
Why Aren’t Regular Expressions a Lingua Franca?
An Empirical Study on the Re-use and Portability of Regular Expressions

James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee
Virginia Tech, USA

(davisjam,louism,ccogs,fservant,dongyoon)@vt.edu

ABSTRACT
This paper explores the extent towhich regular expressions (regexes)
are portable across programming languages. Many languages of-
fer similar regex syntaxes, and it would be natural to assume that
regexes can be ported across language boundaries. But can regexes
be copy/pasted across language boundaries while retaining their
semantic and performance characteristics?

In our survey of 158 professional software developers, most indi-
cated that they re-use regexes across language boundaries and about
half reported that they believe regexes are a universal language. We
experimentally evaluated the riskiness of this practice using a novel
regex corpus — 537,806 regexes from 193,524 projects written in
JavaScript, Java, PHP, Python, Ruby, Go, Perl, and Rust. Using our
polyglot regex corpus, we explored the hitherto-unstudied regex
portability problems: logic errors due to semantic differences,
and security vulnerabilities due to performance differences.

We report that developers’ belief in a regex lingua franca is un-
derstandable but unfounded. Though most regexes compile across
language boundaries, 15% exhibit semantic differences across lan-
guages and 10% exhibit performance differences across languages.
We explained these differences using regex documentation, and
further illuminate our findings by investigating regex engine im-
plementations. Along the way we found bugs in the regex engines
of JavaScript-V8, Python, Ruby, and Rust, and potential semantic
and performance regex bugs in thousands of modules.

CCS CONCEPTS
• Software and its engineering → Reusability; • Social and
professional topics → Software selection and adaptation.

KEYWORDS
Regular expressions, developer perceptions, re-use, portability, em-
pirical software engineering, mining software repositories, ReDoS
ACM Reference Format:
James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant,
and Dongyoon Lee. 2019. Why Aren’t Regular Expressions a Lingua Franca?:
An Empirical Study on the Re-use and Portability of Regular Expressions. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338909

August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338909

1 INTRODUCTION
Regular expressions (regexes) are a core component of modern
programming languages. Regexes are commonly used for text pro-
cessing and input sanitization [105], appearing, for example, in an
estimated 30-40% of open-source Python and JavaScript projects [20,
26]. However, crafting a correct regex is difficult [101], and devel-
opers may prefer to re-use an existing regex than write it from
scratch. They might turn to regex repositories like RegExLib [4, 7];
or to Stack Overflow, where “regex” is a popular tag [8]; or to other
software projects. For example, a regex derived from the Node.js
path module appears in more than 2,000 JavaScript projects [26].

Correctness and security are fundamental problems in software
engineering in general, and for regexes in particular: re-using regexes
can be risky. Like other code snippets [109], regexes may flow into
software from Internet forums or other software projects. Unlike
most code snippets, however, regexes can flow unchanged across
language boundaries. Programming languages have similar regex
syntaxes, so re-used regexes may compile without modification.
However, surface-level syntactic compatibility can mask more sub-
tle semantic and performance portability problems. If regex seman-
tics vary, then a regex will match different sets of strings across
programming languages, resulting in logical errors. If regex per-
formance varies, a regex may have differing worst-case behavior,
exposing service providers to security vulnerabilities [25, 78].

Despite the widespread use of regexes in practice, the research
literature is nearly silent about regex re-use and portability. We
know only anecdotally that some developers struggle with “[regex]
inconsistencies across [languages]” [20]. In this paper we explored
the coupled concepts of cross-language regex re-use and regex
portability using a mixed-methods approach. First, we surveyed 158
professional developers to better understand their regex practices
(§4), and empirically corroborated the regex re-use practices they
reported (§6). Then, we investigated the extent to which these
practices may result in bugs. We empirically measured semantic
and performance portability problems, attempted to explain these
problems using existing regex documentation, and explored regex
engine implementations to illuminate our findings (§7). We are not
the first to observe regex portability issues, but we are the first to
provide evidence of the extent and impact of the phenomenon.

Our contributions are:
• We describe the regex re-use practices of 158 developers (§4).
• We present a first-of-its-kind polyglot regex corpus consisting of
537,806 unique regexes extracted from 193,524 software projects
written in 8 popular programming languages (§5).

*Christy A. Coghlan is now employed by Google, Inc.

https://doi.org/10.1145/3338906.3338909
https://doi.org/10.1145/3338906.3338909

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

• We empirically show that regex re-use is widespread, both within
and across languages and from Internet sources (§6).

• We identify and explain semantic and performance regex porta-
bility problems (§7). We report that approximately 15% of the
regexes in our corpus have semantic portability problems, while
10% have performance portability problems. Most of these prob-
lems could not be explained using existing regex documentation.

• We identify thousands of potential regex bugs in real software,
as well as bugs in JavaScript-V8, Python, Ruby, and Rust (§8).

2 BACKGROUND
2.1 Regex Dialects
Most programming languages support regexes, providing develop-
ers with a concise means of describing a set of strings. There has
been no successful specification of regex syntax and semantics; Perl-
Compatible Regular Expressions (PCRE) [46] and POSIX Regular
Expressions [47] have influenced but not standardized the various
regex dialects that programming languages support, leading to man-
uals with phrases like “these aspects...may not be fully portable” [6].
Anecdotally, inconsistent behavior has been reported even between
different implementations of the same regex specification [19].

This lack of standardization may come as no surprise to develop-
ers familiar with regexes as a library feature rather than a language
primitive. But for the latest generation of developers, regexes have
always been part of the programming language, and because the
regex dialects are similar in syntax it would be natural for devel-
opers to assume that they are in fact a lingua franca. We report
that many developers do make this assumption, and we explore the
potential consequences by investigating the distinct semantic and
performance characteristics of many regex dialects.

2.2 Regex Denial of Service (ReDoS)
Under the hood, programming languages implement a regex en-
gine to test candidate inputs for membership in the language of a
regex. Most regex engines evaluate a regex match by simulating
the behavior of an equivalent Finite Automaton (Deterministic or
Non-) on the candidate string [90], but they vary widely in the par-
ticular algorithm used. Despite the recommendations of automata
theorists [24, 95], in most programming languages a regex match
may require greater-than-linear time in the length of the regex
and the input string. Such a super-linear (SL) match may require
polynomial or exponential time in the worst case [25, 78].

SL regex behavior had long been considered an unlikely attack
vector in practice, but in the past year this has begun to change.
Davis et al. [27] and Staicu and Pradel [92] identified Regular ex-
pression Denial of Service (ReDoS) as a major problem facing
Node.js applications, and Davis et al. reported thousands of SL
regexes affecting over 10,000 JavaScript projects [26]. Although it
is known that SL regex behavior is possible in JavaScript, Python,
and Java [26, 104, 107], from a portability perspective we do not
know the relative risk of ReDoS across different programming lan-
guages. Cox [24] has suggested that languages fall into two classes
of performance, though he did not systematically support his claim.

2.3 Developer Practices Around Regexes
Despite the widespread use of regexes in practice [20, 26], sur-
prisingly little is known about how software developers write and

maintain them. Recent studies have shed some light on the typical
languages developers encode in regexes [20, 26], the relative read-
ability of different regex notations [21], developer regex test prac-
tices [102], and developer regex maintenance practices [26, 101].

Most of these works have focused on software artifacts rather
than on developers’ thought processes and day-to-day practices.
The only previous qualitative perspective on developers’ approach
to regex development is Chapman and Stolee’s exploratory sur-
vey of 18 professional software developers employed by a single
company [20]. They reported high-level regex practices like the
frequency with which those developers use regexes and the tasks
they use regexes for.

3 RESEARCH QUESTIONS
In this work we seek to better understand developer regex re-use
practices and understand the potential risks they face. First, we
survey professional software developers to learn their regex per-
ceptions and practices. We then measure regex re-use practices in
real software to corroborate the findings of our survey. Finally, we
empirically evaluate the semantic and performance portability prob-
lems that may result from cross-language regex re-use practices,
and explain differences across languages. Our research questions:
Theme 1: Developer perspectives
RQ1: Do developers re-use regexes?
RQ2: Where do developers re-use regexes from?
RQ3: Do developers believe regexes are a lingua franca?
Theme 2: Measuring regex re-use
RQ4: How commonly are regexes re-used from other software?
RQ5: How commonly are regexes re-used from Internet sources?
Theme 3: Empirical portability
RQ6: Semantic portability: When and why do regexes match dif-

ferent sets of strings in different programming languages?
RQ7: Performance portability: When and why do regexes have

different worst-case performance in different programming
languages?

