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1.  Introduction

Although aerial robots are widely used for various 
civilian and military applications (e.g. surveillance, 
search, and monitoring, etc.), they suffer universally 
from limited airborne time (less than one hour) due 
to the low aerodynamic efficiency and high energy 
consumption [1]. To address this problem, perching 
onto objects (e.g. walls, power lines, or ceilings) 
will significantly extend aerial robots’ functioning 
time as they can save or even harvest energy after 
perching, while also maintaining a desired altitude 
and orientation for surveillance or monitoring [2]. 
Successful perching for aerial robots, however, is 
quite challenging as it requires not only intelligent 
mechanical mechanisms to robustly engage the robot 
to the perching objects but also fast and accurate 
estimation, planning, and control of the robot motion 
so that the robot can progressively reduce its speed and 

adjust its orientation to perch on the objects with a 
desired velocity and orientation.

In recent years, researchers have investigated 
perching capabilities for aerial robots from both the 
mechanical and control aspects. A detailed review can 
be found in [2], and here we will only review some rep-
resentative work. For mechanical investigations, the 
focus is on how to design robust perching mechanisms 
to ensure successful perching. Doyle et al developed 
an integrated, compliant, and underactuated gripping 
foot as well as a collapsing leg mechanism to enable 
a quadcopter to passively perch on the surface with 
moderate disturbances [3]. Daler et al designed a new 
perching mechanism based on a compliant deploy-
able pad and a passive self-alignment system. With this 
mechanism, active control during final touch down 
is not needed [4]. Pope et al designed a mechanism to 
make a quadcopter fly, perch passively onto outdoor 
surfaces, climb, and take off again [5]. Graule et  al 
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utilized controllable electrostatic adhesion to make a 
robotic insect perch and take off from surfaces made 
of various materials [6]. Kovac et al designed a 4.6 g 
perching mechanism which allows UAVs to perch on 
vertical surface of natural and man-made materials 
[7]. For investigations from the control and planning 
aspect, researchers have focused on how to generate 
and track flight trajectories for perching. Moore et al 
utilized linear quadratic regulator trees to plan and 
track trajectory for fixed-wing aircrafts to perch on 
power lines [8]. Mellinger et al designed a trajectory 
for quadcopter aggressive maneuvers to realize flights 
through narrow gaps and perching on inverted sur-
faces [9]. They also controlled quadcopters to perch 
on inclined surfaces with a downward-facing gripper 
[10]. Mohta et al leveraged visual servoing with two 
known points on the target surface to achieve perch-
ing using feedback from a monocular camera and an 
inertial measurement unit (IMU) [11]. In [12], a laser 
sensor is used to detect the perching initiation dis-
tance, and a pitch up process is used to assist the decel-
eration. Further, in [13], they applied thrust after pitch 
up to reduce the sensing requirement for triggering the 
perching process.

However, almost all of the existing investigations on 
perching are position-based, i.e. they require the pre-
cise position feedback either through global position-
ing systems (GPS) or motion tracking system, making 
them unsuitable for autonomous perching in situations 
where positions cannot be obtained (e.g. GPS-denied 
environments). In this paper, we leverage the concept of 
time-to-contact (TTC), defined as the projected time to 
contact a surface with the current velocity, for the plan-
ning and control of aerial perching. Compared with 
position-based perching methods, TTC-based meth-
ods can utilize simple but effective strategies to achieve 
autonomous perching without complex planning and 
control. Further, it can be potentially realized with 
onboard lightweight vision sensors to estimate TTC, 
which is ideal for miniature aerial robots as they cannot 
carry heavy sensors (e.g. LIDAR).

TTC is a part of the more general tau theory 
originated from Gibson’s research on the relation-
ship between animals’ visual information and their 

locomotion [14]. Based on Gibson’s work, Lee first  
proposed the concept of TTC by pointing out that 
rather than distance or speed, drivers leverage TTC 
to determine when to accelerate or decelerate to drive 
safely [15]. Later, Lee introduced tau coupling [16] to 
guide motions in three-dimensional space simultane-
ously. The basic concepts of tau theory are as follows 
[17, 18].

	 •	�A motion gap, denoted as X(t), is the changing gap 
with respect to time t between the current state and 
the goal state. Motion gaps can be distance, force, 
angle, etc.

	 •	�Tau of a motion gap is the time to close this gap at 
its current closure rate Ẋ(t): τ = X(t)/Ẋ(t). In 
the case with the gap being the distance, tau is the 
same to TTC. In this paper, we will use tau or TTC 
interchangeably since only the distance as a motion 
gap will be considered.

	 •	�Tau-dot is the time derivative of tau. By 
maintaining a constant tau-dot, animals and 
insects can land or perch on surfaces with a full 
stop.

TTC or tau has been widely found in controlling 
the motion for humans, animals, and insects. By 
estimating TTC from visual feedback, drivers can 
determine how to avoid collisions [15]. Bees keep a 
constant rate of image expansion (equivalent to TTC) 
to land on various vertical surfaces [19]. Pigeons are 
discovered to adopt TTC to safely perch on branches 
[20]. Seabirds can leverage TTC to adjust the timing to 
close wings before diving into water for fish [21].

