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Abstract. This paper presents the lowest-order weak Galerkin (WG) finite element method
for solving the Darcy equation or elliptic boundary value problems on general convex polygonal
meshes. In this approach, constants are used in element interiors and on edges to approximate
the primal variable (pressure). The discrete weak gradients of these constant basis functions are
established in simple H(div)-subspaces on polygons that are explicitly constructed by using the
normalized coordinates and Wachspress coordinates [W. Chen and Y. Wang, Math. Comp., 86 (2017),
pp. 2053--2087]. These discrete weak gradients are used to approximate the classical gradient in
the variational formulation. No penalization is needed for this new method. The method results
in symmetric positive-definite sparse linear systems. It is locally mass-conservative and produces
continuous normal fluxes. The new method has optimal-order convergence in pressure, velocity, and
normal flux, when the convex polygon meshes are shape-regular.
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1. Introduction. This paper concerns finite element methods for elliptic bound-
ary value problems prototyped as

(1)

\left\{     
\nabla \cdot ( - K\nabla p) \equiv \nabla \cdot u = f, x \in \Omega ,

p = pD, x \in \Gamma D,

u \cdot n = uN , x \in \Gamma N ,

where \Omega \subset \BbbR 2 is a bounded (polygonal) domain, p is the unknown primal variable,
K is a 2 \times 2 coefficient matrix that is uniformly symmetric positive-definite, f is a
source term, pD, uN are, respectively, Dirichlet and Neumann boundary data, and n
is the outward unit normal vector on \partial \Omega , which has a nonoverlapping decomposition
\Gamma D \cup \Gamma N .

The elliptic boundary value problem (1) describes Darcy flow when the primal
variable p is interpreted as pressure and K is the hydraulic conductivity. Then the
flux u =  - K\nabla p is understood as velocity and u \cdot n is specifically named as normal
flux. Heat or electrical conduction in composite materials can also be described by
(1), when p is the temperature or electric potential and K is the thermal or electric
conductivity. Accordingly, u is the heat or electric flux. For ease of presentation, we
shall restrict the discussion to the context of Darcy flow.

The elliptic equation (1) can be solved by a variety of finite element methods
on simplicial (triangular or tetrahedral) and 2-dim or 3-dim rectangular meshes, e.g.,
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B1230 J. LIU, S. TAVENER, AND Z. WANG

the mixed finite element methods [4], the discontinuous Galerkin methods [27], the
enhanced Galerkin methods [28], the recently developed weak Galerkin methods [22,
35], and postprocessing procedures [6].

Recently, polygonal and polyhedral meshes have attracted attention from many
researchers. Finite element methods, virtual element methods, and mimetic finite
difference methods have been developed on these types of meshes for various types of
differential equations; the reader is referred to [7, 14, 20, 21, 31, 34] and references
therein. Among the methods that can be applied to Darcy flow [5, 13, 15, 17, 30], the
local conservation property has been incorporated into the design of methods.

Quadrilaterals and hexahedral meshes, as special polytopal (polygonal or poly-
hedral) meshes, are attractive for practical tasks of scientific computing, due to their
relatively simple data structure and flexibility in accommodating complicated domain
geometry. There has been a great deal of research efforts on solving various types of
differential equations on quadrilaterals and hexahedral meshes. The Piola transform
is used fully [3, 18, 37, 38] or partially [1] to construct H(div)-finite elements on
quadrilaterals or hexahedra. Based on these, mixed finite element methods can be es-
tablished for elliptic problems. However, it is unclear whether the methodology of the
Piola transform can be applied to polytopes other than quadrilaterals and hexahedra.

Motivated by the importance of the barycentric coordinates to the construction
of finite element methods on simplexes, generalized barycentric coordinates such as
the Wachspress coordinates have been investigated [19, 32, 33]. For convex polygons,
the Wachspress coordinates are nonnegative functions and satisfy the Lagrangian
property [9, 19]. Naturally, they can be used as Lagrangian-type basis functions in the
continuous Galerkin framework for solving elliptic problems [19]. When this method
is applied to Darcy flow computation, however, it is not locally mass-conservative,
and it does not produce continuous normal fluxes.

The weak Galerkin (WG) methodology introduced in [35] brings in new perspec-
tives. Degrees of freedom or finite element basis functions are set in element interiors
and on element interfaces (edges or faces). New concepts such as discrete weak gra-
dient or divergence or curl are established for these basis functions via integration by
parts. Discrete weak gradients (or divergences or curls) are specified in certain spaces
that have desired properties and used to approximate the differential operators in
variational forms for a variety of problems; see [8, 22, 23, 34] and references therein.

In this paper, we present the novel WG(P0, P0;CW0) finite element method for
Darcy flow or elliptic boundary value problems on convex polygonal meshes. In this
approach, the pressure or primal variable is approximated by constant functions in
element interiors and on edges, whereas their discrete weak gradients are established
in the lowest-order H(div)-subspaces on convex polygons that have been recently de-
veloped by Chen and Wang in [9]. For convenience, they are denoted as CW0 in this
paper. These discrete weak gradients are used to approximate the classical gradient
in the standard variational form for elliptic problems. The rest of this paper presents
in detail the finite element scheme for pressure (primal variable), computation of ve-
locity (flux) and normal flux, error analysis, implementation strategies, and numerical
results. This new method is also briefly compared with other related methods.

2. Preliminaries. This section presents preliminaries on (i) the Wachspress co-
ordinate functions for polygons and their gradients and curls; (ii) the Chen--Wang
H(div)-space CW0 for convex polygons; and (iii) the lowest-order weak Galerkin fi-
nite elements (P0, P0;CW0) for convex polygons.
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LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1231

2.1. Wachspress coordinates and their gradients and curls. As is well
known, the barycentric coordinates for triangles are simple but useful tools for con-
structing finite elements. The Wachspress coordinates, investigated in the 1970s and
revisited recently in [33], play a similar role for developing finite elements on general
polygons. In this subsection, we briefly review the concepts of Wachspress coordinates
by following the main ideas in [19].

Fig. 1. A pentagon with quantities needed for computing the Wachspress coordinates.

Let E be a polygon with n vertices vi(1 \leq i \leq n) that are arranged counterclock-
wise. Let ni(1 \leq i \leq n) be the outward unit normal vector on edge ei that connects
vertices vi and vi+1 (see Figure 1). Here the modulus n convention is adopted for
indexing. Let x \in E\circ (interior of E). Clearly, its distance to edge ei is

(2) di = (vi  - x) \cdot ni, 1 \leq i \leq n.

We define a scaled normal vector as

(3) \widetilde ni =
1

di
ni, 1 \leq i \leq n.

Then we define for 1 \leq i \leq n,

(4) wi(x) = det(\widetilde ni, \widetilde ni+1), W (x) =

n\sum 
i=1

wi(x).

Finally, we define the Wachspress coordinates as

(5) \lambda i(x) = wi(x)/W (x), 1 \leq i \leq n.

For a convex polygon, the Wachspress coordinates are nonnegative and have linear
precision; i.e., for 1 \leq i \leq n,

(6) \lambda i(x) \geq 0,

n\sum 
i=1

\lambda i(x) = 1,

n\sum 
i=1

\lambda i(x)vi = x.

The Wachspress coordinates are usually rational functions. For example, if E is
a quadrilateral with vertices (0, 0), (1, 0), (a, b), and (0, 1) oriented counterclockwise
(see Figure 2), then the Wachspress coordinates are

(7) \lambda i(x, y) = fi(x, y)/g(x, y), i = 1, 2, 3, 4,
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B1232 J. LIU, S. TAVENER, AND Z. WANG

Fig. 2. The Wachspress coordinate functions and their gradients on a quadrilateral with vertices
located at (0, 0), (1, 0), (0.8, 0.7), and (0, 1).

where \left\{                           

g(x, y) = ab+ b(b - 1)x+ a(a - 1)y,

f1(x, y) = ab+ (b(b - 1) - ab)x+ (a(a - 1) - ab)y

 - b(b - 1)x2 + (2ab - a - b+ 1)xy  - a(a - 1)y2,

f2(x, y) = abx+ b(b - 1)x2  - abxy,

f3(x, y) = (a+ b - 1)xy,

f4(x, y) = aby  - abxy + a(a - 1)y2.

