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Abstract—Enterprise KV stores are not well suited for HPC
applications, and entail customization and cumbersome end-to-
end KV design to extract the HPC application needs. To this
end, in this paper we present BESPOKV, an adaptive, extensible,
and scale-out KV store framework. BESPOKV decouples the KV
store design into the control plane for distributed management
and the data plane for local data store. BESPOKV takes as input a
single-server KV store, called a datalet, and transparently enables
a scalable and fault-tolerant distributed KV store service. The
resulting distributed stores are also adaptive to consistency or
topology requirement changes and can be easily extended for
new types of services. Experiments show that BESPOKV-enabled
distributed KV stores scale horizontally to a large number of
nodes, and performs comparably and sometimes better than the
state-of-the-art systems.

I. INTRODUCTION

The underlying storage and I/O fabric of modern high
performance computing (HPC) increasingly employ new tech-
nologies such as flash-based systems and non-volatile memory
(NVM). While improving I/O performance, e.g., via providing
more efficient and fast I/O burst buffer, such technologies also
provide for opportunities to explore the use of in-memory
storage such as key-value (KV) stores in the HPC setting.
Distributed KV stores are beginning to play an increasingly
critical role in supporting today’s HPC applications. Examples
of this use include dynamic consistency control [1], coupling
applications [2], [3], and storing intermediate results [4],
among others. Relatively simple data schemas and indexing
enable KV stores to achieve high performance and high
scalability, and allow them to serve as a cache for quickly
answering various queries, where user experience satisfaction
often determines the success of the applications. Consequently,
a variety of distributed KV stores have been developed, mainly
in two forms: natively-distributed and proxy-based KV stores.

The natively-distributed KV stores [5], [6], [7], [8], [9] are
designed with distributed services (e.g., topology, consistency,
replication, and fault tolerance) in mind from the beginning,
and are often specialized for one specific setting. For example,
HyperDex [10] supports Master-Slave topology and Strong
Consistency (MS+SC). Facebook relies on its own distributed
Memcache [8] with Master-Slave topology and Eventual Con-
sistency (MS+EC). Amazon employs Dynamo [6] with Active-
Active1 topology and Eventual Consistency (AA+EC).

1Active-Active is also called multi-master in database literature.
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Fig. 1: Different approaches to enable distributed KV stores:
(a) natively-distributed (b-d) proxy-based.

Another key limitation of natively-distributed KV stores lie
in their inflexible monolithic design where distributed features
are deeply baked with backend data stores. The rigid design
implies that these KV stores are not adaptive to ever-changing
user demands for different backend, topology, consistency,
or other services. For instance, Social Artisan [11] and Be-
hance [12] moved from MongoDB to Cassandra for scalability
and maintenance reasons [13]. Conversely, Flowdock [14]
migrated from Cassandra to MongoDB due to stability issues.
Unfortunately, this migration process is very frustrating and
time/money-consuming as requires data remodeling and extra
migration resources [13].

Alternatively, proxy-based distributed KV stores leverage a
proxy layer to add distributed services into existing backend
data stores. For example, Mcrouter [15], and Twemproxy [16]
can be used as a proxy to enable a basic form of distributed
Memcached [17] with partitioning, as shown in Figure 1(b).
Twemproxy supports additional Redis [18] backend as well.
Recently, Netflix Dynomite [19] extended Twemproxy to
support high availability and cross-datacenter replication, as
illustrated in Figure 1(c).

Unlike monolithic natively-distributed KV stores, the use
of a separate proxy layer enables support for multiple back-
ends. Each single-server KV store such as Memcached [17],
Redis [18], LevelDB [20], and Masstree [21] has own its
merit, so the ability to choose one or mix is an ample reward.
However, existing proxy-based KV stores are still limited to
a single topology and consistency: e.g., Dynomite supports
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System S R MB MC MT AR P
Single-server 7 7 7 7 7 7 7

Twemproxy 3 7 3 7 7 7 7
Mcrouter 3 3 7 7 7 7 7

Dynomite 3 3 3 7 7 7 7

BESPOKV (Our work) 3 3 3 3 3 3 3

TABLE I: BESPOKV vs. state-of-the-art systems for KV
stores. S: Sharding; R: Replication; MB: Multiple back-
ends; MC: Multiple consistency techniques, e.g. strong, even-
tual, per-request, etc.; MT: Multiple network topologies, e.g.
Master-Slave, Master-Master, Peer-to-Peer, etc.; AR: Auto-
matic failover recovery; P: Programmable.

AA+EC only. We see that existing solutions have not yet
extracted the full potential of proxy-based distributed KV
stores. Table I summarizes the limitations of existing proxy-
based KV solutions such as Dynomite and Twmemproxy.

This paper presents BESPOKV, a flexible, ready-to-use,
adaptive, and extensible distributed KV store framework. Fig-
ure 1(d) illustrates BESPOKV’s distributed KV store archi-
tecture. BESPOKV takes as input a single-server KV store,
which we call datalet, and transparently enables a distributed
KV store service, supporting a variety of cluster topologies,
consistency models, replication options, and fault tolerance
(§III). To the best of our knowledge, BESPOKV is the first
system supporting multiple consistency techniques, multiple
network topologies, dynamic topology/consistency adaptation,
automatic failover, and programmability, all at the same time.

Decoupling control and data planes brings three unique ben-
efits to BESPOKV that are not possible in existing distributed
KV stores. First, given a (single-server) datalet, BESPOKV
enables immediately-ready-to-use distributed KV stores. De-
velopers can simply “drop” a datalet to BESPOKV and offload
the “messy plumbing” of distributed systems support to the
framework. BESPOKV transparently supports multiple back-
ends and different combinations of cluster topologies and con-
sistency models: e.g., MS+SC, MS+EC, AA+SC, AA+EC, and
more (§IV). Second, BESPOKV makes distributed KV stores
adaptive to dynamic changes. BESPOKV supports seamless
on-the-fly cluster topology and data consistency changes by
updating controlets while keeping datalets unchanged: e.g.,
MS+EC to MS+SC, and AA+EC to MS+EC (§V). Lastly,
BESPOKV enables extensible distributed KV stores. Starting
from default controlets, developers can quickly synthesize new
and innovative services: e.g. KV stores with hybrid topologies.
In essence, BESPOKV leverages the reusability principles [22]
to simplify the task of constructing systems with new designs.

This paper makes the following contributions:
• We propose a novel distributed KV store architecture that

enables innovative uses of KV stores in HPC applications,
Our implementation of BESPOKV is publicly available at
https://github.com/tddg/bespokv.

• We demonstrate that BESPOKV can be easily extended to
offer advanced features such as range query, per-request
consistency, polyglot persistence, and more. To the best of
our knowledge, BESPOKV is first to support a seamless
on-the-fly topology/consistency adaptation. We also present
several use cases to show effectiveness of BESPOKV.

• We deploy BESPOKV-enabled distributed KV stores in a
local testbed as well as in a public cloud (Google Cloud
Platform [23]) and evaluate their performance.

II. MOTIVATION: KEY-VALUE STORES FOR HPC

This section discusses the benefits of using distributed KV
stores for HPC applications, and how BESPOKV can bring the
potential into reality.

Wang et al. [2] first studied the effectiveness and usefulness
of distributed KV stores for HPC. By encapsulating the
distributed system complexities into the KV stores, the authors
showed how KV stores can simplify design and implementa-
tion of HPC services such as Job launch, monitoring/logging,
and I/O forwarding. In response, HPC community has pro-
posed different HPC-oriented KV stores such as SKV [4],
PapyrusKV [1], MDHIM [24], and Sharp [3]; and further
demonstrated other use cases of KV stores for online analysis,
visualization, and coupling HPC applications.

Non HPC-oriented KV stores are mostly built for stream-
ing workloads, they often use a lot of memory out of the
box. This is not very friendly to HPC workloads. Match-
ing of application as well as KV store memory demands,
and throughput/latency needs require customizations that ex-
isting KV stores do not provide. BESPOKV’s control and
data plane decoupled architecture, flexible configurability, and
extensibility enable new solutions and such customizations
for emerging HPC systems and workloads. First, BESPOKV
makes it easy for HPC developers to explore different design
trade-offs in future HPC systems with heterogeneous hardware
resources. Prior solutions are developed for one architecture.
For instance, SKV [4] is designed for the IBM Blue Gene
Active Storage I/O nodes equipped with flash storage [25],
while PapyrusKV [1] is designed to leverage non-volatile
memory (NVM) in HPC systems. Future HPC architectures
are expected to have hierarchical, heterogeneous resources
such as DRAM, NVM, and high-bandwidth memory (HBM).
BESPOKV seamlessly support the use of different datalets,
each of which can be tuned, for different memory and storage
architecture (evaluated in section VI-A).

Second, BESPOKV enables new HPC services for emerging
workloads. (1) Data layout: While existing KV solution are
rigid and pre-fixed for one setting, BESPOKV allows storing
data in different datalets, adapt and switch datalets as needed,
and thus can handle diverse characteristics of new data work-
loads. For example, datalet using B-tree as main data structure
is better suited for read-intensive workloads [26] (e.g., deep
learning), while LSM tree based datalet is a better choice for
write-intensive workloads due to high write amplification and
no fragmentation [27]. Unlike existing solutions BESPOKV
provides option to switch datalets (evaluated in sections VI-A
and VIII-B). (2) Multi-tenancy and geo-distribution: HPC
applications built atop KV store may require dynamically
switching the topology and consistency. For example, in case
of a distributed metadata server or job launch system built
using KV store [2], simple MS topology may be sufficient for
handling metadata and resource contention for Jobs launched
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Fig. 2: BESPOKV architecture and the interactions between components. LSM Tree: Log-structured merge-tree. DLM: Distributed
lock manager.

on one cluster but AA topology may become more beneficial
as we scale out to multiple clusters located at different
geolocations. Existing KV stores do not provide such support
(evaluated in section VIII-C). (3) Low latency: Ultra low
latency is often required to take advantage of in-memory KV
storage [28]. For this purpose we added support for DPDK [29]
kernel bypassing in BESPOKV (evaluated in §E).