4 THEME 1: DEVELOPER PERSPECTIVES
We surveyed developers to better understand regex re-use and
portability issues from their perspective.

Findings: (RQ1) 94% of developers re-use regexes,
(RQ2) commonly from Stack Overflow and other code.
(RQ3) 47% of developers treat regexes like a lingua franca.

4.1 Methodology
Survey content.We developed a 33-question survey with a mix of
closed and open-ended questions. We asked participants about: (1)
the process they follow when writing regexes; (2) their regex re-use
practices; and (3) what awareness they have of regex portability
problems1. We drafted our survey based on discussions with profes-
sional software developers, and followed best practices in survey
design [51, 88]. We refined the survey through internal iteration
and two pilot rounds with graduate students.

1Due to space limits we do not report all results.

Why Aren’t Regular Expressions a Lingua Franca? ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Survey deployment. After obtaining approval from our institu-
tion’s ethics board, we took a two-pronged approach to surveying
professional developers. First, following the snowball sampling
methodology [16, 81], we asked developers of our acquaintance
to take the survey and propagate it to their colleagues. Second,
to diversify our population, we posted the survey on popular In-
ternet message boards frequented by software developers (Hack-
erNews [1] and Reddit [3] (r/SampleSize, r/coding, and r/compsci).
We compensated respondents with a $5 Amazon gift card.
Filtering results. We received some invalid responses from users
on the Internet message boards. We manually inspected the first
100 responses to develop filters for validity. We report on responses
that took at least 5 minutes, were internally consistent, and gave
a “thoughtful” answer to at least one of our open-ended questions.
This filtered out 253 responses, mostly from a spoofing campaign.

4.2 Results
Demographics.We received 158 valid responses from professional
software developers. Our responses came from direct (51) and indi-
rect (25) professional contacts, and Internet message boards (73),
with no tracking information for 9 responses. The median respon-
dent has 3-5 years of professional experience, works at a medium-
size company, and claims intermediate regex skill2 (Figure 1).
RQ1: Re-use Prevalence. Almost all (94%) of respondents indi-
cated that they re-use regexes, with 50% indicating that they re-use
a regex at least half of the time that they use a regex (Figure 2 (a)).
The most frequent reason to re-use a regex was to meet a common
use case, e.g.,matching emails. This supports a previous hypothesis
that developers may write regexes for a few common reasons [26].
Participants also mentioned time savings: “A good programmer
doesn’t re-invent the wheel.”
RQ2: Re-use Sources. Developers most frequently said they re-
use regexes from Stack Overflow, but they often re-use regexes
from other code, including their own, a colleague’s, or open-source
projects (Figure 2 (b)). About 90% of respondents reported re-using
regexes from some Internet source, and about 90% reported re-using
regexes from other code.
RQ3: Developer Perception of Lingua Franca.We asked devel-
opers if their regex design process was influenced by language.
Figure 3 (a) shows that 47% of our respondents do not have a design
process that is language specific. And their actions match their
beliefs: as shown in Figure 3 (b), respondents frequently re-use
regexes without being confident that they were written in the same
language. Only 21% of respondents (34/158) were confident they
never re-used across language boundaries.

5 POLYGLOT REGEX CORPUS
In order to answer our remaining research questions we needed a
polyglot regex corpus: a set of regexes extracted from a large sample
of software projects written in many programming languages. The
existing regex corpuses are small-scale [20, 107] or include only

2Regex skill was self-reported on a scale from novice to master, based on familiarity
with increasingly complex regex features according to Friedl [40]. “Intermediate: For
example, you have usedmore sophisticated features like non-greedy quantifiers (/a+?/)
and character classes (/\d|\w|[abc]|[^\d]/).”

two programming languages [26]. Our corpus is neither, covering
about 200,000 projects in 8 programming languages — see Table 1.

Figure 1: Our survey reached a diverse set of developers.

Figure 2: (a) When developers must use a regex, they fre-
quently re-use them from another source. (b) Developers
commonly re-use from the Internet and other software.

Figure 3: (a) Many developers design regexes without con-
sidering the programming language. (b) Developers’ regex
re-use decisions also imply belief in regex as a lingua franca.
Languages.We are interested in studying common regex practices,
and as a result we focus our attention on “major” programming lan-
guages defined by two conditions: (1) The language has a large mod-
ule ecosystem; (2) The language is widely used by the open-source

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

Table 1: Our regex corpus was derived from software writ-
ten in 8 programming languages. The first five languages are
ranked by the most available libraries (ModuleCounts [28])
and popularity in open-source (GitHub). We also studied
Go, Perl, and Rust out of scientific interest. The two final
columns show the contribution to our corpus.

Lang. (Registry) Libs. GH # mod. anal. Unique regexes (avg.)

JavaScript3 (npm) 1 1 24,997 150,922 (6.0)
Java (Maven) 2 3 24,986 19,332 (0.8)
PHP (Packagist) 3 5 24,995 44,237 (1.2)
Python (pypi) 4 2 24,997 43,896 (1.8)
Ruby (RubyGems) 5 4 24,999 153,334 (6.1)

Go (Gopm) 9 9 24,997 22,105 (0.9)
Perl (CPAN) 7 — 31,827 (all) 142,777 (4.5)
Rust (Crates.io) 10 — 11,724 (all) 2,025 (0.2)

Sum: 193,524 578,628

community. We operationalized these concepts by consulting the
ModuleCounts website [28] and the GitHub language popularity
report [42]. We also considered Go, Perl, and Rust for scientific in-
terest; Perl popularized the idea of regexes as a first-class language
member, and Go and Rust are relatively new mainstream languages.
Software projects.Within these languages, we chose to study the
software modules published in each language’s primary module
registry for two reasons. First, it permits a relatively fair cross-
language comparison, since we observe that many modules fill
equivalent ecological niches, e.g., logging or schema validation.
Second, we feel that modules are of greater general interest than
applications. Modules are published, maintained, and used by a mix
of open-source and commercial software developers, and bugs and
security vulnerabilities in modules have a significant ripple effect.

Our goal was to analyze the most important modules in each
language’s primary module registry. To have a uniform measure
of importance across languages, we filtered each registry for the
modules available on GitHub, sorted those by the number of stars,
and analyzed the top 25,000 modules from each registry. Borges
and Valente recently showed that GitHub star count is a reason-
able proxy for importance [17]. Unsurprisingly, we found that the
distribution of GitHub stars was similar for the modules in each lan-
guage, and analyzing the top 25,000 modules typically captured all
but the (very long) tail of 0-2 stars. Perl and Rust had relatively few
modules in their registries, and we analyzed all of their modules.
Regex extraction. Following [26], for each module we cloned
the HEAD of its default branch from GitHub and extracted any
statically-declared regexes. We extracted regexes declared in regex
evaluations as well as regexes compiled and stored in variables for
later use. In each module we extracted regexes only from source
files in the language corresponding to the registry, omitting regexes
in places like build scripts written in another language.
Polyglot regex corpus.Our corpus contains 537,806 unique regexes
extracted from 193,524 projects written in 8 programming lan-
guages. Each language’s contributions are listed in Table 1. Average
regex use varies widely by language, from 0.2 regexes per module

3We also extracted regexes from TypeScript source code, by transpiling it to JavaScript.

(Rust) up to 6.1 regexes per module (Ruby). The total unique regexes
by language exceeds 537,806 due to inter-language duplicates (§6).

6 THEME 2: MEASURING REGEX RE-USE
The developers in our survey indicated that they re-use regexes
from other software and from Internet sources like Stack Overflow.
They also reported re-using regexes across language boundaries.
In this theme we corroborate their report by measuring the extent
of regex re-use — modules that use non-unique regexes.
Definition of re-use. To the best of our knowledge we are the first
to attempt to measure regex re-use. As a first approximation, in
keeping with the phrasing in our survey (“copy/pasting regexes”),
we label as re-use any pair of identical regexes (string equality). To
eliminate trivially identical regexes like /\s/, we conservatively
require anymatching regexes to be at least 15 characters long.While
it is possible that two developers might independently produce the
same (longer) regex, this seems unlikely given that hundreds of
distinct regexes have been reported even for “simple” languages
like emails [26]. We do not consider less strict measures of regex
equivalence like string [101] or behavioral [20] similarity, though
such measures might better capture the “Ship of Theseus” approach
to regex re-use described by some of our survey respondents.

