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Abstract

We study the game theoretic p-Laplacian for semi-supervised learning on graphs,
and show that it is well-posed in the limit of finite labeled data and infinite unlabeled
data. In particular, we show that the continuum limit of graph-based semi-supervised
learning with the game theoretic p-Laplacian is a weighted version of the continuous
p-Laplace equation. We also prove that solutions to the graph p-Laplace equation are
approximately Hölder continuous with high probability. Our proof uses the viscosity
solution machinery and the maximum principle on a graph.

1 Introduction

Large scale regression and classification problems are prominent today in data science and
machine learning. In a typical problem, we are given a large collection of data, some of
which is labeled, and our task is to extend the labels to the larger data set in some mean-
ingful way. Fully supervised learning algorithms make use of only the labeled data. They
may, for example, learn a parametrized function f on the ambient space that maximally
agrees with the labeled data. Depending on the application, one might use support vector
machines, or neural networks, for example. Fully supervised algorithms are generally only
successful when there is a sufficiently diverse collection of labeled data to learn from. In
many applications, labeled data requires human annotation, often by experts, and can be
difficult and expensive to obtain.

On the other hand, due to the generally increasing availability of data, unlabeled data
is essentially free. As such, there has recently been significant interest in semi-supervised
learning algorithms that make use of both the labeled data, as well as the geometric or topo-
logical properties of the unlabeled data to achieve superior performance. Semi-supervised
learning is used in many applications where a large amount of data is available, but only
a very small subset is labeled. Examples include classification of medical images, natural
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language parsing, text recognition, website classification, protein sequencing to structure
problems, and many others [1].

We consider semi-supervised learning on graphs. Here, we are given a weighted graph
G = (X ,W), where X are the vertices, and W = {wxy}x,y∈X are nonnegative edge weights.
The weights are typically chosen so that wxy ≈ 1 when x and y are close, and wxy ≈ 0
when x and y are far apart (see Eq. (13)). The labeled data form a subset O ⊂ X of the
vertices called the observation set. Given an unknown real-valued function g : X → R, and
observations g(x) for x ∈ O, the goal of semi-supervised learning is to make predictions
about the function g at the remaining vertices x ∈ X \ O.

Since there are infinitely many ways to extend the labels, the problem is ill-posed without
some further assumptions. It is now standard to make the semi-supervised smoothness
assumption, which says that we should extend the labeled data in the “smoothest” way
possible, and the degree of smoothness should be locally proportional to the density of the
graph. A widely used approach to the smoothness assumption is Laplacian regularization,
which leads to the minimization problem

(1) min
u:X→R

∑
x,y∈X

w2
xy(u(x)− u(y))2 subject to u(x) = g(x) for all x ∈ O.

Laplacian regularization was first proposed for learning tasks in [2], and has been ex-
tensively used since (see [3–6] and the references therein). It has also been applied to the
related problem of manifold ranking [7–12], which has applications in object retrieval, for
example.

Although Laplacian regularization is widely used and is successful for certain problems,
it has been observed that when the number of unlabeled data points far exceeds the number
of labeled points, the solution of (1) degenerates into a nearly constant label function u,
with sharp spikes near each labeled data point x ∈ O [13,14]. See Figure 1(a) for a simple
example of this degeneracy. Thus, in the continuum limit as the number of unlabeled points
tends to infinity while the number of labels is finite, the solutions of (1) do not continuously
attain their boundary data on the set O. In this sense, we say that Laplacian regularization
is ill-posed in this regime. In general, we will say a learning algorithm is well-posed in the
limit of infinite unlabeled data and finite labeled data if in the continuum limit the learned
functions converge to a continuous function that attains the labels u = g on O continuously.
If the continuum limit does not attain the labels continuously, then we say the algorithm
is ill-posed.

To address the ill-posedness of Laplacian regularization, a class of ℓp-based Laplacian
regularization models has recently been proposed [14]. For 1 ≤ p ≤ ∞, ℓp-based Laplacian
regularization leads to the optimization problem

(2) min
u:X→R

Jp(u) subject to u(x) = g(x) for all x ∈ O,

2



1

0.8

0.6

0.4

0.2

00

0.2

0.4

0.6

0.8

0.4

0.6

0

0.2

1

0.8

1

(a) p = 2
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(b) p = 2.5
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(c) p = ∞

Figure 1: Example of ℓp-Laplacian regularized learning with (a) p = 2, (b) p = 2.5 and (c)
p = ∞. In each case, the observed (labeled) data is u(0, 0.5) = 0 and u(1, 0.5) = 1, and the
unlabeled data is a collection of n = 105 independent and uniformly distributed random
variables on [0, 1]2. The weights were set to wxy = 1 if |x− y| ≤ 0.01 and zero otherwise.

where

(3) Jp(u) :=
∑

x,y∈X
wp
xy|u(x)− u(y)|p for 1 ≤ p <∞,

and

(4) J∞(u) := max
x,y∈X

{wxy|u(x)− u(y)|}.

See Figure 1 for an illustration of ℓp-based Laplacian regularization. As the value of p
increases, the smoothness (at least visually) of the minimizer u of (2) increases. The ℓp
models are discussed in [14–16], and the p = ∞ case–called Lipschitz learning–was studied
in [17,18]. For p = ∞, the minimizer is not unique, even when the graph is connected. To
see why, suppose we have a minimizer u of J∞(u) that satisfies wxy|u(x)− u(y)| < J∞(u)
for some fixed x ∈ X and all y ∈ X . Then we can modify the value of u(x) by a small
amount δ > 0 while ensuring that J∞(u) is unchanged. This shows that in general there
are an infinite number of minimizers of J∞. To resolve this issue, Kyng et al. [17] suggest
to consider the minimizer whose gradient Du := (wxy|u(x)− u(y)|)x,y∈X is smallest in the
lexicographic ordering on R|X |2 . This amounts to minimizing the largest value of Du(x, y),
and then minimizing the second largest, and then the third largest, and so on. In the
continuum setting, this is related to absolutely minimal Lipschitz extensions, which have a
long history in analysis [19].

We note that the ℓp-based Laplacian regularization problem (2) is related in the con-
tinuum to the variational problem

(5) min
u

∫
Ω
|∇u|p dx.
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Minimizers of (5) (for 1 ≤ p <∞) satisfy the Euler-Lagrange equation

(6) ∆pu := div(|∇u|p−2∇u) = 0.

The operator ∆p is called the p-Laplacian, and solutions of (6) are called p-harmonic
functions [20]. For p > 2, the p-Laplace equation (6) is degenerate, while for 1 ≤ p < 2 the
operator is singular. Solutions of (6) can be interpreted in the weak (i.e., distributional)
sense, or in the viscosity sense, and solutions are at most C1,α when p ̸= 2 [20]. Notice we
can formally expand the divergence in (6) to obtain

∆pu = |∇u|p−2(∆u+ (p− 2)∆∞u),

where the ∞-Laplacian ∆∞ is given (when ∇u ̸= 0) by

(7) ∆∞u :=
1

|∇u|2
d∑

i,j=1

uxixjuxiuxj .

Thus, any p-harmonic function satisfies the equation

(8) ∆u+ (p− 2)∆∞u = 0.

This equation is often called the game-theoretic or homogeneous p-Laplacian1, since it arises
in two player stochastic tug-of-war games [21, 22]. At the continuum level, the p-Laplace
equation (6) is equivalent (at least formally) to the game theoretic version (8), while at the
graph level, these two formulations of the graph p-Laplacian are different.

It was recently proved in [23] that in the limit of infinite unlabeled data and finite
labeled data, solutions of the Lipschitz learning problem (i.e., (2) with p = ∞) converge to
an ∞-harmonic function that continuously attains the boundary condition u = g on O. In
this sense, we can say that Lipschitz learning is well-posed in the limit of finite labeled data
and infinite unlabeled data. However, the limiting ∞-harmonic function is independent of
the distribution of the unlabeled data (i.e., the algorithm “ignores” the unlabeled data),
and hence Lipschitz learning is fully supervised in this limit [14,23].