Clearly, f1, f2, f3, f4 are \scrP 2 polynomials and g is a \scrP 1 polynomial. When a = b = 1,
i.e., the quadrilateral degenerates into the unit square, we have g(x, y) \equiv 1 and

\lambda 1 = (1 - x)(1 - y), \lambda 2 = x(1 - y, ), \lambda 3 = xy, \lambda 4 = (1 - x)y,

which are bilinear polynomials.
As discussed in [19], one introduces an auxiliary ratio function

(8) Ri(x) =
\nabla wi(x)

wi(x)
, 1 \leq i \leq n.

By the quotient rule for differentiation, one is led to

(9) \nabla \lambda i(x) = \lambda i(x)

\Biggl( 
Ri  - 

n\sum 
j=1

\lambda jRj

\Biggr) 
, 1 \leq i \leq n.

Finally, a clockwise 90\circ rotation of the gradient vector gives

(10) curl(\lambda i) =

\biggl[ 
 - \partial y\lambda i

\partial x\lambda i

\biggr] 
=

\biggl[ 
0  - 1
1 0

\biggr] 
\nabla \lambda i, 1 \leq i \leq n.
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LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1233

2.2. Chen--Wang \bfitH (div)-space \bfitC \bfitW \bfzero . This type of space is constructed in
[9] for general convex polygons and has nice approximation properties.

Let E be a convex polygon as described in subsection 2.1. Let xc = (xc, yc) be
its geometric center and | E| be its area. For 1 \leq i \leq n, let | ei| be the length of edge
ei and | Ti| be the area of the triangle formed by xc,vi,vi+1.

We will need to calculate some coefficients. First, we define

(11) ai = | ei| /(2| E| ), 1 \leq i \leq n.

Second, we define

(12) bi,j = \delta i,j | ej |  - | ei| | Tj | /| E| , 1 \leq i, j \leq n,

where \delta i,j is the Kronecker symbol. Third, we define

(13) ci,j =  - 1

n

n - 1\sum 
k=1

k bi,j+k, 1 \leq i, j \leq n.

It has been shown in [9] that for any 1 \leq i, j \leq n,

n\sum 
k=1

bi,j+k = 0, bi,j = ci,j  - ci,j+1.

Fig. 3. The four basis functions for CW0 on a quadrilateral with vertices located at (0, 0),
(1, 0), (0.8, 0.7), and (0, 1).

Basis for \bfitC \bfitW \bfzero space. It is shown in [9] that dim(CW0) = n and the following
n vector-valued functions form a basis for CW0:

(14) wi = ai(x - xc) +

n\sum 
j=1

ci,j curl(\lambda j), 1 \leq i \leq n,

where \lambda j are the Wachspress coordinates discussed in the previous subsection. This
set of basis functions relies on the frame consisting of the following (n+1) functions:

x - xc, curl(\lambda j) (1 \leq j \leq n),

which utilize the normalized coordinates and the curls of the Wachspress coordinates.
The aforementioned coefficients ai, ci,j form a conversion matrix that has rank n.

Furthermore, there hold that

(15) wi| ej \cdot nj = \delta i,j , \nabla \cdot wi = 2ai \forall 1 \leq i, j \leq n.

The first item is established in [9]. The second item can be derived from the fact that
the divergence of curl is zero. In other words, for these basis functions, the pointwise
normal flux on element boundaries and the pointwise divergence on elements are both
constants (see Figure 3 for an illustration). These properties make the CW0 space
very attractive for practical applications.

It is worth pointing out that when a polygon degenerates to a triangle or rectangle,
CW0 becomes the standard Raviart--Thomas space RT0 or RT[0], as expected.
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B1234 J. LIU, S. TAVENER, AND Z. WANG

2.3. Weak Galerkin (\bfitP \bfzero , \bfitP \bfzero ;\bfitC \bfitW \bfzero ) finite elements on polygons. In this
subsection, we utilize the CW0 spaces to construct WG finite elements (P0, P0;CW0)
on polygons. We follow the approach laid out in [35].

Fig. 4. WG (P0, P0) constant basis functions for the interior and five edges of a pentagon.

Let E be a polygon. A (P0, P0)-type discrete weak function \phi = \{ \phi \circ , \phi \partial \} on E
has two independent pieces: \phi \circ is a constant in the polygon interior E\circ , and \phi \partial is a
piecewise constant on the edges that make up the polygon boundary E\partial . We specify
its discrete weak gradient \nabla w,d\phi in CW0(E) via integration by parts:

(16)

\int 
E

\nabla w,d\phi \cdot w =

\int 
E\partial 

\phi \partial (w \cdot n) - 
\int 
E\circ 

\phi \circ (\nabla \cdot w) \forall w \in CW0.

So \nabla w,d\phi is a linear combination of those n basis functions of CW0(E) constructed
in (14).

The discrete weak gradient defined in (16) uses exactly both the pointwise normal
flux w \cdot n and the pointwise divergence \nabla \cdot w of the vector-valued functions in CW0.
Right here, the two properties in (15) are nicely used.

For an n-gon, there are (n+ 1) WG basis functions, one for the polygon interior
and one for each of the n edges of the polygon. For any such WG basis function
\phi = \{ \phi \circ , \phi \partial \} , \phi \circ is either 1 or 0, and so is \phi \partial on each edge. This indicates that the
right-hand side of (16) can be easily evaluated and \nabla w,d\phi can be quickly solved, once
the Gram matrix for the CW0 basis in (14) is computed.

As an example, we consider a pentagon E shown in Figure 4. Let | E| be its area
and | ei| (i = 1, 2, 3, 4, 5) be the length of the ith edge. Let \phi 0, \phi 1, \phi 2, \phi 3, \phi 4, \phi 5 be the
six WG basis functions that correspond, respectively, to the interior and the five edges
of the pentagon. Then the right-hand sides of (16) for these six WG basis functions
are, respectively,\left[      

 - | e1| 
 - | e2| 
 - | e3| 
 - | e4| 
 - | e5| 

\right]      ,

\left[      
| e1| 
0
0
0
0

\right]      ,

\left[      
0
| e2| 
0
0
0

\right]      ,

\left[      
0
0
| e3| 
0
0

\right]      ,

\left[      
0
0
0
| e4| 
0

\right]      ,

\left[      
0
0
0
0
| e5| 

\right]      .

Solving the corresponding six size-5 SPD linear systems gives the linear combination
coefficients needed for expressing \nabla w,d\phi i in terms of the basis functions of CW0.

For a general discussion on weak functions, weak gradient, discrete weak functions,
and discrete weak gradients, the reader is referred to [35].

3. Lowest-order WGFEM for Darcy on convex polygonal meshes. Now
we establish a new finite element scheme for the Darcy equation by approximating
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LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1235

the pressure by constants in element interiors and on edges. For these constant func-
tions, their discrete weak gradients are calculated in the CW0 spaces and used to
approximate the classical gradient in the variational form.

Let \scrE h be a convex polygonal mesh for \Omega . For any E \in \scrE h, we use | E| to denote
its area and hE its diameter. We define h = maxE\in \scrE h

hE . A polygonal mesh is called
shape-regular, provided that it satisfies the following four assumptions.

(A1) Edges are not too short . There exists C1 > 0 such that | e| \geq C1hE for any
E \in \scrE h and any of its edges e.

(A2) Polygons are not too small . There exists C2 > 0 such that | E| \geq C2h
2
E for

any E \in \scrE h.
(A3) Interior triangles are not too short . There exists C3 > 0 such that for any

E \in \scrE h and any of its edges e, there exists a triangle contained in E with e
being its base but the height over e is \geq C3hE .

(A4) Circumscribed triangles are not too tall . There exists C4 > 0 such that for any
E \in \scrE h, there exists a circumscribed triangle so that the triangle diameter
is \leq C4hE . Each circumscribed triangle intersects with only a fixed small
number of such triangles for other polygons.