Findings: (RQ4) Thousands of corpus modules (20%) share
the same complex regexes, both within and across languages.
(RQ5) 5% of all corpus modules (about 10,000), primarily in
JavaScript, use regexes from Stack Overflow and RegExLib.

6.1 RQ4: Re-use from Other Software
Howmuch intra-/inter-language regex re-use occurs in our corpus?

6.1.1 Methodology. When developing our regex corpus (§5), we
tracked the modules and registries in which each regex was found.
As noted above, we only consider as re-use candidates the regexes
that are at least 15 characters long. When such a regex appeared
in multiple modules in the same registry, we mark those modules
as containing an intra-language duplicate. When such a regex ap-
peared in at least one module in different registries, we mark those
modules as containing an inter-language duplicate. Note, then, that
for a single duplicated regex we may mark several modules as con-
taining intra-language duplicates and/or inter-language duplicates.

6.1.2 Results. The extent of intra- and inter-language regex re-
use by modules is shown in Figure 4 (second and third bars). De-
velopers re-use regexes in the modules in every language, some
more than others. In most languages, 10% or more of the mod-
ules contain an intra-language duplicate, and inter-language dupli-
cates are also common. These duplicates are often due to “popular”
regexes. For example, we found the 16-character “<email>:” regex
/[\w\-]+\@([^:]+):/ in 476 modules.

6.2 RQ5: Re-use from Internet Sources
The developers in our survey frequently indicated that they re-use
regexes from one of two Internet sources: RegExLib [4] and Stack
Overflow [5]. Next we use our corpus to corroborate their claims.

Why Aren’t Regular Expressions a Lingua Franca? ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 4: Empirical regex re-use practices, by language.

6.2.1 Methodology. We extracted regexes fromRegExLib and Stack
Overflow, and then searched our corpus for matches. In both of
these relatively-unstructured Internet regex sources, the resulting
set of “regexes” may include false positives; it is the intersection
of our corpus and these sets that is of interest. An intersection is
a case where a real regex from our corpus also appeared verbatim
in one of these Internet sources. Any module that contained one
of these (15 characters or longer) Internet regexes was marked as
containing an Internet duplicate.
RegExLib regexes.We obtained a reasonably complete dump of
the RegExLib database by searching for “all regexes”.
Stack Overflow regexes. For Stack Overflow, we relied on the
“regex” tag to identify regexes. Through manual analysis we found
that questions and posts with the “regex” tag commonly denote
regexes using code snippets. Using all Stack Overflow posts as of
September 20184, we found all questions tagged with “regex” as
well as the answers to those questions and automatically extracted
code snippets from those posts. To filter, we then removed snippets
that contained no regex-like characters based on Table 4 of [20].

6.2.2 Results. Our findings are shown in Figure 4 (fourth bar for
each language). Many of the modules in our corpus contain at least
one Internet regex. This practice is most common in JavaScript —
15% of npm modules contain an Internet regex.

7 THEME 3: EMPIRICAL PORTABILITY
Having shown that developers re-use regexes across language
boundaries, now we experiment on our polyglot regex corpus to
investigate the implications of copy/pasting a regex from one lan-
guage to another. First we consider semantic portability (§7.1), then
performance portability (§7.2).
Experimental parameters. These experiments were performed
on a 10-node cluster of server-class nodes. We used the same base
tools in both experiments: a tester for each of the 8 languages. Each
tester accepts a regex pattern and input and attempts a partial regex
match. Table 2 lists the language versions used in our tests.

When we compare a regex’s behavior in a pair of languages, we
use the subset of the regex corpus that is syntactically valid in that
pair. This simulates the regex re-use practices we identified. Most
4See https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z.

Table 2: Summary of language versions and docs used in our
experiments. Most are at the default for Ubuntu 16.04.

Language Version information Documentation

JavaScript Node.js v10.9.0 (V8 v6.8) [31, 32]
Java Oracle JDK 8 [23]
PHP PHP 7.4.0-dev (cli) [44]

Python Python 3.5.2 [37, 53]
Ruby Ruby 2.3.1p112 [18]
Go Go v1.6.2 [43]
Perl Perl v5.22.1 [2, 54, 97]
Rust Rust v1.32.0 (nightly) [30]

comparisons are on the majority of the corpus — 76% of the corpus
was valid in every language, and 88% were valid in all but Rust.

Findings: (RQ6) 15% of regexes exhibit documented and un-
documented semantic differences. (RQ7) 10% of regexes ex-
hibit performance differences due to regex engine algorithms
and optimizations.

7.1 RQ6: Semantic Portability Problems
When two languages express the same feature using different syn-
tax, developers face a translation problem. But when two languages
exhibit different features (or behaviors) for the same syntax, devel-
opers must solve a semantic problem. In this section we empirically
study the semantic portability problems that developers may face.

7.1.1 Methodology. To understand variations in regex semantics,
we tested the behavior of each regex in our corpus on a variety of
inputs in each language of interest. Any inconsistent regex behavior
across languages is something a developer would have to discover
and address after re-using the regex.
Input generation. In search of an interesting set of inputs, we
created an ensemble of five state-of-the-art regex input generators:
Rex [100], MutRex [11], EGRET [56], ReScue [87] and Brics [65].
These generators produce either matching strings (Rex, Brics) or
both matching and mismatching strings (MutRex, EGRET, ReScue).
We used Rex, MutRex, and EGRET unchanged. We modified ReScue
to use the strings it explores in its search for SL inputs. We modified
Brics to generate random input subsets, not infinitely many inputs.

We wanted these inputs to provide good regex automaton cover-
age. Wang and Stolee showed that 100 Rex-generated inputs yield
about 50% regex coverage [102], so we requested 10,000 inputs
from each input generator with a time limit of 10 seconds. Table 3
summarizes the number of unique inputs generated for each regex.
Attempted match. For each regex, for each input, for each pro-
gramming language that supported it, we tested for a match using
partial-match semantics5. On a match, we recorded (1) the substring
that matched, and (2) the contents of capture groups.
Witnesses. Some pairs of languages may perfectly agree on the
behavior of a regex on all of its inputs; others may not. We refer
to (reдex , input) pairs that produce different behavior in different

5We used default flags. As the 8 languages in our study support around 20 distinct
regex flags, evaluating a meaningful subset of the flag combinations was infeasible.

https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

Table 3: Statistics for semantic portability experiment.

Metric Value

Percentile inputs per regex: 25th -50th -75th 1,057-2,410-2,510

Regexes with any difference witnesses 15.4% (82,582)

Regexes with any match witnesses 8.1% (43,417)
Regexes with any substring witnesses 4.2% (22,597)
Regexes with any capture witnesses 7.5% (40,457)

programming languages as difference witnesses between those lan-
guages, and distinguish between three disjoint types of witnesses:
(1) Match witness: Languages disagree on whether there is a match.
(2) Substring witness: Languages agree that there is a match but

disagree about the matching substring.
(3) Capture witness: Languages agree on the match and the match-

ing substring, but disagree about the division of the substring
into any capture groups of the regex.

7.1.2 Results. Table 3 summarizes our results. About 15% of regexes
participated in at least one difference witness, and among the lan-
guage pairs we observed all three classes of witnesses. In Table 3
and Figure 5 we report the number of distinct regexes participating
in the difference witnesses rather than the number of distinct wit-
nesses themselves, because we expect that many of the witnessing
inputs for a given regex are members of an equivalence class on
which a difference manifests.

A more detailed description of the semantic differences between
languages is presented in Figure 5. The cells are colored propor-
tional to the number of regexes that have any witness of a difference
between that pair of languages. The three numbers in the cell de-
note the percent6 of regexes with match, substring, and capture
witnesses for that pair of languages. As can be seen in Figure 5:
there are many language pairs with match witnesses; PHP and
Python are the primary sources of substring witnesses; and PHP is
the primary source of capture witnesses.