Along a similar thread, it was shown in [24] that ℓp-based Laplacian regularization
is well-posed in the limit of finite labeled and infinite unlabeled data when p > d and
limn→∞ nhpn = 0, where d is dimension, hn is the length scale used to define the weights in
the graph (see (13)) and n is the number of vertices. This places a restriction on the length
scale hn ≪ (1/n)1/p that may be undesirable in practice. We can see why this restriction is
necessary with a basic energy scaling argument. If the n vertices in the graph are randomly
sampled from Rd and vertices are connected on a length scale of order hn > 0, then each
vertex is connected to on average O(nhdn) neighbors, hence the sum defining Jp(u) in (3)

1Due to the identity ∆pu = |∇u|p−2(∆1u+ (p− 1)∆∞u), it is also common to call the quantity ∆1u+
(p− 1)∆∞u the game theoretic p-Laplacian [21]
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has on the order of n2hdn terms. If the function u is a non-constant smooth labeling of
the data (i.e., the well-posed regime), then each term in the sum contributes O(hpn) to the
total, hence the energy scales like Jp(u) ∼ n2hd+p

n . On the other hand, if u is constant,
except at L labels, then the only nonzero terms in the sum correspond to connections to
labeled points, and the size of each term is O(1). Hence, the energy of a constant labeling
scales like Jp(u) ∼ Lnhdn. Of course, we want the energy of a constant labeling to be much
larger than a non-constant (i.e., Lnhdn ≫ n2hd+p

n ) to ensure the algorithm is well-posed.
This reduces to the requirement that L ≫ nhpn. In the case that L is constant in n, then
we need nhpn → 0 as n → ∞. Let us mention that the authors of [24] showed how to fix
this issue by modifying the model (2) so that the boundary condition u = g is required to
hold on the dilated set O + B(0, 2hn). In this case, the length scale restriction nhpn → 0
is not required, since we are labeling L ∼ nhdn ≫ nhpn data points (recall p > d). The
disadvantage of the improved model is that it now requires an infinite number of labels,
since nhdn → ∞ is required for almost sure connectivity of the graph.

In machine learning, it is often assumed that while data may be presented in a very
high dimensional space RD, most types of data lie close to some submanifold of some much
smaller dimension. This is called the manifold assumption, and the dimension d≪ D of the
manifold is often called the intrinsic dimension of the data. We note that in the requirement
p > d in the well-posedness result from [24], the value of d should be interpreted as this
intrinsic dimension, as opposed to extrinsic dimension D. The intrinsic dimension d can be
much larger that d = 2 in practice. For example, some of the digits in the MNIST dataset2

are estimated to have intrinsic dimension between d = 12 and d = 14 [26, 27], and the
MNIST dataset has very low complexity compared to modern problems, such as ImageNet.4

While the Laplacian regularization (p = 2) problem can be solved efficiently [29, 30], to
our knowledge there are no algorithms in the literature for solving the ℓp-based Laplacian
regularization problem (2) efficiently and to scale, especially when p≫ 2. El alaoui et al. [14]
suggest to use Newton’s method, while Kyng et al. [17] suggest convex programming, which
requires very high accuracy for large p, but neither has been implemented and tested for
large scale problems. To see why it may be difficult to solve (2) when p is large, we recall
that the convergence rate for optimization algorithms (such as gradient descent or Newton’s
method) for solving minu F (u) depends on the Lipschitz norm of the gradient

(9) α := sup
u̸=v

∥∇F (u)−∇F (v)∥
∥u− v∥

.

When α is very large iterative methods are slow to converge [31], and we say the problem
is poorly conditioned. This is often manifested as an ill-conditioning of the Hessian matrix
∇2F . It appears that for ℓp-based learning (2), α = α(p) grows exponentially with p,
suggesting the problem is challenging to solve for larger values of p.

2The MNIST dataset [25] consists of 70,000 black and white 28x28 pixel images of handwritten digits.
4The ImageNet dataset [28] consists of over 14 million natural images belonging to over 20,000 categories.
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In this paper we study the game theoretic graph p-Laplacian as a regularizer for semi-
supervised learning on graphs with very few labeled vertices. We show that semi-supervised
learning with the game theoretic p-Laplacian is well-posed in the limit of finite labeled
data and infinite unlabeled data when p > d. In particular, we show in this limiting
regime that the solutions of the game theoretic graph p-Laplacian converge to the unique
viscosity solution of a weighted p-Laplace equation, and the boundary values u = g on O
are attained continuously in this limit. As in (8), the game theoretic graph p-Laplacian
is a linear combination of the graph 2-Laplacian and the graph ∞-Laplacian, with the
hyperparameter p appearing as a coefficient. Therefore, the game theoretic p-Laplacian is
expected to be well conditioned numerically for all values of p, since the condition number
α from (9) can be bounded independently of p (also, see Remark 4 below). Furthermore,
the continuum well-posedness of the game-theoretic p-Laplacian does not require any upper
bound on the length scale hn (only hn → 0 is required), which may be more desirable in
practice. This work suggests that regularization with the game theoretic p-Laplacian may
be useful in semi-supervised learning with few labels. We describe our main results and
outline the paper in Section 1.1 below.

1.1 Main results

We now describe our setup and main results. We take periodic boundary conditions and
work on the flat Torus Td = Rd/Zd. Let Xn = {x1, . . . , xn} be a sequence of independent
and identically distributed random variables on Td with probability density f ∈ C2(Td).
We assume that f > 0 on Td. Let O ⊂ Td be a fixed finite collection of points and set

(10) Xn := Xn ∪ O.

The points Xn will form the vertices of our graph. To select the edge weights, let Φ :
[0,∞) → [0,∞) be a C2 function satisfying

(11)

{
Φ(s) ≥ 1, if s ∈ (0, 1)

Φ(s) = 0, if s ≥ 2.

We also assume that there exists s0 ∈ (0, 2) and θ > 0 such that

(12) sΦ(s) + θ(s− s0)
2 ≤ s0Φ(s0) for all 0 ≤ s ≤ 2.

Select a length scale hn > 0 and define

(13) wn(x, y) := Φ

(
|x− y|
hn

)
, and dn(x) =

∑
y∈Xn

wn(x, y).

Here, |x− y| denotes the distance on the flat torus Td. Let Wn = {wn(x, y)}x,y∈Xn
and let

Gn = (Xn,Wn) be the graph with vertices Xn and edge weights Wn. The graph 2-Laplacian
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is given by

(14) L2
nu(x) :=

∑
y∈Xn

wn(x, y)(u(y)− u(x)),

while the graph ∞-Laplacian is given by

(15) L∞
n u(x) := max

y∈Xn

wn(x, y)(u(y)− u(x)) + min
y∈Xn

wn(x, y)(u(y)− u(x)).

We define the game theoretic graph p-Laplacian [32] by

(16) Lp
nu(x) :=

1

dn(x)
L2
nu(x) + λ(p− 2)L∞

n u(x),

where

(17) λ =
C2

s20Φ(s0)C1
,

C1 =
∫
B(0,2)Φ(|z|) dz, and C2 = 1

2

∫
B(0,2)Φ(|z|)z

2
1 dz. The choice of λ ensures that for

smooth functions φ, Lp
nφ = 0 is consistent (as n → ∞ and hn → 0) with the weighted

p-Laplacian

(18) div(f2|∇φ|p−2∇φ) = |∇φ|p−2(div(f2∇φ) + (p− 2)f2∆∞φ).

Let g : O → R be given labels and let un : Xn → R be the solution of the game theoretic
p-Laplacian boundary value problem

(19) Lp
nun = 0 in Xn

un = g in O.

}
Our main result is the following continuum limit.

Theorem 1. Let d < p <∞, and suppose that hn → 0 such that

(20) lim
n→∞

nhqn
log(n)

= ∞,

where q = max{d+ 4, 3d/2}. Then with probability one

(21) un −→ u uniformly as n→ ∞,

where u ∈ C
0, p−d

p−1 (Td) is the unique viscosity solution of the weighted p-Laplace equation

(22) div
(
f2|∇u|p−2∇u

)
= 0 in Td \ O

u = g on O.

}
7



Theorem 1 proves that graph-based semi-supervised learning with the game theoretic
p-Laplacian is well-posed in the limit of finite labeled data and infinite unlabeled data when
p > d. We prove in Section 5 that weak distributional solutions of (22) are equivalent to
viscosity solutions, so we can also interpret u as the unique weak solution of (22). By
regularity theory for weak solutions of the weighted p-Laplace equation [33, 34], we have
u ∈ C1,α

loc (T
d\O) and if f is smooth then u ∈ C∞(B(x, r)) near any point where ∇u(x) ̸= 0.

A key step in proving Theorem 1 is a discrete regularity result that is useful to state
independently.

Theorem 2. For every 0 < α < (p− d)/(p− 1) there exists C, δ > 0 such that

(23) P [∀x, y ∈ Xn, |un(x)− un(y)| ≤ C(|x− y|α + hαn)] ≥ 1− exp (−δnhqn + C log(n)) ,

where q = max{d+ 4, 3d/2}.

Theorem 2 quantifies the way in which the game theoretic p-Laplacian regularizes the
learning algorithm; it asks that un is approximately Hölder continuous.