With biological inspirations, tau theory has also 
been recently applied to various robotic applications 
such as avoiding obstacles or landing on ground [22]. 
For existing tau-theory based planning and control, 
the general architecture is illustrated in figure 1 and 
can be described as follows. First, a reference trajec-
tory for tau or TTC is planned off-line based on the 
desired task (e.g. perching, docking, or landing). Then 
by comparing the reference tau with the estimated tau, 
which can be obtained from image feedback of cam-
eras, GPS, or distance sensors, a controller is designed 

Tau
controller

Robot

GPS, camera, 
distance

sensor, etc

Trajectory
Planning

Tau

_

Tau
Reference

+

Motion
Gap

Figure 1.  General idea for robot perching based on tau theory. This framework contains three major problems: 1) estimation 
problem: accurately estimate t using sensors; 2) control problem: design a t controller; 3) planning problem: plan the reference t 
trajectory in t space.
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to control the robot’s motion so that the reference tau 
can be tracked to accomplish the desired task.

Substantial work has been performed to address 
the estimation and control problem shown in figure 1. 
Mobile robot docking task is realized by estimating 
the TTC using the divergence of optic flow when the 
focus of expansion effects are considered [23]. Simi-
larly, TTC is estimated from optical flow divergence on 
a drone and used for autonomous landing [24]. Robot 
chasing is also realized by controlling TTC [25]. Izzo 
and Croon propose different TTC-based controllers 
for landing [26]. Recently, Kendoul has conducted 
comprehensive research by proposing several TTC 
controllers and accomplished several tasks such as 
docking, landing, and navigation using a quadcopter 
based on tau theory [22]. We have also leveraged an 
image based featureless estimation method to calcu-
late TTC on a quadcopter in landing scenarios [27]. 
Further, we have also applied the featureless TTC esti-
mation method to realize mobile robot docking [28, 
29]. Recently, based on TTC, several papers propose 
the distance and velocity estimation algorithm using 
a monocular camera for flying robots [30–33]. In 
[30, 33], with the estimated TTC or divergence as the 
extended Kalman filter input, the estimation can conv
erge to the ground truth value fast.

Although extensive research has been carried out 
for estimation and control, the trajectory planning 
problem in tau theory is underexplored. Indeed, most 
of existing research simply utilizes the constant tau dot 
strategy to generate the reference trajectory of tau [22]. 
However, directly applying constant tau dot strategy 
to perching can only control the contact velocity to be 
zero [22, 23], which is not always desired for robotic 
perching. In fact, most perching mechanisms require 
a substantial velocity in the direction perpendicular 
to the perching object to ensure that gripping 
mechanisms can robustly attach to the object [10]. For 
example, the mechanism in [10] requires a minimum 
normal velocity of 0.8 m s−1 for successful perching. In 
such cases with non-zero contact velocity, existing tau 
theory is unlikely to work. To address this problem, we 
have extended the tau theory by proposing a two-stage 
strategy to control the contact speed to a specific value 
and validated the theory using a mobile robot [34]. 
However, the strategy can only satisfy two constraints 
(contact velocity and maximum deceleration), making 
robust perching not feasible as they normally require 
several constraints to be satisfied [10, 35]. In this paper, 
we propose a new planning strategy for TTC-based 
robotic perching and validate the proposed strategy 
using a palm-size quadcopter.

Our major contribution in this paper is to leverage 
TTC or tau to accomplish robotic perching, which 
requires simpler planning and control compared with 
position-based approaches. Specifically, there are 
two contributions. First, we propose a new two-stage 
planning method to generate the reference trajectory 
for TTC. Such a method can generate optimal 

trajectories satisfying multiple constraints required 
for robust perching. Second, we validate the proposed 
planning strategy using a palm-size quadcopter by 
mapping the planned trajectory in tau space into 
the commands acceptable by the quadcopter. Note 
that in this paper, although TTC is estimated from 
motion tracking system in the experiments, we plan 
to integrate our vision-based estimation algorithm 
[28, 29] with the proposed strategy for vision-based 
perching using onboard cameras in the future using a 
larger quadcopter currently under developments.

The rest of this paper is organized as follows. 
Section 2 describes existing planning strategies for tau, 
including the widely used constant tau dot strategy 
(CTDS) [22] and our recently proposed constant 
tau dot based two-stage strategy (CTDTS) [34]. 
The newly proposed two-stage strategy will also be 
discussed in detail. Based on the planned reference, 
section  3 presents a controller design to track the 
reference for perching with a quadcopter. To verify the 
performance of the proposed planning strategies and 
control methods, section 4 discusses and compares the 
simulation and experiment results.

2.  Tau based trajectory generation

In this section, we first introduce two trajectory 
generation methods for tau (CTDS and CTDTS), 
discuss the need for new strategies for robust aerial 
perching, and detail the new inverse of polynomial 
based two-stage strategy (IPTS).

As shown in figure 2, the perching problem aims 
to control the motion of an aerial robot flying towards 
a surface to contact the surface with a perching speed 
in a specific range so that the gripping mechanism can 
robustly attach to the surface [36]. Generally, the ori-
entations should also be adjusted appropriately before 
the final touchdown; however, in this paper, we will not 
consider the attitude maneuvering as our main goal is 
to investigate the control of contact velocity through 
the use of tau. If we establish a coordinate frame 
attached to the surface with X along the perching direc-
tion, then the gap X(t) < 0 and velocity Ẋ(t) > 0. The 
desired contact velocity is Vc ∈ (Vl,Vu), where Vl  
and Vu  are the lower and upper bound for successful 
perching velocity, respectively. For different perch-
ing mechanisms, Vl  and Vu  vary and can be obtained 
experimentally. Without loss of generality, we assume 
the initial velocity is larger than the required contact 
velocity Ẋ(0) > Vc since biological organisms gener-
ally decelerate to perch [2]. Let tc be the time when con-
tact occurs, then the non-zero contact velocity require-
ment is Ẋ(tc) = Vc �= 0.