7.1.3 Analysis. Wedeveloped an automatic tool, the Cross Examiner,
to estimate the causes of the difference witnesses identified through
our experiment. We iteratively examined unclassified witnesses,
referenced the regex documentation for the disagreeing languages
(Table 2), understood the reason for the different behaviors where
documented, and encoded heuristics to classify witnesses as due to
this behavior. The causes we identified are summarized in Table 4.
Approximately 98% (80,736/82,582) of witnesses could be explained
by one or more of these causes.

Table 4 differentiates the witnesses by type. The first group of
witnesses are cases where some languages support a feature that
others do not. In the second group, languages use the same syntax
for different features. The third group are cases where languages
use the same syntax for the same features but exhibit different
behavior. The final group are bugs we identified, described below.
Documented semantics.We studied each language’s regex doc-
umentation (Table 2) to see if these witnesses could be easily ex-
plained. Comparing the grey cells and boldfacing in Table 4, we note
that more than half of the “unusual” behaviors were unspecified in
6At the scale of our corpus, each percentage point represents about 5,300 regexes.

Figure 5: (Symmetric) Pairwise view of difference witnesses
by language and type. The individual cells indicate the
percent of the regex corpus with at least one (M)atch,
(S)ubstring, and (C)apture witnesses in that language pair,
and darker cells indicate that regexes more commonly have
difference witnesses in that pair of languages. For example,
Java, Go, and Rust generally agree on regex behavior.

that language’s documentation. Testing, not reading the man-
ual, is the only way for developers to learn these behaviors.

7.1.4 Regex Engine Testing. Though in this experiment we assumed
that the regex engines were trustworthy, our methodology can be
viewed as a mix of fuzz [22] and differential [62] testing. Under a
lingua franca hypothesis, if languages disagree then at least one of
them is wrong. During our examination of difference witnesses, we
identified five cases where one language disagreed with the others
and its behavior was inconsistent with the corresponding regex
documentation. We opened bug reports based on the behaviors
briefly described in the third section of Table 4. So far the bugs have
been confirmed in V8-JavaScript, Python, Ruby, and Rust.

7.2 RQ7: Performance Portability Problems
Programming languages have distinct regex engines which may
exhibit different performance characteristics. A re-used regex might
have worse worst-case performance in its new language than in its
language of origin. For example, software being ported from PHP
to Node.js might develop Regular expression Denial of Service (Re-
DoS) vulnerabilities because regexes often have worse worst-case
performance in Node.js. In this experiment, we measure the fre-
quency with which regexes have different worst-case performance
characteristics in different programming languages.

7.2.1 Methodology. We generally follow the methodology of Davis
et al. [26] and use their tools7. In brief, for each regex we (1) query
an ensemble of state-of-the-art super-linear regex detectors, and
then (2) evaluate any predicted super-linear regex behaviors in each
language of interest using partial-match semantics.

7See https://github.com/davisjam/vuln-regex-detector.

https://github.com/davisjam/vuln-regex-detector

Why Aren’t Regular Expressions a Lingua Franca? ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: Difference witnesses identified during our semantic portability experiment. Each row indicates a witness regex, the
expected behavior(s), and each language’s interpretation. The first three groups describe different classes of valid but seman-
tically distinct behavior. The final group describes the bugs we found; E- means Engine, D- means Docs. Boldface indicates
potentially-surprising behavior (cf. §8). “-” indicates languages where a feature causes syntax errors. The behavior in the grey
cells was not specified in the documentation.

Witness Description JavaScript Java PHP Python Ruby Go Perl Rust

False friends 1: Regex notation describes a feature in one language and no feature in another.
/\Qa\E/ Quote directive ; “QaE” “QaE” Quote Quote “QaE” “QaE” Quote Quote -
/\G/ Match assertion ; “G” “G” Assertion Assertion “G” Assertion - Assertion -
/\Ab\Z/ Anchors ; “AbZ” “AbZ” Anchors Anchors Anchors Anchors - Anchors -
/a\z/ End of line ; “az” “az” EOL EOL “az” EOL EOL EOL EOL
/\K/ Match reset ; “K” “K” - Reset “K” Reset - Reset -
/\e/ ESC ; “e” “e” ESC ESC “e” ESC - ESC -
/\cC/ ctrl-C ; “cC” ctrl-C ctrl-C ctrl-C “cC” ctrl-C - ctrl-C -
/\x{41}/ “A” (hex) ; “x...x” “x...x” “A” “A” - - “A” “A” “A”
/(a)\g1/ Backref notation ; “ag1” “ag1” - Backref “ag1” “ag1” - Backref -
/(a)\g<1>/ Backref notation ; “ag<1>” “ag<1>” - Backref “ag<1>” Backref - - -
/\p{N}/ Unicode digit ; “pN” “p{N}” 1 1 “p{N}” 1 1 1 1
/\pN/ Unicode digit ; “pN” “pN” Digit Digit “pN” “pN” Digit Digit Digit
/[[:digit:]]/ Digit ; Custom Char. Class (CCC) CCC CCC Digit CCC Digit Digit Digit Digit

False friends 2: The same regex notation describes different features.
/^a/ ^: Beginning of input or line Input Input Input Input Line Input Input Input
/a++/ Possessive quantifier ; regular - Possessive Possessive - Possessive - Possessive Regular
/(a)\1/ Backref ; octal Backref Backref Backref Backref Backref - Backref Octal
/\h/ Horz. whitespace; Hex; “h” “h” Whitespace Whitespace “h” Hex - Whitespace -

Nuanced: The same regex notation describes the same feature, but engines exhibit subtly different behavior.
/(a)(?b)/ Named and unnamed capture groups? Both Both Both - Named only - Both -
/[]]/ CCC of “]” ; empty CCC + “]” Empty “]” “]” “]” “]” “]” “]” “]”
/((a*)+)/ Diff. capture of \2 on “aa” \2: “aa” \2: empty \2: empty \2: empty \2: empty \2: “aa” \2: empty \2: “aa”
/((a)|(b))+/ Diff. capture of \2 on “ab” Empty “a” “a” “a” “a” “a” “a” “a”

Bugs we found in regex engines.
E-Python: /(ab|a)*?b/ Diff. capture of \1 on input: “ab ” “a” “a” “a” Empty “a” “a” “a” “a”
E-Rust: /(aa$)?/ Matched substring on “aaz” Empty Empty Empty Empty Empty Empty Empty “aa”
E-Rust: /(a)\d*\.?\d+\b/ Matched substring on “a0.0c ” “a0” “a0” “a0” “a0” “a0” “a0” “a0” “a0.0”
E-JavaScript: Complicated Input order matters? Yes No No No No No No No
D-OracleJava: /$\s+/ $ matches before final \r? No Yes No No No No No No
D-Ruby: /a{2}?/ Lazy “aa” ; optional “aa” Lazy Lazy Lazy Lazy Optional Lazy Lazy Lazy

Experimental parameters.We allowed each of the detectors to
evaluate a regex for up to 60 seconds using no more than 2 GB
of memory. If a detector predicted that a regex would be super-
linear, we evaluated its proposed worst-case input in each of the
8 languages in our study using input strings intended to trigger
exponential or polynomial behavior8. If a regex match took more
than 10 seconds in some language, we marked it as super-linear.
Reducing false positives.We extended their methodology in two
ways to reduce the number of false negatives (i.e., SL regexesmarked
as linear-time). First, we added Shen et al.’s new dynamic SL regex
detector [87] to their ensemble ([75, 104, 107]). More critically, we
introduce a new technique that identifies both polynomial and
exponential SL regexes that their detector ensemble would not
detect. The static detectors in their ensemble: (1) assume full-match
semantics, and (2) do not scale well to regexes with large NFAs.
We combat these problems by querying detectors with the original
regex as well as regex variants that they can more readily analyze.

The first query variant addresses an unrealistic assumption in the
analysis performed by some of the detectors in the ensemble ([75,
104, 107]). Although these detectors assume that the regex engine
is using full-match semantics, regex engines generally default to
partial-match semantics. For example, some detectors predict linear

8We used 100 pumps for exponential and 100,000 pumps for polynomial.

behavior for /a+$/, but it is quadratic in many languages when
used with a partial-match API. To address this assumption, we
query the detector ensemble with an (anchored) full-match variant
of unanchored regexes, e.g., /^[\s\S]*?a+$/.

