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Abstract

We consider the reconstruction of a heterogeneous coefficient field in a Robin
boundary condition on an inaccessible part of the boundary in a Poisson
problem with an uncertain (or unknown) inhomogeneous conductivity field
in the interior of the domain. To account for model errors that stem from the
uncertainty in the conductivity coefficient, we treat the unknown conductivity
as a nuisance parameter and carry out approximative premarginalization over
it, and invert for the Robin coefficient field only. We approximate the related
modelling errors via the Bayesian approximation error (BAE) approach.
The uncertainty analysis presented here relies on a local linearization of the
parameter-to-observable map at the maximum a posteriori (MAP) estimates,
which leads to a normal (Gaussian) approximation of the parameter posterior
density. To compute the MAP point we apply an inexact Newton conjugate
gradient approach based on the adjoint methodology. The construction of
the covariance is made tractable by invoking a low-rank approximation of
the data misfit component of the Hessian. Two numerical experiments are
considered: one where the prior covariance on the conductivity is isotropic,
and one where the prior covariance on the conductivity is anisotropic. Results
are compared to those based on standard error models, with particular
emphasis on the feasibility of the posterior uncertainty estimates. We show
that the BAE approach is a feasible one in the sense that the predicted posterior
uncertainty is consistent with the actual estimation errors, while neglecting the
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related modelling error yields infeasible estimates for the Robin coefficient.
In addition, we demonstrate that the BAE approach is approximately as
computationally expensive (measured in the number of PDE solves) as the
conventional error approach.

Keywords: estimation of Robin coefficient, Modelling errors, adjoint-based
Hessian, low rank approximation, Bayesian approximation error approach,
approximate marginalization, Bayesian framework
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1. Introduction

In this paper, we consider the problem of estimating the unknown Robin coefficient field in a
Poisson problem with uncertain conductivity field from available measurements. This prob-
lem setup is inspired from physical applications, e.g. the detection of corrosion of an electro-
static conductor [1-3] and the estimation of thermal parameters [4, 5]. The Poisson problem
with uncertain Robin boundary coefficient has received considerable attention, both from a
theoretical standpoint as well as from a numerical point of view [1-10]. However, the standard
assumption in these studies is that the internal conductivity (which is generally a distribute
parameter) is known. In this paper, we consider both the conductivity and boundary condi-
tion to be uncertain. A common approach would be to invert for both fields simultaneously,
however this results in a highly ill-posed and potentially untracktable problem. To avoid the
need for a joint inversion, we premarginalize over the internal conductivity, and then invert
for the Robin coefficient. Furthermore, we employ a discretisation invariant method for the
inversions as in [11, 12]. Thus the methods developed should be immediately applicable to
the case in which the Robin parameter is high-dimensional (which is often the case for real
applications).

There is a rich body of literature on theoretical and computational aspects of the so-called
inverse Robin problem, i.e. the problem of inferring the (distributed) Robin coefficient given
measurements of the potential. In [2], the authors develop a direct reconstruction method
based on a thin plate approximation. In [6], several results on stability, uniqueness and iden-
tifiability are established, while in [3] a more general stability estimate is proved. Numerical
methods developed to solve the inverse Robin problem include a quasi-reversibility method
[7] and an approach based on an L!-tracking functional [8]. More recently, in [9], a regularized
least-squares approach is taken via a variational formulation and in [10], a regularised least-
squares problem is solved using an adjoint based approach, similar to the methods considered
in the present paper.

The previous studies consider the following inverse problem: given noisy (partial point)
measurements of u on the boundary of a bounded domain €2, with € R, d e {2, 3}, deter-
mine the Robin coefficient field, 3(x). The field u satisfies the forward problem,

—Au(x)=0 inQ,

Vu(x) - n = g(x) on Iy

Vu(x) - ny + exp(B(x))u(x) =0 onT}
ux)=0 onl,, (1)

where (in the context of the present paper), I'y is referred to as the top of the domain,
I’y the sides of the domain, and I', the bottom of the domain. As such, we have
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I'Nly=TsNT,=T,NT, =0, and (eventually noisy pointwise) measurements of u are
available on I'y. In the literature, Dirichlet boundary conditions are often replaced by Neumann
boundary conditions on [, see for example [8, 9].

However, in essentially all practical problems, the conductivity cannot be assumed to be a
constant, leading to the spatially inhomogeneous problem

—V - (exp(a(x))Vu(x)) =0 in Q,

exp(a(x))Vu(x) -n, = g(x) onT

exp(a(x))Vu(x) - ny + exp(B(x))u(x) =0 on Ty
u(x)=0 onT. 2)

For example, in the case of detecting corrosion of an electrostatic volume conductor, exp(a)
models the electrical conductivity and it is generally an unknown (distributed) parameter.

The estimation of the Robin coefficient 8(x) under the forward model (2) would typically
necessitate the simultaneous estimation of the conductivity a(x). Such a task carries with it
several challenges: the ill-posedness of the problem would be increased significantly, and
there is the potential for issues around the identifiability of 8(x). In this paper, however, our
main concern is the drastically increased computational cost associated with estimating the
parameter a(x) which is distributed over the entire volume €2 rather than estimating 3(x) only
which is distributed on I'y, only.

The approach in this paper is based on the (initially) infinite-dimensional formulation of
the inverse problem, the adjoint method for the computation of the related first and second
order derivative information, and the subsequent Bayesian approximation error approach. A
brief review of these topics is given below.

The infinite dimensional approach to Bayesian inverse problems that was developed in
[13] is receiving considerable attention, and has been successfully applied to several inverse
problems. The method is particularly suited to the case when the parameter of interest is
high-dimensional (stemming from the discretization of the the unknown infinite-dimensional
parameter field), and it ensures convergence under discretization. An efficient computational
framework was developed in [11, 12], based on an adjoint approach [14, 15], to implement the
theoretical work put forward in [13], and was applied, for example, to global seismic inver-
sions in [11] and ice sheet flow inverse problems in [12]. The approach has also successfully
been applied to inverse acoustic obstacle scattering problems in [16]. The infinite-dimensional
Bayesian setup has also been applied to optimal experimental design (OED) for Bayesian non-
linear inverse problems governed by partial differential equations [17]. The goal of the OED
problem was to find an optimal placement of sensors (for measurements) so as to minimize
the uncertainty in the inferred parameter field.

