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Abstract
We consider the reconstruction of a heterogeneous coefficient field in a Robin 
boundary condition on an inaccessible part of the boundary in a Poisson 
problem with an uncertain (or unknown) inhomogeneous conductivity field 
in the interior of the domain. To account for model errors that stem from the 
uncertainty in the conductivity coefficient, we treat the unknown conductivity 
as a nuisance parameter and carry out approximative premarginalization over 
it, and invert for the Robin coefficient field only. We approximate the related 
modelling errors via the Bayesian approximation error (BAE) approach. 
The uncertainty analysis presented here relies on a local linearization of the 
parameter-to-observable map at the maximum a posteriori (MAP) estimates, 
which leads to a normal (Gaussian) approximation of the parameter posterior 
density. To compute the MAP point we apply an inexact Newton conjugate 
gradient approach based on the adjoint methodology. The construction of 
the covariance is made tractable by invoking a low-rank approximation of 
the data misfit component of the Hessian. Two numerical experiments are 
considered: one where the prior covariance on the conductivity is isotropic, 
and one where the prior covariance on the conductivity is anisotropic. Results 
are compared to those based on standard error models, with particular 
emphasis on the feasibility of the posterior uncertainty estimates. We show 
that the BAE approach is a feasible one in the sense that the predicted posterior 
uncertainty is consistent with the actual estimation errors, while neglecting the 
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related modelling error yields infeasible estimates for the Robin coefficient. 
In addition, we demonstrate that the BAE approach is approximately as 
computationally expensive (measured in the number of PDE solves) as the 
conventional error approach.

Keywords: estimation of Robin coefficient, Modelling errors, adjoint-based 
Hessian, low rank approximation, Bayesian approximation error approach, 
approximate marginalization, Bayesian framework

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we consider the problem of estimating the unknown Robin coefficient field in a 
Poisson problem with uncertain conductivity field from available measurements. This prob-
lem setup is inspired from physical applications, e.g. the detection of corrosion of an electro-
static conductor [1–3] and the estimation of thermal parameters [4, 5]. The Poisson problem 
with uncertain Robin boundary coefficient has received considerable attention, both from a 
theoretical standpoint as well as from a numerical point of view [1–10]. However, the standard 
assumption in these studies is that the internal conductivity (which is generally a distribute 
parameter) is known. In this paper, we consider both the conductivity and boundary condi-
tion to be uncertain. A common approach would be to invert for both fields simultaneously, 
however this results in a highly ill-posed and potentially untracktable problem. To avoid the 
need for a joint inversion, we premarginalize over the internal conductivity, and then invert 
for the Robin coefficient. Furthermore, we employ a discretisation invariant method for the 
inversions as in [11, 12]. Thus the methods developed should be immediately applicable to 
the case in which the Robin parameter is high-dimensional (which is often the case for real 
applications).

There is a rich body of literature on theoretical and computational aspects of the so-called 
inverse Robin problem, i.e. the problem of inferring the (distributed) Robin coefficient given 
measurements of the potential. In [2], the authors develop a direct reconstruction method 
based on a thin plate approximation. In [6], several results on stability, uniqueness and iden-
tifiability are established, while in [3] a more general stability estimate is proved. Numerical 
methods developed to solve the inverse Robin problem include a quasi-reversibility method 
[7] and an approach based on an L1-tracking functional [8]. More recently, in [9], a regularized 
least-squares approach is taken via a variational formulation and in [10], a regularised least-
squares problem is solved using an adjoint based approach, similar to the methods considered 
in the present paper.

The previous studies consider the following inverse problem: given noisy (partial point) 
measurements of u on the boundary of a bounded domain Ω, with Ω ∈ Rd , d ∈ {2, 3}, deter-
mine the Robin coefficient field, β(x). The field u satisfies the forward problem,

−∆u(x) = 0 in Ω,
∇u(x) · nt = g(x) on Γt

∇u(x) · nb + exp(β(x))u(x) = 0 on Γb

u(x) = 0 on Γs,

 

(1)

where (in the context of the present paper), Γt  is referred to as the top of the domain, 
Γs the sides of the domain, and Γb the bottom of the domain. As such, we have 
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Γt ∩ Γs = Γs ∩ Γb = Γt ∩ Γb = ∅, and (eventually noisy pointwise) measurements of u are 
available on Γt. In the literature, Dirichlet boundary conditions are often replaced by Neumann 
boundary conditions on Γs, see for example [8, 9].

However, in essentially all practical problems, the conductivity cannot be assumed to be a 
constant, leading to the spatially inhomogeneous problem

−∇ · (exp(a(x))∇u(x)) = 0 in Ω,
exp(a(x))∇u(x) · nt = g(x) on Γt

exp(a(x))∇u(x) · nb + exp(β(x))u(x) = 0 on Γb

u(x) = 0 on Γs.
 

(2)

For example, in the case of detecting corrosion of an electrostatic volume conductor, exp(a) 
models the electrical conductivity and it is generally an unknown (distributed) parameter.

The estimation of the Robin coefficient β(x) under the forward model (2) would typically 
necessitate the simultaneous estimation of the conductivity a(x). Such a task carries with it 
several challenges: the ill-posedness of the problem would be increased significantly, and 
there is the potential for issues around the identifiability of β(x). In this paper, however, our 
main concern is the drastically increased computational cost associated with estimating the 
parameter a(x) which is distributed over the entire volume Ω rather than estimating β(x) only 
which is distributed on Γb only.

The approach in this paper is based on the (initially) infinite-dimensional formulation of 
the inverse problem, the adjoint method for the computation of the related first and second 
order derivative information, and the subsequent Bayesian approximation error approach. A 
brief review of these topics is given below.

The infinite dimensional approach to Bayesian inverse problems that was developed in 
[13] is receiving considerable attention, and has been successfully applied to several inverse 
problems. The method is particularly suited to the case when the parameter of interest is 
high-dimensional (stemming from the discretization of the the unknown infinite-dimensional 
parameter field), and it ensures convergence under discretization. An efficient computational 
framework was developed in [11, 12], based on an adjoint approach [14, 15], to implement the 
theoretical work put forward in [13], and was applied, for example, to global seismic inver-
sions in [11] and ice sheet flow inverse problems in [12]. The approach has also successfully 
been applied to inverse acoustic obstacle scattering problems in [16]. The infinite-dimensional 
Bayesian setup has also been applied to optimal experimental design (OED) for Bayesian non-
linear inverse problems governed by partial differential equations [17]. The goal of the OED 
problem was to find an optimal placement of sensors (for measurements) so as to minimize 
the uncertainty in the inferred parameter field.

