or Q is equivalent
to the test sSLLR which gets 1 sample from either P" or Q". By
Theorem 2.1, we have that the advantage of either (equivalent) test
is adv = H?(P", Q™). We will require the following tensorization
property of the squared Hellinger distance: H2(Py X - - - X Py, Q1 X

- X Qp) = 1-[1",(1 - H%(P;,Q;)). With this in hand, adv =
H2(P", Q") = 1-(1-H%(P,Q))" = 1—exp (nlog(1 - HX(P,Q))) =
1-exp(—nH%(P, Q)). Setting n = Q(1/H%(P, Q)), we get adv > 2/3,
as desired. O
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2.2 The Noisy Log-Likelihood Ratio Test

We now consider the noisy log-likelihood ratio test, which, similar
to scLLR_/ ¢, is also e-differentially private.

P(xi) |*

06 + Lap(2)

-

ncLLR ¢ +(X) = )" [log
1

Here Lap(2) denotes a Laplace random variable, which has den-
sity proportional to exp(—|z|/2). Readers familiar with differential
privacy will note that scLLR corresponds to the exponential mecha-
nism, while ncLLR responds to the report noisy max mechanism [33],
and thus the two should behave quite similarly. In particular, we
have the following lemma.

LEMMA 2.3. For any P and Q:

(1) SCPQ(ncLLR_, ) = Q(SCPQ(scLLR_, ).
(2) Furthermore, if —¢’ < log 5 < ¢ then SCP’Q(ncLLR,g/,g) =
O(SCPQ(scLLR_, ).

Proor. Recall that

P with probability g.(X)

scLLR_¢, (X) = i -
Q  with probability 1 — g.(X)

e%cLLR 7 (X)

—el,e

where g.(X) = If we let the threshold x = 0 then
1

4ot UR o 00
the test based on the test statistic ncLLR— . ; is

P with probability h.(X)

ncLLR_, (X) = ] N
’ Q  with probability 1 — h.(X)

where

CLIR_,s (X)
1-5e 2
" CLLR_,s (X)
¢ 2

if cLLR_, (X 0
hg(X): I c s,e( )> )

if cLLR_¢ +(X) < 0

Now, we will use the following two inequalities: if x < 0, then

1 1
x 7 x . _x 7%
jez < £ < Z%eZ,andlfx>0,§(l—%e 7)< £ <
1+e2”™ 1+e2”™

1- %e‘? Therefore, noting that Px.p» [scLLR_g/,g(X) = P]
Epn|g:(X)] and Px.pn [ncLLR_Er,g(X) = P] = Epn[h(X)] are
the probabilities of success, we have %Epn [he(X)] < Epn[gs(X)] <
2Epn[he(X)] and 8Egn[he(X)] < Egnlg:(X)] < 2Egn[he(X)].
Therefore, if ncLLR has a probability of success of 5/6 then scLLR
has a probability of success of 2/3. This implies that SC™>Q (ncLLR) >
SCP-Q(scLLR).

If log 5 € [-¢,¢] then cLLR_ ,(X) = LLR(X) so we have
P™M(X) > Q™(X) iff LLR(X) > 0 iff g.(X) < ho(X) and therefore

Epnlge] - Eonlge] = / (P(X) — Q"(X))ge (X) dX
< / (P"(X) — Q"(X))he(X) dX = Epn[he] — Eon[hel.
O

which completes the proof.

CoROLLARY 2.4. IfncLLR has asymptotically optimal sample com-
plexity then scLLR has asymptotically optimal sample complexity.
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2.3 The Sample Complexity of ncLLR

In this section we prove the upper bound in Theorem 1.2 for the
case where TV(P, Q) < 1 (i.e., the supports of P and Q have non-
empty intersection). This assumption ensures that P, Q # 0, so that
P’,Q’ are well defined. A proof of the case where TV(P, Q) = 1isin
the full version. In order to prove the upper bound in Theorem 1.2,
we restate it as follows.