The second query variant addresses inefficient implementations
in the detector ensemble. Some of the detectors exceed our time
limit on regexes with large NFA representations. For example, they
time out on the (exponential) regex /(a{1,1000}){1,1000}$/ be-
cause its NFA explodes in size. To account for this inefficiency, we
query the detector ensemble with variants that replace bounded
quantifiers with unbounded ones, e.g., /(a+)+$/.

These variants reduce the rate of false negatives without intro-
ducing false positives. Although we query the detector ensemble
on several variants, we always test any worst-case input on the
original regex (dynamic validation). The first variant may unmask
polynomial regexes that would otherwise go undetected, and the
second may identify both polynomial and exponential regexes.

7.2.2 Results. Figure 6 illustrates the extent to which the regexes
in our polyglot corpus exhibit worst-case super-linear behavior in
each of the 8 languages under study.

Figure 6 indicates that SL regexes may be more common — by up
to an order of magnitude! — than was previously reported [26]. The
majority of the newly-discovered regexes were identified through
our variant testing technique; as expected, the new detector by

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

Figure 6: Proportion of SL regexes in each language. There
are three distinct families of worst-case regex performance.
We identified no regexes with exponential behavior in Go
and Rust, and only 6 regexes had polynomial behavior in
those languages. Regexeswith exponential behavior are rare
in PHP and Perl (Perl – 227; PHP – 0), but polynomial behav-
ior still occurs. In contrast, over 1,000 regexes have exponen-
tial behavior in Ruby, Java, JavaScript, and Python, and poly-
nomial behavior is also more common in those languages.

Shen et al. [87] identified only exponential regexes (1,421 of them).
Our results agree with a small-scale estimate in Java [107]. Al-
though Figure 6 does not provide a direct comparison to [26], the
same larger proportions occur when considering the subset of our
corpus derived from JavaScript and Python (as theirs was).

7.2.3 Analysis. The proportion of regexes that exhibit exponential
and polynomial worst-case behavior varies widely by language. The
regex engines in these languages appear to fall into three families:
(1) Slow (JavaScript, Java, Python, Ruby); (2) Medium (PHP, Perl);
and (3) Fast (Go, Rust). To clarify this taxonomy, Figure 7 shows
the frequency with which regexes exhibit worse behavior in one of
a pair of languages. For example, we see that the ~10% of regexes
that are super-linear in both Java and JavaScript (cf. Figure 6) are
the same regexes. The worst-case performance of a regex generally
worsens when moved between these families, but not within them.

In this section we explore the reasons behind these three families
of regex performance. We studied the language documentation and
the implementation of these engines and identified a variety of
mechanisms by which some regex engines fall prey to super-linear
behavior and others avoid it.
Documented performance. We studied each language’s regex
documentation (Table 2) to see whether its worst-case performance
is discussed. JavaScript, Java, and Python only provide tips on mi-
nor optimizations. PHP and Ruby comment vaguely on worst-case
performance: “can take a long time to run” [44]. The best docu-
mentation explicitly states worst-case expectations: linear (Rust
and Go) or exponential (Perl). Similar to the semantic behaviors
in Table 4, in most languages these performance differences can
only be identified through experimentation.
Under the hood. The primary distinction between these families
is their core regex matching algorithms and varying support for

Figure 7: Pairwise view of regex performance differences.
Cells are colored according to the number of regexes that ex-
hibit worse behavior in the destination (row) than the hypo-
thetical source (column). Darker rows are dangerous destina-
tions; the individual cells contain the percent of the regexes
supported in that language pair whose worst-case perfor-
mance is worse in the destination. For example, regexes do
not perform any worse in JavaScript than Java, but 8% of
regexes performworsewhenmoved fromRust to JavaScript.

super-linear regex features (e.g., backreferences [9]). Go and Rust
offer linear behavior because they primarily rely on Thompson’s
algorithm for linear-time regex evaluations [95], though in conse-
quence they offer a limited set of regex features. In contrast, the
remaining 6 languages perform regex matches using some variant
of Spencer’s backtracking algorithm [91]. Thompson’s algorithm is
similar to a breadth-first traversal of the NFA graph, while Spencer’s
is analogous to a depth-first traversal. Some implementations of
the Spencer-style DFS may exhibit super-linear behavior due to
redundant state visits, though there are also truly exponential (NP-
complete) regexes with backreferences [9, 15].

Within the set of Spencer engines, though, there are distinct
Medium and Slow Families. In our experiments, exponential behav-
ior was unusual in PHP and Perl, while it occurs at about the same
rates in Java, JavaScript, Python, and Ruby. Similarly, PHP and Perl
have a lower incidence of polynomial behavior than do the other
Spencer engines. The differences between these two families can
be attributed to a mix of defenses and optimizations.

To the best of our knowledge, PHP and Perl are the only Spencer
engines in our study that have explicit defenses against exponential-
time behavior. Both languages rely on counters to track the amount
of work performed during amatch, and if a regex evaluation exceeds
a threshold it is terminated with an exception. In experiments, we
found that these counters are incremented such that exponential
searches may trigger the threshold but poly-time searches will not.
Perl additionally maintains a cache of visited states in order to short-
circuit redundant paths through the NFA, permitting it to evaluate
some searches in linear time that take polynomial or exponential
time in other Spencer engines.

Why Aren’t Regular Expressions a Lingua Franca? ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

In addition to their exponential defenses, PHP and Perl both
have optimizations that act as a safeguard against polynomial regex
engine behavior. For partial matches, some regex engines will try
every possible starting offset in the string, trivially leading to poly-
nomial behavior. PHP and Perl have optimizations to prune these
starting offsets, and these optimizations appear to reduce the in-
cidence of polynomial behavior in those languages. The relevant
optimizations seem to be: (1) skipping ahead to plausible starting
points, and (2) filtering out inputs that lack necessary substrings.

To the best of our knowledge, this is the first description of these
real-world regex engine mechanisms in the scientific literature9. We
hope our findings will inform the maintenance and development
of regex engines that are less susceptible to super-linear behavior.
Three families, not two? In our experiments we were surprised
to find three families of regex engine performance instead of the
two previously described by Cox [24]. Perhaps based on Cox’s
analysis, others argued that exponential regex behavior in Java
would translate to PHP [87]. The defenses and optimizations we
identified in PHP and Perl have previously gone unremarked.

8 REGEX BUGS
Semantic bugs. Although developers may identify some seman-
tic regex problems during testing, others may cause unexpected
regex behavior in practice. To estimate the frequency of semantic
problems in practice, we developed linter-style tools to identify
regexes that use features that are unavailable in their language
(Table 4). For example, in JavaScript the anchor notation /\Ab\Z/ is
interpreted literally as AbZ, but developers who use this notation in
JavaScript projects probably intend anchors. Among the JavaScript
(npm) modules from which we derived our corpus, we identified 31
modules that used this notation. In total we identified hundreds of
modules containing potential semantic regex bugs. We have begun
opening bug reports against these modules.

It is possible that these regexes were derived from copy/paste
practices. However, developers might introduce such bugs even
when designing regexes from scratch, since they may design them
based on a (supposed) regex lingua franca that does not extend to
the language in which they are developing (cf. Figure 3).
ReDoS regexes. The super-linear regexes we identified represent
potential ReDoS vectors. After filtering out regexes that appear in
paths like test or build, we have initiated the responsible disclosure
process to inform the developers of 14,495 modules about potential
security vulnerabilities.

9 DISCUSSION AND FUTUREWORK
Considerations: software engineers. Our findings suggest that
porting regexes across language boundaries, e.g., from other soft-
ware projects or from Stack Overflow, is a potentially risky activity.
Subtle semantic and performance issues can occur and should be
considered by developers introducing regexes into their code. Un-
fortunately, the largest developer communities are in the languages
most vulnerable to ReDoS (cf. Table 1 and Figure 6).

9Besides our description, we are only aware of descriptions of these defenses in
discussion forum posts [69] and the source code itself (e.g., see line 7835 of [70]). These
mechanisms are not described in the PHP and Perl documentation that we studied.

We have released our many-language tools to help developers
understand the possible risks of regexes. Our tools can test the
semantic and performance of regexes in many languages on many
inputs. We hope Table 4 will be a useful reference for developers.
Recommendations: programming language designers.Weem-
pathize with the developers we surveyed who expected regexes
to behave consistently across programming languages. We believe
that regexes should truly be the lingua franca many developers
already believe them to be. We suggest that having the fastest or
most feature-rich engine is not worth the cost of regex portability
problems. Perhaps supported by researchers, programming lan-
guage designers could agree on a universal regex specification and
relieve software engineers of the burden of reconciling regexes
across languages. We acknowledge that diversity and competition
sometimes improve outcomes for users, but regexes are a mature
technology and unifying their behavior makes sense.