The Bayesian approximation error (BAE) approach [18, 19] was originally used as a means 
to take into account the modelling errors induced by the use of reduced order models. The 
approach is based on approximate premarginalization over modelling errors, which refers to a 
process similar to the marginalization over additive errors to obtain the likelihood. However, 
a particular advantage of this method is the ability to approximately premarginalize also over 
parameters which are not of primary interest. In the context of electrical impedance tomog-
raphy (EIT), the BAE approach has been used to simultaneously premarginalize over the 
unknown domain shape and the contact impedances of the electrodes [20]. Furthermore, in 
[21], the approach was used to premarginalize over the distributed scattering coefficient in 
diffuse optical tomography (DOT) and, in [22], the method was used to premarginalize over 
both the scattering and absorption coefficients in the context of fluorescence diffuse optical 
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tomography (fDOT). The BAE method has also been applied to x-ray tomography to premar-
ginalize over distributed parameters outside a region of interest [23].

In the context of premarginalizing over distributed parameters, the BAE approach has thus 
far only been used to marginalize over unknowns defined on spatial dimensions at most equal 
to that of the primary parameter of interest. I this paper, we show that the BAE approach 
is also feasible for the premarginalization over a distributed parameter in the entire domain 
when the parameter of primary interest is defined only on (a subset of) the boundary of the 
domain. We also show that the infinite-dimensional framework for inverse problems posed in 
the Bayesian setting is an effective method for solving the so-called Robin inverse problem 
under an unknown (distributed) conductivity.

The paper is organized as follows. In section 2, we review the Bayesian framework for 
inverse problems, including a limited discussion on the infinite dimensional set up, the com-
putation of the maximum a posteriori estimate and the approximate posterior covariance. In 
section 3, we review the Bayesian approximation error approach and, in section 4, we form-
ulate the problem of estimating the Robin coefficient in the case of an unknown conductivity. 
In section 5, we consider two numerical experiments: a conductivity with spatially isotropic 
smooth covariance and one with an anisotropic smooth covariance. The results are compared 
to those based on standard error models, with particular emphasis on the feasibility of the 
posterior uncertainty estimates.

2. Background on the Bayesian approach to inverse problems

In this section, we give a brief review of the formulation of Bayesian inverse problems follow-
ing [11, 12] to an extent that is relevant to the present paper. For a more in-depth discussion 
on some of the technical difficulties in dealing with inverse problems posed in infinite dimen-
sions, see for example [11–13]. We consider the problem of finding β(x) ∈ H ⊂ L2(Ωβ), 
from observed measurements dobs ∈ Rq , with β and dobs linked by

dobs = f a∗(β) + e, (3)

where f a∗ : H → Rq is the parameter-to-observable map, and e represents additive errors in 
the measurements. The slightly unconventional notation f a∗ used for the so-called parameter-
to-observable map will be explained in section 3.

In this paper, we take the prior to be a Gaussian measure, µβ = N (β∗, Cβ) on L2(Ωβ), 
where β∗ is the prior mean, which lives in H, and Cβ is the prior covariance operator. As out-
lined in [13], the prior must be chosen to satisfy certain regularity assumptions to ensure 
the Bayesian inverse problem is well-defined. We employ a weighted squared inverse elliptic 
operator as our prior covariance operator [24], with the addition of homogeneous Robin (or 
Neumann) boundary conditions. This is a slight modification to that used in [11, 12], with the 
aim of mitigating any artefacts in estimates or prior samples due to the enforcement of bound-
ary conditions. Specifically, for s ∈ L2(Ωβ), the weak solution of Aβ = s satisfies

αβ

∫

Ωβ

γβ∇β ·∇v + βv dy +
∫

∂Ωβ

κββv dt =
∫

Ωβ

sv dy for all v ∈ H1(Ωβ),

 

(4)

where αβ > 0 is inversely proportional to the prior variance, γβ is a symmetric positive defi-
nite uniformly bounded matrix controlling the correlation [11], and κβ ! 0. Then we take the 
prior covariance operator to be

Cβ = WA−2W (5)
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where

W :=
σβ√

A−2(x, x)
and σβ :=

√
Ga(ν)

(4π)d/2γν
βα

2
β

. (6)

Here Ga denotes the gamma function, d is the spatial dimension, and ν + d/2 = 2 [24], and σ 
is the point-wise standard deviation, as in [24, 25]. The addition of the weights normalizes the 
variance across the domain as discussed below in section 5. For efficient methods to extract 
A−2(x, x), see for example, [26–30]. We also note that there are other methods aimed at miti-
gating the boundary effects, see for example, [24, 31, 32].

In this paper, we consider a normal noise model e ∼ µnoise = N (0,Γe), which results in 
the likelihood

πlike(dobs|β) ∝ exp

{
−1

2

(
f a∗(β)− dobs

)T
Γ−1

e

(
f a∗(β)− dobs

)}
. (7)

2.1. Discretization of Bayesian inverse problems

In this section, we briefly review some of the key results on the finite-dimensional approx-
imation of Bayesian inverse problems. The discussion here follows [11, 12, 17], where it is 
shown that the mass-weighted inner product space is the correct space to work in.

Discretization of the inverse problem results in the parameter of interest being approxi-
mated as βh =

∑n
j=1 βjφj ∈ Vh, where Vh denotes a finite-dimensional subspace of L2(Ωβ) 

induced by a finite element discretization with continuous Lagrange basis functions. We then 
seek to invert for β = [β1,β2, . . . ,βn]T ∈ Rn. Furthermore any inner product between nodal 
coefficients will be weighted by a mass matrix M  so as to correctly approximate the infinite-
dimensional L2 inner product. We denote the mass-weighted inner product by ⟨·, ·⟩M, with 
⟨y, z⟩M = yTMz and the symmetric positive definite mass matrix given by

Mij =

∫

Ωβ

φi(y)φj(y) dy i, j ∈ {1, 2, . . . , n} . (8)

To distinguish between the Euclidean space Rn and Rn endowed with the mass-weighted inner 
product, we introduce the notation Rn

M to denote Rn equipped with the mass-weighted inner 
product.

As shown in for example [11], there are several differences which must be taken into 
account when working in Rn

M rather than in Rn, which revolve largely around the concepts of 
adjoints and transposes. For instance, for an operator B : Rn

M → Rn
M , we denote the matrix 

transpose by BT . The mass-weighted inner product adjoint, however, denoted here by B∗, 
satisfies ⟨By, z⟩M = ⟨y, B∗z⟩M, for y, z ∈ Rn

M , implying

B∗ = M−1BTM. (9)

We also require two further adjoint type operators below in section 2.2. For this, let Rq and Rr  
for some q, r , be endowed with the Euclidean inner product. We then define the adjoints F♮ of 
F : Rn

M → Rq  and V⋄  of V : Rr → Rn
M  as

F♮ = M−1FT , (10)

V⋄ = VTM. (11)

With these definitions in hand, the finite-dimensional approximation of the operator A in 
(4) is A = M−1KW−1 where
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Kij = αβ

∫

Ωβ

(
γβ∇φi ·∇φj + φiφj

)
dy +

∫

∂Ωβ

κβφiφj dt, (12)

Wij =
1
σβ

√
K−1

ij δij, i, j ∈ {1, 2, . . . , n}, (13)

where σβ  is as in (6) and δij is the Kronecker delta.
We can now express the finite-dimensional approximation µh