THEOREM 2.5. ThencLLR_ . test ise—DPandSCP’Q(ncLLR,ggg) <
O matrman) = © (min {2 o))

Theorem 2.5 combined with a matching lower bound (given later
in Theorem 3.4) imply that ncLLR? , has asymptotically optimal
sample complexity. Thus, by Corollary 2.4, scLLR? , has asymptot-
ically optimal sample complexity.

Before proving the bound, we pause to provide some intuition
for its form. As discussed in the introduction, we can write P and
Q as mixtures P = (1—7)P’ + 7P and Q = (1 - 7)Q’ + Q’" where
P”’, Q" have disjoint support. Now consider a thought experiment,
in which the test that must distinguish P from Q using a sample
of size n is given, along with the sample x, a list of binary labels
b1, by, ..., b, that indicate for each record whether it was sampled
from the first component of the mixture (either P’ or Q’), or the
second component (either P’ or Q”’). Of course this can only be a
though experiment—these labels are not available to a real test.

Because the mixture weights are the same for both P and Q,
the number of labels of each type would be distributed the same
under P and under Q, and so the tester would be faced with two
independent testing problems: distinguishing P”’ from Q”’ using
a sample of size about 7n, and distinguishing P’ from Q’ using a
sample of size about (1 — 7)n. It would suffice for the tester to solve
either of these problems.

Theorem 2.5 shows that the real tests (scLLR and ncLLR) do as
well as the hypothetical tester that has access to the labels. The
two arguments to the minimum in the theorem statement corre-
spond directly to the e-DP sample complexity of distinguishing
P”” from Q” (which requires nt > 1/¢) or distinguishing P’ from
Q’ (which requires n(1 — r) > 1/H?(P’,Q")). The proof proceeds
by breaking the clamped log-likelihood ratio into two pieces, each
corresponding to one of the two mixture components (again, this
decomposition is not known to the algorithm). These two pieces
correspond to the test statistics of the optimal testers for the two
separate sub-problems in the thought experiment. We show that
the test does well at distinguishing P from Q as long as either of
these pieces is sufficiently informative.

On a more mechanical level, our proof of Theorem 2.5 bounds
the expectation and standard deviation of the two pieces of the test
statistic. We use the following simple lemma, which states that a
test statistic S performs well if the distribution of the test statistic
on P and Q, S(P) and S(Q), must not overlap too much. The proof
is a simple application of Chebyshev’s inequality.

LEMMA 2.6. Given a function f: X — R, constant ¢ > 0 and
n > 0, if the test statistic S(X) = 3; f(x;) satisfies
max {\/Varpn [SX)], yVargn [s(X)]} < c[Epn [S(X)]-Egn [SG)|
then S can be used to distinguish between P and Q with probability
of success 2/3 and sample complexity at most n’ = 12¢%n.
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The definitions of P and Q lend naturally to consider a partition of
the space X, depending on which quantities achieve the minimum
in min(e“Q, P) and min(ef' P, Q). This partition will itself play a
crucial role in both the proof of the theorem, and later in our lower
bound: accordingly, define

Sz{x: P(x)—eeQ(x)>O}

T = { x: O(x)—e“P(x)> 0 } @

andset A =X \(SUT).

PRrOOF OF THEOREM 2.5. Observe that for all x € A, P(x) = P(x)
and Q(x) = Q(x) (so that P’(x)/Q’(x) = P(x)/Q(x)), that for all x €
S, log(P’(x)/Q’(x)) = ¢ and that for all x € 7, log(P’(x)/Q’(x)) =
—¢’. To show that the test works, we first show that the clamped
log likelihood ratio (without noise) is a useful test statistic. In order
to apply Lemma 2.6, we first calculate the difference Ag,p in the
expectations of cLLR_, . under P and Q. For the remainder of the
proof, we omit the —¢’, ¢ subscript (since clamping always occurs
to the same interval).