Several remarks are in order.

Remark 1. Notice that (22) is the Euler-Lagrange equation for the variational problem

min
u:Td→R

∫
Td

f2|∇u|p dx

subject to u = g on O. This variational problem is also the continuum limit of ℓp-based
Laplacian regularization [14]. Hence, ℓp-based Laplacian regularization and regularization
via the game theoretic p-Laplacian, while different models at the graph level, are identical
in the continuum.

Remark 2. We expect that when p ≤ d, un converges pointwise to a constant c ∈ R. It
would be interesting to prove this and determine the constant c.

Remark 3. The proof of Theorem 1 uses techniques from the theory of viscosity solutions
of partial differential equations [35]. The same ideas can be used to prove a similar result
for the graph p-Laplacian boundary value problem

(24)
∑

y∈Xn
wn(x, y)|un(x)− un(y)|p−2(un(x)− un(y)) = 0 if x ∈ Xn

un(x) = g(x) if x ∈ O,

}
which corresponds to ℓp-based Laplacian regularization. The main difference in the proof is
the consistency result, which we include for (24) in the appendix for completeness. This
problem was studied very recently with variational (as opposed to PDE) techniques by Slepčev
and Thorpe [24]. In this setting, there is an additional requirement that limn→∞ nhpn = 0,
which places an upper bound on the length scale hn ≪ 1/n1/p that is not present in the
game theoretic model.
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Remark 4. Theorem 1 suggests that the game theoretic p-Laplacian can be useful for reg-
ularization in graph-based semi-supervised learning with small amounts of labeled data. We
note that the constituent terms in the game theoretic p-Laplacian—the graph 2-Laplacian
and ∞-Laplacian—are well-understood and efficient algorithms exist for solving both [17,
29]. Furthermore, on uniform grids (i.e., the PDE-version), there are efficient algorithms
for the game theoretic p-Laplacian, such as the semi-implicit scheme of Oberman [36]. This
suggests the game theoretic p-Laplacian on a graph can be solved efficiently and to scale,
making it a good choice for semi-supervised learning with few labels.

Remark 5. If instead of working on the Torus Td, we take our unlabeled points to be
sampled from a domain Xn ⊂ Ω ⊂ Rd, then we expect Theorem 1 to hold under similar
hypotheses, with the additional boundary condition

(25)
∂u

∂ν
= 0 on ∂Ω.

Let us outline briefly how we expect the proof to change. The Neumann condition (25) will
make an appearance in the consistency result for the graph Laplacian (Theorem 5), which
near the boundary ∂Ω will involve, for the 2-Laplacian, the integral

(26) L2
nu(x) ≈ n

∫
B(x,2hn)∩Ω

Φ
(
h−1
n |x− y|

)
(u(y)− u(x)) dy.

Taylor expanding u we obtain an expression of the form

L2
nu(x) ≈ Cnhd+1

n

(
dist(x, ∂Ω)

h
− 1

)
∂u

∂ν
+O(nhd+2).

A similar statement holds for the ∞-Laplacian. The remainder of the proof will be the
same; the final difference is that we will require uniqueness of viscosity solutions to the
weighted p-Laplace equation with Neumann boundary conditions. We refer the reader to
the user’s guide [35, Theorem 7.5] for a comparison principle for the generalized Neumann
problem. Uniqueness of viscosity solutions will require some boundary regularity, and we
expect ∂Ω ∈ C1 to be sufficient.

This paper is organized as follows. In Section 2 we recall the maximum principle on a
graph and prove that (19) is well-posed. In Section 3 we prove consistency for the game
theoretic p-Laplacian for smooth functions. In Section 4 we prove a discrete regularity
result (Theorem 2) for the game theoretic p-Laplacian. Finally, in Section 5 we prove our
main consistency result, Theorem 1.

2 The maximum principle

Our main tool is the maximum principle. We recall here the maximum principle on a graph,
which was proved in a similar setting in [32]. Our setting is slightly more general, so we
include a proof here for completeness.
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We first introduce some notation. We say that y is adjacent to x whenever wn(x, y) > 0.
We say that the graph Gn = (Xn,Wn) is connected to O ⊂ Xn if for every x ∈ Xn \O there
exists y ∈ O and a path from x to y consisting of adjacent vertices.

Theorem 3 (Maximum principle). Assume the graph Gn is connected to O. Let p ≥ 2 and
suppose u, v : Xn → R satisfy

(27) Lp
nu(x) ≥ Lp

nv(x) for all x ∈ Xn.

Then

(28) max
Xn

(u− v) = max
O

(u− v).

In particular, if u ≤ v on O, then u ≤ v on Xn.

Proof. Let x ∈ Xn be a point at which u− v attains its maximum. If x ∈ O, then we are
done, so suppose that x ∈ Xn. Since u− v attains its maximum at x we have

wn(x, y)(u(y)− u(x)) ≤ wn(x, y)(v(y)− v(x)) for all y ∈ Xn.

If any of the inequalities above were strict, we would have Lp
nu(x) < Lp

nv(x) which contra-
dicts the assumption given in (27). Therefore

u(y)− v(y) = u(x)− v(x) whenever wn(x, y) > 0.

That is, u − v also attains its maximum at every vertex that is adjacent to x. Since the
graph is connected to O, we can find a path from x to O consisting of adjacent vertices.
Therefore u− v attains its maximum somewhere on O, which completes the proof.

Remark 6. Notice the exact form of Lp
n is not used directly in the proof of Theorem 3. All

that is required is that Lp
nu(x) is a strictly increasing function of wn(x, y)(u(y)− u(x)) for

every y ∈ Xn with y ̸= x. Finite difference schemes with this property are called monotone
in the PDE literature [37].

We now establish existence and uniqueness of a solution to (19).

Theorem 4. Assume Gn is connected to O and let p ≥ 2. For any g : O → R, there exists
a unique solution un : Xn → R of (19). Furthermore, u satisfies the a priori estimate

(29) min
O

g ≤ un ≤ max
O

g.

Proof. We use the Perron method to prove existence. Define

F :=

{
v : Xn → R : Lp

nv ≥ 0 in Xn and min
O

g ≤ v ≤ g in O
}

10



and for x ∈ Xn set
un(x) := sup

v∈F
v(x).

Note that v ≡ minO g belongs to F , so F is nonempty. Furthermore, w ≡ maxO g satisfies
Lp
nw ≡ 0, and so by Theorem 3, v ≤ w for all v ∈ F . It follows that un satisfies (29).

We now show that Lp
nun ≥ 0 in Xn. Fix x ∈ Xn and let vk ∈ F be a sequence of

functions such that vk(x) → un(x) as k → ∞. Since minO g ≤ vk ≤ maxO g we can pass
a subsequence, if necessary, so that vk → v on Xn for some v : Xn → R. By continuity
Lp
nv ≥ 0 on Xn and minO g ≤ v ≤ g in O. Therefore v ∈ F , and so un ≥ v on Xn and

un(x) = v(x). It follows that Lp
nun(x) ≥ Lp

nv(x) ≥ 0.
We now show that Lp

nun ≤ 0 in Xn. Fix x ∈ Xn and assume to the contrary that
Lp
nun(x) > 0. Define

w(y) :=

{
1, if y = x

0, otherwise.

For ε > 0 define vε := un + εw. By continuity, we can choose ε > 0 sufficiently small so
that Lp

nvε(x) ≥ 0. By definition we have Lp
nvε(y) ≥ Lp

nun(y) ≥ 0 for all y ̸= x. Therefore
Lp
nvε ≥ 0 in Xn for sufficiently small ε > 0. Hence vε ∈ F and so un(x) ≥ vε(x) = un(x)+ε,

which is a contradiction.
Finally we show that un = g on O. By definition, we have that un ≤ g on O. Assume

to the contrary that un(x) < g(x) for some x ∈ O. Then as above we can set vε = un+ εw,
and we find that vε ∈ F for ε > 0 sufficiently small, which is a contradiction. Uniqueness
follows directly from Theorem 3.

3 Consistency

We now prove consistency for the game theoretic p-Laplacian applied to smooth test func-
tions. This is split into two steps: In Section 3.2 we prove a consistency result for the
graph 2-Laplacian and in Section 3.3 we prove a consistency result for the graph ∞-
Laplacian. We note there are numerous consistency results in the literature for the graph
2-Laplacian [38–44], but we require a slightly different notion of consistency to use the
viscosity solution framework and prove discrete regularity.