Each language’s regex documentation currently focuses only on
its own syntax and semantics. We recommend that regex documen-
tation additionally describe its deviations from external specifica-
tion(s), e.g., PCRE [46] or PX-BRE [47]. Explicitly discussing incom-
patibilities will inform developers of “gotchas”, and it will have the
indirect effect of reminding them that regexes are (currently) not a
lingua franca. Longer term, explicitly considering each language’s
divergence from specification(s) will help designers reach agree-
ment on a next-generation universal regex specification. Lastly,
languages should document their worst-case regex performance.

We recommend that language designers in the “Slow Family”
(JavaScript, Java, Python, Ruby) of regex engines adopt techniques
from the “Medium Family” (PHP, Perl) to reduce the incidence of
ReDoS vulnerabilities in these popular languages.
Corpus applications. Our polyglot regex corpus is a promising
basis for further research. Clearly developers search for regexes —
can we adapt semantic code search techniques [50] to the discovery
of relevant regexes? And do developers have different regex needs
in different programming languages — do these differences manifest
in measurable ways, and should this affect the regex feature support
or optimizations used in regex engines?
Regex tools and regex engines.Motivated by this work, we en-
vision a regex “universal translator” to help developers port regexes
between languages. This task is complicated by incomplete regex
specifications, different feature support in different programming
languages, and performance variations. As a starting point, van
der Merwe et al.’s work on regex transformations that preserve
semantics but change performance seems promising [98].

We believe that two directions for regex engine research are
promising. First, we accidentally identified bugs in four regex en-
gines (§7.1.3). Testing regex engines by refining regex semantics and
applying model-checking techniques will improve the developer
experience. Second, we suggest that most ReDoS vulnerabilities
can be solved at the regex engine level by refining and enhancing
the optimizations already present in Perl and PHP (§7.2.3). Care
will be needed, however, to avoid changing regex semantics.
Other Lingua Francas.What is the impact of other “lingua franca
problems” in software engineering? For example, how do developers
account for variations in SQL dialects, Markdown specifications,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

software compilers, and browser JavaScript support, and what are
the consequences when they fail to do so?

10 THREATS TO VALIDITY
Internal validity. Survey. Our survey instrument has not been
validated [51]. We assume the survey respondents who survived
our “bogus response” filter replied in good faith.

Performance portability. Our results assume that the SL regex
detector ensemble is effective. These detectors were designed with
the naive Spencer-style regex engines in mind (“Slow family”) and
might miss SL regexes in theMedium and Fast families. For example,
it is not clear whether the defenses of PHP and Perl are sound or
simply effective against these detectors’ inputs.
External validity. Regex corpus. Our methodology for procuring
the regex corpus faces two threats. First, our corpus is composed
only of statically-declared regexes. To generalize, we assume that
either most regexes are statically declared, or that dynamically-
declared regexes have similar properties. Second, we only extract
regexes from modules. We do not know whether developers follow
the same regex practices when writing regexes in modules and in
applications, so our results may not generalize to applications.
Construct validity. Regex re-use. We took a simple approach to
identifying regex re-use in our corpus: exact string matches for
regexes at least 15 characters long. We chose this threshold based
on our assessment of regexes more or less likely to have been
independently derived by multiple developers. However, there may
have been shorter re-used regexes, longer independently-derived
regexes, and many regexes that were re-used with modifications to
tailor them to specific use cases.

Our definition of re-use does not account for the possibility of
wholesale file duplication, which is not true regex re-use. File du-
plication would only affect our intra-language regex re-use results.

11 RELATED WORK
Empirical studies of regexes. The empirical study of regex use
is a recent endeavor, with several lines of research. Chapman and
Stolee assessed the use of different regex features in Python [20].
Using that corpus, Chapman et al. assessed the relative understand-
ability of regex synonyms to determine community preferences [21].
Wang and Stolee reported that regexes are poorly unit tested in Java
applications [102], though this might be due to developer processes
not captured by version control, e.g., using regex checking tools [55].
Our polyglot regex techniques will enable generalizing some of
these results to other programming languages.
Software re-use: other code. Software re-use is a prevalent prac-
tice in software engineering [14, 33, 39, 86]. Developers re-use code
from their own or other projects [89], introducing code clones [41,
79]. Multiple studies estimate that more than 50% of the code in
GitHub is duplicated [58, 64], with similar ratios for Android appli-
cations [80].

Whether code clones are good practice is a matter of debate.
Some researchers have pointed out the benefits of code clones [68],
and found little difference between cloned and non-cloned code
in qualities such as comprehensibility [83] and defect-proneness
[74, 84]. But other studies have examined negative effects of cloning
code [49], such as maintenance difficulties [38] due to frequent [59]

but inconsistent [52] changes. As a result, a wide variety of tech-
niques have been proposed to detect code clones, e.g., [76, 79, 82].

To the best of our knowledge, our paper presents the first study
of regex re-use and the problems that can arise from it.
Software re-use: Internet forums. Researchers have also stud-
ied software re-use from Internet forums. Multiple studies found
evidence of code flow from Stack Overflow to software reposito-
ries [109], and found that code frequently flows, although some-
times without respecting license terms [10] or authorship attribu-
tion [12]. Researchers have also studied the interplay of developer
contributions to both resources [99].

Given the prevalence of code snippets in Stack Overflow, mul-
tiple tools have been proposed to help developers re-use them,
e.g., to automatically generate comments [106], or to augment the
IDE [72, 73]. However, some problems have been identified with
reusing code snippets from Stack Overflow, e.g., quality [67] and us-
ability [108]. Furthermore, other studies have identified particular
threats with code re-use from Stack Overflow, such as API mis-
use [110], security vulnerabilities [36, 63], or unreadable code [96].

In this paper we found that Internet forums are also a popular
source of regex re-use among developers, and we observed similar
risks: feature mis-use and ReDoS vulnerabilities.
Migration. Researchers have long discussed the difficulties of code
migration [29, 48, 60, 77, 94, 103]. As new technologies emerge, so
do newmigration tools, e.g.,within [13] and between languages [34,
61, 66, 71, 85, 93, 111] and frameworks [35, 45, 57].

Our work shows that regexes are (currently) not a lingua franca,
creating an opportunity for tools for regex migration.

12 CONCLUSION
Regexes are not a lingua franca. Although about 92% of regexes will
compile in most programming languages, their apparent portability
masks problems of correctness and performance. We empirically
investigated the extent and causes of these portability problems,
offering the first empirical perspective on regex portability. In the
process we identified hundreds of modules with potential semantic
problems and thousands with potential performance problems, plus
documentation and implementation errors in popular languages.

Unfortunately, but quite understandably, about half of the soft-
ware developers we surveyed believe and act as though regexes
are a lingua franca. We hope that this paper increases developer
awareness of regex portability problems. We also hope to motivate
language designers toward regex standardization — toward a true
regex lingua franca.

REPRODUCIBILITY
An artifact containing our survey instrument, regex corpus, and
analyses is available at https://doi.org/10.5281/zenodo.3257777.

ACKNOWLEDGMENTS
A. Kazerouni and R. Davis advised us on data analysis. J. Donohue
and E. Deram shared insights about developer re-use practices. This
work was supported in part by the National Science Foundation
grant CNS-1814430.

https://doi.org/10.5281/zenodo.3257777

Why Aren’t Regular Expressions a Lingua Franca? ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] [n.d.]. Hacker News. https://news.ycombinator.com/.
[2] [n.d.]. Perl Regular Expressions - Perl. https://perldoc.perl.org/5.22.0/perlre.

html.
[3] [n.d.]. Reddit. https://www.reddit.com/.
[4] [n.d.]. Regular Expression Library. https://web.archive.org/web/

20180920164647/http://regexlib.com/.
[5] [n.d.]. Stack Overflow - Regex tag. https://stackoverflow.com/questions/tagged/

regex.
[6] 2009. regex(7) - Linux manual page - POSIX.2 regular expressions. http://man7.

org/linux/man-pages/man7/regex.7.html.
[7] 2013. Debuggex: A Composable Regex Repository. https://web.archive.org/

web/20170222084629/https://www.debuggex.com/blog/2013/a-composable-
regex-repository/.