%Agap - %P [eLLR(X)] - B, [cLLRCY)]

. . oy
- / (P(x) = Q) log 5 d
— (P(S) - Q(S))e + / (B - Q(X))logQ((x))

+(Q(T) - P(T))e’
= (P(S) - Q(S) + 1)e + / (P(x) = Q(x)) log
A
+(O(T) - P(T) + 7)¢’

P/(x)
o ™

where the last equality follows by the definition of 7. Moreover,

nKL (P’||Q") + nKL (Q'||P’)
P'(x) .

/ (P = Q" () log 705 dx
n(P/(S) — Q'(S))e + n
A

P’(x)
Q'(x)

dx

+n(Q'(T) - P'(T)e’

()= 0e + [ - Gios 0

Q'(x)

+(0(7) - P ).

Therefore, Agap = (1-7)n(KL (P’||Q”) + KL (Q’||P’)) + nte +nre’ >
2n((1-1)H 2P, Q") + re) , where the last inequality follows since
H?(P, Q) < KL(P||Q) for any distributions P and Q.

We now turn to bounding the variance of the noisy clamped LLR
under P and Q. Noting that Varpn [ncLLR] = Varpn [cLLR] + 8, by
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P =1P"” + (1 - 7)P’ and the support of P” is contained in S. Thus,

Var[cLLR] < n /X P(x) log? Q(("))
=n / (P (x) + (1 - 7)P'(x)) log? QEX)
—n(TP"(S)e +(1—T)/P(x)1 2 ())d )

Since log g’,((’;)) <e<1,|log S'E}Q)' < 3-|1=O'(x)/P"(x)|. There-
/ 2

fore, [, P’(x)log? g((’j(; dx <9 [, P'(x)(1 - JO')/P'(x) dx =
18-H2(P’, Q’). Also, P”’(S) = 1and thus we have that Varps [cLLR]
O(nre? + (1 — 1)nHA(P’, Q")) = O(nre + (1 — 7)nH3(P’, Q’). Sim-
ilarly, Vargns [cLLR] < O(nre” + (1 — 1)H?(P’, Q")) < O(nre +
(1 — 7)nH?(P’, Q’)). Finally, max{Vargn [cLLR], Varpn [cLLR]} =
0 (et DO ) = 0(8Z,, /n(re + (1 - DHA(P', Q).

nre+n(1-t)H2(P’,Q’)
for some suitably large con-

: C
Therefore, if n > e (- H2(P,0)
stant C > 0, this implies that max{Vargn [cLLR], Varpn [cLLR]} <
O(Aéap) and Agap = Q(1), which concludes our proof. O

3 LOWER BOUND ON THE SAMPLE
COMPLEXITY OF PRIVATE TESTING

We now prove the lower bound in Theorem 1.2. We do so by con-
structing an appropriate coupling between the distributions P" and
Q", which implies lower bounds for privately distinguishing P"
from Q". This style of analysis was introduced in [3], though we
require a strengthening of their statement. Specifically, the lower
bound of Acharya et al. involves d/(X,Y) = edy(X,Y), whereas
we have d.(X,Y) = min(edg (X, Y), 1).

For X,Y € X", let dy(X,Y) be the Hamming distance between
X,Y (e, |[{i: xi #y;i }|). Givenametricd: X" x X" — Ry,
we define the Wasserstein distance Wy(P, Q) to be W;(P,Q) =
inf B(x, y)~p [d(X, Y)], where the inf is over all couplings p of P"
and Q". Let d.(X, Y) = min{edy(X,Y), 1}.

LEmMA 3.1. For every e-DP algorithm M: X™ — {0, 1}, if X and
Y are neighboring datasets then E[M(X)] < e*E[M(Y)], where the
expectations are over the randomness of the algorithm M.

LEMMA 3.2. For every ¢-DP algorithm M: X" — {P,Q}, we
have the following bound on the advantage: |Px~p [M(X)=P] -
Px~o [M(X) = P]| < O(Wy, (P, Q)).