3.1 Concentration of measure

Graph Laplacians are sums of i.i.d. random variables, and to prove consistency we need
to control the fluctuations of the graph Laplacian about its mean. Our main tool for
proving consistency is a standard concentration of measure result referred to as Bernstein’s
inequality [48], which we recall now for the reader’s convenience. For Y1, . . . , Yn i.i.d. with
variance σ2 = E((Yi−E[Yi])2), if |Yi| ≤M almost surely for all i then Bernstein’s inequality
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states that for any t > 0

(30) P

(⏐⏐⏐⏐⏐
n∑

i=1

Yi − E(Yi)

⏐⏐⏐⏐⏐ > t

)
≤ 2 exp

(
− t2

2nσ2 + 4Mt/3

)
.

Since the graph Laplacian depends only on nearby nodes in the graph, the variance σ2 is
much smaller than the absolute bound M , which makes the Bernstein inequality far tighter
(for small t) than other concentration inequalities, such as the Hoeffding inequality [45],
which only depends on the size of M .

The following lemma converts the Bernstein inequality into a result that is directly
useful for graph Laplacians.

Lemma 1. Let Y1, Y2, Y3, . . . , Yn be a sequence of i.i.d random variables on Rd with Lebesgue
density f : Rd → R, let ψ : Rd → R be bounded and Borel measurable with compact support
in a bounded open set Ω ⊂ Rd, and define

Y =
n∑

i=1

ψ(Yi).

Then for any 0 ≤ λ ≤ 1

(31) P (|Y − E(Y )| > ∥f∥∞∥ψ∥∞n|Ω|λ) ≤ 2 exp

(
−1

4
∥f∥∞n|Ω|λ2

)
,

where ∥ψ∥∞ = ∥ψ∥L∞(Ω), and |Ω| denotes the Lebesgue measure of Ω.

Proof. The proof is a direct application of the Bernstein inequality (30). We compute
M ≤ ∥ψ∥∞ and

σ2 ≤ E(ψ(Yi)2) =
∫
Ω
ψ(y)2f(y) dy ≤ |Ω|∥ψ∥2∞∥f∥∞.

Therefore, Bernstein’s inequality yields

(32) P (|Y − E(Y )| > t) ≤ 2 exp

(
− t2

2n|Ω|∥ψ∥2∞∥f∥∞ + 4∥ψ∥∞t/3

)
,

for any t > 0. Setting t = ∥f∥∞∥ψ∥∞n|Ω|λ for λ > 0 we have

(33) P (|Y − E(Y )| > ∥f∥∞∥ψ∥∞n|Ω|λ) ≤ 2 exp

(
−∥f∥∞n|Ω|λ2

2 + 4λ/3

)
.

Restricting λ ≤ 1 completes the proof.

Remark 7. If Ω = B(x, 2h) in Lemma 1, then under the same assumptions as in Lemma
1 we have

(34) P
(
|Y − E(Y )| ≥ C∥ψ∥∞nhdλ

)
≤ 2 exp(−cnhdλ2),

for all 0 < λ ≤ 1, where C, c > 0 are constants depending only on ∥f∥∞ and d.
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3.2 Consistency of the 2-Laplacian

We now prove consistency for the graph 2-Laplacian.

Theorem 5. Let δ > 0 and let Ωδ,n denote the event that

(35)
⏐⏐⏐⏐ 1

nhdn
dn(x)− C1f(x)

⏐⏐⏐⏐ ≤ Cδhn,

and

(36)
⏐⏐⏐⏐ 1

nhd+2
n

L2
nφ(x)− C2f

−1div
(
f2∇φ

)⏐⏐⏐⏐ ≤ C∥φ∥C3(B(x,2hn))δ,

hold for all x ∈ Xn with dist(x,O) > 2hn and φ ∈ C3(Rd). Then there exists C, c > 0 such
that for hn ≤ δ ≤ h−1

n we have

(37) P[Ωδ,n] ≥ 1− C exp
(
−cδ2nhd+2

n + log(n)
)
.

Remark 8. We mention that dn(x) is a kernel density estimator for the density f(x), and
the error estimate (35) is standard in the density estimation literature [49].

Proof. By conditioning on the location of x ∈ Xn, we can assume without loss of generality
that x ∈ Td is a fixed (non-random) point. Write β = ∥φ∥C3(B(x,2hn)). Let φ ∈ C3(Rd) and
set p = Dφ(x) and A = D2φ(x). Note that

L2
nφ(x) =

d∑
i=1

pi
∑
y∈Xn

wn(x, y)(yi − xi) +
1

2

d∑
i,j=1

aij
∑
y∈Xn

wn(x, y)(yi − xi)(yj − xj)

+O
(
h3βdn(x)

)
.(38)

Let δ > 0. By Lemma 1 and Remark 7, each of⏐⏐⏐⏐⏐dn(x)− n

∫
B(x,2hn)

Φ

(
|x− y|
hn

)
f(y) dy

⏐⏐⏐⏐⏐ ≥ Cδnhd+1
n ,

⏐⏐⏐⏐⏐⏐
∑
y∈Xn

wn(x, y)(yi − xi)− n

∫
B(x,2hn)

Φ

(
|x− y|
hn

)
(yi − xi)f(y) dy

⏐⏐⏐⏐⏐⏐ ≥ Cδnhd+2
n ,

and⏐⏐⏐⏐⏐⏐
∑
y∈Xn

wn(x, y)(yi − xi)(yj − xj)− n

∫
B(x,2hn)

Φ

(
|x− y|
hn

)
(yi − xi)(yj − xj)f(y) dy

⏐⏐⏐⏐⏐⏐
≥ Cδnhd+3

n ,
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occur with probability at most 2 exp
(
−cδ2nhd+2

n

)
provided 0 < δhn ≤ 1. Thus, if hn ≤

δ ≤ h−1
n we have

(39)
1

nhd+2
n

L2
nφ(x) =

∫
B(0,2)

Φ (|z|)
(

1

hn
p · z + 1

2
z ·Az

)
f(x+ zhn) dz +O (δβ)

holds for all φ ∈ C3(Rd) with probability at least 1− C exp
(
−cδ2nhd+2

n

)
. Notice that

1

hn

∫
B(0,2)

Φ(|z|)(p · z)f(x+ zhn) dy = ∇f(x) ·
∫
B(0,2)

Φ(|z|)(p · z)z dz +O(βhn)

= ∇f(x) ·
d∑

i=1

pi

∫
B(0,2)

Φ(|z|)ziz dz +O(βhn)

= 2C2∇f(x) · p+O(βhn),

and

1

2

∫
B(0,2)

Φ (|z|) (z ·Az)f(x+ zhn) dz =
1

2
f(x)

d∑
i,j=1

aij

∫
B(0,2)

Φ(|z|)zizj dz +O(hnβ)

= C2f(x)Trace(A) +O(hnβ).

Combining this with (39) we have that

(40)
1

nhd+2
n

L2
nφ(x) = C2f

−1div
(
f2∇φ

)
+O(δβ),

holds with probability at least 1 − C exp
(
−cδ2nhd+2

n

)
. The proof is completed by union

bounding over all x ∈ Xn.

3.3 Consistency of the ∞-Laplacian

We now prove consistency of the ∞-Laplace operator. We define

(41) Hnu(x) := max
y∈Td

wn(x, y)(u(y)− u(x)) + min
y∈Td

wn(x, y)(u(y)− u(x)),

Note that Hn is a non-local operator on the Torus, and does not depend on the realization of
the random graph Gn. Recalling the definition of the weights (13), we see that Hn depends
only on the choice of length scale hn in the problem.

We first recall a result from [23].

Lemma 2 (Lemma 1 in [23]). Let φ ∈ C2(Rd). Then

(42) |L∞
n φ(x)−Hnφ(x)| ≤ C

(
∥φ∥C1(B(x,2hn)) + hn∥φ∥C2(B(x,2hn))

)
r2nh

−1
n ,

where

(43) rn = sup
y∈Td

dist(y,Xn).
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Due to Lemma 2, we only require a consistency result for Hn.

Theorem 6. For any x0 ∈ Td \ O and φ ∈ C3(Rd) with ∇φ(x0) ̸= 0

(44) lim
n→∞
x→x0

1

h2n
Hnφ(x) = s20Φ(s0)∆∞φ(x0),

where

∆∞φ =
1

|∇φ|2
d∑

i,j=1

φxixjφxiφxj .

Proof. As in [23, Lemma 1] we define

B(x) = max
0≤s≤2

{
1

hn
sΦ(s)|∇φ(x)| − 1

2
s2Φ(s)∆∞φ(x)

}
,

and
B′(x) = max

0≤s≤2

{
1

hn
sΦ(s)|∇φ(x)|+ 1

2
s2Φ(s)∆∞φ(x)

}
,

and we have
1

h2n
Hnφ(x) = B′(x)−B(x) +O(∥φ∥C3(B(x,2hn))hn).