β of the prior Gaussian meas-
ure, µβ, as

πprior (β) ∝ exp

(
−1

2
∥A (β − β∗)∥

2
M

)
, (14)

where β∗ is the discretization of the prior mean, β∗, and the prior covariance matrix is by 
definition Γβ = A−2 (since A is symmetric). We can now state the finite-dimensional Bayes’ 
formula

πpost(β) := πpost(β|dobs) ∝ πprior(β)πlike(dobs|β), (15)

where πpost(β) is the density of the finite-dimensional approximation µh
d of the the posterior 

measure µd and πlike is the likelihood given by (7), see [11, 12]. Thus we can express the pos-
terior density explicitly as

πpost(β) ∝ exp

(
−1

2

∥∥∥ f a∗(β)− dobs
∥∥∥

2

Γ−1
e

− 1
2
∥A (β − β∗)∥

2
M

)
. (16)

2.2. The MAP estimate and the approximate posterior covariance

In the Bayesian framework, one seeks to determine the posterior density of the parameter of 
interest. In principle, then, one would explore the posterior density typically with Markov 
chain Monte Carlo sampling methods. However, in large-scale problems with limited com-
putational resources, one often has to be content with a single representative point estimate 
of the parameter along with an (approximate) posterior covariance and credibility intervals. 
Standard point estimates for the posterior include the conditional mean (CM) and the maxi-
mum a priori (MAP) estimates. In this paper, we aim at computing the finite-dimensional 
MAP estimate βMAP and the Laplace (local normal) approximation for the covariance which 
also yields approximate marginal distribution for βMAP,k. For discussions on the extension of 
the MAP estimate to infinite dimensions, see, for example [33, 34].

Following on from (16), the MAP estimate is defined as the point in parameter space that 
maximizes the posterior probability density function [18, 35], that is,

βMAP := arg min
β∈Rn

1
2

∥∥∥ f a∗(β)− dobs
∥∥∥

2

Γ−1
e

+
1
2
∥A (β − β∗)∥

2
M . (17)

In line with [12], in (17) and the remainder of the paper, we denote by f a∗(β) the parameter-
to-observable map evaluated at the finite element function corresponding to the parameter 
vector β.

Assuming that the parameter-to-observable map is Fréchet differentiable, we can linearize 
(3) around βMAP and discretize to obtain the affine approximation

dobs ≈ f a∗(βMAP) + Fa∗(βMAP)(β − βMAP) + e, (18)

R Nicholson et alInverse Problems 34 (2018) 115005
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where Fa∗(βMAP) is the Fréchet derivative of f a∗(β) with respect to β evaluated at βMAP. The 
resulting approximation for the discrete posterior measure µh

d of β conditional on dobs is then 
necessarily a Gaussian measure, given by N (βMAP,Γpost), with covariance matrix

Γpost =
(

F♮
a∗Γ

−1
e Fa∗ + Γ−1

β

)−1
, (19)

where F♮
a∗ is the adjoint of Fa∗, see (10). We also note that the (approximate) posterior covari-

ance matrix is the inverse of the Gauss–Newton Hessian of the negative log posterior (referred 
to simply as the Hessian from this point onwards), denoted by H, that is,

Γpost = H−1. (20)

2.2.1. Low rank approximation for the approximate posterior covariance matrix. For an effi-
cient calculation of the MAP estimate, and efficient action of the approximate posterior cova-
riance to vectors and action of the square root of the Hessian on vectors (the latter is needed 
for computing samples from the approximate posterior), we apply a low rank approximation 
of the Hessian as detailed in [11, 12, 36] and summarized below.

We note that the Hessian of the negative log posterior (16) can be split into the sum of a 
data misfit term, Hmis, and the inverse of the prior covariance, Γ−1

β . By factorizing the prior 
covariance as Γβ = LL∗, we can rewrite the Hessian as

H = Hmis + Γ−1
β = Hmis + L−∗L−1 = L−∗ (L∗HmisL + I)L−1. (21)

The final form of (21) allows for an efficient method of approximating Γpost. The procedure 
relies on exploiting the discretization invariant and often low rank nature of Hmis [11, 12, 
36, 37]. Thus, in this paper, we consider a low rank approximation for the so-called prior-
preconditioned data misfit Hessian [36] which takes the form

H̄mis = L∗HmisL ≈ VrΛrV⋄
r , (22)

where Vr ∈ Rn×r contains the r eigenvectors of the prior-preconditioned data misfit Hessian 
corresponding to the r largest eigenvalues5 λi, i = 1, 2, . . . , r, and Λr = diag(λ1,λ2, . . . ,λr). 
Then, by using the Sherman–Morrison–Woodbury formula [38], we have

H−1 ≈ L (I − VrDrV⋄
r )L∗, (23)

where Dr = diag(λ1/(λ1 + 1),λ2/(λ2 + 1), . . . ,λr/(λr + 1)) ∈ Rr×r . Furthermore, for 
drawing samples from the Gaussian approximation for the posterior, we have

H−1/2 ≈ L (VrPrV⋄
r + I)M−1/2, (24)

where Pr = diag(λ1/
√
λ1 + 1 − 1,λ2/

√
λ2 + 1 − 1, . . . ,λr/

√
λr + 1 − 1) ∈ Rr×r , see [11].

3. Background on model discrepancy and the Bayesian approximation  
error approach

Solving inverse problems in any framework, especially in the large-scale case, can be computa-
tionally prohibitively expensive. To overcome this challenge, several classes of reduced-order 
and surrogate models have been introduced. In [39], methods to reduce the computational 
cost of solving inverse problems in the statistical setting are divided into three broad methods: 

5 The truncation value r is chosen such that λi ≪ 1 for i  >  r [11, 12, 36].
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reducing the cost of a forward simulation, reducing the dimension of the input parameter 
space, and reducing the number of samples required. In line with our goal of keeping the 
computational cost tracktable, in this paper we focus on approximations of the posterior rather 
than on sampling-based methods.

As an approach, the Bayesian approximation error approach (BAE), developed in [18, 19], 
can be seen to lie in the first and second category. However, along with lowering computa-
tional costs of forward simulations and reducing the dimension of the parameter space, the 
BAE method can simultaneously take into account a vast array of uncertainties in the forward 
model, see, for example, [21–23, 40–46]. Below, we summarize the concept and implementa-
tion of the BAE method.