The Bayesian approximation error (BAE) approach [18, 19] was originally used as a means
to take into account the modelling errors induced by the use of reduced order models. The
approach is based on approximate premarginalization over modelling errors, which refers to a
process similar to the marginalization over additive errors to obtain the likelihood. However,
a particular advantage of this method is the ability to approximately premarginalize also over
parameters which are not of primary interest. In the context of electrical impedance tomog-
raphy (EIT), the BAE approach has been used to simultaneously premarginalize over the
unknown domain shape and the contact impedances of the electrodes [20]. Furthermore, in
[21], the approach was used to premarginalize over the distributed scattering coefficient in
diffuse optical tomography (DOT) and, in [22], the method was used to premarginalize over
both the scattering and absorption coefficients in the context of fluorescence diffuse optical
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tomography (fDOT). The BAE method has also been applied to x-ray tomography to premar-
ginalize over distributed parameters outside a region of interest [23].

In the context of premarginalizing over distributed parameters, the BAE approach has thus
far only been used to marginalize over unknowns defined on spatial dimensions at most equal
to that of the primary parameter of interest. I this paper, we show that the BAE approach
is also feasible for the premarginalization over a distributed parameter in the entire domain
when the parameter of primary interest is defined only on (a subset of) the boundary of the
domain. We also show that the infinite-dimensional framework for inverse problems posed in
the Bayesian setting is an effective method for solving the so-called Robin inverse problem
under an unknown (distributed) conductivity.

The paper is organized as follows. In section 2, we review the Bayesian framework for
inverse problems, including a limited discussion on the infinite dimensional set up, the com-
putation of the maximum a posteriori estimate and the approximate posterior covariance. In
section 3, we review the Bayesian approximation error approach and, in section 4, we form-
ulate the problem of estimating the Robin coefficient in the case of an unknown conductivity.
In section 5, we consider two numerical experiments: a conductivity with spatially isotropic
smooth covariance and one with an anisotropic smooth covariance. The results are compared
to those based on standard error models, with particular emphasis on the feasibility of the
posterior uncertainty estimates.

2. Background on the Bayesian approach to inverse problems

In this section, we give a brief review of the formulation of Bayesian inverse problems follow-
ing [11, 12] to an extent that is relevant to the present paper. For a more in-depth discussion
on some of the technical difficulties in dealing with inverse problems posed in infinite dimen-
sions, see for example [11-13]. We consider the problem of finding 3(x) € H C L*(Qp),
from observed measurements d° € R?, with 3 and d°* linked by

" =f, (B) +e. 3)

where f, :H — R? is the parameter-to-observable map, and e represents additive errors in
the measurements. The slightly unconventional notation f, used for the so-called parameter-
to-observable map will be explained in section 3.

In this paper, we take the prior to be a Gaussian measure, j5 = N(B.,Cg) on L*(Qp),
where S, is the prior mean, which lives in H, and Cg is the prior covariance operator. As out-
lined in [13], the prior must be chosen to satisfy certain regularity assumptions to ensure
the Bayesian inverse problem is well-defined. We employ a weighted squared inverse elliptic
operator as our prior covariance operator [24], with the addition of homogeneous Robin (or
Neumann) boundary conditions. This is a slight modification to that used in [11, 12], with the
aim of mitigating any artefacts in estimates or prior samples due to the enforcement of bound-
ary conditions. Specifically, for s € L*(€2g), the weak solution of AB = s satisfies

ag/Q ’yﬂVﬁ-VU—i-Bvdy—i-/a Kﬁﬁl)dt:/g sody for all v e H'(Qp), €}
8 8

Qp

where ag > 0 is inversely proportional to the prior variance, g is a symmetric positive defi-
nite uniformly bounded matrix controlling the correlation [11], and kg > 0. Then we take the
prior covariance operator to be

Cs = WA*W ®)
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where

Wi=—28  and o= Ga(v)

A2 (x,x) (47r)d/2’750¢% ' ©
Here Ga denotes the gamma function, d is the spatial dimension, and v + d/2 = 2 [24], and
is the point-wise standard deviation, as in [24, 25]. The addition of the weights normalizes the
variance across the domain as discussed below in section 5. For efficient methods to extract
.Afz(x,x), see for example, [26-30]. We also note that there are other methods aimed at miti-
gating the boundary effects, see for example, [24, 31, 32].
In this paper, we consider a normal noise model e ~ fiyoise = N (0,T), which results in
the likelihood

e @™18) o exp {_% (Fu (B~ ™) 15 (.8 — @) } .o

2.1. Discretization of Bayesian inverse problems

In this section, we briefly review some of the key results on the finite-dimensional approx-
imation of Bayesian inverse problems. The discussion here follows [11, 12, 17], where it is
shown that the mass-weighted inner product space is the correct space to work in.

Discretization of the inverse problem results in the parameter of interest being approxi-
mated as B, = Y_7_, Bj¢j € Vj, where V,, denotes a finite-dimensional subspace of L2(p)
induced by a finite element discretization with continuous Lagrange basis functions. We then
seek to invert for B = [B1, Ba, .. ., Ba]T € R™ Furthermore any inner product between nodal
coefficients will be weighted by a mass matrix M so as to correctly approximate the infinite-
dimensional L* inner product. We denote the mass-weighted inner product by (-,-),,, with
.2y = yTMz and the symmetric positive definite mass matrix given by

Mi].:/ 6040 dy ije{1.2....n}. 8)
Qp

To distinguish between the Euclidean space R"” and R” endowed with the mass-weighted inner
product, we introduce the notation R}, to denote R" equipped with the mass-weighted inner
product.