Let xn → x0 and for each n let sn, s′n > 0 be such that

B(xn) =
1

hn
snΦ(sn)|∇φ(xn)| −

1

2
s2nΦ(sn)∆∞φ(xn),

and
B′(xn) =

1

hn
s′nΦ(s

′
n)|∇φ(xn)|+

1

2
(s′n)

2Φ(s′n)∆∞φ(xn).

Then we have that

1

h2n
Hnφ(xn) ≤ (s′n)

2Φ(s′n)∆∞φ(xn) +O(∥φ∥C3(B(xn,2hn))hn),

and
1

h2n
Hnφ(xn) ≥ s2nΦ(sn)∆∞φ(xn) +O(∥φ∥C3(B(xn,2hn))hn).

Since s ↦→ sΦ(s) has a unique maximum s0 ∈ (0, 2], we find that

sn, s
′
n → s0 as n→ ∞.

It follows that
lim
n→∞

1

h2n
Hnφ(xn) = s20Φ(s0)∆∞φ(x0).
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4 Regularity

Here, we prove a discrete Hölder regularity result (Theorem 2) for the solutions un of (19).
The proof is based on a well-known trick for establishing Hölder regularity for solutions of
the unweighted p-Laplace equation

(45) div(|∇u|p−2∇u) = 0

via the maximum principle. The trick is to notice that v(x) = |x − y|
p−d
p−1 is a solution

of (45) away from x = y. When p > d, v is continuous and if we choose a large enough
constant C so that

(46) u(y)− Cv(x) ≤ u(x) ≤ u(y) + Cv(x)

for all boundary points x, then the maximum principle can be invoked to establish that
(46) holds for all x, i.e.,

|u(y)− u(x)| ≤ C|x− y|
p−d
p−1 .

The function v is called a barrier in the PDE literature.
Adapting this to the graph setting is somewhat technical, since v(x) is not an exact

solution of the game theoretic p-Laplacian, due to random fluctuations and errors in the
consistency results. The argument can be rescued by using the barrier w(x) = |x − y|α
for any α < (p − d)/(p − 1). This function is a strict supersolution of (45), which allows
some room to account for the difference between the graph and continuum p-Laplacians.
It is possible to show (see Lemma 3) that w is a supersolution of the game theoretic graph
p-Laplacian (i.e., Lp

nw(x) ≤ 0) for |x− y| ≥ chn for some c > 0 with high probability. The
errors in the consistency results blow up as we approach the singularity at x = y, so w is
not a global supersolution. In Lemma 4, we show how to modify w near x = y to ensure the
supersolution property holds globally. The modification relies extensively on the presence
of the graph ∞-Laplacian term.

For notational simplicity, we set

∆2φ = f−1div(f2∇φ).

We first require some elementary propositions.

Proposition 1. For p > d and α ∈ (0, 1) the function v(x) = |x|α satisfies

(47) ∆2v(x) ≤ f(x)α|x|α−2 (d+ α− 2 + C|x|) .

Proof. Notice that
∆2v = f∆v + 2∇f · ∇v.

The proof is completed by computing

∆v = α|x|α−2 (d+ α− 2) and ∇v = α|x|α−2x.
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Proposition 2. Let p > d and α ∈ (0, 1). For every δ > 0 there exists C ≥ 2 such that the
function v(x) = |x|α satisfies

(48)
1

h2n
Hnv(x) ≤ (1− δ)s20Φ(s0)α(α− 1)|x|α−2

for all |x| ≥ Chn.

Proof. Note that

Hnv(x) = max
z∈B(0,2)

Φ(|z|) (|x+ hnz|α − |x|α) + min
z∈B(0,2)

Φ(|z|) (|x+ hnz|α − |x|α)

= max
0≤s≤2

Φ(s) ((|x|+ shn)
α − |x|α) + min

0≤s≤2
Φ(s) ((|x| − shn)

α − |x|α) .

Let sn ≥ 0 such that

An := Φ(sn) ((|x|+ snhn)
α − |x|α) = max

0≤s≤2
Φ(s) ((|x|+ shn)

α − |x|α) .

Then we have that

Hnv(x) ≤ Φ(sn) ((|x|+ snhn)
α + (|x| − snhn)

α − 2|x|α) .

By Taylor expanding the right-hand side we have

(49) Hnv(x) ≤ s2nΦ(sn)α(α− 1)|x|α−2h2n.

Note that

An = Φ(sn) ((|x|+ snhn)
α − |x|α)

≤ Φ(sn)
(
|x|α + αsnhn|x|α−1 − |x|α

)
= snΦ(sn)α|x|α−1hn.

On the other hand, we have

An ≥ Φ(s0) ((|x|+ s0hn)
α − |x|α)

≥ Φ(s0)

(
|x|α + αs0hn|x|α−1 +

α(α− 1)

2
s20h

2
n|x|α−2 − |x|α

)
=

1

2
s0Φ(s0)α|x|α−1hn

(
2 + (α− 1)s0hn|x|−1

)
.

Combining these two inequalities we find that

(50) snΦ(sn) ≥
(
1− 1

2(1− α)s0hn|x|−1
)
s0Φ(s0).

17



By (12) we have

θ(sn − s0)
2 ≤ s0Φ(s0)− snΦ(sn) ≤

1

2
(1− α)s20Φ(s0)hn|x|−1.

Therefore
sn ≥

(
1− θ−1/2(1− α)1/2h1/2n |x|−1/2

)
s0.

Combining this with (50), we see that for every δ > 0 there exists C > 0 such that

s2nΦ(sn) ≥ (1− δ)s20Φ(s0)

for |x| ≥ Chn. The proof is completed by inserting this into (49) and noting that α− 1 <
0.

We now establish that our barrier function |x− y|α is a supersolution away from x = y.

Lemma 3. Let p > d, σ ∈ [0, 1], α < (p−d)/(p−1), and for y ∈ Td, and set vy(x) = |x−y|α.
Then there exists C, c, δ, r > 0, depending only on d, p, and α, so that

P
[
∀y ∈ Xn, x ∈ Xn ∩B(y, r) \B0(y, chσn), L

p
nvy(x) ≤ 0

]
≥ 1− exp (−δnhqn + C log(n)) ,

where q = max{d + 2 + 2σ, 3d/2}. Furthermore, if σ < 1 then the Lemma holds for any
c > 0, provided hn is sufficiently small, and C, δ, and r now additionally depend on c.

Proof. Contrary to Theorem 5 we may have dist(x,O) ≤ 2hn, and must account for this.
Notice that

L2
nvy(x) =

∑
z∈Xn

wn(x, z)(vy(z)− vy(x)) +
∑
z∈O

wn(x, z)(vy(z)− vy(x)),

and
dn(x) =

∑
z∈Xn

wn(x, z) +
∑
z∈O

wn(x, z).

The argument from Theorem 5 applies to the summations over Xn in the equations above,
and the summations over O are bounded by a constant. Thus, assuming nhd+2

n ≥ 1 and
|x− y| ≥ max{hσn, 3hn}, Theorem 5 and Proposition 1 yield

L2
nvy(x)

dn(x)h2n
≤ C2∆2vy(x) + C(|x− y|α−3δhσn + n−1h−d−2

n )

C1f(x)− C(δh1+σ
n + n−1h−d

n )

≤ C2αf(x)|x− y|α−2(d+ α− 2 + C|x− y|+ Cδ)

C1f(x)− Cδh1+σ
n

≤ C2

C1
α|x− y|α−2(d+ α− 2 + C|x− y|+ Cδ).(51)
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holds for all y ∈ Xn and x ∈ Xn with |x− y| ≥ max{hσn, 3hn} with probability at least

(52) 1− C exp
(
−δ2nhd+2+2σ

n + log(n)
)
.