[8] 2018. Tags – StackOverflow. https://web.archive.org/web/20180919183037/https:
//stackoverflow.com/tags?tab=popular.

[9] Alfred V Aho. 1990. Algorithms for finding patterns in strings. Elsevier, Chapter 5,
255–300.

[10] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack Overflow:
A code laundering platform?. In International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE.

[11] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2017. MutRex: A
Mutation-Based Generator of Fault Detecting Strings for Regular Expressions.
In International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW).

[12] Sebastian Baltes and Stephan Diehl. 2018. Usage and attribution of Stack Over-
flow code snippets in GitHub projects. Empirical Software Engineering (2018),
1–37.

[13] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated Software Transplantation. In International Symposium on
Software Testing and Analysis (ISSTA).

[14] Veronika Bauer et al. 2016. Comparing reuse practices in two large software-
producing companies. Journal of Systems and Software 117 (2016), 545–582.

[15] Martin Berglund and Brink Van Der Merwe. 2017. Regular Expressions with
Backreferences. In Prague Stringology. 30–41.

[16] Patrick Biernacki and Dan Waldorf. 1981. Snowball Sampling: Problems and
Techniques of Chain Referral Sampling. Sociological Methods & Research 10, 2
(11 1981), 141–163.

[17] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform. Journal
of Systems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.
09.016

[18] James Britt and Neurogami Secret Laboratory. [n.d.]. Regexp - Ruby. https:
//ruby-doc.org/core-2.3.1/Regexp.html.

[19] Cezar Câmpeanu and Nicolae Santean. 2009. On the intersection of regex
languages with regular languages. Theoretical Computer Science 410, 24-25
(2009), 2336–2344.

[20] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. International Symposium on Software Testing and Analysis
(ISSTA) (2016).

[21] Carl Chapman, Peipei Wang, and Kathryn T Stolee. 2017. Exploring Regular
Expression Comprehension. In Automated Software Engineering (ASE).

[22] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118–137.

[23] Oracle Corp. [n.d.]. Pattern - Java. https://docs.oracle.com/en/java/javase/11/
docs/api/java.base/java/util/regex/Pattern.html.

[24] Russ Cox. 2007. Regular Expression Matching Can Be Simple And Fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...).

[25] Scott Crosby. 2003. Denial of service through regular expressions. USENIX
Security work in progress report (2003).

[26] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale. In The ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[27] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In USENIX Security Symposium (USENIX Security).

[28] Erik DeBill. [n.d.]. Module Counts. http://modulecounts-production.herokuapp.
com/.

[29] Arie van Deursen, Paul Klint, and Chris Verhoef. 1999. Research Issues in the
Renovation of Legacy Systems. Fundamental Approaches to Software Engineering
1577 (1999), 1–21.

[30] The Rust Project Developers. [n.d.]. regex - Rust. https://docs.rs/regex/1.1.0/
regex/.

[31] MDN Web Docs. [n.d.]. RegExp - JavaScript. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/RegExp.

[32] MDN Web Docs. [n.d.]. Regular Expressions - JavaScript. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions.

[33] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. 2013. An exploratory study of cloning in
industrial software product lines. In European Conference on Software Mainte-
nance and Reengineering. IEEE.

[34] M. El-Ramly, R. Eltayeb, and H.A. Alla. 2006. An Experiment in Automatic
Conversion of Legacy Java Programs to C#. IEEE International Conference on
Computer Systems and Applications, 2006.March (2006), 1037–1045.

[35] Xiaochao Fan and Kenny Wong. 2016. Migrating user interfaces in native
mobile applications. In International Workshop on Mobile Software Engineering
and Systems (MOBILESoft).

[36] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-
ful? the Impact of Copy&Paste on Android Application Security. In IEEE Sym-
posium on Security and Privacy (IEEE S&P). 121–136.

[37] Python Software Foundation. [n.d.]. re – Regular expression operations - Python.
https://docs.python.org/3.6/library/re.html.

[38] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[39] W. B. Frakes and Kyo Kang. 2005. Software reuse research: status and future.
IEEE Transactions on Software Engineering 31, 7 (July 2005), 529–536.

[40] Jeffrey EF Friedl. 2006. Mastering regular expressions. " O’Reilly Media, Inc.".
[41] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Masoumeh Soleimani

Zavosht, Abbas Heydarnoori, and Vladimir Filkov. 2018. Cross-project code
clones in GitHub. Empirical Software Engineering (2018), 1–36.

[42] GitHub. 2018. The State of the Octoverse. https://octoverse.github.com/.
[43] Google. [n.d.]. regexp - Go. https://golang.org/pkg/regexp/.
[44] The PHP Group. [n.d.]. Regexp - PHP. http://php.net/manual/en/regexp.

introduction.php.
[45] Ahmed E. Hassan and Richard C. Holt. 2005. A lightweight approach for

migrating web frameworks. Information and Software Technology 47, 8 (2005),
521–532.

[46] Hazel, Philip. 2018. PCRE - Perl Compatible Regular Expressions. https://web.
archive.org/web/20180919101106/https://www.pcre.org/.

[47] IEEE and The Open Group. 2018. The open group base specifications issue 7,
2018 edition, ieee std 1003.1-2017.

[48] Ivar Jacobson and Fredrik Lindström. 1991. Reengineering of old systems to an
object-oriented architecture. ACM SIGPLAN Notices 26, 11 (1991), 340–350.

[49] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clonesmatter?. In International Conference on Software Engineering
(ICSE). IEEE.

[50] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2016. Repairing
programs with semantic code search. In Automated Software Engineering (ASE).
295–306.

[51] Barbara A. Kitchenham and Shari L. Pfleeger. 2008. Personal opinion surveys.
In Guide to Advanced Empirical Software Engineering.

[52] Jens Krinke. 2007. A study of consistent and inconsistent changes to code clones.
In Working conference on reverse engineering (WCRE). IEEE.

[53] A.M. Kuchling. [n.d.]. Regular Expression HOWTO - Python. https://docs.
python.org/3.6/howto/regex.html.

[54] Mark Kvale. [n.d.]. Perl Regular Expressions Tutorial - Perl. https://perldoc.perl.
org/5.22.0/perlretut.html.

[55] Eric Larson. 2018. Automatic Checking of Regular Expressions. In Source Code
Analysis and Manipulation (SCAM).

[56] Eric Larson and Anna Kirk. 2016. Generating Evil Test Strings for Regular
Expressions. In International Conference on Software Testing, Verification and
Validation (ICST).

[57] Terry Lau, Jianguo Lu, Erik Hedges, and Emily Xing. 2001. Migrating E-
commerce Database Applications to an Enterprise Java Environment. In Confer-
ence of the Centre for Advanced Studies on Collaborative Research.

[58] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages (OOPSLA).

[59] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. 2007. Evaluating
the harmfulness of cloning: A change based experiment. In Mining Software
Repositories (MSR). IEEE.

[60] Andrew J Malton. 2001. The Software Migration Barbell. Proceedings of the
ASERC Workshop on Software Architecture (2001).

[61] J. Martin and H.a. Muller. 2002. C to Java migration experiences. Proceedings
of the Sixth European Conference on Software Maintenance and Reengineering
(2002), 143–153.