In the BAE approach, any errors induced by the use of surrogate models, reduction of the 
parameter dimension, and/or model uncertainties are propagated to a single additive error 
term. Hence the form of the posterior will be as in (15) with a redefined likelihood density. 
In what follows, let β(x) be our parameter of interest, and take a(x) to denote a secondary 
(nuisance) param eter. By secondary, we mean that we do not wish to estimate the unknown 
a(x) but attempt to take the related uncertainty into account and propagate the effects into the 
estimate for the parameter of interest and the posterior uncertainty. Except for jointly normal 
linear models, it is not possible to exactly premarginalize over a(x) [18, 23]. In the following, 
we outline how one can approximately premarginalize over a(x). To this end, let

(a,β) !→ f(a,β) (25)

denote an accurate forward model, and let e again denote noise which is additive and mutu-
ally independent with β and a such that e ∼ µnoise = N (0,Γe). Then the accurate relationship 
between the parameters and measurements is

dobs = f(a,β) + e. (26)

In the BAE approach, rather than using the accurate model f(a,β), we instead set a  =  a∗ 
and use the approximate forward model

β !→ f a∗(β). (27)

We note that in many applications the dimension of the parameter of interest is also reduced 
by projecting onto some reduced basis, see, for example, [23] for more details. In general, 
replacing the accurate model with the approximate model introduces what has become known 
as model discrepancy, the difference between the predictions of the two models. To take into 
account this model discrepancy we rewrite (26) as

dobs = f(a,β) + e = f a∗(β) + e +
(
f(a,β)− f a∗(β)

)
︸ ︷︷ ︸

=ε(a,β)

= f a∗(β) + e + ε = f a∗(β) + ν,
 (28)

where the discrepancy in the models, ε, is a random variable with the same dimensions as the 
measurements, and is known as the approximation error [18, 19, 40]. The sum ν = e + ε is 
called the total error here.

At this point in the BAE approach, the following approximation is made:

ε|β ∼ µε|β ≈ N (ε∗|β ,Γε|β), (29)

that is, the conditional density of the approximation error ν  given the parameter of interest 
β is approximated as Gaussian6. The computation of ε∗|β and Γε|β is outlined in section 5. 

6 There is some work on retaining the full conditional density, see, for example, [47, 48].
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The fact that the approximation error depends on β implies that formally ε and β cannot be 
taken as mutually independent. However, in several cases, such a further approximation of 
independ ence leads to similar estimates for a significantly smaller cost as explained in [23]. 
With this further approximation, we have

ν∗ = e∗ + ε∗ and Γν = Γe + Γε, (30)

which was originally referred to as the enhanced error model in [18, 19]7.
The BAE approach results in both a revised functional, which the MAP estimate mini-

mizes, and a reformulated approximate posterior covariance matrix. Specifically, we now have

βMAP = min
β∈Rn

1
2

∥∥∥ f a∗(β)− dobs + ν∗

∥∥∥
2

Γ−1
ν

+
1
2
∥A (β − β∗)∥

2
M , (31)

Γpost =
(

F♮
a∗Γ

−1
ν Fa∗ + Γ−1

β

)−1
. (32)

We note that the infinite-dimensional counterparts to (31) and (32) can be formulated naturally.
As an indicator as to whether or not inclusion of the approximation errors is appropriate the 

following rule of thumb can be adopted [23]: if

∥e∗∥2 + trace(Γe) < ∥ε∗∥2 + trace(Γε) (33)

holds, then the approximation errors dominate the noise and neglecting the approximation 
errors will generally result in meaningless reconstructions, as demonstrated in section 5.2. 
Moreover, if

e2
∗(k) + Γ2

e(k, k) < ε∗(k) + Γε(k, k) (34)

for any k, then neglecting the approximation errors can still lead to meaningless results [23].

4. Recovery of the Robin coefficient

In this section, we formulate the inverse Robin problem with a spatially varying conductivity 
coefficient a(x) which will later be interchanged for a fixed conductivity a∗. In the chosen 
geometry, we refer to the Robin coefficient as ‘basal’ since this condition is posed only on 
the bottom part of a slab. The measurements are taken to be pointwise (noisy) potential mea-
surements on the top of the domain. We solve the inverse problem with Newton’s method. 
Therefore, in what follows, we formulate the forward problem and derive the corresponding 
first and second order adjoint problems for the gradient and the action of the Hessian to a vec-
tor needed by the optimization method.

4.1. The forward problem

As a model problem, let Ω = [0, L]× [0, L]× [0, H] ∈ R3 with 0 < H ≪ L < ∞ 
denote the domain of the problem (a thin slab) with boundary ∂Ω. In our regime, a flux 
is prescribed on Γt := [0, L]× [0, L]× {H}, while the potential is measured at q points on 

7 The actual form of ε∗|β is ε∗|β = ε∗ + ΓεβΓ
−1
ββ(β − β∗) which incorporates the full covariance structure of 

the normal approximation for π(ε,β). The prior covariance of β cannot, however, be used in place of Γββ in this 
conditional expectation. Rather, it must be based on the same draws as those used to compute Γεε as in section 5 
below. In practise, this leads to a a semidefinite estimate for Γββ, and the associated rank-deficient forms for the 
conditional expectations need to be employed [23].
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Γt , see figure  1 for a schematic representation. A homogenous Robin boundary condition 
is prescribed on Ωβ = Γb := [0, L]× [0, L]× {0} while on the remainder of the boundary, 
Γs := ∂Ω \ (Γt ∩ Γb), homogeneous Dirichlet boundary conditions are specified. The con-
ductivity coefficient exp(a(x)) is taken to be a spatially distributed random field in Ω, while 
the Robin coefficient is taken to be a spatially varying random field on Γb. To summarize, the 
forward problem reads

−∇ · (exp(a(x))∇u(x)) = 0 in Ω

exp(a(x))∇u(x) · nt = g(x) on Γt

exp(a(x))∇u(x) · nb + exp(β(x))u(x) = 0 on Γb,
u(x) = 0 on Γs 

(35)

where u(x) the potential, g(x) is the flux through Γt with unit normal nt, and Γb has unit nor-
mal nb. We employ the finite element method (FEM) for the numerical approximation of the 
forward problem, with the standard Lagrange piecewise linear nodal basis functions.

4.2. Adjoint-based Gauss–Newton method for solving the inverse problem

We employ an inexact Newton-CG approach to solve the minimization problem (17) which 
requires both the gradient and the Hessian of the negative log prior and likelihood. To avoid 
calculations of forward sensitivities, which would require as many forward solves as the 
dimension of the parameter, we employ the adjoint approach [14, 15, 49, 50] to compute the 
derivatives, which we show next.

We denote the observation operator with B so that the parameter-to-observable mapping 
can be written as f a∗ = Bu. Hence the infinite-dimensional counterpart of the functional to be 
minimized in (17) can be rewritten as

J (β) =
1
2

∥∥∥Bu − dobs + ν∗

∥∥∥
2

Γ−1
ν

+
1
2
∥∥AW−1(β − β∗)

∥∥2
L2(Γb)

, (36)

where u(x) solves the forward problem (35). Furthermore, let us define the space,

V :=
{

v ∈ H1(Ω) : v|Γs
= 0

}
, (37)

then we can define the Lagrangian functional L : V × V × E → R,

L(u, p,β) := J (β) +

∫

Ω
exp(a(x))∇u ·∇p dx −

∫

Γt

gp dst +

∫

Γb

exp(β)up dsb.