As shown in for example [11], there are several differences which must be taken into
account when working in R}, rather than in R", which revolve largely around the concepts of
adjoints and transposes. For instance, for an operator B : R}, — R},, we denote the matrix
transpose by BT. The mass-weighted inner product adjoint, however, denoted here by B*,
satisfies (By,z),, = (v, B*z),,, for y,z € R}, implying

B* =M 'B"M. ©
We also require two further adjoint type operators below in section 2.2. For this, let R? and R”

for some g, r, be endowed with the Euclidean inner product. We then define the adjoints F' % of
F:Rj —»Rfand V° of V:R" — R}, as

F=M"'F", (10)
Ve =viMm. (11)

With these definitions in hand, the finite-dimensional approximation of the operator A in
4)is A = M—'KW~! where
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Ky = o / (7o ViV + dugs) dy + / ki dt, (12)
Qs 094
e
WUZE’/KU di, Li€e{l,2,...,n}, (13)

where o3 is as in (6) and 6;; is the Kronecker delta.
We can now express the finite-dimensional approximation ,u’é of the prior Gaussian meas-
ure, [, as

o () o oxp (=5 18 (8- 8.1 ). (1)

where 3, is the discretization of the prior mean, (., and the prior covariance matrix is by
definition I'g = A% (since A is symmetric). We can now state the finite-dimensional Bayes’
formula

Wpost(lg) = 7"—;)()st(ﬁ'dobs) X ﬂprior(lg)wlike(d()bs'ﬁ), (15)

where pox(3) is the density of the finite-dimensional approximation p of the the posterior
measure (g and 7 1S the likelihood given by (7), see [11, 12]. Thus we can express the pos-
terior density explicitly as

2 1
rg‘_i

fa* (IB) - dObS

7Tposl(ﬁ) X exp (_% ‘ HA (B - ﬁ*)”i/[) . (16)

2.2. The MAP estimate and the approximate posterior covariance

In the Bayesian framework, one seeks to determine the posterior density of the parameter of
interest. In principle, then, one would explore the posterior density typically with Markov
chain Monte Carlo sampling methods. However, in large-scale problems with limited com-
putational resources, one often has to be content with a single representative point estimate
of the parameter along with an (approximate) posterior covariance and credibility intervals.
Standard point estimates for the posterior include the conditional mean (CM) and the maxi-
mum a priori (MAP) estimates. In this paper, we aim at computing the finite-dimensional
MAP estimate Byap and the Laplace (local normal) approximation for the covariance which
also yields approximate marginal distribution for Syap .. For discussions on the extension of
the MAP estimate to infinite dimensions, see, for example [33, 34].

Following on from (16), the MAP estimate is defined as the point in parameter space that
maximizes the posterior probability density function [18, 35], that is,

2
T

fa* (IB) - dObS

1 1
Bunp = arg min 5 | Lt 1B Bl a7
In line with [12], in (17) and the remainder of the paper, we denote by f,, (§3) the parameter-
to-observable map evaluated at the finite element function corresponding to the parameter
vector 3.
Assuming that the parameter-to-observable map is Fréchet differentiable, we can linearize
(3) around By,p and discretize to obtain the affine approximation

™~ 0. (Buap) + Fa, (Brap) (B — Buar) +e. (18)
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where F,_(Byap) is the Fréchet derivative of f,, () with respect to 3 evaluated at ,Ba,! ap- The
resulting approximation for the discrete posterior measure ) of 3 conditional on d° is then
necessarily a Gaussian measure, given by N (Byap» I‘POS[), with covariance matrix

—1
Tpou = (FET,'F +T5') (19)

where F 5* is the adjoint of F,,, see (10). We also note that the (approximate) posterior covari-
ance matrix is the inverse of the Gauss—Newton Hessian of the negative log posterior (referred
to simply as the Hessian from this point onwards), denoted by H, that is,

Tpos =H ™. (20)

2.2.1. Low rank approximation for the approximate posterior covariance matrix. For an effi-
cient calculation of the MAP estimate, and efficient action of the approximate posterior cova-
riance to vectors and action of the square root of the Hessian on vectors (the latter is needed
for computing samples from the approximate posterior), we apply a low rank approximation
of the Hessian as detailed in [11, 12, 36] and summarized below.

We note that the Hessian of the negative log posterior (16) can be split into the sum of a
data misfit term, H s, and the inverse of the prior covariance, I‘;l. By factorizing the prior
covariance as I'g = LL*, we can rewrite the Hessian as

H=Hy+T5 =Hp+L "L =L " (L'Hpy L+ 1) L™ @21

The final form of (21) allows for an efficient method of approximating I'yos;. The procedure
relies on exploiting the discretization invariant and often low rank nature of Hp [11, 12,
36, 37]. Thus, in this paper, we consider a low rank approximation for the so-called prior-
preconditioned data misfit Hessian [36] which takes the form

H = L*HmisL ~ VrAer, (22)

where V, € R"*" contains the r eigenvectors of the prior-preconditioned data misfit Hessian
corresponding to the r largest ei{grenvalues5 Aiyi=1,2,...,r,and A, = diag(A1, A, ..., Ay).
Then, by using the Sherman—Morrison—Woodbury formula [38], we have

H'~L(I-VD/V®)L", (23)

where D, =diag(Ai/(A\ + 1), /(M2 +1),..., A /(A + 1)) € R™*". Furthermore, for
drawing samples from the Gaussian approximation for the posterior, we have

H'?~L(V,PV:+1) M/, (24)
where P, = diag( A\ /v A +1— L /v +1—1,.. .0 /VA +1—1) e R see [11].

3. Background on model discrepancy and the Bayesian approximation
error approach

Solving inverse problems in any framework, especially in the large-scale case, can be computa-
tionally prohibitively expensive. To overcome this challenge, several classes of reduced-order
and surrogate models have been introduced. In [39], methods to reduce the computational
cost of solving inverse problems in the statistical setting are divided into three broad methods:

3 The truncation value r is chosen such that \; < 1 fori > r[11, 12, 36].

7
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reducing the cost of a forward simulation, reducing the dimension of the input parameter
space, and reducing the number of samples required. In line with our goal of keeping the
computational cost tracktable, in this paper we focus on approximations of the posterior rather
than on sampling-based methods.

As an approach, the Bayesian approximation error approach (BAE), developed in [18, 19],
can be seen to lie in the first and second category. However, along with lowering computa-
tional costs of forward simulations and reducing the dimension of the parameter space, the
BAE method can simultaneously take into account a vast array of uncertainties in the forward
model, see, for example, [21-23, 40—46]. Below, we summarize the concept and implementa-
tion of the BAE method.