III. BESPOKV DESIGN

In this section, we describe the design of BESPOKV and
how it provides compatibility, versatility, modularity, and high
performance for supporting distributed KV stores. Figure 2
shows the overall architecture of BESPOKV comprising five
modules: datalet, controlet, coordinator, client library, and
optional components. A collection of datalets form the data
plane, the rest of the modules makes up the control plane.
Datalet is supplied by the user and responsible for storing
data within a single node. Datalet should provide the basic
I/O interfaces (e.g., Put and Get) for the KV stores to be
implemented. We refer to this interface as the datalet API.
For example, a user can develop a simplest form of in-memory
hash table. Users can also mix and match datalets with each
datalet using a different data structure.
Controlet is supplied by BESPOKV and provides a datalet
with distributed management services to realize and enable
the distributed KV stores associated with the datalet. The
controlet processes client requests and routes the requests
to the associated entities: e.g., to a datalet for storing data.
BESPOKV provides a default set of controlets, and allows
advanced users to extend and design new controlets as needed
for realizing a service that may require specialized handling
in the controlet.

BESPOKV allows an arbitrary mapping between a controlet
and a datalet. A controlet may handle N (≥ 1) instances of
datalets, depending on the processing capacity of the controlet
and its datalets, and can leverage physical resource (datacen-
ter) heterogeneity [30], [31] for better overall utilization. For
instance, a controlet running on a high-capacity node may
manage more datalet nodes than a controlet running on a low-
capacity node. For simplicity, we use one-to-one controlet–
datalet mappings in the rest of the paper.
Coordinator provides three main functions. (1) It maintains
the metadata regarding the whole cluster topology and pro-
vides a query service as a metadata server. (2) It tracks

Datalet API (provided by application developers)
Put(key, val) Write the {key,val} pair to the datalet
val=Get(key) Read val of key from the datalet
Del(key) Delete {key,val} pair from the datalet

Client API (provided by BESPOKV)
CreateTable(T) Create a table T to insert data
Put(key, val, T) Write the {key,val} pair to table T

val=Get(key, T) Read val of key from table T

Del(key, T) Delete {key,val} pair from table T

DeleteTable(T) Delete table T

TABLE II: APIs to Put, Get, and Del a KV pair. Datalet and
Client APIs are for using pre-built controlets.

the liveness of the cluster by exchanging periodic heartbeat
messages with the controlets. (3) It coordinates failover in
case of a node failure. The coordinator can run on separate
node or alongside other controlets.

BESPOKV implements the coordinator on top of
ZooKeeper [32] for better resilience. Similar to designing
specialized controlets, advanced users have the option to
design customized coordinators if needed. It is also possible to
design a new coordinator as a special form of controlet from
scratch using the BESPOKV-provided controlet programming
abstraction as shown in section III-B. Nonetheless, because it
is widely used across many KV stores, BESPOKV includes
the coordinator as a default module in the control plane.
Client library is provided by BESPOKV and used by the
client applications to utilize the services created by BESPOKV.
The library provides a flexible means for mapping data to
controlets. The client application uses the library interface to
consult with the coordinator and fetch data partitioning and
mapping information, which is then used to route requests to
appropriate controlets. BESPOKV allows different developers
to choose their own partitioning techniques such as consistent
hashing and range-based partitioning.
Optional Components BESPOKV provides two optional com-
ponents facilitating the controlet development: 1) a distributed
lock manager (DLM) for a locking service, and 2) a Shared
Log for an ordering service. One can build such a distributed
management service as a special form of controlets from
the scratch, but given its common use in distributed KV
store development, BESPOKV imports existing solutions (e.g.,
Redlock [33] for DLM, and ZLog [34], [35], [36] for Shared
Log) and provides interface libraries (section III-B, Table III).
A. Data Plane

A collection of datalets running on different distributed
nodes form the data plane for BESPOKV. A single-server



Events API (provided by BESPOKV)
Register(c,e,cb) Register basic event e for conn c to call func cb

Enable(c,e) Enable event e to be triggered onc time for conn c

On(e,cb) Register extended event e to call func cb

Emit(e) Emit event e
Shared Log API (provided by BESPOKV)

CreateLog Creates a new log instance L

PutSharedLog(m, L) Append message m to log L

AsyncFetch(L) Asynchronous read from log L

DLM API (provided by BESPOKV)
Lock(key) Acquire lock on key

Unlock(key) Unlock key

Coordinator API (provided by BESPOKV)
LogHeartbeat(c,d) Log heartbeat for controlet c & datalet d
map=GetShardInfo(s) Get controlet & datalet list for shard s

c=LeaderElect(s) Elect new Master controlet for shard s

TABLE III: APIs for Events, Shared Log, DLM, and Coordi-
nator for new controlet development. Due to space limitation,
we list only important APIs.

datalet is completely unaware of other datalets. Datalet De-
velopment. BESPOKV supports multiple backends. Users can
make use of off-the-shelf single-serve data stores such as
Redis [18], SSDB [37], and Masstree [21]. In addition, BE-
SPOKV provides datalet templates based on commonly used
data structures: currently, a hash-table-based tHT, a log-based
tLog, and a tree-based tMT. For the ease of development,
BESPOKV furnishes an asynchronous event-driven network
programming framework in which developers can design new
datalets, starting from existing templates. We evaluate the
reduced engineering effort in §VII.
APIs and Protocol Parsers. For compatibility and modularity,
BESPOKV provides a clean set of datalet APIs (between
controlet and datalet) and client APIs (between client app and
client library). Table II presents example datalet and client
APIs. As these APIs are consistent with existing I/O interfaces
of existing KV stores. Datalet developers can adopt them in
a straightforward manner to enable distributed services. This
is much easier than library-based replication solutions such as
Vsync [38] where developers should learn complex new APIs.

To offer compatibility and be able to understand application
protocols to process incoming requests properly, BESPOKV’s
communication substrate supports two options. (1) It pro-
vides a BESPOKV-defined protocol using Google Protocol
Buffers [39]. This option is suitable for new datalets and is
preferred due to its ease of use and better programmability.
(2) BESPOKV allows developers to provide a parser for their
own protocols. This option is mainly available for porting
existing datalets such as Redis or SSDB.
B. Control Plane

BESPOKV provides a set of pre-built controlets that pro-
vide datalets with common distributed management. Given a
datalet, BESPOKV makes distributed KV stores immediately
ready-to-use. Developers can also extend these pre-built con-
trolets or design new ones from scratch for advanced services.
Pre-built Controlets. BESPOKV identifies four core com-
ponents for distributed management, and provides pre-built
controlets that support common design options in existing dis-
tributed KV stores. The choice is based on our comprehensive
study of existing systems that revealed three key observations:
(1) cluster topology, consistency model, replication, and fault
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tolerance generally define distributed features of KV stores;
(2) for the topology, MS and AA are common; and (3) for the
consistency model, SC and EC are popular. Detailed descrip-
tions of exemplary controlets supporting MS+SC, MS+EC,
AA+SC, and AA+EC options follow in §IV.
Controlet Development. To support advanced users and new
kinds of services, BESPOKV provides an asynchronous event-
driven network programming framework for controlet devel-
opment as well. For each event (e.g., Put request, timeout,
etc.), developer can define event handlers to instruct how
the controlet should process the event to enable versatile
distributed management services in the control plane. The
aforementioned pre-built controlets indeed consist of a set of
pre-defined event handlers for common distributed services.
Control Plane Configuration. To configure the system, each
controlet takes as input (1) a JSON configuration file that
specifies the basic system deployment parameters such as
topology, consistency model, the number of replicas, and
coordinator address ; and (2) a datalet host file containing the
list of datalets to be managed. BESPOKV loads the runtime
configuration information at the coordinator, which serves
as the query point for the client library and controlets to
periodically retrieve configuration updates. Any change in
configuration at runtime (e.g., topology/consistency switch)
results in replacing old controlets with new ones. We describe
dynamic adaptation mechanisms in §V in detail. Contro-
let Programming Abstraction BESPOKV uses asynchronous
event-driven programming model to achieve high throughput.
For each event (e.g., incoming network input, timer, etc.),
developers are asked to define event handlers to process the
event. There are two types of events in BESPOKV: basic and
extended events. Basic events represent pre-defined conditions.
Developers can create their own extended events by using
basic or existing extended events.
Other Controlet APIs. BESPOKV provides a set of libraries
and APIs with common features for controlet development,
shown in Table III.

IV. BESPOKV-BASED DISTRIBUTED KV STORES

BESPOKV, to be specific its control plane, transparently
turns a user-provided single-server datalet to a scalable, fault-
tolerant distributed KV store. This section presents support
for MS+SC (See §C for MS+EC, AA+SC, and AA+EC) and
four examples to enable new forms of distributed services by
combining existing controlets or extending ones.