ProoF. Let p: X" x X™ — R be a coupling of P” and Q" and
M be an ¢-DP algorithm. We have

P, IMX) =P~ P [M(X)=P]

=/Xn /X (p(X, NF [M) = Pl - p(X, Y)E[M(Y)zp])dXdY

< /n /);n ,D(X, Y)min{l,(egdH(X’Y) _ 1)}3 [M(Y) _ P]}dXdY

Lemma 2.6 it suffices to show that max{Vargn [cLLR]+8, Varpn [cLLR]+ < 2 / / p(X,Y)min{1, edg(X,Y)}dX dY
n Xﬂ

8} < O(Aéap);or, equivalently, that max{Vargn [cLLR], Varpn [cLLR]} <

O(Aéap) and Agap = Q(1). Recall that P”’ is a distribution such that

=0o( E

de(X, Y))),
(x,y>~p[ X))
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where Py [-] denotes that the probability is over the randomness of
the algorithm M, and the first inequality follows from Lemma 3.1.
O

The upper bound in Lemma 3.2 is in fact tight. We state the
converse (whose proof appears in the full version) below for com-
pleteness, although we will not use it in this work.

LEmMA 3.3. There is a ¢-DP algorithm M: X" — {P,Q} such
that [Px..p [M(X) = P] - Px~q [M(X) = P]| = Q(Wy, (P, Q)).

We will also rely on the following standard fact characterizing
total variation distance in terms of couplings:

Fact 1. Given P and Q, there exists a coupling p of P and Q such
that P, [X # Y] = TV(P, Q). We will refer to this coupling as the
total variation coupling of P and Q.

We can now prove the lower bound component of Theorem 1.2.
Recall that P’ and Q" were defined in Equation (5).

THEOREM 3.4. Given P and Q, every e-DP test K that distinguishes

POK = Of— 1
P and Q has the property that SCPQ(K) = Q (€T+H2(P,,Q,) )
Proor. Consider the following coupling of P and Q": Given

a sample X ~ P", independently for all x; € S° label the point 1
e“Q(x;)
P(x;)
AUT as 1. (In particular, this implies that each x; is labeled 1 with
probability 1 -7, and with probability 7.) Each point labeled is then

indep’endently re-sampled from 7~ with probability distribution
Q%Splrr. Let A C [n] be the set of points labeled 1, and n’” be
its size; and note that this set is distributed according to (P’ ',
We transform this set to a set distributed by (Q’)" using the TV-
coupling of (P’)" and (Q’)" . The result is a sample from Q™.

Now, we can rewrite dg(X,Y) = Yjgn Lx,=v;} +2iea L{x,=1;}
dH(X/'\, Y/_\) + ]I{XA=YA} . ZiEA ]l{Xi=Yi}’ and therefore

E [min{edy (X, Y), 1}]

with probability , otherwise label it . Label all the points in

=E [min{edH(X, Y), l}]l{XA:YA}] +E [min{sdH(X, Y), l}ﬂ{XA:#YA}]

<¢E [dH(X’ 1 {XA=YA}] +E [IL {XA?*YA}]
= ¢E [du(Xz. Ya)] + P[Xp # Yal.

Recalling now that the distribution of (X4, Ya) is that of the TV-
coupling of (P’)" and (Q’)", and that |A| = n — n’, we get

E [min{edg (X, Y),1}] < E [s(n — )+ V(P (Q’)"’)]
<etn+E [\/?]H(P', Q) <ertn++(1-1)n-HP', Q)

Therefore, by Lemma 3.2, we have that for every e-DP test M,

<ern+y(1 - 1)n-HP',Q").

Thus, in order for the probability of success to be Q(1), we need
either ern or 4/(1 — 7)nH(P’, Q’) to be Q(1). That is, n >

Q (min { & o))

£7’ (1-1)H*(P", Q")
SRecall the definitions of S, 7 and A from Section 2.3 (Equation (7).