In the BAE approach, any errors induced by the use of surrogate models, reduction of the
parameter dimension, and/or model uncertainties are propagated to a single additive error
term. Hence the form of the posterior will be as in (15) with a redefined likelihood density.
In what follows, let 3(x) be our parameter of interest, and take a(x) to denote a secondary
(nuisance) parameter. By secondary, we mean that we do not wish to estimate the unknown
a(x) but attempt to take the related uncertainty into account and propagate the effects into the
estimate for the parameter of interest and the posterior uncertainty. Except for jointly normal
linear models, it is not possible to exactly premarginalize over a(x) [18, 23]. In the following,
we outline how one can approximately premarginalize over a(x). To this end, let

(a,8) = f(a,B) (25)

denote an accurate forward model, and let e again denote noise which is additive and mutu-
ally independent with 3 and a such that e ~ piyeise = N (0,T,). Then the accurate relationship
between the parameters and measurements is

d° =f(a,B) +e. (26)

In the BAE approach, rather than using the accurate model f(a, §), we instead set a = a.
and use the approximate forward model

B fa.(8) 27

We note that in many applications the dimension of the parameter of interest is also reduced
by projecting onto some reduced basis, see, for example, [23] for more details. In general,
replacing the accurate model with the approximate model introduces what has become known
as model discrepancy, the difference between the predictions of the two models. To take into
account this model discrepancy we rewrite (26) as

d” =f(a,f) +e=f, (8) +e+ (f(a.B) ~f. (B) =fu.(B) +ete=f, (5 +v,
—_————
=&(a,8)

(28)

where the discrepancy in the models, €, is a random variable with the same dimensions as the
measurements, and is known as the approximation error [18, 19, 40]. The sum v = e + € is
called the total error here.

At this point in the BAE approach, the following approximation is made:

elB ~ pejs = N(esp.Tejp). 29)

that is, the conditional density of the approximation error v given the parameter of interest
3 is approximated as Gaussian®. The computation of €4 and I'g 5 is outlined in section 5.

% There is some work on retaining the full conditional density, see, for example, [47, 48].
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The fact that the approximation error depends on (3 implies that formally € and /3 cannot be
taken as mutually independent. However, in several cases, such a further approximation of
independence leads to similar estimates for a significantly smaller cost as explained in [23].
With this further approximation, we have

v,=e,+e, and T,=T,+T,, (30)

which was originally referred to as the enhanced error model in [18, 19]7.
The BAE approach results in both a revised functional, which the MAP estimate mini-
mizes, and a reformulated approximate posterior covariance matrix. Specifically, we now have

_ : 1 obs 2 1 2
Bure = min 5 [£,.(8) —a™ 4 +SIAB-BIR.  GD
—1
Lo = (Fg*r;IFa* + 1‘[;1) . (32)

We note that the infinite-dimensional counterparts to (31) and (32) can be formulated naturally.
As an indicator as to whether or not inclusion of the approximation errors is appropriate the
following rule of thumb can be adopted [23]: if

lle.||* + trace(T,) < ||e.|* + trace(T.) (33)

holds, then the approximation errors dominate the noise and neglecting the approximation
errors will generally result in meaningless reconstructions, as demonstrated in section 5.2.
Moreover, if

(k) + T2 (k, k) < e, (k) + T (k, k) (34)

for any k, then neglecting the approximation errors can still lead to meaningless results [23].

4. Recovery of the Robin coefficient

In this section, we formulate the inverse Robin problem with a spatially varying conductivity
coefficient a(x) which will later be interchanged for a fixed conductivity a,. In the chosen
geometry, we refer to the Robin coefficient as ‘basal’ since this condition is posed only on
the bottom part of a slab. The measurements are taken to be pointwise (noisy) potential mea-
surements on the top of the domain. We solve the inverse problem with Newton’s method.
Therefore, in what follows, we formulate the forward problem and derive the corresponding
first and second order adjoint problems for the gradient and the action of the Hessian to a vec-
tor needed by the optimization method.

4.1. The forward problem

As a model problem, let Q=1[0,L] x [0,L] x [0,H] € R® with 0<H <L < o0
denote the domain of the problem (a thin slab) with boundary 9. In our regime, a flux
is prescribed on I'y := [0, L] x [0, L] x {H}, while the potential is measured at ¢ points on

7 The actual form of €418 1S E4jp = €4 + I‘E@I‘;g(ﬂ — Bs) which incorporates the full covariance structure of
the normal approximation for 7 (e, ). The prior covariance of 3 cannot, however, be used in place of I'gg in this
conditional expectation. Rather, it must be based on the same draws as those used to compute I'. as in section 5
below. In practise, this leads to a a semidefinite estimate for I'gg, and the associated rank-deficient forms for the
conditional expectations need to be employed [23].
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Figure 1. Set up for the model problem. A prescribed flux is set through the top of
the domain and measurements of the potential are taken at points on the top of the
domain (blue circles). A Robin boundary condition is enforced at the bottom of the
domain, while the sides of the domain are prescribed homogeneous Dirichlet boundary
conditions.

Iy, see figure 1 for a schematic representation. A homogenous Robin boundary condition
is prescribed on Qg =T’y := [0, L] x [0,L] x {0} while on the remainder of the boundary,
Iy =00\ (I'' N T'y), homogeneous Dirichlet boundary conditions are specified. The con-
ductivity coefficient exp(a(x)) is taken to be a spatially distributed random field in €2, while
the Robin coefficient is taken to be a spatially varying random field on I',. To summarize, the
forward problem reads

—V - (exp(a(x))Vu(x)) =0 inQ
exp(a(x))Vu(x) - n = g(x) onTI}
exp(a(x))Vu(x) - ny + exp(B(x))u(x) =0 on I'y,
u(x) =0 on I (35

where u(x) the potential, g(x) is the flux through I'; with unit normal n,, and I'y, has unit nor-
mal ny,. We employ the finite element method (FEM) for the numerical approximation of the
forward problem, with the standard Lagrange piecewise linear nodal basis functions.

4.2. Adjoint-based Gauss—Newton method for solving the inverse problem

We employ an inexact Newton-CG approach to solve the minimization problem (17) which
requires both the gradient and the Hessian of the negative log prior and likelihood. To avoid
calculations of forward sensitivities, which would require as many forward solves as the
dimension of the parameter, we employ the adjoint approach [14, 15, 49, 50] to compute the
derivatives, which we show next.

We denote the observation operator with B so that the parameter-to-observable mapping
can be written as f, = Bu. Hence the infinite-dimensional counterpart of the functional to be
minimized in (17) can be rewritten as

1 1
TB) = 5| Bu—a™ v |+ VTG =B g, (36)

2
T,

where u(x) solves the forward problem (35). Furthermore, let us define the space,
V:={veH(Q): v, =0}, (37)

then we can define the Lagrangian functional £:V xV x &€ = R,

L(up.B) == T(B) + / exp(a(x))Vu - Vp dx — [ gpds + / exp(B)up dsb. (38)
Q T Ty

10
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The space £ is the Cameron-Martin space £ = range(C2) = dom(.A), induced by the prior
measure, see [13] for full details, or for example [17] for a brief overview. We note that due to
the regularity of the boundary of T, in the current set up, & = H*(T'y) [51, 52].