Similar definitions can be found in [5, 36].
Let \Omega be a polygonal domain equipped with a shape-regular convex polygonal

mesh \scrE h [36]. Let \Gamma D
h be the set of all edges on the Dirichlet boundary \Gamma D, and let

\Gamma N
h be the set of all edges on the Neumann boundary \Gamma N . Let Sh be the space of

discrete weak functions on \scrE h that are degree 0 polynomials (constants) in element
interiors and on edges. Let S0

h be the subspace of functions in Sh that vanish on \Gamma D
h .

To proceed, we define an L2-projection Qh = \{ Q\circ 
h, Q

\partial 
h\} such that for any polygon

E \in \scrE h, Q\circ 
h is a local L2-projection that maps L2(E\circ ) functions into the space of

constant functions on E\circ , and in the same spirit, Q\partial 
h maps L2(E\partial ) functions into

the space of piecewise constant functions on E\partial . We also define Qh as the local
L2-projection from L2(E)2 to CW0(E).

WG scheme for pressure on a polygonal mesh. Seek ph = \{ p\circ h, p\partial h\} \in Sh

such that p\partial h| \Gamma D
h
= Q\partial 

h(pD) and

(17) \scrA h(ph, q) = \scrF (q) \forall q = \{ q\circ , q\partial \} \in S0
h,

where

(18) \scrA h(ph, q) =
\sum 
E\in \scrE h

\int 
E

K\nabla w,dph \cdot \nabla w,dq

and

(19) \scrF (q) =
\sum 
E\in \scrE h

\int 
E

f q\circ  - 
\sum 
e\in \Gamma N

h

\int 
e

uNq\partial .

After a numerical pressure ph is solved from (17), the elementwise numerical
velocity is obtained by performing the local L2-projection back into the subspace
CW0:

(20) uh = Qh( - K\nabla w,dph).

But this projection is not needed when K is an elementwise constant scalar matrix.
Then the bulk normal flux on an edge is defined as

(21)

\int 
e\in E\partial 

uh \cdot ne.
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B1236 J. LIU, S. TAVENER, AND Z. WANG

Regardless of mesh quality, this new WG finite element scheme possesses two
important properties: local mass conservation and normal flux continuity.

Theorem 1 (local mass conservation). Let E \in \scrE h be a polygon. Then

(22)

\int 
E

f =

\int 
E\partial 

uh \cdot n.

Proof. In the finite element scheme (17), take a test function q so that q| E\circ = 1
but it vanishes on all edges and inside all other elements. Then\int 

E

f =

\int 
E

(K\nabla w,dph) \cdot \nabla w,dq =

\int 
E

Qh(K\nabla w,dph) \cdot \nabla w,dq =  - 
\int 
E

uh \cdot \nabla w,dq

=  - 
\int 
E\partial 

q\partial (uh \cdot n) +
\int 
E\circ 

q\circ (\nabla \cdot uh) =

\int 
E\circ 

\nabla \cdot uh =

\int 
E\partial 

uh \cdot n.

It is interesting to note the following:
\bullet The first ``="" comes from the WG finite element scheme.
\bullet The second ``="" uses the definition of projection Qh.
\bullet The third ``="" uses the definition of numerical velocity.
\bullet The fourth ``="" uses the definition of discrete weak gradient.
\bullet The fifth ``="" uses the definition of this particular test function q.
\bullet The sixth ``="" uses the Gauss divergence theorem on a function in CW0.

Theorem 2 (continuity of bulk normal flux). Let e be an edge shared by two
elements E1, E2 and n1,n2 be the constant outward unit normal vectors on e, respec-
tively, for E1, E2. There holds that

(23)

\int 
e

u
(1)
h \cdot n1 +

\int 
e

u
(2)
h \cdot n2 = 0.

Proof. In the finite element scheme (17), take a test function q = \{ q\circ , q\partial \} so that
the following hold:

\bullet q\partial = 1 only on edge e but = 0 on all other edges.
\bullet q\circ = 0 in the interior of any polygonal element.

The definitions of Qh and discrete weak gradient together with the Gauss divergence
theorem imply that

0 =

\int 
E1

(K\nabla w,dph) \cdot \nabla w,dq +

\int 
E2

(K\nabla w,dph) \cdot \nabla w,dq

=

\int 
E1

Qh(K\nabla w,dph) \cdot \nabla w,dq +

\int 
E2

Qh(K\nabla w,dph) \cdot \nabla w,dq

=

\int 
E1

( - u
(1)
h ) \cdot \nabla w,dq +

\int 
E1

( - u
(2)
h ) \cdot \nabla w,dq

=  - 
\int 
\gamma 

u
(1)
h \cdot n1q

\partial +

\int 
E\circ 

1

u
(1)
h q\circ  - 

\int 
\gamma 

u
(2)
h \cdot n2q

\partial +

\int 
E\circ 

2

u
(2)
h q\circ 

=  - 
\int 
\gamma 

u
(1)
h \cdot n1  - 

\int 
\gamma 

u
(2)
h \cdot n2,

which implies the normal continuity of bulk flux.

Errors in pressure, velocity, and normal flux are measured in the following norms:

(24) \| p - p\circ h\| 2 =
\sum 
E\in \scrE h

\| p - p\circ h\| 2L2(E),
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LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1237

(25) \| u - uh\| 2 =
\sum 
E\in \scrE h

\| u - uh\| 2L2(E)2 ,

(26) \| (u - uh) \cdot n\| 2 =
\sum 
E\in \scrE h

\sum 
e\subset E\partial 

| E| 
| e| 

\| u \cdot n - uh \cdot n\| 2L2(e).

Here the norm for errors in the normal flux is adopted from [37], which ``gives an
appropriate scaling of size of | \Omega | for a unit vector.""

When convex polygonal meshes are shape-regular and the exact solution has full
elliptic regularity, we have first-order accuracy in numerical pressure, velocity, and
normal flux as follows:

\| p - p\circ h\| = \scrO (h), \| u - uh\| = \scrO (h), \| (u - uh) \cdot n\| = \scrO (h).

These results will be stated and proved rigorously in the next section.

4. Error analysis. This section presents error analysis for velocity, normal flux,
and pressure for the lowest-order WG scheme (17) with a Dirichlet boundary condi-
tion. We adopt the notation A \lesssim B for an inequality A \leq CB, where C is a positive
constant that is independent of mesh size h but may take different values in different
appearances. We assume \scrE h is a shape-regular convex polygonal mesh.

Theorem 3. The WG finite element scheme (17) has a unique solution.

Proof. We follow the approach in [25]. First, we define a seminorm on Sh:

(27) | \| \phi \| | =
\sqrt{} 

\scrA h(\phi , \phi ) \forall \phi \in Sh.

This seminorm becomes a norm on S0
h. To see this, we consider \phi \in S0

h with | \| \phi \| | = 0.
Then \nabla w,d\phi = 0 on any polygon E \in \scrE h. For any w \in CW0(E), we have

(\nabla w,d\phi ,w)E = \langle \phi \partial ,w \cdot n\rangle E\partial  - (\phi \circ ,\nabla \cdot w)E\circ = \langle \phi \partial  - \phi \circ ,w \cdot n\rangle E\partial 

by applying the definition of discrete weak gradient, integration by parts, and the fact
that the classical gradient \nabla \phi \circ = 0. According to the first property in (15), we can
choose w \in CW0(E) so that (w \cdot n)| e = \phi \partial | e  - \phi \circ for any edge e of the polygon E.
This leads to \| \phi \partial | e  - \phi \circ \| L2(e) = 0. Therefore, all the constant values of \phi = \{ \phi \circ , \phi \partial \} 
in element interiors and on edges are the same and hence equal to 0, since \phi \in S0

h.
Regarding the solution of the WG finite element scheme (17), it suffices to prove

the uniqueness, since this is a linear problem. If p
(1)
h and p

(2)
h are two solutions of

(17), then eh = p
(1)
h  - p

(2)
h satisfies the following equation:

\scrA h(eh, q) = 0 \forall q \in S0
h.

Since eh \in S0
h, we can set q = eh in the above equation to obtain

| \| eh\| | 2 = \scrA h(eh, eh) = 0.