2.1.  Constant tau dot strategy (CTDS)
For braking or landing problem, the CTDS has been 
shown to guide animals or humans to smoothly 
decelerate to zero contact velocity [37, 38]. Also, 
the applications of CTDS in robotic field effectively 

Bioinspir. Biomim. 14 (2019) 016008



4

H Zhang et al

demonstrate its potential for robot motion control 
[22].

To better understand the other two strategies, we 
briefly summarize the CTDS as follows. First, as men-
tioned in the introduction, TTC is defined as:

τ(t) =
X(t)

Ẋ(t)
.� (1)

For CTDS, suppose the rate of change of τ, i.e. the tau-
dot, is a constant c, then we have:

τ(t) = ct + τ0, τ0 =
X(0)

Ẋ(0)
< 0� (2)

where X(0) < 0 is the initial distance, and Ẋ(0) > 0 is 
the initial velocity. Combining equations (1) and (2), 
we can solve for X(t), Ẋ(t), and Ẍ(t):

X(t) = X0

(
1+ c

Ẋ0

X0
t

)1/c

� (3)

Ẋ(t) = Ẋ0

(
1+ c

Ẋ0

X0
t

)1/c−1

� (4)

Ẍ(t) =
Ẋ2
0

X0
(1− c)

(
1+ c

Ẋ0

X0
t

)1/c−2

� (5)

where X0  =  X(0) and Ẋ0 = Ẋ(0). Based on the 
above equations, we cannot realize non-zero contact 
velocities with c having different values. In fact, we can 
discuss it based on the ranges of c according to [22]:

	 •	�when c � 0, X(t), Ẋ(t), Ẍ(t) converge 
asymptotically to 0 for t → ∞. Therefore, perching 
is impossible since the time cannot be infinite when 
the contact occurs;

	 •	�when 0 < c � 0.5, X(t), Ẋ(t), Ẍ(t) become 0 at 
the same finite time. Although perching can be 
accomplished in finite time, the contact velocity 
will always be zero;

	 •	�when 0.5  <  c  <  1, X(t) and Ẋ(t) become 0 at the 
same finite time, but Ẍ(t) becomes ∞. Perching is 
infeasible since robots cannot have infinitely large 
accelerations;

	 •	�when c  =  1, a robot will move towards the surface 
with a constant velocity—the initial velocity. 
Perching is feasible in this case, but the contact 
velocity is fixed;

	 •	�when c  >  1, Ẋ → ∞, Ẍ → ∞ as X → 0. Perching 
is again infeasible since robots cannot have 
infinitely large velocities and accelerations.

For the general CTDS, c is chosen to be in (0, 0.5] so 
that the distance, velocity, and acceleration can be zero 
in the same finite time to realize contact with a surface 
for landing or docking applications [22]. However, 
we can see that, with c ∈ (0, 0.5], the desired non-zero 
contact velocity cannot be achieved since when the 

contact occurs, i.e. X(t) = 0, we have 1+ c Ẋ0
X0
t = 0, 

so Ẋ(t) and Ẍ(t) would also be zero [22]. This means 
when the contact or perching occurs, both the veloc-
ity and acceleration must be zero. In this case, the 
perching may fail if a non-zero contact velocity is 
required. To address this problem, we have proposed 
the CTDTS [34].

2.2.  Constant tau dot based two-stage strategy 
(CTDTS)
As shown in figure 2, CTDTS uses a constant tau dot 
strategy in the first stage to decelerate to the desired 
contact velocity Vc . The second stage initiates when 

Figure 2.  General idea for three tau based strategies for perching, constant tau dot strategy (CTDS), constant tau dot based two-
stage strategy (CTDTS) and inverse of polynomial based two-stage strategy (IPTS).

Bioinspir. Biomim. 14 (2019) 016008
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tau is larger than a prescribed threshold τs (Note that 
τ � 0 owing to the choice of frame setup as shown in 
figure 2). In the second stage, the same forward velocity 
is maintained at Vc  until perching occurs. Note that 
the initiation of the second stage is different from our 
previous CTDTS presented in [34], where a prescribed 
distance is used. Using tau is better than distance as tau 
specifies how soon will the robot contact the surface 
so that the robot can initiate an attitude maneuvering 
if necessary. Tau-based threshold is also adopted in 
biological systems (e.g. flies [39] or hawks [40]) for 
attitude maneuvering or leg extensions before the final 
touchdown. In general, the magnitude of τs is rather 
small and we assume that τ0 < τs < 0, where τ0 is the 
initial tau.