Determining the gradient of J is achieved by requiring that variations of the Lagrangian £
with respect to the forward potential u and the so-called adjoint potential p vanish. This results
in the following strong form of the gradient G for the variations with respect to 3

G(B) =W AW (B~ B.) + exp(B)up, (39

with u being the solution of the forward Poisson problem (35) for given [3, while p satisfies the
following adjoint Poisson problem for given u(x) and §(x)

—V - (exp(a(x))Vp(x)) = =B T, (Bu(x) — d®™ + v,) in ©,

exp(a(x))Vp(x) -n =0 on I,

exp(a(x))Vp(x) - ny + exp(B(x)) p(x) =0 on Ty,
plx)=0 on I's. (40)

The action of the Gauss-Newton approximation of the Hessian operator evaluated at 3 in the
direction f3 is given by
H(B)(B) == W AW + exp(B) Bup, (41)

where the incremental adjoint potential p satisfies the so-called incremental adjoint (or sec-
ond order adjoint) Poisson problem

—V - (exp(a(x))Vp(x)) = —B*T, ' Bi(x) in Q
exp(a(x))Vp(x) -n =0 on Iy
exp(a(x))Vp(x) - ny, + exp(B(x))p(x) =0 on Ty,
hlx) = on Ty, (42)
and the incremental forward potential u satisfies the incremental forward Poisson problem
—V - (exp(a(x))Vi(x)) =0 inQ
exp(a(x))Vi(x) -n.=0 on T
exp(a(x)) Vi(x) - m, + exp(B(x))it(x) = = exp(B(x))u(x) on T,
i(x) =0 onl. 43)

The resulting system to be solved for the Gauss—Newton search direction, B, is

H(B)(B) = =G(B). (44)
In the case of a high-dimensional parameter, it may not be feasible to solve the system (44)
directly, and iterative methods are usually employed. To this end, we employ the conju-
gate gradient (CG) method, which requires only the action of the (discrete) Hessian, that
is, Hessian-vector products. By examining (41), we see that each Hessian-vector product
amounts to solving both the adjoint Poisson problem (43) and the incremental adjoint
Poisson problem (42). Moreover, the computation of the gradient (39) requires the solu-
tions of the forward Poisson problem (35) and the adjoint Poisson problem (40). The domi-
nant cost of solving (44) is in computing the solution to Poisson equations, and thus the
computational cost of the method can be roughly measured in number of Poisson problems
solved.



Inverse Problems 34 (2018) 115005 R Nicholson et al

Carrying out the premarginalization over a avoids solving for a since we replace a(x) with
a.(x). Indeed, solving for @ would require the computation of another search direction, which
in the Gauss—Newton case would be computed by solving

Ha(a)(a) = —Gala) (45)

for a, with
Gula) :== .Alzl (a—ay) +exp(@)Vu-Vp and H,(a)(a) = Aﬁ& + exp(a)aVu - Vp (46)

the gradient and Hessian respectively, and A, is defined in (47). In addition, the system (45)
would need to be solved over the entire domain (2, necessitating an extra order of magnitude
of computational complexity. Such an approach is outlined for the nonlinear Stokes flow prob-
lem in [53].

5. Numerical examples

In this section, we consider two numerical experiments, one with a conductivity with isotropic
homogeneous covariance structure and one with an anisotropic structure. The latter structure
is akin to horizontally layered (stochastic) strata in which the correlation length is smaller in
the vertical direction than in the horizontal plane. We will pay particular attention to the feasi-
bility of the posterior error estimates, that is, we will investigate whether the posterior models
(essentially) support the actual Robin coefficient.

5.1. Problem setup

In both experiments, the domain 2 € R? is a rectangular parallelepiped with thickness
H = 0.01 and width L = 1, such that L/H = 100. The measurements consists of ¢ = 33 point
measurements on the top of the domain, as illustrated in figure 1. To avoid the so-called
inverse crime, we use a finer FEM discretization to generate the synthetic data than the FEM
discretization used in the inversions. Moreover, the mesh used in the second example to gener-
ate the data is finer than the corresponding mesh used in the first example to ensure refinement
of the stratified conductivity in the volume. The details of the meshes are presented in table 1,
in all cases Lagrange piece-wise linear basis functions are used.

In both numerical examples, zero mean white noise is added to the simulated measurements,
withthenoisecovariancematrix givenby ', = 621, withd, = (max(Bu) — min(Bu)) x 1/100,
that is, the noise level is 1% of the range of the noiseless measurements.

5.1.1. Prior models. The prior density (normal random field) imposed on 3 is the same in
both experiments, as outlined in section 2. We assign the parameters that fix the mean 3, and
the covariance operator Cg as follows: B, = 1, ag =7, 75 = 0.011 and x5 = 0. On the far
right of figure 2, we show the resulting spatial variance structure of I'g with the weighting.
For comparison we also show the typically implemented case of homogeneous Neumann
boundary conditions without weighting (far left), the case of enforcing Dirichlet boundary
conditions (centre left), and the case of applying a homogeneous Robin boundary condition
following the method of [32] (centre right), We note that the weighted covariance approach
nullifies all boundary effects. Figure 3 shows three samples drawn from the prior density, yz3,
along with the actual (distributed) Robin coefficient Sy used to generate the synthetic data
in both experiments.
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Figure 2. The diagonal of the prior covariance operator with ag = 7 and, yg = 0.01. Far
left: with homogeneous Neumann boundary conditions. Centre left: with homogeneous
Dirichlet boundary conditions. Centre right: with homogeneous Robin boundary
conditions and kg = 1.424/v3/cg as in [32]. Far right: the weighted approach of the
current paper as discussed in section 2, with kg = 0 (homogeneous Neumann).

Figure 3. Far left to centre right: samples from the prior distribution on . Right: the
true value Sy used to compute the data.