By the proceeding discussion, we have eh \equiv 0 and hence p
(1)
h \equiv p

(2)
h .

Lemma 1 (trace inequality for H1-functions on polygons). There holds that

(28) \| \eta \| 2L2(e) \lesssim h - 1\| \eta \| 2L2(E) + h\| \nabla \eta \| 2L2(E) \forall \eta \in H1(E).
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Proof. See Lemma A.3 in [36].

Lemma 2 (approximation capacity of local L2-projection Qc
E). Let Qc

E be the
L2-projection that maps L2(E)2 to the space of constant vectors on E. Then

(29) \| v  - Qc
Ev\| L2(E)2 \lesssim h\| v\| H1(E)2 \forall v \in H1(E)2.

Proof. This is derived from Lemma 4.1 in [36] for degree 0 polynomials.

4.1. Approximation properties of \bfitC \bfitW \bfzero . Approximation properties of the
H(div)-subspace CW0 need further examination, since it plays an important role.

Lemma 3 (approximation capacity of Qh). There holds that

(30) \| v  - Qhv\| L2(E)2 \lesssim h\| v\| H1(E)2 \forall v \in H1(E)2.

Proof. This can be proved using the standard techniques in [10].

We still need a global interpolation operator \Pi h that maps H(div,\Omega ) to the global
CW0 space on the entire polygonal mesh \scrE h. The definition is based on normal trace.
Let E \in \scrE h be a polygon with edges ej and outward unit normal vector nj , 1 \leq j \leq n.
Let wj(1 \leq j \leq n) be the basis functions in (14). For v \in H(div,\Omega ), we define

(31) fj =
1

| ej | 

\int 
ej

v \cdot nj , \Pi Ev =

n\sum 
j=1

fjwj , (\Pi hv)| E = \Pi Ev.

Note that \Pi hv \in H(div,\Omega ) also. Applying the Gauss divergence theorem and the
above definition for interpolation, we have\int 

E

\nabla \cdot \Pi hv =

\int 
E

\nabla \cdot \Pi Ev =

\int 
E\partial 

(\Pi Ev) \cdot n =

\int 
E\partial 

v \cdot n =

\int 
E

\nabla \cdot v.

In other words, there holds that

(32) (\nabla \cdot \Pi hv, 1)E = (\nabla \cdot v, 1)E \forall E \in \scrE h.

Lemma 4 (approximation capacity of \Pi h). There holds that

(33) \| v  - \Pi hv\| L2(E)2 \lesssim h\| v\| H1(E)2 \forall v \in H1(E)2.

Proof. See Lemma 3.10 in [9].

Lemma 5 (trace equivalence for CW0). For any w \in CW0, there holds that

(34) \| w \cdot n\| 2L2(E\partial ) \approx h - 1\| w\| 2L2(E)2 .

Proof. Let ei(1 \leq i \leq n) be the edges of E and wi(1 \leq i \leq n) be the CW0

basis stated in (14). Let w =
\sum n

i=1 ciwi. It is proved in Lemma 3.7 of [9] that
\| wi\| L2(E)2 \lesssim | ei| . So we have, by triangle inequalities,

\| w\| 2L2(E)2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

ciwi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(E)2

\lesssim 
n\sum 

i=1

| ci| 2\| wi\| 2L2(E)2 \lesssim 
n\sum 

i=1

| ci| 2| ei| 2.

On the other hand, by (15), we have w| ei \cdot ni = ci, and hence

\| w \cdot n\| 2L2(E\partial ) =

n\sum 
i=1

| ci| 2| ei| .

The mesh is shape-regular, so h - 1ei \approx const, and thus h - 1\| w\| 2L2(E)2 \lesssim \| w \cdot n\| 2L2(E\partial ).

The other inequality follows from the standard techniques.
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4.2. Approximation properties of discrete weak gradients. We establish
some lemmas in this subsection.

Lemma 6. Let E be a polygon. For any p \in H1(E), there holds that

(35) Qh(\nabla p) = \nabla w,d(Qhp).

The above commuting identity along with the diagram in Figure 5 indicates that the
discrete weak gradient indeed provides a nice approximation of the classical gradient.
In Figure 5, WG(P0, P0) refers to the elementwise WG finite element space of discrete
weak functions that are constants in the element interior and also constants on each
edge.

H1(E) L2(E)2

WG(P0, P0) CW0(E)

? ?
-

-
\nabla 

\nabla w,d

Qh Qh

Fig. 5. Commuting diagram for operators.

Proof. Consider any w \in CW0(E). Applying integration by parts and the defi-
nition of discrete weak gradient, we have\int 

E

Qh(\nabla p) \cdot w =

\int 
E

\nabla p \cdot w =

\int 
E\partial 

p(w \cdot n) - 
\int 
E\circ 

p(\nabla \cdot w)

=

\int 
E\partial 

(Q\partial 
hp)(w \cdot n) - 

\int 
E\circ 

(Q\circ 
hp)(\nabla \cdot w) =

\int 
E

\nabla w,d(Qhp)w.

The desired identity follows from the arbitrariness of the test function w.

Lemma 7. For any v \in H(div,\Omega ) and any \phi = \{ \phi \circ , \phi \partial \} \in S0
h(\scrE h), there holds

that

(36)
\sum 
E\in \scrE h

(\nabla \cdot v, \phi \circ )E =  - 
\sum 
E\in \scrE h

(\Pi hv,\nabla w,d\phi )E .

Proof. By (32) and the definition of \nabla w,d, we have\sum 
E\in \scrE h

(\nabla \cdot v, \phi \circ )E =
\sum 
E\in \scrE h

(\nabla \cdot \Pi hv, \phi 
\circ )E =

\sum 
E\in \scrE h

(\Pi hv \cdot n, \phi \partial )E\partial  - 
\sum 
E\in \scrE h

(\Pi hv,\nabla w,d\phi )E .

The desired equality follows from the normal continuity of \Pi hv across edges.

4.3. Error equation. This subsection examines the error between the L2-projection
of the exact solution and the finite element solution.

Lemma 8 (error equation). For the exact solution p of (1) and the numerical
solution ph of (17), there holds that

(37) \scrA h(ph  - Qhp, q) =
\sum 
E\in \scrE h

\Bigl( 
\Pi h(K\nabla p) - KQh(\nabla p),\nabla w,dq

\Bigr) 
E

\forall q \in S0
h(\scrE h).
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Proof. On the one hand, since  - K\nabla p \in H(div,\Omega ), we have by Lemma 7 that

\scrA h(ph, q) =
\sum 
E\in \scrE h

(f, q\circ )E =
\sum 
E\in \scrE h

(\nabla \cdot ( - K\nabla p), q\circ )E =
\sum 
E\in \scrE h

(\Pi h(K\nabla p),\nabla w,dq)E .

On the other hand, we have by Lemma 6 that

\scrA h(Qhp, q) =
\sum 
E\in \scrE h

(K\nabla w,d(Qhp),\nabla w,dq)E =
\sum 
E\in \scrE h

(KQh(\nabla p),\nabla w,dq)E .

Subtraction of the above two equalities yields the claimed error equation.

Lemma 9 (difference between L2-projection and finite element solution). Let p
be the exact solution of (1). Assume that p \in H2(\Omega ) and  - K\nabla p \in H1(\Omega )2. Then

(38) \| \nabla w,d(ph  - Qhp)\| L2(\Omega ) \lesssim h.

Proof. Let eh = ph - Qhp. Since K is SPD globally, there exists a constant \alpha > 0
such that

\scrA h(eh, eh) =
\sum 
E\in \scrE h

(K\nabla w,deh,\nabla w,deh) \geq \alpha \| \nabla w,deh\| 2L2(\Omega ).

On the other hand, taking q = eh in the error equation (37) and applying the Cauchy--
Schwarz inequality, we obtain

\scrA h(eh, eh) \leq 
\sum 
E\in \scrE h

\| \Pi h(K\nabla p) - KQh(\nabla p)\| L2(E)2\| \nabla w,deh\| L2(E)2 .