A. Master-Slave & Strong Consistency
We start from a KV store supporting the MS topology with

the SC model (MS+SC). Perhaps the simplest way to ensure
SC is to rely on a locking mechanism using ZooKeeper [32] at
the cost of serialization. However, alternative scalable designs
exist such as chain replication (CR) [40], value-dependent
chaining [10], and their variants. The pre-built BESPOKV
controlet for MS+SC leverages CR algorithm. Our modular
design allows BESPOKV to adopt other optimizations for
CR [41], [42] as well, but so far we have not implemented
those. The original CR paper describes the tail sending a
message directly back to the client; but similar to CRAQ [42],
our implementation lets the head respond after it receives an
acknowledgment from the tail, given its pre-existing network
connection with the client.
Example. Figure 3 shows how MS+SC is implemented in
BESPOKV. Here, clients route Puts to the head of the
corresponding controlet–datalet chains via consistent hashing
(step 1). The head controlet forwards the incoming Put request
to its local datalet (step 2) and then to mid node (step 3),
which forwards the request to its local datalet and then to
tail (step 4). Tail first forwards the request to local datalet
and then sends Ack back to mid, which sends Ack back to
head (step 5). Once the head controlet receives the Ack from
the mid, the head controlet marks the request completed and
responds to the client (step 6). Gets are routed to the tail node
of the corresponding chains. This provides the SC guarantee
as clients are only notified of the successful completions of
Puts after the data is persisted through the tail nodes.
Failover. In all cases (MS+SC, MS+EC, AA+SC, and
AA+EC), when the coordinator detects a node failure using a
periodic heartbeat message, it launches a new controlet–datalet
pair in recovery mode on one of the standby nodes. The new
controlet then recovers the data from one of the datalets.

In particular, for MS+SC using chain replication, the coor-
dinator performs the chain recovery process and adds the new
pair as the new tail to the end of the chain. The former chain
recovery process depends on the location of the failure in the
replica chain as follows. If a middle node fails, the coordinator
notifies the head controlet to skip forwarding requests to the
failed node. In case the tail node fails, the coordinator informs
the head controlet to skip forwarding requests to the tail datalet
and temporarily marks the second to the last node as the new
tail so that future incoming Get requests can be redirected
properly. If the head node fails, the coordinator appoints the
second node in chain as the new head, and updates the cluster
metadata. Upon seeing the change, the clients redirect future
writes to the new head. Every node maintains a list of requests
received but not yet processed by the tail, which is used to
resolve in-flight requests [42], [40].

B. Range Query
We support range query or scan operations as fol-

lows. For datalets, the Masstree-based tMT template is
used and extended to expose a range query API such as
GetRange(Start, End). The client library supports range-

based partitioning, e.g., dividing the name space by alphabet-
ical order (e.g., A-C on one node, D-F on another node, and
so on). The controlet divides a client request into sub-requests
and forwards the sub-range query requests to corresponding
datalets that store the specified range.

C. Per-request Consistency
We extend the client library GET API to support con-

sistency/topology specification on a per-request basis. For
instance, under MS+SC, if the user specifies a lower value
of consistency level, GETs can go to any of the replicas, thus
only eventual consistency is guaranteed.

D. Polyglot Persistence
A use case for KV store is to support businesses that may

be divided into different components, and each component
requires its own private data storage. BESPOKV supports such
polyglot persistence [43] by launching custom controlets for
cross-app lazy synchronization (eventual consistency).

E. Other Topologies
BESPOKV also supports an AA-MS hybrid topology by

configuring an MS topology for each shard on top of the
logical AA overlay. Similarly, a P2P-like topology can also be
enabled by allowing clients to send a request to any controlet,
which then routes the request to the actual controlet that
manages the requested data. In this case, a controlet needs
to maintain a routing map similar to a finger table [44] to
determine the location of keys.

V. DYNAMIC ADAPTATION TO CONSISTENCY AND
TOPOLOGY MODEL CHANGES

Separating the control and data planes bring another benefit:
BESPOKV-enabled distributed KV stores can seamlessly adapt
to consistency and topology model changes at runtime by
switching the controlets while keeping the datalets unchanged.
At a high level, upon a consistency and/or topology change
request, Coordinator launches a new set of controlets that will
provide new services. Two old and new controlets are mapped
to one datalet during the transition phase. The old controlet
provides the old service with no downtime, and forwards
some requests to the new controlet so that it can prepare
the new service. When the transition completes, the new
controlet takes over the old one. The transition protocol differs
per each case. BESPOKV supports any transition between
four aforementioned topology and consistency combinations,
among which we describe two interesting cases in detail.
section VIII-C presents the experimental results on this aspect.
A. Transition from MS+EC to MS+SC

To make a transition from EC to SC, the master node needs
to make sure that all the Put requests 1) that have arrived
before the transition starts and 2) that arrive during transition
are fully propagated to the slave nodes. For the former, the
old master keeps flushing out any pending propagation. For
the latter, the old master forwards an incoming Put request
to the new master controlet which uses chain replication for
SC, instead of propagating it asynchronously. When there
is no more pending propagation left in the old controlet,
the transition is over. SC guarantees will be enforced after
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Fig. 4: Transition: MS+EC to MS+SC and AA+EC to MS+EC.

the transition has completed. During the transition, any node
may respond to Get requests, providing EC guarantee. This
means that a Get request, even after the reconfiguration was
requested, may experience EC until the transition is over.
As controlet developers are responsible for developing the
transition functionality for the various consistency/topology
modes. A controlet developer can choose an alternative route
to fence all writes as soon as the reconfiguration is requested
so that all reads observe the same and latest applied value.

Figure 4 (a) shows transition from MS+EC to MS+SC 2.
Client 1 sends a Put request (Step 1a) to the old master
controlet C1. A concurrent Get request (Step 1b) from Client
2 gets serviced as it used to be. The old master forwards
Put request (Step 2) to the new master controlet which
guarantees SC. When the new master completes its chain
replication process, it acknowledges the old master, which in
turn acknowledges Client 1. When the transition completes, a
Put request (Step 3) is routed to the new master controlet.
B. Transition from AA+EC to MS+EC

In AA+EC, any active node can get a Put request. To
maintain a global ordering between concurrent Puts, an active
node relies on the Shared Log that propagates Puts to the
other nodes on its behalf. On the other hand, in MS+EC,
only the master node gets Put requests and is in charge of
propagating them to the slaves. Therefore, the key operation
in the transition from AA+EC to MS+EC is to move the role
of propagating Puts from the Shared Log to the new master.
To this end, when the transition starts, the new master node
takes the in-flight Puts that have not been propagated yet
from the Shared Log and starts propagating them by itself.
When an old active controlet receives a Put request during
transition, it does not consult with Shared Log, but forwards
the request to the new master node which will eventually
propagates the request. The Get requests are not affected.
Figure 4 (b) shows an example where a Put request (Step 1)
is forward to the new master (Step 2) during transition. When
the transition completes, a Put request (Step 3) is serviced by
the new master. The transition from MS+EC to AA+EC can
be supported by the reverse step order.

VI. BESPOKV’S USE CASES

A. Hierarchical and heterogeneous storage of HPC
HPC big data problems require efficient and scalable storage

systems, but load balancing I/O servers at scale remains a chal-

2Reverse transition from MS+SC to MS+EC is trivial as the new master
just needs to start using asynch. propagation instead of chain replication.
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Fig. 5: Put/Get paths in MS+EC for HPC monitoring to
perform I/O load balancing.

lenge. Statistical analysis [45] and Markov chain model [46]
have been used to predict shared resource usage. A KV store
can be used to collect runtime statistics from HPC storage
systems for accurate prediction. However, existing KV stores
are designed for one type of storage architecture (in-memory,
SSD, NVM, etc.), leading to suboptimal performance.

BESPOKV supports the use of different datalets to store
replicas of a KV pair, where each of these datalet can be
tuned for different memory and storage architecture. By doing
so, BESPOKV unifies multiple data abstraction together and
enables multifaceted view on shared data with configurable
consistency and topology. Figure 5 shows an example of
how BESPOKV unifies three different data abstractions – a
log-structure merge-tree, Masstree, and log, and transparently
provides master-slave topology (MS) and eventual consistency
(EC). Data is replicated asynchronously in batch mode from
master to slaves. In this design, it is possible to run applica-
tions with different properties (e.g., write-intensive and read-
intensive apps) together.

There are two advantages of this design architecture. First,
different applications can choose datalet that best suits their
need. As a typical use case, monitoring data collection is write-
intensive workload, and prefers a scalable solution that is able
to persist all data on persistent storage. Whereas, analytical
models incur read intensive workload which could benefit from
high read throughput. Second, replicas in different datalets are
not evicted simultaneously. For instance, a replica of a KV pair
may evict from in-memory based datalet due to size restriction
but another replica may stay longer in NVM/SSD based datalet
or stay forever in log based datalet that uses HDD.

To evaluate this scenario, we develop a monitoring system
for Lustre parallel file system that collects monitoring data
from different components of Lustre. The collected data is
used by an analytics model to perform I/O load balancing
for big data HPC applications. As monitoring workload is
dominated by Put, we choose a log-structure merge-tree as
our first datalet. Contrarily, analysis workload is read-intensive
so we select Masstree as our second datalet. For persistence
of data, we use log based datalet that stores on HDD.

The monitoring workload is obtained by running three HPC
applications simultaneously on a production Lustre deploy-
ment. First application is Hardware Accelerated Cosmology
Code (HACC), second is IOR benchmark, and third is a
transaction processing application from a large financial in-
stitution. The workload consists of monitored data which
includes system level stats from Metadata Server (MDS)
and Object Storage Server (OSS), and overall metadata from



Object Storage Target (OST) and Metadata Target (MDT).
The collected time series data is propagated as KV pairs to
BESPOKV (deployed on 24 nodes setup) via the client side
library integrated with probe agents. Analytics model captures
two properties of HPC applications’ I/O requests namely,
stripe count and number of bytes to be written. The predicted
requests along with the current application requests are used to
drive load balancer. The workload is completely read-intensive
with uniform distribution.