The BAE approach is (in part) based on (approximate) marginalization over the nuisance
parameter. Technically, this involves drawing samples from the joint prior density of the nui-
sance and the primary parameters 7(a, 3) to compute the second order statistics of (g, )
which, in turn, involves the computation of the forward problem f(a, 8) for the draws. In
this paper, we take (a, 8) to be mutually independent. In addition, we take the prior on a(x)
to be a Gaussian measure, /1, = N(a.,C,) on L*(2) with C, defined similarly as Cg in sec-
tion 2. To be precise, we use a squared inverse elliptic operator as our prior covariance opera-
tor with homogeneous Neumann boundary conditions. We neglect to weight the covariance
operator C, by the diagonal of the associated solution operator and simply impose homogene-
ous Neumann boundary conditions in a bid to reduce the computational cost. Any boundary
effects caused by this are of no consequence as we do not wish to reconstruct a. Formally, the
prior covariance operator of a is defined as C, = A2, with the operator A, defined (similarly
to Cg in section 2.1) through the variational problem: for s € L2(12), the solution of A,a = s
satisfies

aa/ (v,Va- Vv + av) dx:/ svde forallv € H'(Q). @7
Q Q
For the first numerical example with isotropic correlation structure, we use ¢, = 100 and

Yo = 10731, while for the second numerical example with anisotropic correlation structure,
we take v, = diag(1072,1072,107%). In figure 4, three samples drawn from i, for the first

13
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Figure 4. Far left to centre right: slice plots of samples from the prior distribution on
a(x) with isotropic covariance structure (first numerical example). Right: slice plot of
the true value a,. used to compute the data.

Figure 5. Far left to centre right: slice plot of samples from the prior distribution on a
with anisotropic covariance structure (second numerical example). Right: slice plot of
the true value ay,e used to compute the data.

numerical example are shown, along with the true value, ayye, used to generate the synthetic
data. Similarly, in figure 5, three samples drawn from , for the second numerical example are
shown along with the true value @, used to generate the synthetic data. A standard require-
ment when designing the prior is that the priors should not be ‘too narrow’, which here is
reflected in the shown draws when compared to the actual a(x) and 8(x).

5.1.2. Estimation of approximation error statistics. 1In the linear normal case, that is, f(a, 3)
and f, (3) both linear and 7 (a, ) is normal, €, and I'; can be computed analytically. If this
is not the case, both e, and I'c must be estimated using sample statistics using samples drawn
from (the not necessarily jointly Gaussian) joint prior model 7(a, 3). With an ensemble of r
samples, (3, a(®)) from the associated prior densities, we compute

e® =f(@®.80) ~f, (B9), =12 .., (48)

and take the mean and covariance as

1 r
Ex = ;Zsm and T, =
=1

~

1
— (e —e) (D —g,)T. (49)
=1

The number of samples r required depends on the models, the variance of the approximation
error, and the joint prior model, see for example [42]. However, we remark that all samples
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Figure 6. Second order statistics of the noise and approximation errors for the first
(isotropic conductivity) numerical example. Far left: the density of the noise, finoise
(mean shown in red) with higher probability density indicated by darker shading.
Centre left: the covariance matrix of the noise I'.. Centre right: the density of the total
errors, (4, (mean shown in red). Far right: the covariance matrix of the approximation

errors I';.
0.03 0.03
0 0 M
0.03 003
10 20 30 10 20 30
measurement number — measurement number
0 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12
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Figure 7. Second order statistics of the noise and approximation errors for the second
(anisotropic conductivity) numerical example. Far left: the density of the noise, finoise
(mean shown in red) with higher probability density indicated by darker shading. Centre
left: the covariance matrix of the noise I',. Centre right: the density of the total errors,
14 (mean shown in red) with higher probability density indicated by darker shading.
Far right: the covariance matrix of the approximation errors I'..

(and all accurate forward simulations) are carried out at the offline stage and that the accurate
forward model is never used in the inversion, with only the approximate model evaluated at the
online stage. For the current problem, 1000 samples were drawn for both numerical examples
to compute the approximation error statistics. Figures 6 and 7 show the statistics of the noise
and of the approximation errors for the first and second examples, respectively. It is clear that
the approximation errors dominate the noise in both cases, entries on the diagonal of I'; being
almost two orders of magnitude larger than those on the diagonal of T',. Thus, not including
the approximation errors will most likely lead to meaningless results, as confirmed below in
section 5.2. Note the difference in the mean and covariance of € due to different priors on a.

5.1.3. The MAP and approximate posterior covariance estimates. To compare the solutions
of the inverse problems formulated with the approximation error noise model and with the
conventional error model, we compute the respective MAP estimates and posterior covari-
ances matrices. For both the isotropic and anisotropic conductivity cases, we compute the
following three MAP estimates:
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e MAP-REF: the reference maximum a posteriori estimate for 3 with the con-
ventional error model and use of the actual value of a in the model, that is,
d°™ = f(awe. B) +e=f ane (B) + €. This reconstruction is taken as the benchmark one,
as it is computed with no modelling errors present. The estimate is computed as

REF
Bmap = mm >

obs 2 1 2
fam (B) —d™|| _, + 5 1A (B =B.)lu- (50)

o MAP-CEM: the maximum a posteriori estimate for 3 with the conventional error model,
using the (incorrect) fixed @ = a, in the forward model, that is, d° = f, () + e. This
estimate is computed as

,BCEM

= min
R = pin 5|

[

2
)|+ 3186 - Bl 61

e MAP-BAE: the maximum a posteriori estimate for § with the approximation error
model and using fixed a = a, in the model, that is, d° =f,.(B) + v. This estimate is
computed as

2 1 ,
B = min 2 [|£,.(B) ™ 4w+ SIAB-BIR. o)
The related approximate posterior covariance matrices are then as follows.

Fll}(ilf the reference posterior covariance matrix is computed using the conventional error

model and using the actual value of « in the model, i.e. d*® = f(ayye, 3) + €. Since, in
this case, there are no modelling errors present, we expect the reference posterior covari-
ance matrix to be smaller (in the sense of quadratic forms) than the posterior covariance
matrix obtained using the approximation error model. This posterior covariance matrix is

—1
TREF _ (Fgmr;'Fam + rg') . (53)

post

F[C)‘EI[". the posterior covariance matrix with the conventional error model is com-

puted using the conventional error model with the fixed a = a, in the model, that is,

4 = Sfa. (8) + e. This posterior covariance matrix is

-1
e = (P TF, +T5') (54)

post

F‘gé\le the approximation error model posterior covariance matrix is computed using the

approximation error model and using fixed a = a, in the model, i.e. d°™ =f, (8) + v.
This posterior covariance matrix is

post

—1
[BAE _ (Fg*l",lea* + 1“51) . (55)

5.2. Results

The computation of the reference MAP estimate, Bypap given in (50), the conventional error
model MAP estimate, Bfﬁ‘g given in (51), and the approximation error model MAP estimate,
,@Bﬁ&, given in (52), is done by applying an inexact adjoint-based Gauss—Newton method out-
lined in section 4.2. We start each of the optimization procedures with the prior mean as the
initial guess, that is 3, = B, = 1. A preconditioned conjugate gradient (CG) method is used
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Figure 8. Isotropic conductivity. Far left: the true Robin coefficient Byy.. Centre left

to far right: the reference MAP estimate SR, the conventional error model MAP

estimate SSEN and the approximation error model MAP estimate BEA%, respectively.