Since \Pi h(K\nabla p) and KQh(\nabla p) both approximate K\nabla p, we consider their perfor-
mances separately and then apply a triangle inequality. The assumptions imply

\| \Pi h(K\nabla p) - K\nabla p\| L2(E)2 \lesssim h\| K\nabla p\| H1(E)2 ,

\| K\nabla p - KQh(\nabla p)\| L2(E)2 \lesssim h\| K\| L\infty (E)\| \nabla p\| H1(E)2 .

By summing the above elementwise estimates, we obtain

\| \Pi h(K\nabla p) - KQh(\nabla p)\| L2(\Omega )2 \lesssim h,

and then

\alpha \| \nabla w,deh\| 2L2(\Omega ) \leq \scrA h(eh, eh) \lesssim h\| \nabla w,deh\| L2(\Omega ).

The claimed result comes after a multiplicative cancellation.

4.4. Error analysis for velocity and normal flux. We present error analysis
for velocity based on the error equation. Then we use trace inequalities to derive an
error estimate for normal flux.

Theorem 4 (convergence in velocity). Assume the exact solution of (1) has
regularity p \in H2(\Omega ) and u \in H1(\Omega )2. Let uh be the numerical velocity obtained
from (20). Then

(39) \| u - uh\| \lesssim h.

D
ow

nl
oa

de
d 

09
/2

6/
18

 to
 1

29
.8

2.
52

.8
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1241

Proof. This will be established by using CW0 approximation capacity and the
error equation.

Step 1. On each element, by Lemmas 6 and 3, we have

\| K\nabla p - K\nabla w,d(Qhp)\| L2(E)2 = \| K\nabla p - KQh(\nabla p)\| 

\leq \| K\| L\infty (E)\| \nabla p - Qh(\nabla p)\| L2(E)2 \lesssim h.

Step 2. By the approximation capacity of Qh, we have elementwise

\| K\nabla w,d(Qhp) - Qh(K\nabla w,d(Qhp))\| \lesssim h.

Step 3. By the stability of Qh and Lemma 9, we have

\| Qh(K\nabla w,d(Qhp)) - Qh(K\nabla w,dph)\| \leq \| K\nabla w,d(Qhp) - K\nabla w,dph\| 

\leq \| K\| L\infty \| \nabla w,d(Qhp) - \nabla w,dph\| L2(E)2 \lesssim h.

Then (39) follows from summation over the mesh and triangle inequalities.

Theorem 5 (convergence in normal flux). Assume the exact solution of (1) has
regularity p \in H2(\Omega ) and u \in H1(\Omega )2. Let uh be the numerical velocity obtained from
(20). Then

(40) \| u \cdot n - uh \cdot n\| \lesssim h.

Proof. Let E \in \scrE h. By a triangle inequality, we have

(41) \| (u - uh) \cdot n\| 2L2(E\partial ) \lesssim \| (u - \Pi hu) \cdot n\| 2L2(E\partial )+ \| (\Pi hu - uh) \cdot n\| 2L2(E\partial ) =: I+ II.

For I, we utilize c = Qc
hu studied in Lemma 2. Clearly, \Pi h(Q

c
hu) = Qc

h(u). By
the two trace inequalities in Lemma 1 (vector version) and Lemma 5, we have

(42)

I \lesssim \| (u - c) \cdot n\| 2L2(E\partial ) + \| \Pi h(u - c) \cdot n\| 2L2(E\partial )

\lesssim h - 1\| u - c\| 2L2(E)2 + h| u - c| 2H1(E)2 + h - 1\| \Pi h(u - c)\| 2L2(E)2

\lesssim h\| u\| 2H1(E)2 + h| u| 2H1(E)2 + h\| u\| 2H1(E)2 .

For the last step, we have used Lemma 2 and Lemma 3.8 in [9].
For II, we apply Lemma 5, a triangle inequality, and Lemma 4 to obtain

(43)
II \approx h - 1\| \Pi hu - uh\| 2L2(E)2 \lesssim h - 1(\| \Pi hu - u\| 2L2(E)2 + \| u - uh\| 2L2(E)2)

\lesssim h\| u\| 2H1(E)2 + h - 1\| u - uh\| 2L2(E)2 .

Summing (42), (43) over the mesh, using the fact that | E| /| e| \approx h, the norm
definition (26), and Theorem 4, we finally obtain the claimed result in Theorem 5.

4.5. Error analysis for pressure. This is based on a duality argument.

Theorem 6 (convergence in pressure). Assume the exact solution p of (1) has
regularity p \in H2(\Omega ) and u \in H1(\Omega )2. There holds that

(44) \| p - p\circ h\| \lesssim h.
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Proof. From the triangle inequality,

(45) \| p - p\circ h\| \leq \| p - Q\circ 
hp\| + \| Q\circ 

hp - p\circ h\| ,

and the approximation capacity,

(46) \| p - Q\circ 
hp\| \lesssim h\| p\| H1(\Omega ),

it is clear that we need an estimate on \| p\circ h - Q\circ 
hp\| L2(\Omega . This will be done by a duality

argument. For convenience, we set eh = ph - Qhp. Note that p\partial h = Q\partial 
h(pD) on \Gamma = \partial \Omega 

and hence eh \in S0
h(\scrE h).

We consider the dual problem

(47) \nabla \cdot ( - K\nabla \phi ) = e\circ h, \phi | \partial \Omega = 0.

Assume \phi has also full elliptic regularity, specifically

(48) \| \phi \| H2(\Omega ) \lesssim \| e\circ h\| L2(\Omega ).

By Lemmas 7 and 6 and the definition of Qh, we have

(49)

\| e\circ h\| 2 = (e\circ h, e
\circ 
h) = (\nabla \cdot ( - K\nabla \phi ), e\circ h) = (\Pi h(K\nabla \phi ),\nabla w,deh)

= (\Pi h(K\nabla \phi ),\nabla w,dph  - Qh(\nabla p))

= (\Pi h(K\nabla \phi ),\nabla w,dph  - \nabla p)

= (\Pi h(K\nabla \phi ) - K\nabla \phi ,\nabla w,dph  - \nabla p) + (K\nabla \phi ,\nabla w,dph  - \nabla p).

Let us pause to look at what we are dealing with and what tools we have:
\bullet For the direct problem, we need to estimate

\nabla p - \nabla w,dph, K\nabla p - Qh(K\nabla p).

\bullet For the dual problem, we need to estimate

\nabla \phi  - Qh(\nabla \phi ), K\nabla \phi  - \Pi h(K\nabla \phi ).

\bullet For pressure, we have the local L2-projection Qh = \{ Q\circ 
h, Q

\partial 
h\} .

\bullet For gradient, we have the local L2-projection Qh.
\bullet For velocity, we have Qh and the global interpolation \Pi h.
\bullet The commuting diagram (Lemma 6) is useful for making connections.

Now we continue and use Lemma 6 to obtain

(50)
(K\nabla \phi ,\nabla w,dph  - \nabla p) = (K\nabla \phi ,\nabla w,dph) - (K\nabla \phi ,\nabla p)

= (K(\nabla \phi  - Qh(\nabla \phi )),\nabla w,dph) + (K\nabla w,d(Qh\phi ),\nabla w,dph) - (K\nabla \phi ,\nabla p).

Next we utilize the self-adjointness of K and the orthogonality implied by Qh to get

(51)

(K(\nabla \phi  - Qh(\nabla \phi )),\nabla w,dph)

= (K(\nabla \phi  - Qh(\nabla \phi )),\nabla w,dph  - \nabla p) + (K(\nabla \phi  - Qh(\nabla \phi )),\nabla p)

= (K(\nabla \phi  - Qh(\nabla \phi )),\nabla w,dph  - \nabla p) + (\nabla \phi  - Qh(\nabla \phi ),K\nabla p)

= (K(\nabla \phi  - Qh(\nabla \phi )),\nabla w,dph  - \nabla p)

+ (\nabla \phi  - Qh(\nabla \phi ),K\nabla p - Qh(K\nabla p)) .
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Putting (49), (50), (51) together, we have

(52)

\| e\circ h\| 2 =
\Bigl( 
K\nabla \phi  - \Pi h(K\nabla \phi ),\nabla p - \nabla w,dph

\Bigr) 
 - 
\Bigl( 
K(\nabla \phi  - Qh(\nabla \phi )),\nabla p - \nabla w,dph

\Bigr) 
+
\Bigl( 
K\nabla p - Qh(K\nabla p),\nabla \phi  - Qh(\nabla \phi )

\Bigr) 
 - 
\Bigl( 
(K\nabla \phi ,\nabla p) - (K\nabla w,d(Qh\phi ),\nabla w,dph)

\Bigr) 
=: T1 + T2 + T3 + T4.