Assume the second stage starts at time ts with veloc-
ity Vc , then the reference trajectory for tau can be rep-
resented in two stages

τref (t) =

{
ct + τ0, if 0 � t � ts
τs + t − ts, if t > ts

.� (6)

With a specified threshold τs, desired contact velocity 
Vc , and τ0 depending on the initial conditions, we need 
to solve the constant tau dot c and the switching time 
ts to obtain τref (t). A unique solution can be found for 
c and ts by using the desired tau (τs) and velocity (Vc) 
at the stage transition: τref (ts) = τs and Ẋ(ts) = Vc. In 
fact, the solution can be found as:

c =
log( τsτ0 )

log(Vc

Ẋ0
) + log( τsτ0 )

� (7)

ts =
τs − τ0

c
.� (8)

With Ẋ0 > Vc > 0 and τ0 < τs < 0, we can easily 
show that c will be in (0, 1). However, the unique 
solution for c and ts should satisfy the constraints for 
the acceleration capability of a flying robot which is 
limited by its motors. Note that for the first stage with 
a constant tau dot, the robot always decreases its speed 
when c ∈ (0, 1), i.e. Ẍ(t) is always negative. For the 
deceleration of the whole process, after analysis, we 
know that when t ∈ [0, ts] [34]:

	 •	�if 0 < c � 0.5, Ẍ(t) will monotonically increase. 
Since Ẍ0 < 0, the maximum deceleration should 
be achieved at t  =  0;

	 •	�if 0.5  <  c  <  1, Ẍ(t) will monotonically decrease. 
Since Ẍ0 < 0, the maximum deceleration should 
be achieved at t  =  ts.

Therefore, the solution of c should satisfy the fol-
lowing deceleration constraint:

Ẍ(0) = (1− c)
Ẋ2
0

X0
< amax, if 0 < c � 0.5� (9)

Ẍ(ts) = (1− c)
Ẋ2
0

X0

(
Vc

Ẋ0

) 1−2c
1−c

< amax, if 0.5 < c < 1

� (10)

where amax is the maximum acceleration/deceleration 
of the robot. With such constraints, we can see that 
a major limitation for CTDTS is that the unique 
solution c may not satisfy the constraints specified in 
equations (9) or (10), leading to no feasible solution 
for the reference tau. Therefore, new strategies should 
be developed to address this issue.

To compare the time required for whole perching 
process with the proposed planning strategy to be 
discussed in the next subsection, we obtain the total 
time for the two stages as [34]:

t =
X0

cẊ0

[(
Vc

Ẋ0

) c
1−c

− 1

]
−
(
X0

Ẋ0

) 1
1−c

.� (11)

2.3.  Inverse of polynomial based two-stage strategy 
(IPTS)
The shortcomings of CTDTS can be addressed by 
proposing new strategies with more parameters in the 
first stage while keeping the second stage the same. In 
this subsection, we discuss a new mathematical form 
of tau reference in the first stage based on the inverse of 
a polynomial:

τ(t) =
1∑n

i=0 knt
n� (12)

where ki (i = 0, 1, . . . , n) are parameters to be 
determined. k0 = 1/τ0 can be determined by initial 
conditions, while k1, k2, …, kn can be determined from 
multiple constraints or optimizations for minimizing 
time, control effort, or energy, etc. As shown in figure 2, 
the second stage for IPTS is still constant velocity after 
tau reaches a specified threshold τs.

With the proposed trajectory in equation (12), the 
distance, velocity, and acceleration in the first stage can 
be solved analytically from integration:

X(t) = X0 exp

(
n∑

i=0

ki
i+ 1

ti+1

)
� (13)

Ẋ(t) = X0

n∑
i=0

kit
i exp

(
n∑

i=0

ki
i+ 1

ti+1

)
� (14)

Ẍ(t) = X0




n∑
i=1

ikit
i−1 +

(
n∑

i=0

kit
i

)2

 exp

(
n∑

i=0

ki
i+ 1

ti+1

)
.

� (15)

The inverse of polynomial approach has three 
major advantages compared with the constant tau-
dot. First, with a larger n, more constraints can be satis-
fied since we need to solve for more parameters. There-
fore, the limitation for CTDTS can be eliminated. 
Second, as will be shown in simulations and experi-
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ments, IPTS can generate a reference trajectory with 
a shorter perching time, since the robot can accelerate 
first and then decelerate to the desired velocity. On the 
contrary, as discussed in section 2.2, CTDTS can only 
decelerate to the desired velocity. Third, the resulting 
reference trajectories for both CTDS and CTDTS rely 
on the initial conditions (distance and velocity) as can 
be seen from equations (3)–(5) and (8). However, as 
we will numerically show later, a fixed set of param
eters for IPTS will work if the initial conditions are in a 
given range, greatly facilitating implementations since 
estimating distance and velocity from tau is a difficult 
problem [30–33].

Since the number of parameters n in IPTS is flex-
ible, we generally cannot obtain a unique solution 
for them. In this case, we will take the minimum time 
optimization as an example to obtain a unique solu-
tion and realize perching with the non-zero contact 
velocity requirement. For this optimization, several 
constraints are set: (1) Similar to CTDTS, the second 
stage initiates at time ts while the tau reaches a speci-
fied threshold τs. (2) The velocity Vc  at time ts, i.e. 
the contact velocity, should be in a reasonable range 
(Vl,Vu). (3) The velocity for the whole process should 
be less than the maximum velocity Vmax. (4) The accel-
eration/deceleration should be less than the maximum 
value limited by the capabilities of the motors. With 
such constraints, if we want to minimize the total time 
t for perching, the optimization can be formulated as:

min
k1,k2,...,kn

t = f (k1, k2...kn)� (16a)

subject to τ(ts) = τs� (16b)

Vl � Ẋ(ts) � Vu� (16c)

Ẋ(t) � Vmax for 0 � t � ts� (16d)

∣∣Ẍ(t)∣∣ � amax for 0 � t � ts� (16e)

where t = ts + |τs| is the total time for the 
two stages with ts the time for the first stage, 

which can be numerically solved from 
τ(ts) = 1/(

∑n
i=0 knt

n) = τs. It should be noted that 
if we want to minimize the total perching time as 
formulated in equation  (16), then the resulting 
parameters ki will uniquely depend on the initial 
conditions, i.e. given a set of initial conditions, 
we can solve for a set of ki. However, if we do not 
minimize the time, then it is possible that we can 
find a set of ki that will only loosely depend on 
the initial conditions, i.e. as long as the initial 
conditions are in a range, a fixed set of ki will make 
sure the perching constraints are satisfied.