For the rest of the proof we assume that (51) holds.
Let δ′ > 0. By Proposition 2 there exists Cδ′ such that

1

h2n
Hnvy(x) ≤ (1− δ′)s20Φ(s0)α(α− 1)|x− y|α−2

for all |x− y| ≥ Cδ′hn. By Lemma 2 we have

L∞
n vy(x) ≤ Hnvy(x) + C(|x− y|α−1 + hn|x− y|α−2)r2nh

−1
n

whenever |x− y| ≥ 3hn. Therefore

1

h2n
L∞
n vy(x) ≤ α|x− y|α−2s20Φ(s0)

(
(1− δ′)(α− 1) + C|x− y|r2nh−3

n

)
whenever |x− y| ≥ Cδ′hn. Combining this with (51) gives

h−2
n Lp

nvy(x) ≤ C|x− y|α−2
(
α(p− 1) + d− p+ C|x− y|+ C|x− y|r2nh−3

n + Cδ + Cδ′
)

for all y ∈ Xn and x ∈ Xn with |x− y| ≥ max{hσn, Cδ′hn}.
We now bound rn. Let t > 0 and partition Td into boxes R1, R2, R3, . . . , RM of side

length t/
√
d. If rn > t then at least one box Ri contains no points from Xn. It follows that

P[rn > t] ≤
M∑
i=1

P[Xn ∩Ri = ∅]

≤M(1− Ctd)n

≤ C exp
(
n log(1− Ctd)− d log(t)

)
≤ C exp

(
−Cntd − d log(t)

)
.

Since we assume that hn ≥ n−1/d we have that

P[r2n > h3n] ≤ C exp
(
−Cnh3d/2n + 4 log(n)

)
.

The proof is completed by choosing δ, δ′ > 0 sufficiently small and noting that by assumption
we have α(p− 1) + d− p < 0.
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Figure 2: A depiction of the local barrier, defined in (53), used to complete the proof of
Hölder regularity.

In order to use the barrier function technique to prove a global Hölder regularity result,
we need a barrier that is a supersolution globally, including within the local O(hn) neigh-
borhood of x = y where the barrier from Lemma 3 fails to be a supersolution. In Lemma
4 we show how to construct a barrier in this local neighborhood using a construction that
heavily exploits the min/max structure of the ∞-Laplace term. Before giving the proof
and the explicit form for the barrier, let us describe the idea heuristically. The new local
barrier, defined in Equation (53) below and depicted in Figure 2, consists of sharp jump
discontinuities that decay in size rapidly away from the origin. The spacing between jumps
is hn/2 to ensure that in the definition of the ∞-Laplacian, the min term will take a large
negative jump, while the max term (and the 2-Laplacian term) will take a much smaller
positive jump, resulting in a large negative value for Lp

nvy(x), even at points arbitrarily
close to the origin. We note that this barrier does not depend on the p > d assumption and
works for arbitrary p. The sharp decay in the jump size away from the origin prevents the
barrier from being a supersolution outside of this O(hn) neighborhood when p < d.

We now give the statement and proof of Lemma 4.

Lemma 4. Let p > 2 and 0 < α < 1. For M > 0 and y ∈ Td define

(53) vy(x) = |x− y|α +Mhαn

∞∑
k=1

βk1{2|x−y|>(k−1)hn},
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where
β =

λ(p− 2)

8(mλ(p− 2) + 1)
and m = max

0≤s≤2
Φ(s).

Then for every c > 0 there exists M > 0 such that

P [∀y ∈ Xn, x ∈ Xn ∩B(y, (c+ 4)hn) \ {y}, Lp
nvy(x) ≤ 0] ≥ 1− exp

(
−Cnhdn + 2 log(n)

)
.

Proof. Let c > 0 and let Ω denote the event that for every y ∈ Xn and every x ∈ B(y, (c+
4)hn) ∩Xn with |x− y| > hn, the set

Bx := B(x, hn) ∩B(y, |x− y| − hn/2)

has a nonempty intersection with Xn. There exists a > 0 such that |Bx| ≥ ahdn for all
|x| > hn. Therefore P[Ω] ≥ 1− n2eCnhd

n . For the rest of the proof, we assume Ω occurs.
Let y ∈ Xn, x ∈ B(y, (c+4)hn)∩Xn and let k ∈ N such that (k−1)hn < 2|x−y| ≤ khn.

For z ∈ B(x, 2hn) we have

vy(z)− vy(x) ≤Mhα(βk+4 + βk+3 + βk+2 + βk+1) + (|x− y|+ 2hn)
α − |x− y|α

≤ 4Mβk+1hαn + ((c+ 4)hn + 2hn)
α

≤ 4Mβk+1hαn + (c+ 6)αhαn.

Therefore
1

dn(x)
L2
nvy(x) ≤ 4Mβk+1hαn + (c+ 6)αhαn,

and
max
z∈Xn

wn(x, z)(vy(z)− vy(x)) ≤ 4Mmβk+1hαn +m(c+ 6)αhαn.

If k = 1, 2, then y ∈ B(x, hn) and since vy(y) = 0 we have

min
z∈Xn

wn(x, z)(vy(z)− vy(x)) ≤ −Mβkhαn,

If k ≥ 3, then |x − y| > hn. Since Bx ∩ Xn is nonempty, there exists z ∈ B(x, hn) ∩ Xn

such that 2|z − y| ≤ (k − 1)hn, and hence

min
z∈Xn

wn(x, z)(vy(z)− vy(x)) ≤ −Mβkhαn.

Combining the above observations we have

h−α
n Lp

nvy(x) ≤ 4Mβk+1 + (c+ 6)α + λ(p− 2)
(
4Mmβk+1 +m(c+ 6)α −Mβk

)
= (c+ 6)α(1 + 2λ(p− 2))− 1

2
λ(p− 2)βkM,

for x ∈ B(y, (c + 4)hn) ∩Xn with y ̸= x. Now we can simply choose M > 0 large enough
so that Lp

nvy(x) ≤ 0 for all k ≤ 2c+ 1.
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We are now ready to give the proof of Theorem 2. The proof involves patching together
the barrier functions provided in Lemmas 3 and 4, and using the global barrier to establish
Hölder regularity.

Proof of Theorem 2. Choose r, c, δ > 0 so that the conclusions of Lemma 3 hold for σ = 1.
We may assume without loss of generality that c is a positive integer. Define β as in Lemma
4 and let M > 0 so that the conclusions of Lemma 4 hold with the aforementioned value of
c. For the rest of the theorem, we assume the conclusions of Lemmas 3 and 4 hold, which is
an event with probability at least 1− exp(−δnhqn+C log(n)), where q = max{d+4, 3d/2}.

The proof is now split into three steps.
1. Let y ∈ Xn, define k0 = 2c+ 5 and set

v1(x) = |x− y|α +Mhαn

∞∑
k=1

βk1{2|x−y|>(k−1)hn},

v2(x) = |x− y|α +
Mβhαn
1− β

(1− βk0),

and
vy(x) = min {v1(x), v2(x)} .

We claim that Lp
nvy(x) ≤ 0 for all 0 < |x−y| ≤ r. To see this, notice that for |x−y| ≤ (c+

2)hn we have vy(x) = v1(x) and for |x− y| ≥ (c+2)hn we have vy(x) = v2(x). By Lemmas
3 and 4 we see that Lp

nv1(x) ≤ 0 whenever |x− y| ≤ (c+ 4)hn and Lp
nv2(x) ≤ 0 whenever

|x − y| ≥ chn. It follows that Lp
nvy(x) ≤ 0 for all x ̸= y such that r ≥ |x − y| ≥ (c + 4)hn

or |x − y| ≤ chn. If (c + 2)hn ≤ |x − y| ≤ (c + 4)hn then vy(x) = v2(x) and we have
Lp
nvy(x) ≤ Lp

nv2(x) ≤ 0 because v ≤ v2 in B(x, 2hn). Likewise, if chn ≤ |x− y| ≤ (c+2)hn
then Lp

nvy(x) ≤ Lp
nv1(x) ≤ 0. This establishes the claim.

2. Let y ∈ O. Let C > 0 be large enough so that for all x, y ∈ O

Cvy(x) ≥ max
O

g −min
O

g.

It follows that
g(y)− Cvy(x) ≤ un(x) ≤ g(y) + Cvy(x)

holds for all x ∈ O. By the maximum principle (Theorem 3) and the fact that un(y) = g(y)
we have that

(54) un(y)− Cvy ≤ un ≤ un(y) + Cvy

for all y ∈ O.
3. Let y ∈ Xn. We claim that

un(y)− Cvy(z) ≤ un(z) ≤ un(y) + Cvy(z)
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holds for all z ∈ O. Indeed, recalling (54) we have

un(y) ≥ un(z)− Cvz(y) = un(z)− Cvy(z),

and
un(y) ≤ un(z) + Cvz(y) = un(z) + Cvy(z),

which establishes the claim. By the maximum principle (Theorem 3) we have that

(55) un(y)− Cvy ≤ un ≤ un(y) + Cvy

for all y ∈ Xn.
4. Notice that

(56) |x− y|α ≤ vy(x) ≤ |x− y|α +
Mβhαn
1− β

.

Combining this with (54) and (55) we have

(57) un(y)− C(|x− y|α + hαn) ≤ un(x) ≤ un(y) + C(|x− y|α + hαn),

for all x, y ∈ Xn, which completes the proof.