Figure 6 shows the result of using different data
abstractions for monitoring and analytics workloads.
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Fig. 6: Effect of using differ-
ent data abstractions.

As shown, LSM outperforms
B+ tree by 25% in terms of
average throughput for write-
intensive/monitoring workload.
Whereas, the average through-
put of B+ tree is 35% better
compared to LSM for read-
intensive/analytics workload. Furthermore, both B+ tree and
LSM outperform log. These results clearly show that BE-
SPOKV’s ability to map applications to appropriate datalet
that best suits application needs improve performance.
B. Distributed cache for deep learning

Machine learning (ML) and deep learning (DL) techniques
are becoming more popular in HPC for solving problems in
human health, high-energy physics, material discovery and
other scientific areas [47]. Accordingly, more HPC systems
(e.g., Summit [48], [49]) are being designed to facilitate to
run DL applications by employing a hybrid architecture (i.e.,
combining CPUs and GPUs) with the ample memory space
and fast interconnects.

DL applications are characterized by their massively parallel
and data-intensive workloads [50]. Especially, pre-processing
and ingesting the training dataset from the I/O subsystem
becomes a significant bottleneck, which causes GPUs to sit
idle waiting for the next dataset to work on. Typical DL
algorithms require the entire dataset (e.g., millions of image
files) to be passed to the neural network through multiple
iterations to reach the optimal result with a desired accuracy.
Furthermore, the dataset tends to be extremely large to fit in
a single pass and oftentimes has to be divided into multiple
batches. Unfortunately, traditional HPC parallel file systems
are not designed to accelerate such parallel accesses to massive
number of small files, and scientists are seeking for alternative
solutions using KV store to expedite the data ingestion pro-
cess [51]. However, existing KV stores are not flexible enough
to support diverse computing environments and application
needs. Moreover, building and customizing a distributed KV
store can be frustrating to domain scientists.

BESPOKV can be used to build a distributed cache to
improve the I/O performance for training DL models. In
particular, BESPOKV’s support for multiple backends makes
it suitable for wide variety of ML problems where dataset
can range from small KV pairs to large objects. BESPOKV
also allows application developers to customize the network
topologies and consistency models.

We have prototyped a distributed cache using BESPOKV
and added support for DPDK kernel bypassing [29] for low
latency DL queries. We evaluate the efficacy of our distributed
cache by running an image segmentation model with a 100 GB
training dataset. Our approach could complete the training
4× faster than the extant approach (40 images/sec. vs. 10
images/sec.).

C. Building burst buffer file systems
Burst buffer file systems are becoming an indispensable

framework to quickly absorb application I/O requests in ex-
ascale computing [52], [53], [54], [55]. Many burst buffer
file systems adopt KV stores to manage file system metadata.
BESPOKV allows to develop similar file systems with less
development effort. In particular, the dynamic and flexible
nature of BESPOKV well suits with ephemeral burst buffer
file systems [52]. An ephemeral burst buffer file system has
to be dynamically constructed and destroyed within compute
nodes assigned to a corresponding job. In such a scenario,
BESPOKV can quickly initialize the distributed KV store for
storing file system metadata.

Furthermore, BESPOKV also allows to dynamically tune
the file system behavior. For instance, it is often preferred to
relax the strong POSIX consistency semantics for certain HPC
workloads (e.g., checkpointing) to maximize the parallel I/O
performance [56]. BESPOKV can simplify the development of
such a file system, because it natively supports an instantiation
of the distributed KV store with desired consistency and
reliability levels.
D. Accelerating the file system metadata performance

KV store is also widely adopted to enhance the performance
of file system metadata operations in HPC systems. Metadata
performance is one of the major limitations in HPC parallel
file systems. A popular approach to address this limitation
is to stack up a special file system atop the parallel file
system [57], [58], [59]. The stacked file system then quickly
absorbs the metadata operations by exploiting a distributed
KV store. BESPOKV can accelerate the development of such a
stacked file system (evaluated in section VIII-B). Specifically,
BESPOKV allows to explore various datalets in backend, and
also dynamically tune the file system behavior to comply with
the desired performance, consistency and reliability levels.

E. Resource and process management
KV store has also been used to aid the resource and

process management in HPC systems [2], [60]. BESPOKV
can help develop an advanced job launching system, because
it can adapt to different topology and consistency models
on the fly. For example, the simple MS topology may be
sufficient for handling jobs on a single cluster, but the AA
topology may become more suitable when jobs spans multiple
clusters (evaluated in sections VIII-B and VIII-C).

VII. BESPOKV IMPLEMENTATION

Current implementation of BESPOKV consists of ~69k lines
of C++/Python code without counting comments or blank
lines. Except controlets, BESPOKV consists of five compo-
nents. (1) Control Core implements the control plane backbone



with support for event and message handling. (2) Client library
helps clients route requests to appropriate controlets, and
is extended from libmc [61], a in-memory KV store client
library. (3) Coordinator uses ZooKeeper [32] to store topology
metadata of the whole cluster and coordinates leader elections
during failover. It includes a Python-written failover manager
that directly controls the data recovery as well as handling
BESPOKV process failover. (4) Lock server APIs implement
two lock server options—ZooKeeper-based [62] and Redlock-
based [33]. (5) Shared Log handler is implemented using ZLog
[34], based on CORFU.

The BESPOKV prototype has four pre-built controlets as de-
scribed in §IV. All controlet shares the sample event-handling
controlet template of 150 LoC. In addition, BESPOKV sup-
ports multiple backend datalets with protocol parsers. Using
the common datalet template of 966 LoC, we implemented
three new datalets with a Protobuf-based [39] parser: tHT, an
in-memory hash table; tLog, a persistent log-structured store
that uses tHT as the in-memory index; and tMT, a Masstree-
based [63] store. In addition, BESPOKV are compatible with
existing single-server KV stores SSDB [37] and Redis [18]
that use a simple text-based protocol parser. With protocol
parsers, we refer them tSSDB and tRedis, respectively. Docker
based BESPOKV is partially supported right now. We plan to
use Kubernetes [64] to simplify deployment in near future.

Using the template-based design approach, we note that
for developers (with few years of C/C++ programming expe-
rience) non familiar to BESPOKV it took almost three and six
person-days time to develop datalet and controlet, respectively.
This underscores BESPOKV’s ability to ease development of
distributed KV stores.

VIII. EVALUATION
Our evaluation answers the following questions:

• Are BESPOKV-enabled distributed KV stores scalable (sec-
tion VIII-B), adaptive to topology and consistency changes
(section VIII-C), and extensible (section VIII-D)?

• How does BESPOKV compare to existing proxy-based (sec-
tion VIII-E), and natively-distributed (section VIII-F) KV
stores?

• How well BESPOKV handles a node failure? (§D)

A. Experimental Setup
Testbeds and configuration We perform our evaluation on
Google Cloud Engine (GCE) and a local testbed. For larger
scale experiments (section VIII-B – section VIII-E), we make
use of VMs provisioned from the us-east1-b Zone in GCE.
Each controlet–datalet pair runs on an n1-standard-4 VM
instance type, which has 4 virtual CPUs and 15 GB memory.
Workloads are generated on a separate cluster comprising
nodes of n1-highcpu-8 VM type with 8 virtual CPUs to
saturate the cloud network and server-side CPUs. A 1 Gbps
network interconnect was used.

For performance stress test (section VIII-F) and fault tol-
erance experiments (§D), we use a local testbed consisting
of 12 physical machines, each equipped with 8 2.0 GHz
Intel Xeon cores, 64 GB memory, with a 10 Gbps network
interconnect. The coordinator is a single process (backed-up
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Fig. 7: BESPOKV scales tHT horizontally.

using ZooKeeper [32] with a standby process as follower)
configured to exchange heartbeat messages every 5 sec with
controlets. We deploy the DLM, Shared Log, Coordinator and
ZooKeeper on separate set of nodes. BESPOKV’s coordinator
communicate with ZooKeeper for storing metadata.
Workloads We use two workloads obtained from typical HPC
services: job launch, and I/O forwarding and three workloads
from the Yahoo! Cloud Serving Benchmark (YCSB) [65].

We use approach similar to [2] to generate HPC work-
loads. The job launch workload is obtained by monitoring
the messages between the server and client during a MPI
job launch. Control messages from the distributed servers
are treated as Get whereas results from the compute nodes
back to the servers as Put. The I/O forwarding workloads
is generated by running SeaweedFS [66], a distributed file
system which supports KV store for metadata management.
The clients first create 10,000 files, and then performs reads
or writes (with 50% probability) on each file. We collect the
log of the metadata server. We extend these workloads several
times until reaching 10M requests with the goal to reflect the
time serialization property of the obtained messages.

For YCSB we use an update-intensive workload (Get:Put
ratio of 50%:50%), a read-mostly workload (95% Get), and
a scan-intensive workload (95% Scan and 5% Put). All
workloads consist of 10 million unique KV tuples, each with
16 B key and 32 B value, unless mentioned otherwise. Each
benchmark process generates 10 million operations following
a balanced uniform KV popularity distribution and a skewed
Zipfian distribution (where Zipfian constant = 0.99). The
reported throughput is measured in terms of thousand queries
per second (kQPS) as an arithmetic mean of three runs.