3.  Tau controller for aerial robots

We will verify the proposed trajectory generation 
methods in tau space using a palm-size and open source 
quadcopter (Crazyflie 2.0, Bitcraze). To this end, we 
need to design a controller to control the motion of the 
quadcopter to track the planned reference trajectories 
for successful perching. The modeling and control 
for quadcopters have been investigated intensively 
in literature [9, 22, 41–45]. In general, the control 
inputs for quadcopters are a combination of a thrust 
force and a torque vector, of which the directions are 
along or around the axis of a body frame attached to a 
quadcopter.

The Crazyflie quadcopter has an onboard and pre-
tuned attitude controller to stabilize the orientations 
around a reference orientation [θref ,φref ,ψref ] with θ, 
φ, and ψ the roll, pitch, yaw angle, respectively. The 
attitude controller is implemented with the onboard 
IMU and the autopilot. In order to control the robot 
to track the desired reference tau, we need to gener-
ate [θref ,φref ,ψref ] and the thrust force T. ψref  is set to 
be zero which ensures the Crazyflie always faces the 
perching surface so that the perching mechanism can 
work properly.

As shown in figure 3, θref , φref , and T are obtained 
as follows. First, we implement a tau controller in the 
desired perching direction X.

Figure 3.  General control diagram for experiments. Three controllers are combined to generate the control command for Crazyflie.
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ux = kpx(1−
τref
τ

) + kix

∫
(1−

τref
τ

) + kdx
d

dt
(1−

τref
τ

).

� (17)

In this controller, instead of directly using τref − τ  
as the error item, we leverage 1− τref /τ  since such 
an error item has shown to have better performance 
[22]. Theoretically, we only need the tau controller in 
equation (17) to control the motion along perching 
direction (in the world frame shown in figure 2, it is 
along the X direction). However, for our experiments 
later, we need to control the motion in Y and Z 
direction since the field of view (FOV) of our motion 
tracking system is limited. If the motion along Y and 
Z direction is not controlled, then the robot may fly 
outside the FOV. The position control in Y and Z is 
implemented as a PID controller:
{
uy = kpy(yref − y) + kiy

∫
(yref − y) + kdy

d
dt (yref − y)

uz = kpz(zref − z) + kiz
∫
(zref − z) + kdz

d
dt (zref − z)

� (18)

where yref and zref are set to be zero. With the computed 
(ux, uy, uz) expressed in world frame, we can obtain 
θref , φref , and T by mapping (ux, uy, uz) into the body 
frame using the following nonlinear transformation 
[41, 46]:




φref = σφ[arcsin(
uxSψref

−uyCψref√
ux2+uy2+(uz+g)2

)]

θref = σθ[arctan(
uxCψref

+uySψref

uz+g )]

T = σT [m(ux(SθCψref
Cφ + Sψref

Sφ) + uy(SθSψref
Cφ − Cψref

Sφ) + (uz + g)CθCφ)]
�

(19)

where m and g are the mass of Crazyflie and 
gravitational acceleration, respectively. S and C 
corresponding to sin  and cos respectively, and σ() 
is a saturation function to ensure the computed roll, 
pitch and thrust are in a reasonable range. We choose 
the nonlinear transformation in equation  (19) 
due to its simplicity compared with other similar 
transformations [47, 48].

To gain better control performance, we adopt gain 
scheduling in τ controller for kpx [28]:

kpx =

{
kpx1 for τref

τ > 1

kpx2 for τref
τ � 1� (20)

where kpx1 > kpx2 > 0. As explained in [28], the 
advantage of using different proportional gains is 

as follows. If τref /τ > 1, we can get Ẋ > X/τref , we 

need to decelerate to make Ẋ = X/τref  to achieve 
τref /τ = 1. However, the absolute value of X is also 
decreasing as the robot flying towards the perching 
surface. Therefore, we need larger decelerations 
compared with the case when τref /τ � 1. We set 
kpx1 = 2.5kpx2 in our experiments, which will be 
discussed in the next section.

4.  Simulation and experiment results

To validate the effectiveness of the proposed planning 
and control algorithms, we perform both simulation 
and experiments to show that both CTDTS and IPTS 
can be leveraged for perching with a non-zero contact 
velocity with the IPTS being able to satisfy more 
constraints with a shorter perching time. We also 
demonstrate through simulations that IPTS will work 
when initial conditions are not exactly known.