By a triangle inequality and Lemmas 6, 3, and 9, we have

(53) \| \nabla p - \nabla w,dph\| \leq \| \nabla p - Qh(\nabla p)\| + \| \nabla w,d(Qhp) - \nabla w,dph\| \lesssim h.

By the lemmas on the approximation capacity of \Pi h and Qh and the assumption on
dual solution regularity, we have

(54)

\| K\nabla \phi  - \Pi h(K\nabla \phi )\| \lesssim h\| K\nabla \phi \| H1 \lesssim h\| K\| \| \phi \| H2 \lesssim h\| K\| \| e\circ h\| ,

\| \nabla \phi  - Qh(\nabla \phi )\| \lesssim h\| \nabla \phi \| H1 \lesssim h\| \phi \| H2 \lesssim h\| e\circ h\| ,

\| \nabla p - Qh(\nabla p)\| \lesssim h\| \nabla p\| H1 \lesssim h\| p\| H2 ,

\| K\nabla p - Qh(K\nabla p)\| \lesssim h\| K\nabla p\| H1 \approx h\| u\| H1 .

Accordingly, the Cauchy--Schwarz inequality and (53), (54) together imply

(55) | T1| \lesssim h2\| e\circ h\| , | T2| \lesssim h2\| e\circ h\| , | T3| \lesssim h2\| e\circ h\| .

For T4, by the self-adjointness of K, the orthogonality implied by Q\circ 
h, the varia-

tional form, and the finite element scheme, we have

(56)

T4 = (K\nabla \phi ,\nabla p) - (K\nabla w,d(Qh\phi ),\nabla w,dph)

= (K\nabla p,\nabla \phi ) - (K\nabla w,dph,\nabla w,d(Qh\phi ))

= (f, \phi ) - (f,Q\circ 
h\phi ) = (f, \phi  - Q\circ 

h\phi ) = (f  - Q\circ 
hf, \phi  - Q\circ 

h\phi ).

Therefore,

(57)
| T4| \leq \| f  - Q\circ 

hf\| \| \phi  - Q\circ 
h\phi \| \lesssim \| f  - Q\circ 

hf\| h\| \nabla \phi \| H1(\Omega )2

\lesssim h\| f  - Q\circ 
hf\| \| e\circ h\| .

Now (52), (55), (57) together imply \| e\circ h\| \lesssim h. Combined with the projection error
\scrO (h) in (46), this leads finally to (44), the claimed estimate in Theorem 6.

Here are some remarks:
(i) The above analysis shows that the error e\circ h = p\circ h  - Q\circ 

hp is dictated by term
T4, for which \| f  - Q\circ 

hf\| is a determining factor. When f has sufficient
regularity, e.g., f \in H1(\Omega ), we have superconvergence e\circ h = \scrO (h2). This shall
be numerically illustrated in section 7.

(ii) Note that for this WG method, a first-order convergence in pressure can be
attained for problems without full elliptic regularity; see, e.g., Example 2 in
[24]. We omit the details here.
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B1244 J. LIU, S. TAVENER, AND Z. WANG

5. Other related methods. Five other types of finite element methods are
tightly related to the new WG method developed in this paper:

(i) the mixed finite element method (CW0, P0) presented in [9];
(ii) the WG(Q0, Q0;RT[0]) method on quadrilateral meshes in our recent work

[24] and the WG(P1, P0;P
2
0 ) method with stabilization derived from [25];

(iii) the continuous Galerkin method studied in [19], which uses the Wachspress
coordinates directly;

(iv) the hybrid high-order (HHO) methods [12];
(v) the mimetic finite difference (MFD) methods [5, 15].

MFEM(\bfitC \bfitW \bfzero , \bfitP \bfzero ). As investigated in [9], the CW0 subspace on a polygon can
be paired directly with the P0 subspace on the same polygon to form a mixed finite
element method for solving elliptic problems. Although the element pair (CW0, P0)
satisfies the inf-sup condition and hence is stable, an indefinite linear system needs
to be solved after the finite element discretization. Hybridization can be employed to
convert the saddle-point problems into definite problems.

The WGmethod in this paper is related to but different from the mixed method in
[9]. Our WG method is based on the primal variational formulation, has pressure un-
knowns in element interiors and on edges, and results in a symmetric positive-definite
discrete system. Moreover, in our WG method, Dirichlet conditions are essential and
Neumann conditions are natural, whereas it is the other way around in the mixed
method.

WG(\bfitQ \bfzero , \bfitQ \bfzero ;\bfitR \bfitT [\bfzero ]) on quadrilateral or hybrid meshes. Actually, the WG
method in our recent work [24] treats triangular, rectangular, quadrilateral, and hy-
brid meshes in a unified way. Rectangular meshes are naturally a special case of
quadrilateral meshes. A hybrid mesh consists of quadrilaterals and triangles. In any
case, pressure is approximated by constants inside the elements and on edges, similar
to the method in this paper.

In [24], the discrete weak gradients of these constant functions are specified in
the standard local RT0 spaces for triangles or the unmapped local RT[0] spaces for
quadrilaterals. These Raviart--Thomas spaces consist of polynomial vectors and hence
are easier to implement. Regardless of mesh quality, the WG method in [24] is locally
conservative and produces continuous normal fluxes. An asymptotically parallelogram
quadrilateral mesh assumption is placed to guarantee optimal convergence in pressure,
velocity, and normal flux. According to [2, 24], for asymptotically parallelogram
quadrilateral meshes, the angles between the outward normals on the opposite edges
are close to \pi . Although any polygonal domain can be partitioned into such meshes
[2, 39], there are applications for which rough quadrilateral or polygonal meshes need
to be used [5, 37]. The WG method in this paper is applicable to more general
(shape-regular) polygonal meshes. There is no restriction for quadrilaterals to be
asymptotically parallelogram. However, the CW0 vector-valued functions are rational
functions. A frame needs to be used to get the basis functions. An apparent benefit is
the first-order convergence in pressure, velocity, and normal flux for any shape-regular
convex polygonal meshes.

The WG methods in [24] and this paper are both lowest order (using constant
approximants) and share the same spirit that no stabilization is needed.

WG(\bfitP \bfone , \bfitP \bfzero ;\bfitP 
\bftwo 
\bfzero ) having stabilization. The family of stabilized WG(Pk+1, Pk;

P d
k ) finite element schemes (dimension d = 2, 3) developed in [25] are for polytopal

meshes. The case k = 0, d = 2, i.e., WG(P1, P0;P
2
0 ), is closely related to the WG

scheme in this paper. The WG(P1, P0;P
2
0 ) finite element scheme for elliptic problems
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LOWEST-ORDER WGFEM FOR DARCY ON POLYGONAL MESHES B1245

can be described as follows. Let \scrE h be a polygonal mesh, and define

(58) \scrB h(ph, q) = \scrA h(ph, q) + \scrS h(ph, q),

where \scrA h(ph, q) has the same form as the one shown in (18) but is defined for shape
functions that are linear polynomials in element interiors and constants on edges. Of
course, their discrete weak gradients are in P 2

0 . Here \scrS h is a stabilization term:

(59) \scrS h(ph, q) = \rho 
\sum 
E\in \scrE h

\sum 
e\subset E\partial 

h - 1
E \langle Q\partial 

h(p
\circ 
h) - p\partial h, Q

\partial 
h(q

\circ ) - q\partial \rangle e,

and Q\partial 
h is the local L2-projection into the P0 space on an edge.