5 Convergence proof

In this section we prove Theorem 1. We first recall the notion of viscosity solution for

(58) F (∇2u,∇u, x) = 0 in Ω,

where Ω ⊂ Rd is open.

Definition 1. We say that u ∈ C(Ω) is a viscosity subsolution of (58) if for every x0 ∈ Ω
and φ ∈ C∞(Ω) such that u− φ has a local maximum at x0 we have

F (∇2φ(x0),∇φ(x0), x0) ≤ 0.

We say that u ∈ C(Ω) is a viscosity supersolution of (58) if for every x0 ∈ Ω and φ ∈ C∞(Ω)
such that u− φ has a local minimum at x0 we have

F (∇2φ(x0),∇φ(x0), x0) ≥ 0.

We say that u ∈ C(Ω) is a viscosity solution of (58) if u is both a viscosity sub- and
supersolution of (58).

Let π : Rd → Td be the projection operator.
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Definition 2. A function u ∈ C(Td) is a viscosity solution of (22) if u = g on O and
v(x) := u(π(x)) is a viscosity solution of (58) with

Fp(X, q, x) := −|q|p−2(Trace(X) + 2∇ log f(x) · q + (p− 2)|q|−2q ·Xq),

and Ω := π−1(Td \ O).

We first verify uniqueness of viscosity solutions of (22).

Theorem 7. Assume p > d ≥ 2 and f ∈ C2(Td) is positive. Then there exists a unique
viscosity solution of (22).

The proof of Theorem 7 follows [50] closely, with some minor adjustments to handle the
weighted p-Laplacian, and some simplifications due to our assumption that p > d ≥ 2. In
particular, the proof shows that weak and viscosity solutions of (22) coincide.

Proof. Existence follows from the proof of Theorem 1. We only need to prove uniqueness
here.

Let u ∈ C(Td) be a viscosity solution of (22). Extending u to Rd by setting u(x) =
u(π(x)), we have that u ∈ C(Rd) is a Zd-periodic viscosity solution of

(59) Fp(∇2u,∇u, x) = 0 in Ω
u = g on ∂Ω,

}
where Ω = π−1(Td \ O), f(x) = f(π(x)) and g(x) = g(π(x)). For ε ≥ 0, let uε ∈W 1,p

per(Rd)
be the unique Zd-periodic weak solution (defined via integration by parts) of

(60) −div
(
f2|∇uε|p−2∇uε

)
= ε in Ω

uε = g on ∂Ω.

}
The solutions uε can be constructed by the Calculus of Variations, for instance. By reg-
ularity theory for degenerate elliptic equations [33, 34], we have uε ∈ C1,γ

loc (Ω), and since
p > d we have uε ∈ C0,1−d/p(Rd) by Morrey’s inequality.

We will show that u = u0. The proof is split into 4 steps.
1. First, we claim that for ε > 0, uε is a viscosity supersolution of

(61) f(x)2Fp(∇2uε,∇uε, x) = ε in Ω.

To see this, let x0 ∈ Ω and φ ∈ C∞(Ω) such that uε − φ has a local minimum at x0. We
need to show that

−div
(
f2|∇φ|p−2∇φ

) ⏐⏐⏐
x=x0

≥ ε.

Assume to the contrary that

−div
(
f2|∇φ|p−2∇φ

) ⏐⏐⏐
x=x0

< ε.
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For δ > 0 define
ψ(x) = φ(x) + δ2 + uε(x0)− φ(x0)− δ|x− x0|4.

For sufficiently small r, δ > 0 we have uε(x) ≥ ψ(x) for all x ∈ ∂B(x0, r), and

(62) −div
(
f2|∇ψ|p−2∇ψ

)
≤ ε in B(x0, r).

The comparison principle for weak solutions of the p-Laplace equation yields ψ ≤ uε in
B(x0, r), which is a contradiction to the fact that ψ(x0) > uε(x0). This establishes the
claim.

2. We now show that u ≤ uε for ε > 0. Fix ε > 0 and for δ > 0 define

Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.

Let M > 0 such that |∇uε| ≤M on Ωδ and define the truncated operator

F p(X, q, x) := −min{M, |q|}p−2(Trace(X) + 2∇ log f(x) · q + (p− 2)|q|−2q ·Xq).

Then u is clearly a viscosity solution of F p = 0 in Ω, and uε is a viscosity solution of
f2F p ≥ ε in Ωδ. Since f ≥ θ > 0 for some θ > 0, and F p satisfies

F p(y, q, Y )− F p(x, q,X) ≤ 2Mp−2[∇f ]0,1|q||x− y|,

for all q ∈ Rd, x, y ∈ Ωδ and symmetric matrices X ≤ Y , we can invoke the comparison
principle for viscosity solutions [35] to obtain

max
∂Ωδ

(u− uε) = max
Ωδ

(u− uε).

Since u, uε are uniformly continuous on Rd, we can send δ → 0+ to find that u ≤ uε on Rd.
3. We now send ε→ 0+ to show that u ≤ u0. Using φ = max{uε − u0 − δ, 0} as a test

function in the definition of weak solution of (60) for uε and u0 and subtracting, we have∫
Aδ

f2|∇uε −∇u0|p dx ≤ C

∫
Aδ

f2(|∇uε|p−2∇uε − |∇u0|p−2∇u0) · (∇uε −∇u0) dx ≤ Cε,

where Aδ = {x ∈ (0, 1)d : uε(x)− u0(x) > δ} and δ > 0. Sending δ → 0+ we find that∫
{uε>u}

f2|∇uε −∇u0|p dx ≤ Cε.

A similar argument gives ∫
{uε<u}

f2|∇uε −∇u0|p dx ≤ Cε.

By Morrey’s inequality uε → u0 uniformly on Rd as ε→ 0+. Therefore u ≤ u0.
4. To see that u ≥ u0, we apply the argument above to v := −u to find that v ≤ −u0,

or u ≥ u0. Therefore u = u0, which completes the proof.
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We now give the proof of our main result.

Proof of Theorem 1. The proof is split into several steps.
1. Since

lim
n→∞

nhqn
log(n)

= ∞,

we can apply the Borel-Cantelli Lemma and Theorems 2, 5, 6, and Lemma 2 to show that
with probability one

(63) lim
n→∞
x→x0

1

h2n
Lp
nφ(x) =

C2

C1
f−2|∇φ|2−pdiv(f2|∇φ|p−2∇φ)

⏐⏐
x=x0

for all x0 ∈ Td \ O and φ ∈ C∞(Rd) with ∇φ(x0) ̸= 0, and

(64) |un(x)− un(y)| ≤ C(|x− y|1−d/p + h1−d/p
n )

for n sufficiently large. For the remainder of the proof, we fix a realization in this probability
one event.

2. Let jn : Td → Xn be the closest point projection, which satisfies

|x− jn(x)| = min
y∈Xn

|x− y|.

Define vn : Td → R by vn(x) = un(jn(x)). Since |x − jn(x)| ≤ rn, where rn is defined in
(43), it follows from (64) that for any x, y ∈ Td

|vn(x)− vn(y)| ≤ C(|jn(x)− jn(y)|1−d/p + h1−d/p
n )

= C(|jn(x)− x+ y − jn(y) + x− y|1−d/p + h1−d/p
n )

≤ C(|x− y|1−d/p + 2r1−d/p
n + h1−d/p

n ).

Since rn, hn → 0 as n → ∞, we can use the Arzelà-Ascoli Theorem (see the appendix
in [51]) to extract a subsequence, denote again by vn, and a Hölder continuous function
u ∈ C0,1−d/p(Td) such that vn → u uniformly on Td as n→ ∞. Since un(x) = vn(x) for all
x ∈ Xn we have

(65) lim
n→∞

max
x∈Xn

|un(x)− u(x)| = 0.

We claim that u is the unique viscosity solution of (22), which will complete the proof.
3. We first show that u is a viscosity subsolution of (22). Let x0 ∈ Td \ O and

φ ∈ C∞(Rd) such that u−φ has a strict global maximum at the point x0 and ∇φ(x0) ̸= 0.
We need to show that

div(f2|∇φ|p−2∇φ)
⏐⏐
x=x0

≥ 0.
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By (65) there exists a sequence of points xn ∈ Xn such that un − φ attains its global
maximum at xn and xn → x0 as n→ ∞. Therefore

un(xn)− un(x) ≥ φ(xn)− φ(x) for all x ∈ Xn.