4.1.  Simulation results
For simulation, we only simulate the trajectory 
planning for tau to compare the performance of 
different strategies discussed in section  2, leaving 
the controller implementation to experiments. The 
initial conditions and constraints are selected based 
on the experimental setup to be discussed in the next 
subsection. Based on the motion tracking system’s 
field of view, the initial conditions are chosen as 
X0  =  −3 m and Ẋ0 = 1.5 m s−1. Based on the perching 
mechanism (needle) and the perching surface (foam 
board), the bounds for the contact velocity are set as 
Vu = 1 m s−1, Vl = 0.7 m s−1. Considering the delay of 
wireless communication and capabilities of Crazyflie, 

the maximum velocity and acceleration/deceleration 
are selected as Vmax = 2.5 m s−1 and |amax|  =  1.4 m 
s−2, respectively.

For the CTDS, in order to accomplish perching in 
finite time, c ∈ (0, 0.5]. Since the larger the tau dot is, 
the faster the perching would be completed. Therefore, 
we set the tau dot to be c  =  0.5. With such a selection 
and the initial conditions, the tau reference for the 
whole perching process is:

τrefCTDS(t) = 0.5t − 2.� (21)

With such a tau reference, we simulate the CTDS and 
plot the distance, velocity, acceleration and TTC with 
the blue lines in figures 4(a), (c), (e) and (g). As shown 
in the figure, it takes 4 s to finish the perching process 
with a zero contact velocity.

For the CTDTS, based on the initial conditions 
and constraints, we choose the desired contact veloc-
ity Vc = Vu = 1 m s−1 so that the perching can be 
achieved faster. With both the desired switching tau 
τs = −0.5s and contact velocity Vc , a unique solution 
exists for the constant c for tau dot and time duration 
for the first stage ts. Considering the initial conditions 
and constraints, we can solve them as c  =  0.7337 and 
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ts  =  1.92 s. The solution of c is found to satisfy the con-
straint of the acceleration specified in equation (10). 
The resulting tau reference for the whole perching pro-
cess is thus:

τrefCTDTS(t) =

{
0.7337t − 2, if t < 1.92

t − 2.42, if t � 1.92
.� (22)

With such a tau reference, we simulate the CTDTS 
and plot the distance, velocity, acceleration and TTC 
with the orange lines in figures 4(a), (c), (e) and (g). 
As shown in the figure, it takes 2.42 s to finish the 

perching process with a contact velocity the maximum 
allowable one.

For the IPTS, we use a third order polynomial 
(n  =  3) to solve this problem since it is the smallest 
order of polynomial that can satisfy the constraints 
in equation (16). With the initial conditions and con-
straints, the optimization is performed with fmincon, 
a Matlab built in optimization function. To avoid being 
trapped at local minima, we perform the optimization 
with different initial conditions for k1, k2, and k3. The 
optimization algorithm generates the final results 

Figure 4.  Simulation results with different constraints. The left column shows simulations with Vmax = 2.5 m s −1, amax  =  1.4 m 
s−2. The right column shows simulations with Vmax = 2.0 m s−1, amax  =  1.0 m s−2. From top to bottom are the distance, velocity, 
acceleration, and tau for CTDS, CTDTS, IPTS, respectively. The CTDTS and IPTS can both realize the nonzero contact velocity and 
IPTS generates the faster perching.
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for the constants as k1  =  −0.7166, k2  =  −0.1907, 
k3  =  0.0067. With such constants, the switching time 
ts  =  1.5148 s. As a result, the tau reference for the whole 
perching process is:

τrefIPTS(t) =

{ 1
0.0067t3−0.1907t2−0.7166t−0.5 , if t < 1.5148

t − 2.014, if t � 1.5148
.

� (23)

With such a tau reference, we plot the distance, 
velocity, acceleration and TTC with the yellow lines in 
figures 4(a), (c), (e) and (g). Comparing the simula-
tion results for the three different trajectories, we can 
conclude that IPTS can take the advantage of motor 
capabilities to decelerate and accelerate, while CTDTS 
can only allow for deceleration. Thus, the velocity of 
the first stage for IPTS is increased first and decreased, 
which induces the faster perching compared with the 
CTDTS. Further, CTDTS can only satisfy the accel-
eration constraint with a fixed contact velocity Vc , 
while IPTS can satisfy additional velocity constraints 
with a flexible contact velocity in a range (Vl,Vu). For 
CTDTS, the acceleration figure verifies the maximum 
deceleration occurs at ts when c  >  0.5 as shown in 
equation (10).

From the simulation results, we can see that even 
the desired contact velocity Vc  for IPTS is specified in 
a range (Vl,Vu), the optimization will make Vc = Vu  
to realize the fastest perching. To investigate whether 
Vc  will be always equal to Vu  or not, we change the 
constraints to Vmax = 2 m s−1, |amax|  =  1 m s−2. The 
resulting contact velocity from the optimization in this 
case is 0.94 m s−1. Therefore, for different constraints, 
the contact velocity may not be Vu , and the constraint 
Vc ∈ (Vl,Vu) is necessary for the optimization of min-
imum time perching. In this case the tau reference for 
the whole perching process for IPTS is:

τrefIPTS =

{ 1
−0.2563t3+0.295t2−0.5745t−0.5 , if t < 1.7628

t − 2.2628, if t � 1.7628
.

� (24)

The simulation results for all the three cases under the 
new constraints are shown in figures 4(b), (d), (f) and 
(h). The reference trajectory for CTDS and CTDTS 

are plotted in the figure with blue and oranges lines, 
respectively. Note that for the new constraints, we set 
Vc = 0.94 m s−1 for CTDTS to compare with the IPTS. 
The constant c for CTDTS can be solved as 0.7479 and 
the perching time is 2.504 s. The IPTS switches stage 
at ts  =  1.7628 s and perches at t  =  2.2628 s. From the 
figure, we can see that the trends of the two simulations 
with different constraints (left and right column of 
figure 4) are exactly the same, but the contact velocities 
are different.