B. Scalability
Figure 7 shows the scalability of BESPOKV-enabled dis-

tributed tHT. We measure the throughput when scaling out tHT
from 3 to 48 nodes on GCE. The number of replicas is set to
three. We present results for all four topology and consistency
combinations: MS+SC, MS+EC, AA+SC, and AA+EC. For
all cases, BESPOKV scales tHT out linearly as the number
of nodes increases for both read-intensive (95% Get) and
write-intensive (50% Get) workloads. For SC, MS+SC using
chain replication scales well, while AA+SC performs worse as
expected in locking based implementation. For EC, the results
show that our EC support scales well for both MS+EC and
AA+EC. Performance comparison to existing distributed KV
stores will follow in section VIII-F.
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Figure 8 shows simi-
lar trend for HPC oriented
workloads. We again ob-
serve that MS outperforms
AA for SC whereas the trend
is opposite for EC where AA
performs better than MS.
We also observe that perfor-
mance of I/O forwarding is
slightly better than Job launch. This is because I/O forwarding
workload has 12% more reads than Job launch with Get:Put
ratio of 62%:38%.

Figure 9 shows the scalability when varying the number of
nodes from 3 to 48, with tSSDB, tLog, and tMT as datalet.
Due to space constraints, we only present the result with the
MS+EC configuration. While enabling eventual consistency
with fault tolerance, BESPOKV provides good scalability for
all three. In terms of performance, tMT is an in-memory
database and thus outperforms both tLog and tSSDB which
persist data on disk. It is as expected that the throughput
of Scans (range queries) is much lower than point queries.
A 48 node tMT cluster gives 18k QPS on Zipfian 95%
Scan, while Uniform yields slightly higher throughput (21k).
Interestingly, this test covers a potential use case of BE-
SPOKV+tLog for flash storage disaggregation, where users can
exploit the scale-out capacity of an array of fast SSD (flash)
devices/nodes with low-latency datacenter network [67], [68].

C. Adaptability
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We evaluate BESPOKV’s
adaptability in switching
online consistency levels
and topology configurations
(§V). In all the tests we
use 3 shards with a Zipfian
workload of 95% Get. As
shown in Figure 10, the
transition is scheduled to
be triggered at 20 sec. The
throughput drops to the lowest point for all three cases. This
is because clients switch connection to the new controlets.
Performance stabilizes in ~5 sec, because all the in-flight
requests are handled during this process. We observe similar
trends for other possible transitions that can be enabled by
BESPOKV. This demonstrates BESPOKV’s flexibility and
adaptability in switching between different key designs &
configurations. This also shows that BESPOKV is able to
complete switching in extremely short time compared to
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Fig. 11: BESPOKV adds MS+SC and AA+EC for Redis.
Comparison with Dynomite (Dyno) and Twemproxy (Twem).
existing solutions because BESPOKV does not require data
migration or down time.
D. Extensibility and New Services

As sketched in §IV, BESPOKV can be extended to support
new forms of distributed services. This section evaluates two
examples: per-request consistency and polyglot persistence.

We evaluate the per-request consistency service (Sec-
tion IV-C) under MS+SC and a Zipfian workload with a
25:75% ratio of SC:EC as the desired consistency. We ob-
served the performance to be between MS+SC and MS+EC
as shown in Figure 7; for example, with 24 nodes, we obtain
~300k QPS for 95% Get and ~270k QPS for 50% Get

workloads. We also evaluate the average latency of each
request. With a weaker consistency requirement, the GET

latency is 0.67 ms. We get an average of 1.02 ms latency
with default strong consistency.

We test polyglot persistence (section IV-D) by storing each
replica in a different type of datalet. We use tHT, tLog and tMT
in MS topology with eventual consistency. The performance
of the resulting configuration under Uniform workload is very
similar to the numbers in Figure 7 and 9; for example, with
24 nodes, we obtain 375k QPS for 95% Get and 200k QPS
for the 50% Get workload.
E. Comparison to Proxy-based Systems

This section shows that BESPOKV can support new topolo-
gies and consistency models for existing single-server KV
store, and them compares BESPOKV with two state-of-the-
art Proxy-based KV stores. We test BESPOKV+Redis (tRedis)
running in MS+SC, MS+EC and AA+EC modes, reusing
SSDB’s text-based protocol parser for Redis. We measure
the throughput of tRedis on eight 3-replica shards across 24
nodes on GCE, and compare it with Dynomite [19] supporting
AA+EC only, and Twemproxy [16] supporting MS+EC only.

Figure 11 shows the throughput. BESPOKV enables new
MS+SC (~500k QPS under Zipfian 95% Get) and AA+EC
(~750k QPS under Zipfian 95% Get) configurations with
reasonable performance. As expected, MS+SC is more ex-
pensive than MS+EC. Twemproxy is just a proxy to route
requests using consistent hashing to a pool of backend servers.
Hence, Twemproxy+Redis in supporting MS+EC performs
slightly better than BESPOKV in supporting MS+EC. How-
ever, we observed the same performance for Dynomite+Redis
in supporting AA+EC configuration for Redis as BESPOKV
in supporting AA+EC.
F. Comparison to Natively-Distributed Systems

In this experiment, we compare BESPOKV-enabled KV
stores with two widely used natively-distributed (off-the-shelf)
KV stores: Cassandra [7] and LinkedIn’s Voldemort [69].
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These experiments were conducted on our 12-node local
testbed in order to avoid confounding issues arising from
sharing a virtualized platform. We launch the storage servers
on six nodes and YCSB clients on the other four nodes to
saturate the server side. The coordinator, lock server (only
for AA+SC), ZLog (only for AA+EC), and ZooKeeper are
launched on separate nodes. We use tHT as a datalet to show
high efficiency of BESPOKV-enabled KV stores.

For Cassandra, we specify consistency level of one to make
consistency requirements less stringent. Cassandra’s replica-
tion mechanism follows the AA topology with EC [70]. For
Voldemort we use a server-side routing policy, all-routing as
the routing strategy, a replication factor of three, one as the
number of reads or writes that can succeed without client
getting an exception, and persistence set to memory.

Figure 12 shows the latency and throughput for all tested
systems/configurations when varying the number of clients
to increase the throughput in units of kQPS.3 For AA+EC,
BESPOKV outperforms Cassandra and Voldemort. For read-
intensive workload ,BESPOKV’s throughput gain over Cassan-
dra and Voldemort is 4.5× and 1.6×, respectively. For write-
intensive workload , BESPOKV’s throughput gain is 4.4×
over Cassandra and 2.75× over Voldemort. In this experiment
Cassandra was configured to use persistent storage. However
even using tLog as a datalet for BESPOKV(also uses persistent
storage) we observed a throughput gain of 2.6× and 1.2×
over Cassandra and Voldemort, respectively. We suspect that
this is because Cassandra uses compaction in its storage
engine which significantly effects the write performance and
increases the read latency due to use of extra CPU and disk
usage [71]. Voldemort uses the same design and both are based
on Amazon’s Dynamo paper [6]. Furthermore, our findings
are consistent with Dynomite in terms of the performance
comparison with Cassandra [71].

As an extra data point, we also see interesting tradeoffs
when experimenting with different configurations supported
by BESPOKV. For instance, MS+EC achieves performance
comparable to AA+EC under 95% Get workload since both
configurations serve Gets from all replicas. AA+EC achieves
47% higher throughput than MS+EC under 50% Get work-
load, because AA+EC serves Puts from all replicas. For
AA+SC, lock contention at the DLM caps the performance for
both read- and write-intensive workloads. As a result, MS+SC
performs 3.2× better than AA+SC for read-intensive workload
and ~2× better for the write-intensive workload.

3Uniform workloads show similar trend, hence are omitted.

IX. RELATED WORK

Dynomite [19] adds fault tolerance and consistency support
for simple data stores such as Redis. Dynomite only supports
eventual consistency with AA topology. It also requires the
single-server applications to support distributed management
functions such as Redis’ streaming data recovery/migration
mechanism. BESPOKV’s datalet is completely oblivious of the
upper-level distributed management, which offers improved
flexibility and programmability.

Pileus [72] is a cloud storage system that offers a range of
consistency-level SLAs. Some storage systems offer tunable
consistency, e.g., ManhattanDB [73]. Flex-KV [74] is another
flexible key-value store that can be configured to act as a
non-persistent/durable store and operates consistently/incon-
sistently. Morphus [75] provides support towards reconfigura-
tions for NoSQL stores in an online manner. MOS [76], [77]
and hatS [78], [79] provide flexible and elastic resource-level
partitioning for serving heterogeneous object store workloads.
ClusterOn [80] proposes to offer generic distributed systems
management for a range of distributed storage systems. To
the best of our knowledge, BESPOKV is the first generic
framework that offers a broad range of consistency/topology
options for both users and KV store application developers.

Vsync [38] is a library for building replicated cloud services.
BESPOKV embeds single-node KV store application code
and automatically scales it with a rich choice of services.
Going one step further, BESPOKV can be an ideal platform
to leverage library support such as Vsync to further enrich
flexibility. EventWave [81] elastically scales inelastic cloud
programs. PADS [82] provides policy architecture to build
distributed applications. Similarly, mOS [83] provides reusable
networking stack to allows developers to focus on the core
application logic instead of dealing with low-level packet
processing. BESPOKV focuses on a specific domain with a
well-defined limited set of events–KV store applications.

Using distributed log to facilitate data management has
also been studied. CORFU [35], vCorfu [84], and Tango [85]
enable flexible data management by leveraging a Shared Log
over an SSD array. BESPOKV utilizes a shard log to not
only guarantee ordering but also to provide seamless transition
between different topologies (i.e., MS and AA).

X. CONCLUSION

We have presented the design and implementation of BE-
SPOKV, a framework, which takes a single-server data store
and transparently enables a scalable, fault-tolerant distributed
KV store service. Evaluation shows that BESPOKV is flexible,
adaptive to new user requirements, achieves high performance,
and scales horizontally. BESPOKV has been open-sourced and
is available at https://github.com/tddg/bespokv.