‘ P IM(X)=P]- P

. o MO0 =71
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4 APPLICATION: DIFFERENTIALLY PRIVATE
CHANGE-POINT DETECTION

In this section, we give an application of our method to differen-
tially private change-point detection (CPD). In the change-point
detection problem, we are given a time-series of data. Initially, it
comes from a known distribution P, and at some unknown time
step, it begins to come from another known distribution Q. The
goal is to approximate when this change occurs. More formally, we
have the following definition.

Definition 4.1. In the offline change-point detection problem, we
are given distributions P, Q and a data set X = {x1,...,x,}. We are
guaranteed that there exists k* € [n] such that x1,...,xg_y ~ P
and xg-, . ..,xn ~ Q. The goal is to output k such that |k — k*| is
small.

In the online change-point detection problem, we are given dis-
tributions P, Q, a stream of data points X = {xi,...}. We are
guaranteed that there exists k* such that x1,...,x«_; ~ P and
Xg+,- - ~ Q. The goal is to output k such that |k — k*| is small.

We study the parameterization of the private change-point de-
tection problem recently introduced by Cummings et al. [22].

Definition 4.2 (Change-Point Detection). An algorithm for a (on-
line) change-point detection problem is («, ff)-accurate if for any
input dataset (data stream), with probability at least 1 — f outputs
a k such that |k — k*| < a, where the probability is with respect
to the randomness in the sampling of the data set and the random
choices made by the algorithm.

Our main result is the following:

THEOREM 4.3. There exists an efficient e-differentially private and
(a, p)-accurate algorithm for offline change-point detection from dis-

tribution P to Q witha = © (m . log(l/ﬁ)).
Furthermore, there exists an efficient e-differentially private and

(a, p)-accurate algorithm for online change-point detection from dis-

tribution P to Q with the same value of a. This latter algorithm also

requires as input a value n such thatn = Q (SC?’Q -log (,%;)) If

the algorithm is accurate, it will observe at most k* + 2n data points,
and with high probability observe k* + O(nlog n) data points.

For constant f, the accuracy of our offline algorithm is optimal
up to constant factors, since one can easily show that the best
accuracy achievable is Q(SCE’ Q). A similar statement holds for our
online algorithm when the algorithm is given an estimate n of k*
such that n = poly(k™).

As one might guess, this problem is intimately related to the
hypothesis testing question studied in the rest of this paper. Indeed,
our change-point detection algorithm will use the hypothesis test-
ing algorithm of Theorem 1.2 as a black box, in order to reduce to a
simpler Bernoulli change-point detection problem (see Lemma 4.4
in Section 4.1). We then give an algorithm to solve this simpler
problem (Lemma 4.5 in Section 4.2), completing the proof of The-
orem 4.3. In Section 4.3, we show that our reduction is applicable
more generally, as we describe an algorithm change-point detection
in a goodness-of-fit setting.
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4.1 A Reduction to Bernoulli CPD

In this section, we provide a reduction from private change-point
detection with arbitrary distributions to non-private change-point
detection with Bernoulli distributions.

LEMMA 4.4. Suppose there exists an (a, f)-accurate algorithm
which can solve the following restricted change-point detection prob-
lem: we are guaranteed that there exists k* such thatzy, . ..
2Ber(rp) — 1 for some rp > 2/3, Zheypot
11 < 1/3, and zj, € {£1} is arbitrary.

Then there exists an e-differentially private and (a+1)- SCf’ Q, B)-
accurate algorithm which solves the change-point detection problem,

where SCf’Q is as defined in Theorem 1.2.

Ef_y ~
- ~ 2Ber(r) — 1 for some

Proor. We describe the reduction for the offline version of the
problem, the reduction in the online setting is identical. The reduc-
tion is easy to describe.