To better visualize the results, we have listed all the 
constraints and the corresponding perching time in 
table 1. As can be seen from the table, IPTS can achieve 
the best performance under the given constraints with 
a perching time of 2.014 s or 2.2628 s compared with 
2.42 s or 2.504 s for CTDTS and 4 s for CTDS.

In addition, we also conduct several simulations 
to show the advantage of IPTS strategy for safe perch-
ing when the initial conditions are not exactly known. 
Under this situation, we do not aim to minimize the 
total perching time, but only to satisfy the contact 
velocity, maximum velocity and maximum accelera-
tion constraints. Thus the goal of safe perching can still 
be fulfilled. In this case, a fixed set of coefficients ki can 
be found for a given range of initial conditions. Fur-
ther, the range will expand if the order of the polyno-
mial in IPTS increases. We have tested several examples 
for polynomials of different orders as shown in table 2. 
From the simulations, we can find many sets of ks to 
satisfy the constraints. For a 3rd order polynomial, one 
example set is k1  =  −0.60, k2  =  −0.057, k3  =  0.054. 
With this set of k, as long as the initial condition is 
Z0 ∈ [−3.88,−3.73] and V0 ∈ [1.89, 1.99], the con-
straints we used in the experiments can be satisfied. A 
4th order polynomial is also investigated, and the allow-
able range for Z0 and V0 will increase to [−2.92,−2] 
and [1, 1.65], respectively. A 5th order polynomial will 
further increase the range for Z0 and V0 to [−3.43,−2] 
and [1.4, 2.15], respectively. Note that the ranges for V0 
and Z0 shown in table 2 are generated from a given set 
of ks. We can also find other sets of ks to generate dif-

Table 1.  Simulation results comparison.

Constraints Strategy Contact velocity (m s−1) Perching time (s)

CTDS 0 4

Vmax = 2.5 m s−1    amax  =  1.4 m s−2 CTDTS 1 2.42

IPTS 1 2.014

CTDS 0 4

Vmax = 2.0 m s−1    amax  =  1.0 m s−2 CTDTS 0.94 2.504

IPTS 0.94 2.2628

Table 2.  Feasible initial conditions for different IPTS strategies.

IPTS order k V0 range Z0 range

3rd k1 = −0.60, k2 = −0.057, k3 = 0.054 [1.89, 1.99] [−3.88,−3.73]

4th k1 = −0.60, k2 = 0.15, k3 = −0.31, k4 = 0.14 [1, 1.65] [−2.92,−2]

5th k1 = −0.57, k2 = 0.13, k3 = −0.57, k4 = 0.53, k5 = −0.14 [1.4, 2.15] [−3.43,−2]
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ferent ranges. Therefore, we believe that if the initial 
conditions can be roughly estimated, then we can find 
a fixed set of ks to satisfy the constraints as long as the 
estimated initial conditions fall inside the range for the 
set of ks. Fortunately, estimating initial distance and 
velocity from TTC is highly possible as demonstrated 

in some recent research results [30, 33].

4.2.  Experimental results
After simulations, we experimentally test the tau based 
trajectory planning and control to enable perching 
for aerial robots. Although our ultimate goal is to 
leverage vision as feedback to estimate tau [27–29, 
34], the hardware cannot provide accurate estimation 
with demanded computation time. In our initial 
step, we use a motion tracking system (V120: Trio, 
Optitrack) which can provide more accurate and faster 
feedback compared with monocular camera to track 
the position and orientation of the Crazyflie in the 
world frame. The V120: Trio is a pre-calibrated motion 
tracking system with three high speed cameras, of 

which the estimation error can be less than 1 mm. 
The largest distance it can track with larger markers is 
about 5.2 m. The quadcopter, Crazyflie, only weighs 
about 27 g (without markers for motion tracking) 
with a size of 92  ×  92  ×  29 mm. Due to the small size 
and light weight, it is very safe for indoor experiments. 
Currently, the perching mechanism is realized by a 
needle placed in front of Crazyflie, although more 
sophisticated mechanisms will be investigated in the 
future. A vertical foam board serves as the perching 
surface.

The experiment scheme is shown in figure 5(a). A 
motion tracking coordinate system is defined as shown 
in figure 5(b). In this system, origin is set at the opti-
cal center of the middle camera, X axis is defined along 
the optical axis of the middle camera, Z axis is defined 
upward, and Y axis is defined based on the former axis. 
The motion tracking system feedback the robot’s posi-
tion, which is sampled by a laptop running windows 
with Motive—a software provided by Optitrack. The 
same position is then transmitted to a desktop running 

Figure 5.  Experiment scheme and motion tracking system coordinate setup. The coordinate system origin Om is projected as O′
m at 

the center of the perching board along Xm axis. The position and orientation of Crazyflie are measured by motion tracking system. 
The distance X between Crazyflie and the perching board is calculated by X  =  Xmc  −  5. Then τ is calculated by definition and control 
command is generated by the τ controller and position controller. (a) Experiment scheme. (b) Coordinate system setup.
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Linux with Robot Operating System. On this desktop, 
we first estimate the current τ using τ = X/Ẋ , where 
X is the distance along Xm axis between the Crazyflie 
and the perching board placed at 5 m away from the 
motion tracking system. And the velocity Ẋ is obtained 
from the position X using a Kalman filter. Based on the 
estimated τ and position in Y and Z, we compute the 
control command based on the controllers in equa-

tions  (17) and (18), which will then be mapped to 

[T, θref ,φref ]
T through the nonlinear transformation. 