 

(38)

Figure 1. Set up for the model problem. A prescribed flux is set through the top of 
the domain and measurements of the potential are taken at points on the top of the 
domain (blue circles). A Robin boundary condition is enforced at the bottom of the 
domain, while the sides of the domain are prescribed homogeneous Dirichlet boundary 
conditions.
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The space E is the Cameron–Martin space E = range(C 1
2 ) = dom(A), induced by the prior 

measure, see [13] for full details, or for example [17] for a brief overview. We note that due to 
the regularity of the boundary of Γb in the current set up, E = H2(Γb) [51, 52].

Determining the gradient of J  is achieved by requiring that variations of the Lagrangian L 
with respect to the forward potential u and the so-called adjoint potential p vanish. This results 
in the following strong form of the gradient G  for the variations with respect to β

G(β) := W−1A2W−1 (β − β∗) + exp(β)up, (39)

with u being the solution of the forward Poisson problem (35) for given β, while p satisfies the 
following adjoint Poisson problem for given u(x) and β(x)

−∇ · (exp(a(x))∇p(x)) = −B∗Γ−1
ν (Bu(x)− dobs + ν∗) in Ω,

exp(a(x))∇p(x) · nt = 0 on Γt,
exp(a(x))∇p(x) · nb + exp(β(x)) p(x) = 0 on Γb,

p(x) = 0 on Γs.
 

(40)

The action of the Gauss–Newton approximation of the Hessian operator evaluated at β in the 
direction β̂ is given by

H(β)(β̂) := W−1A2W−1β̂ + exp(β)β̂up̂, (41)

where the incremental adjoint potential p̂ satisfies the so-called incremental adjoint (or sec-
ond order adjoint) Poisson problem

−∇ · (exp(a(x))∇p̂(x)) = −B∗Γ−1
ν Bû(x) in Ω

exp(a(x))∇p̂(x) · nt = 0 on Γt

exp(a(x))∇p̂(x) · nb + exp(β(x))p̂(x) = 0 on Γb,
p̂(x) = 0 on Γs,

 

(42)

and the incremental forward potential û satisfies the incremental forward Poisson problem

−∇ · (exp(a(x))∇û(x)) = 0 in Ω

exp(a(x))∇û(x) · nt = 0 on Γt

exp(a(x))∇û(x) · nb + exp(β(x))û(x) = −β̂ exp(β(x))u(x) on Γb,
û(x) = 0 on Γs.

 

(43)

The resulting system to be solved for the Gauss–Newton search direction, β̂, is

H(β)(β̂) = −G(β). (44)

In the case of a high-dimensional parameter, it may not be feasible to solve the system (44) 
directly, and iterative methods are usually employed. To this end, we employ the conju-
gate gradient (CG) method, which requires only the action of the (discrete) Hessian, that 
is, Hessian-vector products. By examining (41), we see that each Hessian-vector product 
amounts to solving both the adjoint Poisson problem (43) and the incremental adjoint 
Poisson problem (42). Moreover, the computation of the gradient (39) requires the solu-
tions of the forward Poisson problem (35) and the adjoint Poisson problem (40). The domi-
nant cost of solving (44) is in computing the solution to Poisson equations, and thus the 
computational cost of the method can be roughly measured in number of Poisson problems 
solved.
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Carrying out the premarginalization over a avoids solving for a since we replace a(x) with 
a∗(x). Indeed, solving for a would require the computation of another search direction, which 
in the Gauss–Newton case would be computed by solving

Ha(a)(â) = −Ga(a) (45)

for â, with

Ga(a) := A2
a (a − a∗) + exp(a)∇u ·∇p and Ha(a)(â) := A2

aâ + exp(a)â∇u ·∇p̂ (46)

the gradient and Hessian respectively, and Aa is defined in (47). In addition, the system (45) 
would need to be solved over the entire domain Ω, necessitating an extra order of magnitude 
of computational complexity. Such an approach is outlined for the nonlinear Stokes flow prob-
lem in [53].

5. Numerical examples

In this section, we consider two numerical experiments, one with a conductivity with isotropic 
homogeneous covariance structure and one with an anisotropic structure. The latter structure 
is akin to horizontally layered (stochastic) strata in which the correlation length is smaller in 
the vertical direction than in the horizontal plane. We will pay particular attention to the feasi-
bility of the posterior error estimates, that is, we will investigate whether the posterior models 
(essentially) support the actual Robin coefficient.

5.1. Problem setup

In both experiments, the domain Ω ∈ R3 is a rectangular parallelepiped with thickness 
H  =  0.01 and width L  =  1, such that L/H  =  100. The measurements consists of q  =  33 point 
measurements on the top of the domain, as illustrated in figure  1. To avoid the so-called 
inverse crime, we use a finer FEM discretization to generate the synthetic data than the FEM 
discretization used in the inversions. Moreover, the mesh used in the second example to gener-
ate the data is finer than the corresponding mesh used in the first example to ensure refinement 
of the stratified conductivity in the volume. The details of the meshes are presented in table 1, 
in all cases Lagrange piece-wise linear basis functions are used.

In both numerical examples, zero mean white noise is added to the simulated measurements, 
with the noise covariance matrix given by Γe = δ2

e I, with δe = (max(Bu)−min(Bu))× 1/100, 
that is, the noise level is 1% of the range of the noiseless measurements.

5.1.1. Prior models. The prior density (normal random field) imposed on β is the same in 
both experiments, as outlined in section 2. We assign the parameters that fix the mean β∗ and 
the covariance operator Cβ as follows: β∗ = 1, αβ = 7, γβ = 0.01I and κβ = 0. On the far 
right of figure 2, we show the resulting spatial variance structure of Γβ with the weighting. 
For comparison we also show the typically implemented case of homogeneous Neumann 
boundary conditions without weighting (far left), the case of enforcing Dirichlet boundary 
conditions (centre left), and the case of applying a homogeneous Robin boundary condition 
following the method of [32] (centre right), We note that the weighted covariance approach 
nullifies all boundary effects. Figure 3 shows three samples drawn from the prior density, µβ, 
along with the actual (distributed) Robin coefficient βtrue used to generate the synthetic data 
in both experiments.
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The BAE approach is (in part) based on (approximate) marginalization over the nuisance 
parameter. Technically, this involves drawing samples from the joint prior density of the nui-
sance and the primary parameters π(a,β) to compute the second order statistics of (ε,β) 
which, in turn, involves the computation of the forward problem f(a,β) for the draws. In 
this paper, we take (a,β) to be mutually independent. In addition, we take the prior on a(x) 
to be a Gaussian measure, µa = N (a∗, Ca) on L2(Ω) with Ca defined similarly as Cβ in sec-
tion 2. To be precise, we use a squared inverse elliptic operator as our prior covariance opera-
tor with homogeneous Neumann boundary conditions. We neglect to weight the covariance 
operator Ca by the diagonal of the associated solution operator and simply impose homogene-
ous Neumann boundary conditions in a bid to reduce the computational cost. Any boundary 
effects caused by this are of no consequence as we do not wish to reconstruct a. Formally, the 
prior covariance operator of a is defined as Ca = A−2

a , with the operator Aa defined (similarly 
to Cβ in section 2.1) through the variational problem: for s ∈ L2(Ω), the solution of Aaa = s 
satisfies

αa

∫

Ω
(γa∇a ·∇v + av) dx =

∫

Ω
sv dx for all v ∈ H1(Ω). (47)

For the first numerical example with isotropic correlation structure, we use αa = 100 and 
γa = 10−3I , while for the second numerical example with anisotropic correlation structure, 
we take γa = diag(10−2, 10−2, 10−8). In figure 4, three samples drawn from µa for the first 

Figure 2. The diagonal of the prior covariance operator with αβ = 7 and, γβ = 0.01. Far 
left: with homogeneous Neumann boundary conditions. Centre left: with homogeneous 
Dirichlet boundary conditions. Centre right: with homogeneous Robin boundary 
conditions and κβ = 1.42

√
γβ/αβ  as in [32]. Far right: the weighted approach of the 

current paper as discussed in section 2, with κβ = 0 (homogeneous Neumann).