Since x0 ̸∈ O, we have that xn ̸∈ O for n sufficiently large and so Lp
nun(xn) ≤ Lp

nφ(xn).
By (63) we have

0 = lim
n→∞

1

h2n
Lp
nun(xn) ≤ lim

n→∞

1

h2n
Lp
nφ(xn) =

C2

C1
f−2|∇φ|2−pdiv(f2|∇φ|p−2∇φ)

⏐⏐
x=x0

.

Thus u is a viscosity subsolution of (22).
4. To verify the supersolution property, set vn = −un and note that Lp

nvn = −Lp
nun = 0

and vn → −u uniformly as n → ∞. The subsolution argument above shows that −u is a
viscosity subsolution of (22), and hence u is a viscosity supersolution. This completes the
proof.
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A Consistency for the graph p-Laplacian

Consider the graph p-Laplacian

(66) ∆G
p u(x) :=

∑
y∈Xn

wn(x, y)|un(x)− un(y)|p−2(un(x)− un(y)).

It is possible to prove Theorem 1 for the graph p-Laplacian provided nhpn → 0 as n → ∞.
The proof is very similar to Theorem 1; the main difference is the consistency result, which
we sketch here for completeness.

We require an integration lemma from [52].
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Lemma 5. Let ρ : [0,∞) → [0,∞) be a nonnegative continuous function with compact
support, and let p1, . . . , pd be real numbers equal or larger than 1/2. Then∫

Rd

ρ(|x|2)|x1|2p1−1 · · · |xd|2pd−1 dx =
Γ(p1) · · ·Γ(pd)
Γ(p1 + · · ·+ pd)

∫ ∞

0
ρ(t)tp1+···+pd−1 dt,

where Γ denotes the Gamma function

Γ(t) =

∫ ∞

0
e−xxt−1 dx.

We prove here consistency in expectation. Arguments similar to the proof of Theorem
5 can be used to obtain consistency with high probability and almost surely as n→ ∞.

Theorem 8. Let φ ∈ C3(Rd) and p ≥ 3. Then

(67) E[∆G
p φ(x)] =

1

2
c(p, d)f−1div(f2|∇φ|p−2∇φ)nhd+p +R(x)nhd+p+1,

where

(68) |R(x)| ≤ C(cp−2
1 (c1 + c2 + c3) + cp−3

1 c32h
2) for all x ∈ Rd,

and ck = ∥Dkφ∥L∞(Rd).

Proof. We may assume x = 0 and φ(0) = 0. We write h = hn for simplicity. Then we have

E[∆G
p φ(0)] = n

∫
Rd

Φh (|y|)p |φ(y)|p−2φ(y)f(y) dy.

Set x = y/h to find that

E[∆G
p φ(0)] = nhd

∫
Rd

Φ(|x|)pΨ(φ(xh))f(xh) dx,

where
Ψ(t) = |t|p−2t.

Then

(69) Ψ(t) = Ψ(a) + Ψ′(a)(t− a) +O(T p−3|t− a|3) for a, t ∈ [−T, T ].

Letting q = ∇φ(0) and Q = ∇2φ(0) we have

(70) φ(xh) = O(c1|x|h),

(71) φ(xh) = hq · x+O(c2|xh|2),
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and

(72) φ(xh) = hq · x+
h2

2
x ·Qx+O(c3|xh|3),

Therefore

Ψ(φ(xh)) = Ψ(hq · x) + Ψ′(hq · x)(φ(xh)− hq · x) +O(cp−3
1 |xh|p−3c32|xh|6)

= Ψ(hq · x) + Ψ′(hq · x)
(
h2

2
x ·Qx+O(c3|x|3h3)

)
+O(cp−3

1 c32|xh|p+3)

= Ψ(hq · x) + h2

2
Ψ′(hq · x)x ·Qx+O(cp−2

1 c3|xh|p+1 + cp−3
1 c32|xh|p+3),

and we have

Ψ(φ(xh))f(xh)

= f(0)Ψ(hq · x) + f(0)
h2

2
Ψ′(hq · x)(x ·Qx) + (f(xh)− f(0))Ψ(hq · x)

+O
(
cp−2
1 (c2 + c3)|xh|p+1 + cp−2

1 c3|xh|p+2 + cp−3
1 c32|xh|p+3 + cp−3

1 c32|xh|p+4
)

= f(0)Ψ(hq · x) + f(0)
h2

2
Ψ′(hq · x)(x ·Qx) + h(∇f(0) · x)Ψ(hq · x)

+O
(
cp−2
1 (c1 + c2 + c3)|xh|p+1 + cp−2

1 c3|xh|p+2 + cp−3
1 c32|xh|p+3 + cp−3

1 c32|xh|p+4
)
.

Integrating against Φ(|x|)p, the first term is odd and vanishes, so we get∫
Rd

Φ(|x|)p|φ(xh)|p−2φ(xh)f(xh) dx

= f(0)hp
∫
Rd

Φ(|x|)p
(
(12x ·Qx)Ψ′(q · x) + (∇ log f(0) · x)Ψ(q · x)

)
dx

+O
(
cp−2
1 (c1 + c2 + c3)h

p+1 + cp−3
1 c32h

p+3
)
.

Therefore

E[∆G
p φ(0)]

nhd+pf(0)
=

∫
Rd

Φ(|x|)p
(
(12x ·Qx)Ψ′(q · x) + (∇ log f(0) · x)Ψ(q · x)

)
dx

+O
(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)

=

∫
Rd

Φ(|x|)p|q · x|p−2
(
1
2(p− 1)(x ·Qx) + (∇ log f(0) · x)(q · x)

)
dx

+O
(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)

= A+B +O
(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)
,(73)
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where

(74) A =
p− 1

2

d∑
i,j=1

Qij

∫
Rd

Φ(|x|)p|q · x|p−2xixj dx,

and

(75) B =

d∑
i=1

(log f)xi

∫
Rd

Φ(|x|)p|q · x|p−2(q · x)xi dx.

Let us tackle A first. We may assume that q ̸= 0. Let O be an orthogonal transformation
so that Oed = q/|q|. In particular Oid = [Oed]i = qi/|q|. Making the change of variables
y = OTx we have

B =
d∑

i=1

(log f)xi

∫
Rd

Φ(|y|)p||q|yd|p−2(|q|yd)[Oy]i dy

= |q|p−1
d∑

i,j=1

(log f)xiOij

∫
Rd

Φ(|y|)p|yd|p−2ydyj dy.

If j ̸= d in the sum above, then the integral vanishes, since the integrand is odd. Therefore

(76) B = |q|p−1
d∑

i=1

(log f)xiOid

∫
B2

Φ(|y|)p|yd|p dy = c(p, d)|q|p−2(∇ log f) · q,

where
c(p, d) =

∫
Rd

Φ(|x|)p|xd|p dx.

For A, we again make the change of variables y = OTx. Then we have

A =
p− 1

2
|q|p−2

d∑
i,j=1

Qij

d∑
k,ℓ=1

OikOjℓ

∫
B2

Φ(|y|)p|yd|p−2ykyℓ dy

=
p− 1

2
|q|p−2

d∑
k=1

[OTQO]kk

∫
B2

Φ(|y|)p|yd|p−2y2k dy

=
p− 1

2
|q|p−2

(
σ(p, d)Tr(Q) + (c(p, d)− σ(p, d))|q|−2q ·Qq

)
,

where
σ(p, d) =

∫
Rd

Φ(|x|)p|xd|p−2x2k dx
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for any k < d. By Lemma 5 we have

σ(p, d) =
Γ
(
1
2

)d−2
Γ
(
p−1
2

)
Γ
(
3
2

)
Γ
(
d+p
2

) ∫ ∞

0
Φ(

√
t)t

d+p
2

−1 dt,

and

c(p, d) =
Γ
(
1
2

)d−1
Γ
(
p+1
2

)
Γ
(
d+p
2

) ∫ ∞

0
Φ(

√
t)t

d+p
2

−1 dt.

Using the identity Γ(t+ 1) = tΓ(t) we find that

c(p, d) = (p− 1)σ(p, d).

It follows that
A =

1

2
c(p, d)|q|p−2(Tr(Q) + (p− 2)|q|−2qTQqT ).

Combining this with (73) and (76) yields

E[∆G
p φ(0)]

nhd+p

=
1

2
c(p, d)f |∇φ|p−2 (∆φ+ 2∇ log f · ∇φ+ (p− 2)∆∞φ)

+O
(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)

=
1

2
c(p, d)f−1div(f2|∇φ|p−2∇φ) +O

(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)
.

If q = 0 then from (73) we have

E[∆G
p φ(0)]

nhd+p
= O

(
cp−2
1 (c1 + c2 + c3)h+ cp−3

1 c32h
3
)
.

This completes the proof.
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