The computed [T, θref ,φref ]
T is then wirelessly trans-

mitted to the Crazyflie through the Crazyradio to con-
trol its motion.

For the perching experiments, we use the same 
initial conditions with the simulation: X0  =  −3 m, 
Ẋ0 = 1.5 m s−1, Vu = 1 m s−1, and Vl = 0.7 m s−1. 
The constraints are also the same based on the Cra-
zyflie’s capability: Vmax = 2.5 m s−1, and |amax|  =  1.4 
m s−2. Note that even the maximum acceleration 
of the Crazyflie and velocity are larger than the cho-
sen constraints, the delay from wireless transmitting 

the control command confines the control perfor-
mance. The constraints and perching velocity range 
are obtained after several tests with a manual remote 
controller. To make the Crazyflie have the specific ini-
tial conditions, we first accelerate the initially hovering 
Crazyflie for a while. When X0 ≈ −3 m and Ẋ0 ≈ 1.5 
m s−1 are satisfied, we initiate the first stage of the two-
stage tau based strategy at time t0. When the feedback 
tau of Crazyflie is τ = τs = −0.5 s, the second stage is 
initiated at time ts. After that, the Crazyflie is controlled 
to perch on the foam board with a constant speed.

The PID parameters for the controllers are selected  
as follows: kpx2 = 0.4kpx1 = 31 000, kix = kdx = 2500,  
kpy = 14 500, kiy  =  2000, kdy  =  4500, kpz = 20 000, 
kiz  =  1500, kdz  =  3500, which are tuned based on the 
thrust signal range which is in (0, 65 535). Similarly, 
the saturation function is selected as:

σφ(ω) = σθ(ω) =



−25◦, if ω � −25◦

ω, if − 25◦ < ω < 25◦

25◦, if ω � 25◦

� (25)

Figure 6.  Experiment results for CTDTS (left column) and IPTS (right column). From top to the bottom are the distance, velocity, 
and tau for CTDTS and IPTS, respectively. The CTDTS and IPTS can realize the nonzero contact velocity, and IPTS requires shorter 
time for perching.
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σT(T) =



10 000, if T � 10 000

T, if 10 000 < T < 65 000

65 000, if T � 65 000

.

� (26)

We conduct five experiments for both the CTDTS 
and the IPTS, respectively. CTDS is not tested since it 
cannot achieve non-zero contact velocity required for 
perching. We fill all the five experimental results area 
with yellow and plot the mean value of the five exper
imental results in red. The results of CTDTS, with a 
total perching time of 3.24 s, are shown in figures 6(a), 
(c) and (e), while the results of IPTS, with a total perch-
ing time of 2.90 s, are shown in figures 6(b), (d) and (f).

From the figures, we can see that both CTDTS 
and IPTS can be used for non-zero contact veloc-
ity perching. IPTS can generate faster perching while 
satisfy more constraints. For CTDTS, after t0, there is 
still a small period that the Crazyflie keeps increasing 
speed. It is because from t  =  0 s to t0, the Crazyflie is 
always accelerating and it cannot respond fast enough 
to decelerate immediately. Despite this small period, 
it is almost decreasing by controlling the tau to follow 
the reference. Note that there is a period of increasing 
speed because of the tracking performance of the tau 
controller. When τref > τ , the Crazyflie increases its 
speed to increase the actual τ and vice versa. Finally, 
it follows τref  very well and the contact speed is about 
0.97 m s−1. On the other hand, for the IPTS, similar to 
the simulation results, the speed first increases then 
decreases and finally contact the surface with a speed 
of about 0.91 m s−1. Also the τ tracks the reference 
value quite well, although there exists some discrep-
ancy after t0 which might due to the delay of the Crazy-
radio. For both CTDTS and IPTS, the tau reference in 
the second stage can be used for controlling the aerial 
robot to fly with almost a constant speed even though 
the speed slightly decreases which is again caused by 
Crazyradio delay.

5.  Conclusion and future work

Tau theory has been widely applied for robot motion 
control for tasks such as landing and docking. In this 
paper, we propose two TTC or tau based two-stage 
strategies to realize perching for aerial robots with 
a non-zero contact velocity. Specifically, we design 
CTDTS and IPTS as the tau reference and develop the 
corresponding control laws. Simulation results have 
shown that both CTDTS and IPTS can accomplish 
a non-zero contact velocity with IPTS being able 
to satisfy more constraints and generate a shorter 
perching time. Furthermore, perching experiments 
with a palm-size quadcopter also validate the faster 
perching of the IPTS. In the future, we will implement 
the vision based TTC estimation algorithm to replace 
the current motion tracking system. Also, we are 
working on a bistable perching mechanism for UAV 
to perch on different surfaces with different materials. 
In addition, simply controlling a UAV’s velocity for 

perching onto surfaces might not be sufficient since a 
surface might have different orientations. To address 
this problem, we will also investigate the estimation 
of surface orientation as well as the attitude control of 
UAVs. Eventually, we aim to accomplish vision-based 
perching onto arbitrary surfaces.
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