Figure 3. Far left to centre right: samples from the prior distribution on β. Right: the 
true value βtrue used to compute the data.
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numerical example are shown, along with the true value, atrue, used to generate the synthetic 
data. Similarly, in figure 5, three samples drawn from µa for the second numerical example are 
shown along with the true value atrue used to generate the synthetic data. A standard require-
ment when designing the prior is that the priors should not be ‘too narrow’, which here is 
reflected in the shown draws when compared to the actual a(x) and β(x).

5.1.2. Estimation of approximation error statistics. In the linear normal case, that is, f(a,β) 
and f a∗(β) both linear and π(a,β) is normal, ε∗ and Γε can be computed analytically. If this 
is not the case, both ε∗ and Γε must be estimated using sample statistics using samples drawn 
from (the not necessarily jointly Gaussian) joint prior model π(a,β). With an ensemble of r 
samples, (β(ℓ), a(ℓ)) from the associated prior densities, we compute

ε(ℓ) = f(a(ℓ),β(ℓ))− f a∗(β
(ℓ)), ℓ = 1, 2, , . . . , r, (48)

and take the mean and covariance as

ε∗ =
1
r

r∑

ℓ=1

ε(ℓ) and Γε =
1

r − 1

r∑

ℓ=1

(ε(ℓ) − ε∗)(ε
(ℓ) − ε∗)

T . (49)

The number of samples r required depends on the models, the variance of the approximation 
error, and the joint prior model, see for example [42]. However, we remark that all samples 

Figure 4. Far left to centre right: slice plots of samples from the prior distribution on 
a(x) with isotropic covariance structure (first numerical example). Right: slice plot of 
the true value atrue used to compute the data.

Figure 5. Far left to centre right: slice plot of samples from the prior distribution on a 
with anisotropic covariance structure (second numerical example). Right: slice plot of 
the true value atrue used to compute the data.

R Nicholson et alInverse Problems 34 (2018) 115005



15

(and all accurate forward simulations) are carried out at the offline stage and that the accurate 
forward model is never used in the inversion, with only the approximate model evaluated at the 
online stage. For the current problem, 1000 samples were drawn for both numerical examples 
to compute the approximation error statistics. Figures 6 and 7 show the statistics of the noise 
and of the approximation errors for the first and second examples, respectively. It is clear that 
the approximation errors dominate the noise in both cases, entries on the diagonal of Γε being 
almost two orders of magnitude larger than those on the diagonal of Γe. Thus, not including 
the approximation errors will most likely lead to meaningless results, as confirmed below in 
section 5.2. Note the difference in the mean and covariance of ε due to different priors on a.

5.1.3. The MAP and approximate posterior covariance estimates. To compare the solutions 
of the inverse problems formulated with the approximation error noise model and with the 
conventional error model, we compute the respective MAP estimates and posterior covari-
ances matrices. For both the isotropic and anisotropic conductivity cases, we compute the 
following three MAP estimates:

Figure 6. Second order statistics of the noise and approximation errors for the first 
(isotropic conductivity) numerical example. Far left: the density of the noise, µnoise 
(mean shown in red) with higher probability density indicated by darker shading. 
Centre left: the covariance matrix of the noise Γe. Centre right: the density of the total 
errors, µν  (mean shown in red). Far right: the covariance matrix of the approximation 
errors Γε.

Figure 7. Second order statistics of the noise and approximation errors for the second 
(anisotropic conductivity) numerical example. Far left: the density of the noise, µnoise 
(mean shown in red) with higher probability density indicated by darker shading. Centre 
left: the covariance matrix of the noise Γe. Centre right: the density of the total errors, 
µν  (mean shown in red) with higher probability density indicated by darker shading. 
Far right: the covariance matrix of the approximation errors Γε.
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 •  MAP-REF: the reference maximum a posteriori estimate for β with the con-
ventional error model and use of the actual value of a in the model, that is, 
dobs = f(atrue,β) + e = f atrue

(β) + e. This reconstruction is taken as the benchmark one, 
as it is computed with no modelling errors present. The estimate is computed as

βREF
MAP = min

β∈Rn

1
2

∥∥∥ f atrue
(β)− dobs

∥∥∥
2

Γ−1
e

+
1
2
∥A (β − β∗)∥

2
M . (50)

 •  MAP-CEM: the maximum a posteriori estimate for β with the conventional error model, 
using the (incorrect) fixed a  =  a∗ in the forward model, that is, dobs = f a∗(β) + e. This 
estimate is computed as

βCEM
MAP = min

β∈Rn

1
2

∥∥∥ f a∗(β)− dobs
∥∥∥

2

Γ−1
e

+
1
2
∥A (β − β∗)∥

2
M . (51)

 •  MAP-BAE: the maximum a posteriori estimate for β with the approximation error  
model and using fixed a  =  a∗ in the model, that is, dobs = f a∗(β) + ν . This estimate is 
computed as

βBAE
MAP = min

β∈Rn

1
2

∥∥∥ f a∗(β)− dobs + ν∗

∥∥∥
2

Γ−1
ν

+
1
2
∥A (β − β∗)∥

2
M . (52)

  The related approximate posterior covariance matrices are then as follows.
 •  ΓREF

post : the reference posterior covariance matrix is computed using the conventional error 
model and using the actual value of a in the model, i.e. dobs = f(atrue,β) + e. Since, in 
this case, there are no modelling errors present, we expect the reference posterior covari-
ance matrix to be smaller (in the sense of quadratic forms) than the posterior covariance 
matrix obtained using the approximation error model. This posterior covariance matrix is

ΓREF
post =

(
F♮

atrue
Γ−1

e Fatrue + Γ−1
β

)−1
. (53)

 •  ΓCEM
post : the posterior covariance matrix with the conventional error model is com-

puted using the conventional error model with the fixed a  =  a∗ in the model, that is, 
dobs = f a∗(β) + e. This posterior covariance matrix is

ΓCEM
post =

(
F♮

a∗Γ
−1
e Fa∗ + Γ−1

β

)−1
. (54)