ACKNOWLEDGEMENT

We thank our shepherd, Ioan Raicu, and the reviewers for
the valuable feedback. This work is sponsored in part by the
NSF under the grants: CNS-1565314, CNS-1405697, CNS-
1615411, and CNS-1814430.



REFERENCES

[1] J. Kim, S. Lee, and J. S. Vetter, “Papyruskv: a high-performance parallel
key-value store for distributed nvm architectures,” in ACM/IEEE SC’17.

[2] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Using
simulation to explore distributed key-value stores for extreme-scale
system services,” in ACM/IEEE SC’13.

[3] Z. W. Parchman, F. Aderholdt, and M. G. Venkata, “Sharp hash: A
high-performing distributed hash for extreme-scale systems,” in IEEE
Cluster’17.

[4] S. Eilemann, F. Delalondre, J. Bernard, J. Planas, F. Schuermann,
J. Biddiscombe, C. Bekas, A. Curioni, B. Metzler, P. Kaltstein et al.,
“Key/value-enabled flash memory for complex scientific workflows with
on-line analysis and visualization,” in IEEE IPDPS’16.

[5] “MongoDB,” https://www.mongodb.com/.
[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ser. ACM SOSP ’07.

[7] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, 2010.

[8] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in USENIX NSDI
’13.

[9] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports, “Building consistent transactions with inconsistent replication,” in
ACM SOSP’15.

[10] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: A distributed,
searchable key-value store,” in ACM SIGCOMM ’12.

[11] “Social Artisan,” http://socialartisan.co.uk/.
[12] “Behance,” https://www.behance.net/.
[13] “The Migration Process,” https://academy.datastax.com/

planet-cassandra//mongodb-to-cassandra-migration/#data model.
[14] “Why flowdock migrated from cassandra to

mongodb,” http://blog.flowdock.com/2010/07/26/
flowdock-migrated-from-cassandra-to-mongodb/.

[15] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook.” in USENIX NSDI’13.

[16] “Twitter’s Twemproxy,” https://github.com/twitter/twemproxy.
[17] “Memcached,” https://memcached.org/.
[18] “Redis,” http://redis.io/.
[19] “Netflix’s Dynomite,” https://github.com/Netflix/dynomite.
[20] “LevelDB,” https://github.com/google/leveldb.
[21] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore

key-value storage,” in ACM EuroSys ’12.
[22] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2,

pp. 131–183, Jun. 1992.
[23] “Google Cloud Platform,” https://cloud.google.com/compute/.
[24] H. N. Greenberg, J. Bent, and G. Grider, “Mdhim: A parallel key/value

framework for hpc,” in Proceedings of the 7th USENIX Conference on
Hot Topics in Storage and File Systems, ser. HotStorage’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2813749.2813759

[25] Y. Cheng, F. Douglis, P. Shilane, M. Tratchman, G. Wallace, P. Desnoy-
ers, and K. Li, “Erasing belady’s limitations: In search of flash cache
offline optimality,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016.

[26] “Workload Analysis of KV Stores,” https://www.snia.org/sites/
default/files/SDC/2017/presentations/Storage Architecture/Verma
Vishal Gohad Tushar Workload Analysis of Key-Value Stores on
Non-Volatile Media.pdf.

[27] “B-Trees, Fractal Trees, Heaps and Log Structured Merge
Trees, Where did they all come from and Why?” https:
//www.percona.com/live/17/sites/default/files/slides/Heaps%20B-trees%
20log%20structured%20merge%20trees%202017-04-25.pptx .pdf.

[28] “The CIFAR-10 dataset,” https://www.cs.toronto.edu/∼kriz/cifar.html.
[29] “DPDK,” http://dpdk.org/.
[30] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for

heterogeneous datacenters,” in ACM ASPLOS ’13.
[31] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”

warehouse-scale computers: A performance opportunity,” IEEE CAL’11.
[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free

coordination for internet-scale systems,” in USENIX ATC’10.

[33] “Distributed locks with Redis,” http://redis.io/topics/distlock.
[34] “ZLog,” https://github.com/noahdesu/zlog.
[35] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and

J. D. Davis, “Corfu: A shared log design for flash clusters,” in USENIX
NSDI ’12.

[36] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn, “Malacology: A programmable storage
system,” in ACM EuroSys ’17.

[37] “SSDB,” https://github.com/ideawu/ssdb.
[38] “Vsync,” https://vsync.codeplex.com/.
[39] “Google Protocol Buffers,” https://developers.google.com/

protocol-buffers/.
[40] R. van Renesse and F. B. Schneider, “Chain replication for supporting

high throughput and availability,” in USENIX OSDI’04.
[41] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+

consistent datastore based on chain replication,” in ACM EuroSys’13.
[42] J. Terrace and M. J. Freedman, “Object storage on craq: High-throughput

chain replication for read-mostly workloads,” in USENIX ATC’09.
[43] “Polyglot persistence,” https://en.wikipedia.org/wiki/Polyglot

persistence.
[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM ’01.

[45] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 8.

[46] A. K. Paul, A. Goyal, F. Wang, S. Oral, A. R. Butt, M. J. Brim, and
S. B. Srinivasa, “I/o load balancing for big data hpc applications,” in
Big Data (Big Data), 2017 IEEE International Conference on. IEEE,
2017, pp. 233–242.

[47] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
caffe: Co-designing mpi runtimes and caffe for scalable deep learning
on modern gpu clusters,” in Proceedings of the 22Nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’17. New York, NY, USA: ACM, 2017, pp. 193–205.

[48] “ORNL Launches Summit Supercomputer,” //www.ornl.gov/news/
ornl-launches-summit-supercomputer.

[49] “Summit,” https://www.olcf.ornl.gov/summit/.
[50] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on

big data: Opportunities and challenges,” Neurocomputing, vol. 237, pp.
350–361, 2017.

[51] S.-H. Lim, S. R. Young, and R. M. Patton, “An analysis of image storage
systems for scalable training of deep neural networks,” system, vol. 5,
no. 7, p. 11, 2016.

[52] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 69.

[53] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“Burstmem: A high-performance burst buffer system for scientific appli-
cations,” in Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 2014, pp. 71–79.

[54] D. Shankar, X. Lu, and D. K. D. Panda, “Boldio: A hybrid and resilient
burst-buffer over lustre for accelerating big data i/o,” in 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 2016, pp.
404–409.

[55] X. Shi, M. Li, W. Liu, H. Jin, C. Yu, and Y. Chen, “Ssdup: a traffic-aware
ssd burst buffer for hpc systems,” in Proceedings of the International
Conference on Supercomputing. ACM, 2017, p. 27.

[56] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. Panda, “A 1
pb/s file system to checkpoint three million mpi tasks,” in Proceedings
of the 22nd international symposium on High-performance parallel and
distributed computing. ACM, 2013, pp. 143–154.

[57] S. Patil and G. Gibson, “Scale and Concurrency of GIGA+: File System
Directories with Millions of Files,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, ser. FAST ’09, 2011.

[58] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling File Sys-
tem Metadata Performance with Stateless Caching and Bulk Insertion,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14, Piscataway,
NJ, USA, 2014.



[59] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“Deltafs: Exascale file systems scale better without dedicated servers,”
in Proceedings of the 10th Parallel Data Storage Workshop. ACM,
2015, pp. 1–6.

[60] R. H. Castain, D. G. Solt, J. Hursey, and A. Bouteiller, “Pmix: process
management for exascale environments,” in Proceedings of the 24th
European MPI Users’ Group Meeting, EuroMPI/USA 2017, Chicago,
IL, USA, September 25-28, 2017, 2017, pp. 14:1–14:10.

[61] “libmc,” https://github.com/douban/libmc.
[62] “ZooKeeper Recipes and Solutions,” https://zookeeper.apache.org/doc/

r3.1.2/recipes.html.
[63] “Embedded Masstree,” https://github.com/rmind/masstree.
[64] “Kubernetes: Production-Grade Container Orchestration,” https://

kubernetes.io/.
[65] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in ACM SoCC ’10.
[66] “SeaweedFS,” https://github.com/chrislusf/seaweedfs.
[67] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash

storage disaggregation,” ser. ACM EuroSys ’16.
[68] N. Zhao, A. Anwar, Y. Cheng, M. Salman, D. ping Li, J. Wan, C. Xie,

X. He, F. Wang, and A. R. Butt, “Chameleon: An adaptive wear balancer
for flash clusters,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

[69] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in
USENIX FAST’12.

[70] N. Carvalho, H. Kim, M. Lu, P. Sarkar, R. Shekhar, T. Thakur, P. Zhou,
and R. H. Arpaci-Dusseau, “Finding consistency in an inconsistent
world: Towards deep semantic understanding of scale-out distributed
databases,” in USENIX HotStorage ’16.

[71] “Why not Cassandra,” http://www.dynomitedb.com/docs/dynomite/v0.5.
6/faq/.

[72] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in ACM SOSP’13.

[73] “Manhattan, our real-time, multi-tenant distributed database for Twitter
scale,” http://goo.gl/7EThfo.

[74] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and W. Belluo-
mini, “Flex-KV: Enabling high-performance and flexible KV systems,”
in Workshop on Management of Big Data Systems’12.

[75] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting
online reconfigurations in sharded nosql systems,” IEEE Transactions
on Emerging Topics in Computing, 2015.

[76] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “Taming the cloud object
storage with mos,” in ACM PDSW, 2015.

[77] ——, “Mos: Workload-aware elasticity for cloud object stores,” in ACM
HPDC, 2016.

[78] K. Krish, A. Anwar, and A. R. Butt, “hats: A heterogeneity-aware tiered
storage for hadoop,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. IEEE, 2014, pp.
502–511.