It has been proved in [25] that these stabilized WG schemes are locally mass-
conservative and produce continuous normal fluxes, which depend on the penalty
factor \rho . However, how to compute a numerical velocity was not discussed in [25],
and hence further study is needed. One possible procedure for postprocessing is to
apply an interpolation operator to the normal fluxes on the edges to obtain a numerical
velocity in the CW0 space. For \rho > 0, the schemes are stable and possess optimal-
order convergence in pressure. So the suggested choice is \rho = 1. If other factors are
to be considered, e.g., the discrete maximum principle, then an optimal value for \rho 
could be problem dependent.

Continuous Galerkin method based on Wachspress coordinates. In this
approach [19], the Wachspress coordinates are naturally used as node-oriented basis
functions due to their Lagrangian properties. This method has the fewest degrees
of freedom. The analysis on their gradient bounds in [19] guarantees the stability
and optimal convergence of this method. However, this method is in general not
locally conservative and does not produce continuous normal fluxes, similar to other
traditional CG methods on triangular and rectangular meshes.

HHO method. It is interesting to observe some similarities and differences
between our WGmethod and the HHOmethod [12]. Both methods use basis functions
in element interiors and on edges. For HHO, on each individual element, these two
types of polynomial basis functions together are lifted to higher-order polynomials
(the third type) through solving a local Neumann problem. Then the gradients of
the third-type basis functions are used to approximate the classical gradient in the
variational formulation. However, for WG, on an individual element, these two types
of polynomial basis functions are used to construct discrete weak gradients through
integration by parts. These discrete weak gradients are used to approximate the
classical gradient in the variational formulation.

MFD methods. The MFD methods [5, 15] (and references therein) are also pop-
ular. When applied to the Darcy or elliptic equation, the MFD method approximates
the pressure and normal flux simultaneously by using two discrete spaces (one for pres-
sure and one for normal flux). The discrete divergence operator and the discrete flux
operator are defined to approximate the corresponding continuous operators. These
two discrete operators are adjoint to each other.

A major difference between our WG method and the MFD methods lies in that
of primal and mixed formulations. Our WG method relies on the primal formulation,
approximates the pressure in element interiors and on edges, and produces its discrete
weak gradient and then approximates velocity. The MFD methods inherit the spirit
of mixed formulation by approximating pressure and velocity at the same time.

One commonality between the MFD and WG methods is the use of duality or
adjointness of operators. For WG, the definition of a discrete weak gradient operator
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B1246 J. LIU, S. TAVENER, AND Z. WANG

relies on the duality of the classical divergence operator. For MFD, the discrete
divergence operator is defined first, and then the discrete flux operator is defined as
its adjoint [5, 15].

Others. The similarities and differences between the WG methods and the hy-
bridizable discontinuous Galerkin (HDG) methods were commented on in [11, 26].
Here we make a further comment that the WG methodology establishes approxima-
tion of the classical (gradient, curl, div, etc.) differential operators by discrete weak
operators. This is accomplished through integration by parts utilizing the WG basis
functions defined in element interiors and those on interelement boundaries. Our WG
method in this paper is based on an approximation of the classical gradient by the
discrete weak gradient in the CW0 space and hence fits in the abstract framework of
gradient schemes investigated in [16]. But an elaboration on this is omitted due to
page limitation.

6. Implementation. This section discusses efficient implementation strategies
for the WG(P0, P0;CW0) solver. For ease of implementation, we assume K is a con-
stant 2\times 2 SPD matrix on each element. This can be achieved by taking elementwise
averages.

(0) Generating polygonal meshes. The quality of polygonal meshes deter-
mines performance of finite element solvers on such meshes. For the numerical exper-
iments in this paper, we use PolyMesher [29], which is readily available in MATLAB.
Quadrilateral meshes are treated as a special type of polygonal meshes.

(1) Computing \bfitlambda \bfitj , curl(\bfitlambda \bfitj ). The new ingredients in this solver are the Wachs-
press coordinates \lambda j and their gradients and curls. These quantities can be calculated
using the formulas presented in subsection 2.1.

(2) Frame and basis for elementwise \bfitC \bfitW \bfzero space. As discussed in subsection
2.1, on each polygonal element, we use the normalized coordinates and the curls of
the Wachspress coordinates

x - xc, curl(\lambda j) (j = 1, . . . , n)

to first form a frame for CW0. Then the conversion matrix (see subsection 2.2) is
used to obtain the values of the CW0 basis functions wi(1 \leq i \leq n).

(3) Computing Gram matrix \bfitG (w\bfone , . . . ,w\bfitn ) for \bfitC \bfitW \bfzero basis. This can be
done straightforwardly by employing a Gaussian quadrature on each element. Notice
that the formulas for \lambda j , curl(\lambda j) do not apply directly when a point is on the boundary
of a polygon. So a Gaussian quadrature indeed avoids unnecessary complexity.

The Gram matrix is used in computing discrete weak gradients; see formula (16).

(4) Computing weighted Gram matrix \bfitG \bfK (w\bfone , . . . ,w\bfitn ). Recall that

(60) G\bfK =

\biggl[ \int 
E

wi \cdot (Kwj)

\biggr] 
1\leq i,j\leq n

is used in computing an elementwise stiffness matrix. A Gaussian quadrature applies.

(5) Computing projection Q\bfith (Kw\bfitj ). Suppose

(61) Qh(Kwj) =

n\sum 
k=1

\beta jkwk, j \in \{ 1, . . . , n\} .
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It is interesting to note that for each fixed j, the column vector [\beta j1, . . . , \beta jn]
T can

be obtained by solving a small SPD linear system that has G(w1, . . . ,wn) as the
coefficient matrix and the jth column of G\bfK as the right-hand side.

(6) Computing elementwise numerical velocity. After a numerical pressure
ph is obtained, we compute its discrete weak gradient and assume

\nabla w,dph =

n\sum 
j=1

\alpha jwj .

Then we have an elementwise numerical velocity

(62)

uh = Qh ( - K\nabla w,dph) =  - 
n\sum 

j=1

\alpha jQh(Kwj)

=  - 
n\sum 

k=1

\Biggl( 
n\sum 

j=1

\alpha j\beta jk

\Biggr) 
wk =

n\sum 
k=1

\gamma kwk,

which is attributed to elementwise matrix multiplication.

(7) Computing bulk normal fluxes. Instead of using a quadrature for eval-
uating the bulk normal flux defined in (21), we use the above formula and formula
(15) section 2.2 to obtain\int 

ej\in E\partial 

uh \cdot nj =

n\sum 
k=1

\gamma k

\biggl( \int 
ej\in E\partial 

wk \cdot nj

\biggr) 
= \gamma j | ej | , 1 \leq j \leq n.

A similar technique can be used to evaluate elementwise numerical divergence.

(8) Vectorized assembly in MATLAB. A new aspect of finite element solvers
on polygonal meshes is that the polygon type (quadrilaterals, pentagons, hexagons,
etc.) varies. Accordingly, the element stiffness matrix size varies. Implementation
in C++ would not be an issue, since C++ polymorphism and instantiation can be
utilized. Implementation in MATLAB would be different, since vectorization for the
entire mesh cannot be performed directly. Elementwise assembly would be inefficient.
On the other hand, for a practical polygonal mesh, like one generated by PolyMesher,
the polygons are mainly quadrilaterals, pentagons, hexagons, and 7-gons. In other
words, the number of types is limited. With this consideration, our MATLAB imple-
mentation does the following:

(i) It retrieves mesh info on the maximal size (number of edges) of polygons.
(ii) It organizes the element stiffness matrices according to this maximum, and

unoccupied entries are set to zero.
(iii) It performs vectorized assembly using the above data structure.

More details can be found in our MATLAB package DarcyLite.

(9) Schur complement or static condensation. Note the for this WG
method, there are two groups of basis functions: one for the element interiors and
the other for edges. For convenience, we use x0 to denote the degrees of freedom
associated with the former and x1 for the latter. Then the assembled discrete linear
system takes the following form:

(63)

\biggl[ 
A00 A01

A10 A11

\biggr] \biggl[ 
x0

x1

\biggr] 
=

\biggl[ 
b0
b1

\biggr] 
,
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B1248 J. LIU, S. TAVENER, AND Z. WANG

where A00 is a block diagonal matrix, since the interior basis functions for two dif-
ferent elements do not interact. Algebraically, we can apply the Schur complement
technique. The element interior unknowns x0 can be eliminated, and we solve a
smaller size linear system for x1 only, namely

(64)
\bigl( 
A11  - 

\bigl( 
A10A

 - 1
00

\bigr) 
A01

\bigr) 
x1 = b1  - 

\bigl( 
A10A

 - 1
00

\bigr) 
b0.