 •  ΓBAE
post : the approximation error model posterior covariance matrix is computed using the 

approximation error model and using fixed a  =  a∗ in the model, i.e. dobs = f a∗(β) + ν . 
This posterior covariance matrix is

ΓBAE
post =

(
F♮

a∗Γ
−1
ν Fa∗ + Γ−1

β

)−1
. (55)

5.2. Results

The computation of the reference MAP estimate, βREF
MAP given in (50), the conventional error 

model MAP estimate, βCEM
MAP given in (51), and the approximation error model MAP estimate, 

βBAE
MAP given in (52), is done by applying an inexact adjoint-based Gauss–Newton method out-

lined in section 4.2. We start each of the optimization procedures with the prior mean as the 
initial guess, that is β0 = β∗ = 1. A preconditioned conjugate gradient (CG) method is used 
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with an Einsentat–Walker condition [54] which terminates the CG iterations early, when the 
norm of the gradient is sufficiently reduced. In line with [11], we use the prior operator as a 
preconditioner for the CG iterations.

5.2.1. The estimates with isotropic conductivity. On the far left of figure 8 we show the true 
basal Robin coefficient, βtrue, which is used to generate the measurements. We also show 
the reconstructed reference MAP estimate (centre left), the reconstructed conventional error 
model MAP estimate (centre right), and the reconstructed approximation error model MAP 
estimate (far right). The images of the reconstructions in figure 8 also show the (dotted) lines 
p-p∗ and q-q∗ which are the locations of the cross sections shown in figures 9 and 10. We now 
discuss several observations that can be made from figures 9 and 10. Firstly, the reference 
estimate is clearly feasible in the sense that the posterior uncertainty supports the actual Robin 
coefficient. Conversely, the estimates with the conventional error model (severely) underes-
timate the true basal Robin coefficient. In particular, the estimate is clearly infeasible: the 
actual coefficient has almost vanishing posterior density at almost all points along the cross 
sections. On the other hand, the estimate with the approximation error model is clearly a 
feasible one with the posterior marginals supporting the actual Robin coefficient. Finally, we 
see that marginalization over the conductivity results in the widening of the posterior density 
which is evident when comparing the marginal densities of the reference and approximation 
error estimates.

5.2.2. The estimates with anisotropic conductivity. The corresponding results in the case of 
the anisotropic conductivity are shown in figures 11–13. The results are qualitatively similar to 
the isotropic case. In this case, the conventional error severely overestimates the actual Robin 
coefficient, the only difference between the two cases being the spatial covariance structure 
of the conductivity a. With the approximation error model, the estimates are still feasible but 
slightly worse when comparing to the isotropic conductivity case.

5.2.3. Computational costs. In this section, we compare the computational cost of the 
inverse solution method applied for the three methods: the reference case; the conventional 
error procedure; and the BAE approach. We measure this cost in terms of number of Poisson 
solves needed for the optimization algorithm to converge. We note that to compute the MAP 
estimates, the number of Poisson solves needed per Gauss–Newton iteration can be calculated 

Figure 8. Isotropic conductivity. Far left: the true Robin coefficient βtrue. Centre left 
to far right: the reference MAP estimate βREF

MAP, the conventional error model MAP 
estimate βCEM

MAP  and the approximation error model MAP estimate βBAE
MAP, respectively. 

The cross sections are shown in figures 9 and 10.
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as #Poisson  =  2+2#CG+#back. where #CG is the number of CG iterations and #back. is 
the number of back-tracks needed to get a sufficient decrease in the objective function. In all 
three cases, the convergence of the Gauss–Newton iterations is established when the norm of 
the gradient (relative to the initial norm of the gradient) is decreased by a factor of 107. The 
results shown in table 2 reveal that, at the inversion stage, the BAE approach is approximately 
as expensive as the conventional error approach. For completeness, we also show the costs in 
the reference reconstructions.

5.2.4. Interpretation of the posterior covariance matrices. Here we discuss and compare 
the three posterior covariance matrices corresponding to the reference case, the conven-
tional error with reduced model case, and the approximation error model case, which are 
defined in (53)–(55). We begin the discussion by analyzing the spectrum of the respective 
 prior-preconditioned data misfit Hessian components of the posterior covariance matrices for 
both numerical examples.

On the left of figure 14 is shown the dominant spectrum of the prior-preconditioned data 
misfit Hessian for the three cases evaluated at the respective MAP estimates for the first exam-
ple, while the same results for the second example are shown on the right (reference case with 
blue circles, conventional error with reduced model with red diamonds, and approximation 
error model with yellow crosses). In all three cases we are only required to retain relatively 
few eigenvalues to compute a reasonable low rank approximation of the Hessian. Specifically, 
in the first example, for the reference case we need about 30 eigenvalues, while for both the 

Figure 9. Isotropic conductivity. Far left: the prior mean and marginal distibutions of 
the β along the line p-p∗. Centre left to far right: the cross sections of figure 8 along 
the line p-p∗. The reference MAP estimate βREF

MAP, the conventional error model MAP 
estimate βCEM

MAP  and the approximation error model MAP estimate βBAE
MAP. The true β and 

the MAP estimates are shown in blue and red, respectively, along with the approximate 
posterior marginal distributions of β.

Figure 10. Isotropic conductivity. The cross sections of figure 8 along the line q-q∗. The 
discription otherwise as in figure 9.
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conventional error model with reduced model and the approximation error model we need 
about 20. In the second example the reference case requires the retention of about 20 eigen-
values, the conventional error model with reduced model requires about 30, and the reduced 
model with approximation error model we need 25. We note that that the these low numerical 
ranks are substantially smaller than the 961 degrees of freedom of the parameter (i.e. we see 
a compression of the parameter dimension of about 30). Hence the approximate posterior 
covariance matrix along with draws from the posterior can be cheaply computed using (23) 
and (24), respectively.

In figures 15 and 16 we show several eigenvectors corresponding to the dominant eigen-
values of the prior-preconditioned data misfit Hessians corresponding to the three cases. 

Table 1. Comparison of the computational costs. The cost of solving for the MAP 
estimates in the reference case (REF), the case of using the conventional error model 
(CEM) with fixed a  =  a∗ and the case of using the approximation error model (BAE) 
with fixed a  =  a∗, measured in number of Poisson solves. The first column (MAP) 
refers to which MAP estimate we are solving for, MAP-REF (50), MAP-CEM (51), 
or MAP-BAE (52); the second column (#GN) reports the number of Gauss–Newton 
iterations; the third (#CG) and fourth (avg.CG) columns show total and the average (per 
Gauss–Newton iteration) number of CG iterations; the fifth column (#back) reports 
the total number of backtracks needed throughout the Gauss–Newton iterations; and 
the last column (#Poisson) reports the total number of Poisson solves (from forward, 
adjoint, and incremental forward and adjoint problems). The Gauss–Newton iterations 
are terminated when the norm of the gradient is decreased by a factor of 107, while 
the CG iterations are terminated inline with the Einstat–Walker condition [54]. These 
results illustrate that the use of the approximation error approach can be carried out 
at no additional cost compared to the conventional error approach and reference case.