The cross sections are shown in figures 9 and 10.

with an Einsentat—Walker condition [54] which terminates the CG iterations early, when the
norm of the gradient is sufficiently reduced. In line with [11], we use the prior operator as a
preconditioner for the CG iterations.

5.2.1. The estimates with isotropic conductivity. On the far left of figure 8§ we show the true
basal Robin coefficient, fByye, Which is used to generate the measurements. We also show
the reconstructed reference MAP estimate (centre left), the reconstructed conventional error
model MAP estimate (centre right), and the reconstructed approximation error model MAP
estimate (far right). The images of the reconstructions in figure 8 also show the (dotted) lines
p-p* and g-q* which are the locations of the cross sections shown in figures 9 and 10. We now
discuss several observations that can be made from figures 9 and 10. Firstly, the reference
estimate is clearly feasible in the sense that the posterior uncertainty supports the actual Robin
coefficient. Conversely, the estimates with the conventional error model (severely) underes-
timate the true basal Robin coefficient. In particular, the estimate is clearly infeasible: the
actual coefficient has almost vanishing posterior density at almost all points along the cross
sections. On the other hand, the estimate with the approximation error model is clearly a
feasible one with the posterior marginals supporting the actual Robin coefficient. Finally, we
see that marginalization over the conductivity results in the widening of the posterior density
which is evident when comparing the marginal densities of the reference and approximation
error estimates.

5.2.2. The estimates with anisotropic conductivity. The corresponding results in the case of
the anisotropic conductivity are shown in figures 11-13. The results are qualitatively similar to
the isotropic case. In this case, the conventional error severely overestimates the actual Robin
coefficient, the only difference between the two cases being the spatial covariance structure
of the conductivity a. With the approximation error model, the estimates are still feasible but
slightly worse when comparing to the isotropic conductivity case.

5.2.3. Computational costs. In this section, we compare the computational cost of the
inverse solution method applied for the three methods: the reference case; the conventional
error procedure; and the BAE approach. We measure this cost in terms of number of Poisson
solves needed for the optimization algorithm to converge. We note that to compute the MAP
estimates, the number of Poisson solves needed per Gauss—Newton iteration can be calculated

17
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Figure 9. Isotropic conductivity. Far left: the prior mean and marginal distibutions of
the (3 along the line p-p*. Centre left to far right: the cross sections of figure 8 along

the line p-p*. The reference MAP estimate S8, the conventional error model MAP

estimate BN and the approximation error model MAP estimate S54%. The true 3 and
the MAP estimates are shown in blue and red, respectively, along with the approximate

posterior marginal distributions of (3.
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Figure 10. Isotropic conductivity. The cross sections of figure 8 along the line q-q*. The
discription otherwise as in figure 9.

as #Poisson = 2+2#CG—+#back. where #CG is the number of CG iterations and #back. is
the number of back-tracks needed to get a sufficient decrease in the objective function. In all
three cases, the convergence of the Gauss—Newton iterations is established when the norm of
the gradient (relative to the initial norm of the gradient) is decreased by a factor of 107. The
results shown in table 2 reveal that, at the inversion stage, the BAE approach is approximately
as expensive as the conventional error approach. For completeness, we also show the costs in
the reference reconstructions.

5.2.4. Interpretation of the posterior covariance matrices. Here we discuss and compare
the three posterior covariance matrices corresponding to the reference case, the conven-
tional error with reduced model case, and the approximation error model case, which are
defined in (53)—(55). We begin the discussion by analyzing the spectrum of the respective
prior-preconditioned data misfit Hessian components of the posterior covariance matrices for
both numerical examples.

On the left of figure 14 is shown the dominant spectrum of the prior-preconditioned data
misfit Hessian for the three cases evaluated at the respective MAP estimates for the first exam-
ple, while the same results for the second example are shown on the right (reference case with
blue circles, conventional error with reduced model with red diamonds, and approximation
error model with yellow crosses). In all three cases we are only required to retain relatively
few eigenvalues to compute a reasonable low rank approximation of the Hessian. Specifically,
in the first example, for the reference case we need about 30 eigenvalues, while for both the
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Table 1. Comparison of the computational costs. The cost of solving for the MAP
estimates in the reference case (REF), the case of using the conventional error model
(CEM) with fixed a = a, and the case of using the approximation error model (BAE)
with fixed a = a,, measured in number of Poisson solves. The first column (MAP)
refers to which MAP estimate we are solving for, MAP-REF (50), MAP-CEM (51),
or MAP-BAE (52); the second column (#GN) reports the number of Gauss—Newton
iterations; the third (#CG) and fourth (avg.CG) columns show total and the average (per
Gauss—Newton iteration) number of CG iterations; the fifth column (#back) reports
the total number of backtracks needed throughout the Gauss—Newton iterations; and
the last column (#Poisson) reports the total number of Poisson solves (from forward,
adjoint, and incremental forward and adjoint problems). The Gauss—Newton iterations
are terminated when the norm of the gradient is decreased by a factor of 107, while
the CG iterations are terminated inline with the Einstat—Walker condition [54]. These
results illustrate that the use of the approximation error approach can be carried out
at no additional cost compared to the conventional error approach and reference case.

MAP #GN #CG avg.CG #back #Poisson

Example 1
REF 8 117 15 0 250
CEM 11 101 10 4 228
BAE 5 57 12 0 124
Example 2
REF 6 54 9 0 120
CEM 8 95 12 0 206
BAE 5 97 20 0 204

Figure 11. Anisotropic conductivity. Far left: the true Robin coefficient Sye. Centre

left to far right: the reference MAP estimate S84, the conventional error model MAP

estimate SEN and the approximation error model MAP estimate S5A%, respectively.

The cross sections are shown in figures 12 and 13.

conventional error model with reduced model and the approximation error model we need
about 20. In the second example the reference case requires the retention of about 20 eigen-
values, the conventional error model with reduced model requires about 30, and the reduced
model with approximation error model we need 25. We note that that the these low numerical
ranks are substantially smaller than the 961 degrees of freedom of the parameter (i.e. we see
a compression of the parameter dimension of about 30). Hence the approximate posterior
covariance matrix along with draws from the posterior can be cheaply computed using (23)
and (24), respectively.