We partition the samples into intervals of length SCf’Q. Let

Y, = {x(i—l)SCf’QH""’xiscf’Q}’ forj = 1to Ln/SCf’QJ, and
disregard the remaining “tail” of x;’s. We run the algorithm of
Theorem 1.2 on each Y}, and produce a bit z; = 1 if the algorithm
outputs that the distribution is P, and a z; = —1 otherwise.

We show that this forms a valid instance of the change-point
detection problem in the lemma statement. Let k* be the change-

point in the original problem, and suppose it belongs to Y}.. For

every j < I;*, all the samples are from P, and by Theorem 1.2, each
zj will independently be 1 with probability 7o > 2/3. Similarly
for every j > I;* all the samples are from Q, and each z; will
independently be —1 with probability at least 1 — 7; > 2/3.

Finally, we show that the existence of an («, )-accurate algo-
rithm that solves this problem also solves the original problem.
Suppose that the output of the algorithm on the restricted change-
point detection problem is j. To map this to an answer to the original
problem, we let k=(G- I)SCE’Q.

First, note that k will be e-differentially private. We claim that
the sequence of z;’s is e-differentially private. This is because the
algorithm of Theorem 1.2 is e-differentially private, we apply the
algorithm independently to each component of the partition, and
each data point affects only one component (since they are disjoint).
Privacy of k follows since privacy is closed under post-processing.

Finally, we establish accuracy. In the restricted change-point
detection problem, with probability at least 1 — 3, the output j will
be such that |j — /;*| < a. In the original problem’s domain, this
corresponds to a k such that IIQ— K| < (a+ l)SCf’Q, asdesired. O

4.2 Solving Bernoulli CPD

In this section, we show that there is a (©(log(1/f)) + 1, )-accurate
algorithm for the restricted change-point detection problem. Com-
bined with Lemma 4.4, this implies Theorem 4.3.

LEMMA 4.5. There exists an efficient (O(log(1/f), f)-accurate al-
gorithm for the offline restricted change-point detection problem (as
defined in Lemma 4.4).

Similarly, there exists an efficient (O(log(1/p), p)-accurate algo-
rithm for the online restricted change-point detection problem. This

algorithm requires as input a value n such thatn = Q (log (%)) If
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the algorithm is accurate, it will observe at most k* + 2n data points,
and with high probability observe k* + O(nlog n) data points.

Proor. We start by describing the algorithm for the offline ver-
sion of the problem. We then discuss how to reduce from the online
problem to the offline problem.

Offline Change-Point Detection. We define the function £(t) =
Z;‘:t zj. The algorithm’s output will be k= argming <;<p (t).

Let k* be the true change-point index. To prove correctness
of this algorithm, we show that £(k* + 1) — £(¢t) < 0 for all t >
k* + 1+ O(log(1/p)), and that £(k* — 1) — £(¢t) < O forall t < k* —
1-0(log(1/p)). Together, these will show that arg min <; <, €(¢) €
[k* — 1 — ©(log(1/p)),k* + 1 + ©(log(1/p))], proving the result.
For the remainder of this proof, we focus on the former case, the
latter will follow symmetrically. Specifically, we will show that
C(k* +1)—£€(t) < 0forallt > k* + 1 + clog(1/f), where ¢ > 0 is
some large absolute constant.

Observe that for t > k* + 1, £(k* + 1) — £(t) = Jt';ll<*+1 zZj
forms a biased random walk which takes a +1-step with probability
71 < 1/3 and a —1-step with probability 1 — 7; > 2/3. Define
M; =0k*+1)—€(k*+1+i)+i(1-271)fori =0ton—k*—1,and
note that this forms a martingale sequence. We will use Theorem 4
of [7], which provides a finite-time law of the iterated logarithm
result. Specialized to our setting, we obtain the following maximal
inequality, bounding how far this martingale deviates away from 0.