MAP #GN #CG avg.CG #back #Poisson

Example 1
REF 8 117 15 0 250
CEM 11 101 10 4 228
BAE 5 57 12 0 124

Example 2
REF 6 54 9 0 120
CEM 8 95 12 0 206
BAE 5 97 20 0 204

Figure 11. Anisotropic conductivity. Far left: the true Robin coefficient βtrue. Centre 
left to far right: the reference MAP estimate βREF

MAP, the conventional error model MAP 
estimate βCEM

MAP  and the approximation error model MAP estimate βBAE
MAP, respectively. 

The cross sections are shown in figures 12 and 13.
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The most dominant eigenvalues can be interpreted as the modes in the basal Robin coef-
ficient for which the data contains the most information about. The first few eigenvectors 
of all three cases are fairly similar (note the sign change for the first eigenvector is the 
approximation error model case). However as the level of oscillation in the eigenqvec-
tors increases we see that the differences between corresponding eigenvectors between the 
three models increase.

We can further asses the uncertainty in the estimates by analyzing the full pointwise pos-
terior variances, i.e. the diagonal of the posterior covariance matrices. Such analysis also pro-
vides insight into how much the variance (from the prior to the posterior) is reduced by taking 
the data into consideration. In figures 17 and 18 we show the diagonal of the prior covariance 

Figure 13. Anisotropic conductivity. The cross sections of figure 11 along the line q-q∗. 
The discription otherwise as in figure 9.

Figure 14. Semi-log plots of the eigenvalues of the prior-preconditioned misfit Hessians 
for the isotropic case (left) and the anisotropic case (right).

Figure 12. Anisotropic conductivity. The cross sections of figure 11 along the line q-q∗. 
The discription otherwise as in figure 9.
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matrix and the three posterior covariance matrices, for the first and second numerical exam-
ples, respectively.

Most information, and consequently the greatest reduction in uncertainty, is directly below the 
measurement locations and in areas where the parameter field attains relatively high values. The 
reduction in variance in the vicinity of the measurement locations is typical for inverse problems. 
On the other hand, it is evident that the reduction in variance is greatest where the parameter 
achieves higher values. This is due to the fact that for higher values of the parameter the Robin 
boundary condition begins to behave like a Dirichlet boundary condition, meaning the potential is 
less free to vary which leads to less variance in the inferred parameter in these regions.

Finally, the centre images in figures 17 and 18 further illustrate the extent to which the 
conventional error model leads to overly optimistic (narrow) confidence intervals. This feature 
is especially evident in the anisotropic case (figure 18), where the posterior variance using the 
conventional error model is significantly smaller than the reference posterior variance.

6. Discussion

In this paper, we considered the problem of inferring the distributed (basal) Robin coeffi-
cient from surface measurements under an unknown random conductivity field. The forward 

Figure 15. Eigenvectors of the reference prior-preconditioned misfit Hessian (top 
row), conventional error model prior-preconditioned misfit Hessian (middle row), 
and approximation error model prior-preconditioned misfit Hessian (bottom row) 
computed at βREF

MAP, βCEM
MAP, and βBAE

MAP, respectively. From left to right: the eigenvectors 
corresponding to the first (i.e. the largest), the third, the fifth and the tenth eigenvalues.
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Figure 16. Eigenvectors of the reference prior-preconditioned misfit Hessian (top 
row), conventional error model prior-preconditioned misfit Hessian (middle row), 
and approximation error model prior-preconditioned misfit Hessian (bottom row) 
computed at βREF

MAP, βCEM
MAP, and βBAE

MAP, respectively. From left to right: the eigenvectors 
corresponding to the first (i.e. the largest), the third, the fifth and the tenth eigenvalues.

Figure 17. The reduction in variance for the isotropic case. Far left: the diagonal of 
the prior covariance matrix, Γβ, as outlined in section 2. Centre left: the diagonal of 
the reference approximate posterior covariance matrix, ΓREF

post . Centre right: the diagonal 
of the conventional error model approximate posterior covariance matrix, ΓCEM

post . Far 
right: the diagonal of the approximation error model approximate posterior covariance 
matrix, ΓBAE

post .

R Nicholson et alInverse Problems 34 (2018) 115005



23

model at hand was the (anisotropic) Poisson equation with mixed boundary conditions. To 
account for model errors that stem from the uncertainty in the conductivity coefficient in the 
underlying PDE, we carry out approximative marginalization over the conductivity. In this 
process, we approximate the related modelling errors and uncertainties as normal, which is 
also referred to as the Bayesian approximation error (BAE) approach.

The uncertainty analysis presented here relies on a local linearization of the parameter-to-
observable maps at the MAP point estimates, leading to a normal (Gaussian) approximation 
of the parameter posterior density, which is also referred to as the Laplace approximation. 
We considered two cases of the conductivity field, an isotropically smooth field and an aniso-
tropically smooth (horizontal strata) one. The results indicate that fixing the conductivity as 
an incorrect but otherwise well justified (distributed parameter) field can result in infeasible 
and misleading posterior estimates in the sense that the true parameter is not supported by the 
posterior model. On the other hand, carrying out approximative marginalization does provide 
feasible estimates with both isotropically and anisotropically smooth unknown conductivities.

The computational feasibility (in large-scale) distributed Robin coefficient problems is 
provided by the adjoint method and being able to avoid the simultaneous estimation of the 
conductivity, which in contrast to the Robin coefficient, is a random field in the entire domain.

Future work will be concentrated in two distinct direction. Firstly from a qualitative stand 
point it would be of interest to consider how the quality of the estimate changes when the 

Figure 18. The reduction in variance for the anisotropic case. Far left: the diagonal of 
the prior covariance matrix, Γβ, as outlined in section 2. Centre left: the diagonal of 
the reference approximate posterior covariance matrix, ΓREF

post . Centre right: the diagonal 
of the conventional error model approximate posterior covariance matrix, ΓCEM

post . Far 
right: the diagonal of the approximation error model approximate posterior covariance 
matrix, ΓBAE

post .

Table 2. Statistics of the mesh. The first column (Mesh used for) relates what the mesh 
is used for; the second (#Nodes) third (#Els) and fourth (#Param) columns give the 
number of total number of FEM nodes used in the entire volume, tetrahedral elements 
used in the entire volume, and the number nodes on the domain of the parameter, β, 
respectively.

Mesh used for #Nodes #Els #Param

Example 1
Data synthesis 28 611 150 000 2601
Inversion 6727 32 400 961

Example 2
Data synthesis 132 651 750 000 2601
Inversion 29 791 162 000 961
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number and location of measurements changes. Secondly, in the simplified model (with fixed 
a  =  a∗) there are no parameters distributed in the domain, warranting an investigation into 
the computational feasibility of other numerical methods such as boundary element methods 
(BEM) for solving the the simplified model.
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