[62] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[63] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-
Argoty. 2018. Secure coding practices in java: Challenges and vulnerabilities. In
International Conference on Software Engineering (ICSE). IEEE.

https://news.ycombinator.com/
https://perldoc.perl.org/5.22.0/perlre.html
https://perldoc.perl.org/5.22.0/perlre.html
https://www.reddit.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/
https://stackoverflow.com/questions/tagged/regex
https://stackoverflow.com/questions/tagged/regex
http://man7.org/linux/man-pages/man7/regex.7.html
http://man7.org/linux/man-pages/man7/regex.7.html
https://web.archive.org/web/20170222084629/https://www.debuggex.com/blog/2013/a-composable-regex-repository/
https://web.archive.org/web/20170222084629/https://www.debuggex.com/blog/2013/a-composable-regex-repository/
https://web.archive.org/web/20170222084629/https://www.debuggex.com/blog/2013/a-composable-regex-repository/
https://web.archive.org/web/20180919183037/https://stackoverflow.com/tags?tab=popular
https://web.archive.org/web/20180919183037/https://stackoverflow.com/tags?tab=popular
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
https://ruby-doc.org/core-2.3.1/Regexp.html
https://ruby-doc.org/core-2.3.1/Regexp.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
http://modulecounts-production.herokuapp.com/
http://modulecounts-production.herokuapp.com/
https://docs.rs/regex/1.1.0/regex/
https://docs.rs/regex/1.1.0/regex/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://docs.python.org/3.6/library/re.html
https://octoverse.github.com/
https://golang.org/pkg/regexp/
http://php.net/manual/en/regexp.introduction.php
http://php.net/manual/en/regexp.introduction.php
https://web.archive.org/web/20180919101106/https://www.pcre.org/
https://web.archive.org/web/20180919101106/https://www.pcre.org/
https://docs.python.org/3.6/howto/regex.html
https://docs.python.org/3.6/howto/regex.html
https://perldoc.perl.org/5.22.0/perlretut.html
https://perldoc.perl.org/5.22.0/perlretut.html

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis, Louis G. Michael IV, Christy A. Coghlan*, Francisco Servant, and Dongyoon Lee

[64] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development,
FLOSS’07.

[65] Anders Møller. 2010. dk. brics. automaton–finite-state automata and regular
expressions for Java, 2010.

[66] M. Mossienko. 2003. Automated Cobol to Java recycling. In Conference on
Software Maintenance and Reengineering (CSMR), Vol. 7. IEEE, 40–50.

[67] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012.
What makes a good code example?: A study of programming Q&A in Stack-
Overflow. In IEEE International Conference on Software Maintenance (ICSM).
IEEE.

[68] Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File cloning in open source
java projects: The good, the bad, and the ugly. In IEEE International Conference
on Software Maintenance (ICSM). IEEE.

[69] PerlMonks. [n.d.]. Perl regexp matching is slow?? https://perlmonks.org/?node_
id=597262.

[70] PerlMonks. [n.d.]. Snapshot of Perl 5 regex.c. https://web.archive.org/web/
20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c.

[71] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N. Nguyen.
2017. Statistical migration of API usages. In International Conference on Software
Engineering Companion (ICSE-C 2017.

[72] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
overflow in the ide. In International Conference on Software Engineering (ICSE).
IEEE Press.

[73] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In Working Conference on Mining Software Repositories
(MSR). ACM.

[74] Foyzur Rahman, Christian Bird, and Premkumar Devanbu. 2012. Clones: What
is that smell? Empirical Software Engineering 17, 4-5 (2012), 503–530.

[75] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expres-
sion Exponential Runtime via Substructural Logics. Technical Report.

[76] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[77] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detect-
ing and characterizing semantic inconsistencies in ported code. In Automated
Software Engineering (ASE). IEEE.

[78] Alex Roichman and Adar Weidman. 2009. VAC - ReDoS: Regular Expression
Denial Of Service. Open Web Application Security Project (OWASP) (2009).

[79] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470–495.

[80] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Has-
san. 2012. Understanding reuse in the android market. In IEEE International
Conference on Program Comprehension (ICPC). IEEE.

[81] Georgia Robins Sadler, Hau-Chen Lee, Rod Seung-Hwan Lim, and Judith Fuller-
ton. 2010. Recruitment of hard-to-reach population subgroups via adaptations
of the snowball sampling strategy. Nursing & Health Sciences 12, 3 (9 2010),
369–374.

[82] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. 2018. Oreo: Detection of clones in the twilight zone. In European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM.

[83] Vaibhav Saini, Hitesh Sajnani, and Cristina Lopes. 2018. Cloned and non-cloned
Java methods: a comparative study. Empirical Software Engineering (2018), 1–47.

[84] Hitesh Sajnani, Vaibhav Saini, and Cristina V Lopes. 2014. A comparative study
of bug patterns in java cloned and non-cloned code. In International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE.

[85] Hanan Samet. 1981. Experience with software conversion. Software: Practice
and Experience 11, 10 (1981), 1053–1069.

[86] Walt Scacchi. 2007. Free/open source software development: recent research
results and emerging opportunities. In European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).

[87] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.
ReScue: Crafting Regular Expression DoS Attacks. In Automated Software Engi-
neering (ASE).

[88] Janet Siegmund, Christian Kästner, JÃűrg Liebig, Sven Apel, and Stefan Ha-
nenberg. 2014. Measuring and modeling programming experience. Empirical
Software Engineering 19, 5 (10 2014), 1299–1334.

[89] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. 1998. Archetypal
source code searches: A survey of software developers and maintainers. In
International Workshop on Program Comprehension (IWPC). IEEE.

[90] Michael Sipser. 2006. Introduction to the Theory of Computation. Vol. 2. Thomson
Course Technology Boston.

[91] Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.
35–71.

[92] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security).

[93] A.A. Terekhov. 2001. Automating language conversion: a case study (an extended
abstract). IEEE International Conference on Software Maintenance (ICSM) (2001),
654–658.

[94] Andrey A. Terekhov and Chris Verhoef. 2000. The realities of language conver-
sions. IEEE Software 17, 6 (2000), 111–124.

[95] Ken Thompson. 1968. Regular Expression Search Algorithm. Communications
of the ACM (CACM) (1968).

[96] Christoph Treude and Martin P Robillard. 2017. Understanding stack overflow
code fragments. In IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE.

[97] Iain Truskett. [n.d.]. Perl Regular Expressions Reference - Perl. https://perldoc.
perl.org/5.22.0/perlreref.html.

[98] Brink Van Der Merwe, Nicolaas Weideman, and Martin Berglund. 2017. Turning
Evil Regexes Harmless. In Proceedings of the South African Institute of Computer
Scientists and Information Technologists (SAICSIT).

[99] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. Stackover-
flow and github: Associations between software development and crowdsourced
knowledge. In 2013 International Conference on Social Computing. IEEE, 188–195.

[100] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic regu-
lar expression explorer. International Conference on Software Testing, Verification
and Validation (ICST) (2010).

[101] Peipei Wang, Gina R Bai, and Kathryn T Stolee. 2019. Exploring Regular Ex-
pression Evolution. In Software Analysis, Evolution, and Reengineering (SANER).

[102] Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions
tested in the wild?. In Foundations of Software Engineering (FSE).

[103] RichardWaters. 1988. Program translation via abstraction and reimplementation
- Software Engineering. IEEE Transactions on Software Engineering 14, 8 (1988).

[104] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce Watson.
2016. Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 9705. 322–334.

[105] Wikipedia contributors. 2018. Regular expression — Wikipedia, The Free En-
cyclopedia. https://web.archive.org/web/20180920152821/https://en.wikipedia.
org/w/index.php?title=Regular_expression.

[106] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In Automated Software
Engineering (ASE). IEEE.

[107] Valentin Wustholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regular Expressions.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).

[108] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: an analysis of stack overflow code snippets. InMining Software Repositories
(MSR). ACM, 391–402.

[109] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. 2017. Stack Overflow
in Github: Any Snippets There?. In IEEE International Working Conference on
Mining Software Repositories (MSR).

[110] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Online Code Examples Reliable? An Empirical Study
of API Misuse on Stack Overflow. In International Conference on Software Engi-
neering (ICSE).

[111] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In International Conference on
Software Engineering.

https://perlmonks.org/?node_id=597262
https://perlmonks.org/?node_id=597262
https://web.archive.org/web/20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c
https://web.archive.org/web/20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c
https://perldoc.perl.org/5.22.0/perlreref.html
https://perldoc.perl.org/5.22.0/perlreref.html
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression

	Abstract
	1 Introduction
	2 Background
	2.1 Regex Dialects
	2.2 Regex Denial of Service (ReDoS)
	2.3 Developer Practices Around Regexes

	3 Research Questions
	4 Theme 1: Developer Perspectives
	4.1 Methodology
	4.2 Results

	5 Polyglot Regex Corpus
	6 Theme 2: Measuring regex re-use
	6.1 RQ4: Re-use from Other Software
	6.2 RQ5: Re-use from Internet Sources

	7 Theme 3: Empirical portability
	7.1 RQ6: Semantic Portability Problems
	7.2 RQ7: Performance Portability Problems

	8 Regex Bugs
	9 Discussion and Future Work
	10 Threats to Validity
	11 Related Work
	12 Conclusion
	References