THEOREM 4.6 (FOLLOWS FROM THEOREM 4 OF [7]). Letc > 0 be
some absolute constant. With probability at least 1 — B, for all i >

clog(1/) simultaneously, |M;] < O (\/i (log log(i) + Tog(1 /,3))).
This implies that, with probability at least 1 — 8, we have that
foralli > clog(1/p), €(k* + 1) = €(k* + 1 +i) = M; —i(1 - 217) <
0 (\/1 (loglog(i) + log(l/ﬁ))) - % Note that the right-hand side is
non-increasing in i, so it is maximized at i = clog(1/f), and thus

(k* +1) =LK +14i) < O (\/log(l 7B) (log log log(1/f) + log(1 /ﬁ)))

M < 0, where the last inequality follows for a sufficiently
large choice of c.

Online Change-Point Detection. The algorithm will be as follows.
Partition the stream into consecutive intervals of length n, which
we will draw in batches. If an interval has more —1’s than +1’s,
then call the offline change-point detection algorithm on the final
2n data points with failure probability parameter set to /4, and
output whatever it says.

Let k* be the true change-point index. First, we show that with
probability > 1—- /4, the algorithm will not see more —1’s than +1’s
in any interval before the one containing k*. The number of +1’s in
this interval will be distributed as Binomial(n, 7p) for 7p > 2/3. By a
Chernoff bound, the probability that we have > n/2 —1’s is at most
exp(—0(n)). Taking a union bound over all O(k* /n) intervals before
the change point gives a failure probability of % exp(—0(n)) < /4,
where the last inequality follows by our condition on n.

Next, note that the interval following the one containing k* will
have a number of +1’s which is distributed as Binomial(n, r1) for
71 < 1/3. By a similar Chernoff bound, the probability that we have
> n/2 +1’s is at most exp(—0(n)) < f/4. Thus, with probability
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1 — f/2, the algorithm will call the offline change-point detection
algorithm on an interval containing the true change point k*.

We conclude by the correctness guarantees of the offline change-
point detection algorithm. Note that we chose the failure probablity
parameter to be /4, as the offline algorithm may either be called
at the interval containing k*, or the following one, and we take a
union bound over both of them. ]

4.3 Private Goodness-of-Fit CPD

Our reduction above is rather general, and it can apply to more
general change-point detection settings. For instance, the above
discussion assumes we know both the initial and final distributions
P and Q. Instead, one could imagine a setting where one knows
the initial distribution P but not the final distribution Q, which we
term goodness-of-fit change-point detection.

Definition 4.7. In the offline y-goodness-of-fit change-point de-
tection problem, we are given a distribution P over domain X and
a data set X = {x1,...,x,}. We are guaranteed that there exists
k* € [n] such that x1,...,xg_; ~ P, and xp+,...,xn, ~ Q, for
some fixed (but unknown) distribution Q over domain X, such that
TV(P, Q) > y. The goal is to output k such that |k — k*| is small.

We note that analogous definitions and results hold for the online
version of this problem, as in the previous sections.

We omit the full details of the proof, but it proceeds by a very
similar argument to that in Sections 4.1 and 4.2. In particular, it is
possible to prove an analogue of Lemma 4.4, at which point we can
apply Lemma 4.5. The only difference is that we need an algorithm
for private goodness-of-fit testing, rather than Theorem 1.2 for
hypothesis testing. We use the following result from [3].

THEOREM 4.8 (THEOREM 13 OF [3]). Let P be a known distribution
over X, and let Q be the set of all distributions Q over X such that
TV(P, Q) > y. Given n samples from an unknown distribution which
is either P, or some Q € Q, there exists an efficient e-differentially
private algorithm which distinguishes between the two cases with

ili _of X2 XM X 1
probability > 2/3 whenn = G)( s ver t i + 5z )-

With this in hand, we have the following result for goodness-of-
fit changepoint detection.

THEOREM 4.9. There exists an efficient e-differentially private and
(a, p)-accurate algorithm for offline y -goodness-of-fit change-point

) . _ X2 X[ XS 1
detection with a = G)(( — + ez T yan g +ye -log(1/p)).
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