[79] ——, “[phi] sched: A heterogeneity-aware hadoop workflow scheduler,”
in Modelling, Analysis & Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2014 IEEE 22nd International Symposium
on. IEEE, 2014, pp. 255–264.

[80] A. Anwar, Y. Cheng, H. Huang, and A. R. Butt, “Clusteron: Building
highly configurable and reusable clustered data services using simple
data nodes,” in USENIX HotStorage’16.

[81] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian,
“Eventwave: Programming model and runtime support for tightly-
coupled elastic cloud applications,” in ACM SOCC’13.

[82] N. M. Belaramani, J. Zheng, A. Nayate, R. Soulé, M. Dahlin, and
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APPENDIX A
ARTIFACT DESCRIPTION: BESPOKV

Abstract—This description contains the information needed to
launch experiments of the SC’18 paper ”BESPOKV: Applica-
tion Tailored Scale-Out Key-Value Stores”. More precisely, we
explain how to compile, run, deploy, configure, and benchmark
BESPOKV to reproduce the results. Additionally, we also explain
how to develop controlets used in the examples section of the
paper.

A. How to deliver?
BESPOKV source can be cloned or downloaded from

GitHub repository at https://github.com/tddg/bespokv.

B. Dependencies:
1) gcc 4.8 (required by folly)
2) autoconf-2.69 (requires v ≥ 2.69)
3) google-glog
4) protobuf
5) libopenssl
6) gflags-master
7) boost 1 55 0: ./b2 install
8) folly (requires double conversion)
9) libuuid

10) libevent
11) lz4 1.7.1 (redlock requires v ≥ 1.7.1)
12) zookeeper (server + C binding lib)

C. How to compile?
Compile BESPOKV Go to the src directory, for debugging
mode, run make. To enable compiler level optimization, run
make opti.
Compile datalet application Go to the apps directory, for
debugging mode, run make. To enable compiler level opti-
mization, run make opti.
Compile client lib To compile client lib, go to the libckv dir
and compile proto file:



1 s t a t i c void MSSCContro let In i t ( c o n t r o l e t c )
{

2 / / c reates a socket f o r l i s t e n i n g f o r
c l i e n t s

3 s = s o c k e t i n i t ( ) ;
4 / / Reg is te r ca l l back f u n c t i o n f o r bas ic

events
5 c . Reg is te r ( s , ON CONN START, OnConnStart ) ;
6 c . Reg is te r ( c l i en t conn in , ON REQ IN,

OnReqIn ) ;
7 c . Reg is te r ( data let conn out ,ON REQ OUT,

OnReqOut ) ;
8 c . Reg is te r ( data le t conn in , ON RSP IN,

OnRspIn ) ;
9 c . Reg is te r ( c l ien t conn out , ON RSP OUT,

OnRspOut ) ;
10 . . .
11 / / Def ine extended events
12 c .On(PUT, OnPut ) ;
13 c .On(GET, OnGet ) ;
14 c .On(ENQ, OnEnqueue ) ;
15 . . .
16 }

Fig. 13: Initialization code of the MS+SC controlet.

cd apps / c l i b s / l i b c k v
p r o t o c −−cpp\ ou t = . ckv\ p r o t o . p r o t o

Move the header file generated to the include folder:

cp * . h i n c l u d e /

Next, create a directory to compile the lib:

mkdir b u i l d
cd b u i l d /
cmake . .
make

libckv.a will be available in build directory
Compile benchmark First, compile the client lib as shown in
previous step. Then go to the bench directory and run make.

D. How to run?

Datalet backend First, you should have a backend datalet
running, e.g., a Redis node. Go to the Redis dir:

. / r e d i s−s e r v e r −−p o r t 12346

Under apps/, we implemented several datalets for BE-
SPOKV. If you want the datalet backend to be a key-value
store, execute:

cd apps / ckv
. / conkv − l 1 9 2 . 1 6 8 . 0 . 1 7 0 −p 11111 − t 1

BESPOKV To run the BESPOKV executable, go to the src
dir and execute:

. / conproxy −−con f i g / r oo t / conrun / conf / c1 . json
−−d a t a l e t s / r oo t / conrun / conf / d1 . c fg −−
shard shard1 −−proxyAddr 192.168.0.170 −−
p roxyC l i en tPo r t 12345

E. How to configure?
Configuration file includes a JSON formatted file specifying

all options (num replicas option might be a bit confusing
and here it indicates how many replicas excluding the master
replica), as below:

1 / * S t a r t o f template framework w i th bas ic
events * /

2 void OnReqIn ( c o n t r o l e t c , conn *
c l i en t conn in ) {

3 / / parse the request to f i n d out opera t ion
4 Request req = c l ien t conn in−>msg read ( ) ;
5 switch ( req .Op) {
6 case ’PUT’ : c . Emit (PUT) ; break ;
7 case ’GET’ : c . Emit (GET) ; break ;
8 . . .
9 }

10 }
11
12 void OnReqOut ( c o n t r o l e t c , conn *

data le t conn out ) {
13 data let conn out−>msg send ( ) ; / / send

message
14 c . Enable ( data le t conn in , ON RSP IN) ;
15 }
16
17 void OnRspIn ( c o n t r o l e t c , conn *

data le t conn in ) {
18 / / read response message
19 Request rsp = data le t conn in−>msg read ( ) ;
20 / / user−def ined response handl ing l o g i c
21 switch ( req .Op) {
22 / / Send req to next d a t a l e t or ack .
23 case ’PUT’ : c . Emit (PUT) ; break ;
24 case ’GET’ :
25 c . Enable ( c l ien t conn out , ON RSP OUT) ;

break ;
26 . . .
27 }
28 }
29
30 void OnRspOut ( c o n t r o l e t c , conn *

c l ien t conn ou t ) {
31 / / r ep l y back to c l i e n t
32 c l ien t conn out−>msg send ( ) ;
33 } / * End of template framework w i th bas ic

events * /
34
35 / * S t a r t o f extended events * /
36 void OnPut ( c o n t r o l e t c ) {
37 / / enqueue req i f not done before
38 c . Emit (ENQ)
39 / / get backend server connect ions
40 D1, D2, D3 = g e t l i s t ( ) ;
41 / / enable ON REQ OUT f o r d a t a l e t s one at a

t ime
42 i f ( ! ALL REPLICAS DONE) c . Enable (D,

ON REQ OUT) ;
43 / / once done wi th a l l d a t a l e t s ack back
44 else c . Enable ( c l ien t conn out , ON RSP OUT) ;
45 }
46
47 void OnEnqueue ( c o n t r o l e t c ) {
48 p = g e t p a r t i t i o n ( ) ;
49 / / rec ieve ack from MQ can be a separate

event
50 Enqueue ( req , p ) ;
51 c . Emit (PUT) ;
52 }
53
54 void OnGet ( c o n t r o l e t c ) {
55 D = g e t t a i l ( ) ;
56 c . Enable (D, ON REQ OUT) ;
57 } / * End of extended events * /

Fig. 14: Using a template to create a MS+SC controlet.

{
"zk" : "192.168.0.173:2181" ,
"mq" : "192.168.0.173:9092" ,
"consistency_model" : "strong" ,
"consistency_tech" : "cr" ,
"topology" : "ms" ,
"num_replicas" : "2" ,

}

And a datalet list file specifying all datalets, as below:

# 0: master ; 1 : s lave
192.168.0.171:11111:0
192.168.0.171:11112:1
192.168.0.171:11113:1

F. How to benchmark?

YCSB traces To run the YCSB trace bench:

cd bench
. / bench c l ien t −d 40 − l t r a c e d i r /

kv1M op1M uniform text . run −t 32 −m 6 −r
2 −f hosts . c fg −R 0 −W 0



Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

1. put(key,val)
3. Ack

Client app 1

Controlet D/M Controlet D/S1 Controlet D/S2

3b. Ack(val)

2b. getD(key)

Put path

Get path

2. putD(key,val)

4. asyncPutS1/S2(key,val)

Client app 2

1b. get(key)
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Coordinator
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5. putM1(key,val1)

6. unlock(key)
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Put path

MS+EC 

(b)(a) (c)

AA+SC AA+EC 

Client app 1

Controlet D/M1 Controlet D/M2 Controlet D/M3

Shared Log Coordinator

1a. put(key,val1) 4a. Ack
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Client app 2

1b. put(key,val2) 4b. Ack

2. M1/M2/M3.putSharedLog(key,val)

5. M1/M2/M3.asyncFetch()
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Fig. 15: The Put/Get paths in MS+EC (a), AA+SC (b), and AA+EC (c). The Get path is same in all three, except in AA+SC,
where the difference is that each Get needs to acquire a read lock before proceeding. Mn means the nth master;

Where hosts.cfg is an example host file including all
hosts, -m indicates how many hosts, -r indicates how many
replicas, -R specifies which replica to serve READ (-1 means
any replica), and -W indicates which replica to serve WRITE
(again, -1 means any replica for active/active topology). Ex-
ample host file is shown as below:

192.168.0.171:12345 192.168.0.171:12348
192.168.0.171:12346 192.168.0.171:12349
192.168.0.171:12347 192.168.0.171:12350
192.168.0.172:12345 192.168.0.172:12348
192.168.0.172:12346 192.168.0.172:12349
192.168.0.172:12347 192.168.0.172:12350

Redis benchmark To run the Redis benchmark:

. / red is−benchmark −h hulk0 −p 12345 −c 50 −n
100000 −t set , get −P 32 −r 1000000

This will send requests to conproxy, which will serve as
a proxy forwarding requests between benchmark clients and
Redis backend datalets.