Then x0 is recovered as

(65) x0 = A - 1
00 (b0  - A01x1) .

This technique shares the same spirit as those used in [30, 31] and reveals that static
condensation [11] applies to this WG method also.

7. Numerical experiments. This section presents numerical results to demon-
strate the accuracy and efficiency of the lowest-order WG solver on convex polygonal
meshes. Three types of meshes are used in numerical tests, as shown in Figure 6.

Fig. 6. Three types of meshes used in numerical experiments. Left: a polygonal mesh generated
by PolyMesher. Middle: a randomly h-perturbed quadrilateral mesh. Right: a trapezoidal mesh
studied in [2].

Example 1. This example is adopted from [26] with \Omega = (0, 1)2 and K = xy I2.
A known exact solution is p(x, y) = x(1 - x)y(1 - y). Accordingly, the velocity is

u(x, y) = [ - x(1 - 2x)y2(1 - y), - x2(1 - x)y(1 - 2y)]T ,

and f(x, y) =  - (1  - 4x)y2(1  - y)  - x2(1  - x)(1  - 4y). A homogeneous Dirichlet
boundary condition is specified on the bottom, top, and left boundaries, whereas a
Neumann boundary condition is specified on the right boundary. Shown in Tables 1
and 2 and Figure 7 are WG results.

Table 1
Example 1: Results of WG(P0, P0;CW0) on polygonal meshes generated by PolyMesher.

\#Elem h \| p - p\circ h\| Rate \| u - uh\| Rate \| (u - uh) \cdot n\| Rate

(23)2 1.89E-1 5.780E-3 -- 5.651E-3 -- 9.177E-3 --

(24)2 9.23E-2 2.700E-3 1.09 2.394E-3 1.23 4.221E-3 1.12

(25)2 4.57E-2 1.335E-3 1.01 1.004E-3 1.25 1.879E-3 1.16

(26)2 2.28E-2 6.684E-4 0.99 4.661E-4 1.10 8.709E-4 1.10
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Table 2
Example 1: Results of WG(P0, P0;CW0) on randomly h-perturbed quadrilateral meshes.

h \| p - p\circ h\| Rate \| u - uh\| Rate \| (u - uh) \cdot n\| Rate

1/23 5.7065E-3 -- 6.8578E-3 -- 9.9357E-3 --

1/24 2.8499E-3 1.00 3.6151E-3 0.92 5.0437E-3 0.97

1/25 1.4276E-3 0.99 1.8198E-3 0.99 2.4787E-3 1.02

1/26 7.0955E-4 1.00 9.2219E-4 0.98 1.2450E-3 0.99

1/27 3.5357E-4 1.00 4.6155E-4 0.99 6.2157E-4 1.00

Fig. 7. Example 1: WG(P0, P0;CW0) numerical pressure and velocity with h = 1
16

. Left: on
a polygonal mesh generated by PolyMesher. Right: on a randomly h-perturbed quadrilateral mesh.

Example 2. This is a frequently tested example with \Omega = (0, 1)2, K = I2, a
known exact solution p(x, y) = sin(\pi x) sin(\pi y), and a homogeneous Dirichlet bound-
ary condition on the whole boundary. We test the WG(P0, P0;CW0) solver developed
in this paper, the penalized WG(P1, P0;P

2
0 ) solver derived from [25], and the CG-type

solver in [19] on a sequence of trapezoidal meshes introduced in [2].

As shown in Table 3, the new WG(P0, P0;CW0) solver has first-order convergence
in both pressure and velocity, as proved in section 4. The penalized WG(P1, P0;P

2
0 )

has second-order convergence in pressure, since linear polynomials are used inside
elements. Velocity was not discussed in [25]. The CG method with the Wachspress
coordinates [19] uses the least unknowns and has, respectively, first- and second-
order convergence in pressure and velocity. However, this CG method is not locally
conservative, nor does it produce a continuous normal flux. As investigated in [28],
an elementwise residual of local mass conservation can be defined as

(66) \scrR h(E) =

\int 
E

f  - 
\int 
E\partial 

uh \cdot n \forall E \in \scrE h,

where uh is the numerical velocity. Shown in Figure 8 are a profile of the elementwise
residual along with a plot of the normal flux difference across all edges, both for the
trapezoidal mesh with h = 1/16.

Example 3. This example is adopted from page 918 in [2]. Here \Omega = (0, 1)2 and
K = I2. The exact solution is a polynomial p(x, y) = x3+5y2 - 10y3+y4. Accordingly,
f(x, y) =  - (6x+10 - 60y+12y2). A Dirichlet boundary condition is specified on the
whole boundary.
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Table 3
Example 2: Results of three numerical methods on trapezoidal meshes.

WG(P0, P0;CW0)

WG(P1, P0;P 2
0 )

Penalty \rho = 1 CG Wachspress

h \| p - p\circ h\| \| u - uh\| \| p - p\circ h\| \| p - ph\| \| u - uh\| 
1/23 8.339E-2 2.743E-1 6.616E-2 1.271E-2 3.202E-1

1/24 4.181E-2 1.385E-1 1.667E-2 3.227E-3 1.610E-1

1/25 2.092E-2 6.971E-2 4.183E-3 8.098E-4 8.066E-2

1/26 1.046E-2 3.497E-2 1.047E-3 2.026E-4 4.035E-2

1/27 5.231E-3 1.752E-2 2.620E-4 5.067E-5 2.017E-2

Rate 0.998 0.992 1.995 1.992 0.997

Fig. 8. Example 2: continuous Galerkin finite element method with the Wachspress coordinates
as Lagrangian-type basis functions, h = 1/16. Left: elementwise residual of local mass conservation.
Right: normal flux discrepancy across all edges.

Table 4
Example 3: Superconvergence of \| p\circ h  - Q\circ 

hp\| and first-order convergence in div on randomly
h-perturbed quadrilateral meshes.

h \| p\circ h  - Q\circ 
hp\| Rate div(u - uh) Rate

1/23 2.3515E-3 -- 1.8171E-0 --

1/24 6.4020E-4 1.87 9.1842E-1 0.98

1/25 1.6776E-4 1.93 4.6157E-1 0.99

1/26 4.4475E-5 1.91 2.3061E-1 1.00

1/27 1.1364E-5 1.96 1.1527E-1 1.00

For this example, we examine superconvergence in the discrete error \| p\circ h  - Q\circ 
hp\| ,

as discussed at the end of subsection 4.5. As shown in Table 4, close to second-order
convergence occurs even for a family of randomly h-perturbed quadrilateral meshes.
Furthermore, first-order convergence is observed for errors in div of velocity.

8. Concluding remarks. In this paper, we have developed a novel WGFEM for
solving Darcy flow problems on convex polygonal meshes. This new method utilizes
the Wachspress coordinates along with the Chen--Wang H(div)-subspaces within the
WG framework. This new solver is cost-effective, since only one unknown is needed
per cell or per edge. The cell unknowns can be eliminated via Schur complement or
static condensation. The main features of this new method are as follows:
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(i) It is applicable to general convex polygonal meshes.
(ii) It results in symmetric positive-definite sparse linear systems.
(iii) There is no need for penalization.
(iv) It has just constant approximants and hence is easy to use.
(v) It has local mass conservation.
(vi) It has flux normal continuity.
(vii) It has optimal-order convergence in pressure, velocity, and normal flux on

shape-regular meshes.
The WG methodology can be extended to elliptic problems on polyhedral meshes.

This is tightly related to the Chen--WangH(div)-finite elements on polyhedra [9]. The
3-dim version could be implemented more efficiently by utilizing C++ polymorphism
to handle various types of polyhedra. This is currently being investigated and will be
reported in our future work.
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