In figures 15 and 16 we show several eigenvectors corresponding to the dominant eigen-
values of the prior-preconditioned data misfit Hessians corresponding to the three cases.

19



Inverse Problems 34 (2018) 115005 R Nicholson et al

3 3 3 3

2 2 2

1 1

0 0 0 L, 0
p p

p p*

-

p p

Figure 12. Anisotropic conductivity. The cross sections of figure 11 along the line q-q*.
The discription otherwise as in figure 9.
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Figure 13. Anisotropic conductivity. The cross sections of figure 11 along the line q-q*.
The discription otherwise as in figure 9.
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Figure 14. Semi-log plots of the eigenvalues of the prior-preconditioned misfit Hessians
for the isotropic case (left) and the anisotropic case (right).

The most dominant eigenvalues can be interpreted as the modes in the basal Robin coef-
ficient for which the data contains the most information about. The first few eigenvectors
of all three cases are fairly similar (note the sign change for the first eigenvector is the
approximation error model case). However as the level of oscillation in the eigenqvec-
tors increases we see that the differences between corresponding eigenvectors between the
three models increase.

We can further asses the uncertainty in the estimates by analyzing the full pointwise pos-
terior variances, i.e. the diagonal of the posterior covariance matrices. Such analysis also pro-
vides insight into how much the variance (from the prior to the posterior) is reduced by taking
the data into consideration. In figures 17 and 18 we show the diagonal of the prior covariance
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Figure 15. Eigenvectors of the reference prior-preconditioned misfit Hessian (top

row), conventional error model prior-preconditioned misfit Hessian (middle row),
and approximation error model prior-preconditioned misfit Hessian (bottom row)
computed at Bfap, Guiam and Bams, respectively. From left to right: the eigenvectors

corresponding to the first (i.e. the largest), the third, the fifth and the tenth eigenvalues.

matrix and the three posterior covariance matrices, for the first and second numerical exam-
ples, respectively.

Most information, and consequently the greatest reduction in uncertainty, is directly below the
measurement locations and in areas where the parameter field attains relatively high values. The
reduction in variance in the vicinity of the measurement locations is typical for inverse problems.
On the other hand, it is evident that the reduction in variance is greatest where the parameter
achieves higher values. This is due to the fact that for higher values of the parameter the Robin
boundary condition begins to behave like a Dirichlet boundary condition, meaning the potential is
less free to vary which leads to less variance in the inferred parameter in these regions.

Finally, the centre images in figures 17 and 18 further illustrate the extent to which the
conventional error model leads to overly optimistic (narrow) confidence intervals. This feature
is especially evident in the anisotropic case (figure 18), where the posterior variance using the
conventional error model is significantly smaller than the reference posterior variance.

6. Discussion

In this paper, we considered the problem of inferring the distributed (basal) Robin coeffi-
cient from surface measurements under an unknown random conductivity field. The forward
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Figure 16. Eigenvectors of the reference prior-preconditioned misfit Hessian (top

row), conventional error model prior-preconditioned misfit Hessian (middle row),
and approximation error model prior-preconditioned misfit Hessian (bottom row)
computed at BNiap, Gviam and Bas, respectively. From left to right: the eigenvectors

corresponding to the first (i.e. the largest), the third, the fifth and the tenth eigenvalues.
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Figure 17. The reduction in variance for the isotropic case. Far left: the diagonal of
the prior covariance matrix, I'g, as outlined in section 2. Centre left: the diagonal of

I‘s(if. Centre right: the diagonal

of the conventional error model approximate posterior covariance matrix, ISEM, Far

the reference approximate posterior covariance matrix,

post
right: the diagonal of the approximation error model approximate posterior covariance
- TBAE
matrix, I'po.
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Figure 18. The reduction in variance for the anisotropic case. Far left: the diagonal of
the prior covariance matrix, I', as outlined in section 2. Centre left: the diagonal of
REF
post *
of the conventional error model approximate posterior covariance matrix, I‘g(il:/[. Far
right: the diagonal of the approximation error model approximate posterior covariance

.. TBAE
matrix, F'pog.

the reference approximate posterior covariance matrix, I Centre right: the diagonal

Table 2. Statistics of the mesh. The first column (Mesh used for) relates what the mesh
is used for; the second (#Nodes) third (#Els) and fourth (#Param) columns give the
number of total number of FEM nodes used in the entire volume, tetrahedral elements
used in the entire volume, and the number nodes on the domain of the parameter, 3,

respectively.
Mesh used for #Nodes #Els #Param
Example 1
Data synthesis 28611 150000 2601
Inversion 6727 32400 961
Example 2
Data synthesis 132651 750000 2601
Inversion 29791 162000 961

model at hand was the (anisotropic) Poisson equation with mixed boundary conditions. To
account for model errors that stem from the uncertainty in the conductivity coefficient in the
underlying PDE, we carry out approximative marginalization over the conductivity. In this
process, we approximate the related modelling errors and uncertainties as normal, which is
also referred to as the Bayesian approximation error (BAE) approach.

The uncertainty analysis presented here relies on a local linearization of the parameter-to-
observable maps at the MAP point estimates, leading to a normal (Gaussian) approximation
of the parameter posterior density, which is also referred to as the Laplace approximation.
We considered two cases of the conductivity field, an isotropically smooth field and an aniso-
tropically smooth (horizontal strata) one. The results indicate that fixing the conductivity as
an incorrect but otherwise well justified (distributed parameter) field can result in infeasible
and misleading posterior estimates in the sense that the true parameter is not supported by the
posterior model. On the other hand, carrying out approximative marginalization does provide
feasible estimates with both isotropically and anisotropically smooth unknown conductivities.

The computational feasibility (in large-scale) distributed Robin coefficient problems is
provided by the adjoint method and being able to avoid the simultaneous estimation of the
conductivity, which in contrast to the Robin coefficient, is a random field in the entire domain.

Future work will be concentrated in two distinct direction. Firstly from a qualitative stand
point it would be of interest to consider how the quality of the estimate changes when the
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number and location of measurements changes. Secondly, in the simplified model (with fixed
a = a,) there are no parameters distributed in the domain, warranting an investigation into
the computational feasibility of other numerical methods such as boundary element methods
(BEM) for solving the the simplified model.
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