G. How to deploy?

ZK and MQ To launch zk and MQ on cloud, run:

b in / zookeeper−server−s t a r t . sh −daemon con f i g /
zookeeper . p r o p e r t i e s

b in /MQ−server−s t a r t . sh −daemon con f i g / server .
p r o p e r t i e s

BESPOKVand datalet nodes To launch a cluster of BE-
SPOKV+ conkv nodes, first add the data node info in slap.sh,
then run:

cd s c r i p t s
. / s lap . sh runckv
. / s lap . sh runcon

H. Docker container based execution

Docker based BESPOKVis PARTIALLY supported. To run
containerized deployment:

cd s c r i p t s
. / s lap . sh docker runckv
. / s lap . sh docker runcon

APPENDIX B
CONTROLET DEVELOPMENT

Figure 13 shows the code snippet for the controlet initial-
ization. Developer can register callback functions and define
extended events during initialization. Figure 14 shows the code
snippet for MS+SC controlet built atop our controlet template.
The first half of the code snippet (white background) shows
the controlet code template. It uses basic events to construct
message forwarding logic where a request is accepted from
a client connection and forwarded to a datalet connection.
Similarly, a response is accepted from the datalet connection
and forwarded to the client. The template also provides logic to
parse the request to find out the request type. Line 25 and lines
35—57 are developer-defined logic (colored background).
Developers provide callback functions OnPut, OnEnqueue,
and OnGet to implement Figure 3.

APPENDIX C
BESPOKV-BASED DISTRIBUTED KV STORES

Using hash-based tHT datalet and consistent hashing for the
client library as an example, this section presents support for
three more widely-used topology and consistency combina-
tions: MS+EC, AA+SC, and AA+EC.4

A. Master-Slave & Eventual Consistency
BESPOKV’s pre-built controlet takes a simple approach to

support MS+EC where the master copies the data to slaves
asynchronously. Example. Figure 15(a) shows an example
for MS+EC. Here, upon receiving an incoming Put request
(step 1), the master node commits the request to the local
datalet (step 2) before it sends an acknowledgement back to
the client (step 3). Unlike the previous SC case, the master
does not wait until the propagation finishes5. Subsequently,
BESPOKV provides EC by asynchronously forwarding Put

requests to other datalets (step 4).

4Please note that these examples present just one way to implement each
combination. Controlet developers can easily implement their own versions.

5This way at least one datalet is written straight away as in Cassandra [7].
An alternative design choice is to forward the request to more than one datalet
and then acknowledge back. However, this decision solely depends on the type
of eventual consistency that is desired.



Failover. Upon a node failure, the coordinator launches a new
controlet–datalet pair, and then the new controlet recovers the
requests from another datalet. For MS+EC, the new pair is
added as a slave. If the master node fails, the coordinator
promotes one of the slave nodes to master after a leader
election process. The coordinator then updates the cluster
topology metadata so that future incoming writes can be routed
to the new master, similar to the case of head failure in
MS+SC.
B. Active-Active & Strong Consistency

Supporting AA and SC is expensive in general. AA allows
multiple nodes to handle Put requests and SC requires global
ordering (serialization) between them. Thus, CR-like optimiza-
tion is not applicable under AA. For simplicity and comparison
purposes, the current BESPOKV’s AA+SC controlet takes the
distributed locking based implementation, using the DLM
library (section III-B). For performance improvement, opti-
mistic concurrency control [86] and inconsistent replication [9]
can be added. Instead of using DLM, one can also enable SC
using a Shared Log to maintain a global and sequential order
of concurrent requests, which we used for AA+EC later in a
relaxed manner.
Example. Figure 15(b) shows a DLM-based AA+SC example.
Clients’ Put requests are routed to any controlet (step 1 and
step 2). Concurrent Puts from another client (step 2 in our
example) are synchronized via the distributed locking service.
The first receiving controlet acquires a write lock (step 3) on
the key and updates all the relevant datalets (step 4 & 5),
releases the lock (step 6), and finally acknowledges to the
client (step 7). For a Get request, the controlet that receives
the request acquires a read lock on that key, reads the value
from the local datalet, releases the lock, and then sends a
response back to the client.
Failover. Like the previous cases, when a node fails the
coordinator launches a new controlet–datalet pair. The new
controlet then performs data recovery from another datalet.
As AA+SC uses locking, ensuring SC for the new node and
adding it as an active node are trivial because all writes
are synchronized using locks. However, deadlock freedom
should be guaranteed. Thus, BESPOKV enforces that locks
are released after a configurable period of time. If a controlet
fails after acquiring a lock, the lock is auto-released after it
expires. Note that if a lock is auto-released, but a controlet
has not failed and was simply unresponsive for a while, it is
terminated to ensure proper continuation of operations. Also,
one of the master nodes cleans up the in-flight requests.

C. Active-Active & Eventual Consistency
For an AA topology, relaxed data consistency is more

widely used in practice for performance as in Dynamo [6],
Cassandra [7]), and Dynomite [19]. In particular, these sys-
tems use gossip-based protocols and provide a weaker data
consistency model, e.g., acknowledging back to the client if a
Put request is written to one node, N nodes, or a quorum [87].

In order to ensure EC, when multiple masters receive con-
current PUT requests, AA should be able to resolve conflicts
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Fig. 16: Throughput timeline on failover. EC: eventual consis-
tency; SC: strong consistency; Dyno: Dynomite.
and agree on the global order of them, unlike MS where
one master gets all the writes. In this sense, Dynomite does
not support (a strict form of) EC when conflicting PUT
requests arrive within a time period less than the latency of
replication [88].

To address this issue, BESPOKV’s AA+EC controlet uses
a Shared Log to keep track of the request ordering. From
the Shared Log, asynchronous propagation of writes occur to
support EC. One disadvantage of this approach is that we need
to scale the Shared Log setup as BESPOKV scales. Alternative
approach is to add anti-entropy/reconciliation [89].
Example Figure 15(c) depicts how BESPOKV supports
AA+EC. In AA, clients can route Get/Put to any of the
master controlets (step 1a). On a Put, the receiving controlet
(in our example the leftmost one) writes to the Shared Log first
(step 2a), commits the request on its local datalet (step 3a), and
then responds back to the client (step 4a). All the controlets
asynchronously fetch the request (step 5). Gets can be handled
by any of the corresponding controlets by retrieving the data
from their local datalets. The duration to keep the requests in
Shared Log is configurable.
Failover. For AA+EC, the failover is handled like with
MS+EC, except that leader election is not needed in this case.
Discussion. Load imbalance due to hot keys (i.e., hotspots)
can be solved by integrating a small metadata cache at BE-
SPOKV’s client library to keep track of hot keys [90]; once the
popularity of hot keys exceeds a certain pre-defined threshold,
client library replicates this key on a shadow server that is
rehashed by adding a suffix to the key. In fact, our proxy-
based architecture naturally fits for adding a controlet-side
small cache or data migration/replication for load balancing
purpose [91], [92], [93], [94], [95].

APPENDIX D
FAILOVER & DATA RECOVERY

We also evaluate how BESPOKV performs in case of a
node failure, and compare it with Redis’s replication used by
Dynomite for failover recovery. In this set of tests, we use 3
shards (each with 3 replicas) to clearly reflect the impact of a
failure on throughput. The workload consists of 1 million KV
tuples generated with a Zipfian distribution. We intentionally
crash a node to emulate a failure, and Figure 16 shows the
resulting throughput change.
MS topology For MS+SC, we bring down the head node
under the write-intensive workload (50% Put, as shown in
the bottom half of Figure 16 (a)) and the tail node for the
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Fig. 17: Latency and throughput improvements by using DPDK.

read-intensive workload (95% Get, as shown in top half of
the figure), to maximize the performance disruption on the
respective workloads. For MS+EC, we take down the master
node for the write-intensive workload and a random slave node
for the read-intensive workload.

We observe that for MS+SC, Put throughput goes down by
about 1/3 when the head node crashes at 20 sec, as we have
3 shards. The coordinator detects the node failure from the
lack of heartbeat message before assigning the master role to
the second node in the chain. The coordinator then launches
a new controlet–datalet pair in recovery mode, and inserts the
pair to the end of the chain once data recovery completes at
around 35 sec. Meanwhile the throughput stabilizes. MS+EC
failover shows a similar trend. The top half of Figure 16 (a)
shows the impact of node failure on Get performance under
MS topology. For MS+SC, killing the tail brings down Get

throughput by 1/3. Once failure is detected, the coordinator
makes the 2nd-from-last node in the chain the new tail, and
updates the topology metadata. Once clients see the update,
they reroute the corresponding Gets to the new tail. Hence, the
throughput goes back to normal in ~5 sec. MS+EC behaves
differently as Gets are served by any of the 3 replicas. Thus,
the slave failure does not affect the performance as much
(throughput drops by ~1/9).
AA topology In BESPOKV’s AA and Dynomite (with Redis)
failover test, we randomly kill a node at 20 sec and record the
overall throughput. As shown in Figure 16(b), the throughput
is slightly impacted in all cases, because both BESPOKV
AA and Dynomite serve reads and writes from all replicas.
Dynomite leverages Redis’ master-slave replication to recover
data directly from the surviving nodes. We observe trend
similar to Dynmoite as BESPOKV also uses datalet’s callback
functions to import and export the data.

APPENDIX E
DPDK OPTIMIZATION

We recently added support for DPDK based communication
between clients, controlets, and datalets in to BESPOKV. In
this experiment, we show performance of socket vs. DPDK
based communication. We deployed a single shard on our
local testbed and measured latency and throughput. Each node
in our local setup is equipped with Intel ethernet controller
X540-AT2. Figure 17 shows that DPDK reduces latency by
up to 65%. We also observe 3× improvement in throughput
compared to socket based communication. Another interesting
finding is that DPDK based communication results in more
stable performance.


