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he excellent optoelectronic properties and facile synthesis
of CsPbX; (X = Cl, Br, I) colloidal nanocrystals have
made them the subject of intense scientific interest since they
were first reported in 2015."” One of the most appealing
aspects of CsPbX; nanocrystals, beyond their high lumines-
cence efficiencies, is their widely tunable emission wavelength.
By changing the halide composition, the entirety of the visible
spectrum can be accessed. Nanocrystals with different halide
compositions can be synthesized directly or accessed through
postsynthetic anion exchange from a single starting composi-
tion.”" Anion-exchange reactivity is not limited to the cesium
lead halide perovskites; similar behavior has been observed and
exploited in a range of halide-based nanocrystals including
hybrid organic—inorganic lead halide perovskites (MAPbX,
MA = CH;NH;"), ternary bismuth halides (MA;Bi,X,),
cesium antimony halides (Cs;Sb,X,), and elpasolites
(Cs,AgBiXs).”™" Anion exchange appears to be a ubiquitous
and powerful feature of metal-halide nanocrystal chemistry.
Despite the relative ease of anion-exchange reactions in lead
halide perovskite nanocrystals, common methods can present
complications. The structural lability of halide perovskite
nanocrystals is now well-appreciated, and it has been
demonstrated that a wide range of reagents, solvents, and
surfactants can cause nanocrystal degradation, e.g., conversion
to related phases or stoichiometries (Scheme 1). For instance,
CsPbBr; nanocrystals can be converted partially or fully to
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Cs,PbBrg nanocrystals through treatment with surfactants
including an excess of oleylamine.” On the other hand,
addition of an alkylammonium bromide surfactant causes
formation of CsPb,Brs.'’ Given these results, some of the most
commonly used anion-exchange reagents, alkylammonium
halides and surfactant-containing metal halide salt solutions,
also risk inadvertently causing some degree of decomposition
or undesired transformation of halide-based nanocrystals.
Moreover, the need to purify samples after anion exchange
to remove excess reagents and reaction byproducts can cause
further nanocrystal degradation. These issues are exacerbated
in materials with more complex compositions beyond CsPbXj,
such as doped nanocrystals, where exposure to excess ligands
or parent cations can cause undesired dopant loss."'

Here, we describe the use of trimethylsilyl halides (TMSX, X
= Cl, Br, I) as effective reagents for anion exchange in CsPbX;
nanocrystals. We recently introduced the use of TMSX anion-
exchange reagents for halide nanocrystals, specifically elpaso-
lites (double-perovskites).” Notably, only TMSBr and TMSI
allowed successful synthesis of Cs,AgBiBrs and Cs,AgBilg
nanocrystals from their lighter halide congeners, whereas
more common anion-exchange reagents caused partial
decomposition of the nanocrystals to other phases. We have
since found TMSX reagents to be broadly useful in anion-
exchange reactions involving a range of metal halide nano-
crystals, and their use has generally supplanted other anion-
exchange reagents in our laboratory. Although not discussed
here, we have also found that TMSX reagents are useful for the
direct synthesis of CsPbCl; and CsPbBr; nanocrystals (see
SI)."” The results presented here highlight some key
advantages of TMSX as nanocrystal anion-exchange reagents.
Foremost among these advantages are (i) their inertness
toward undesired side reactions, (ii) their favorable thermody-
namics, which allow nearly stoichiometric incorporation of
heavier halides into CsPbX; nanocrystals, and (iii) their
volatility, which enables nanocrystal purification with no
workup other than drying at room temperature (Scheme 1).

TMSCIl, TMSBr, and TMSI are all relatively volatile
nonpolar liquids with boiling points of 57, 79, and 107 °C,
respectively. They are readily miscible with nonpolar alkane
and arene solvents such as hexane and toluene. These
electrophilic reagents are known for their reactivity with a
wide range of nucleophiles; typical reactions involve
substitution of the halide for a nucleophile resulting in a
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stronger Si-nucleophile bond, e.g, to generate Si—O or Si—N
bonds."*™"* The Si—X bond strength decreases significantly
from the lighter to the heavier halides, with TMS—X bond
dissociation energies of 113, 96, and 77 kcal/mol for X = Cl,
Br, and I, respectively.'® These numbers suggest that reactions
involving substitution of, e.g., a Si—Cl bond for a Si—Br bond
or a Si—Br bond for a Si—I bond, are likely to be favorable.
To test the utility of TMSX anion-exchange reagents with
perovskite nanocrystals, we reacted CsPbX; (X = Cl, Br)
nanocrystals with different amounts of TMSX (X = Br, I) in
hexane or toluene solutions at room temperature (Scheme 1).
The reactions are generally rapid, reaching completion within
~S min. Figure 1 shows the results (photoluminescence
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Figure 1. (A, B) Treatment of CsPbCl; with TMSBr, generating
CsPbCly,Bry(;_,); normalized photoluminescence spectra (A) and
selected powder XRD data (B) are shown. (C, D) Treatment of
CsPbBr; with TMSI, generating CsPbBr;,I;(;_,); normalized photo-
luminescence spectra (C) and selected powder XRD data (D) are
shown. Reference patterns for orthorhombic (X = Br) and cubic (X =
Cl, I) CsPbX; are given; values of x are determined using Vegard’s
law.

spectra and selected powder XRD data) of these exchange
reactions as a function of the equivalents of TMSX added to 12
nm CsPbCl; nanocrystals or 14 nm CsPbBr; nanocrystals. The
emission spectra redshift as x is decreased in CsPbCl;,Br(;_,
nanocrystals and in CsPbBr;,I;(;_,) nanocrystals, concomitant
with increases in the lattice parameters measured by PXRD.
Compositions were determined using Vegard’s law and
confirmed by SEM/EDS for a subset of samples (see SI).
Samples treated with TMSX retain good quantum yields, and
TEM and XRD analysis illustrate that the general nanocrystal
shape and size distribution is preserved during the exchange,
with a slight increase in average size (see SI). The XRD of the
CsPbl; nanocrystals, which are not well described by the cubic
perovskite phase, will be discussed below. As expected from the
strong thermodynamic driving force for exchange to heavier
halides, the reactions reach complete conversion with only a
slight excess of the heavier TMSX reagent. This result also
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suggests that the reverse reactions should be highly disfavored;
indeed, a large excess of TMSX reagent is required to drive the
exchange from Br — Cl or I — Br (see SI).

It is instructive to compare the TMSX reagents to other
common anjon-exchange reagents used with CsPbX; nano-

crystals. Figure 2B compares Cl-to-Br exchange reactions using
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Figure 2. (A) Composition of CsPbCly Bry;_,y (solid blue) and
CsPbBr;,I5(;_,) (dashed red) nanocrystals as a function of the
equivalents of TMSX reagents (X = Br or I, respectively) added. (B)
Comparison of anion exchange reactions from CsPbCl; to
CsPbCl, Bry(;_,) using different reagents, showing the shift in
emission peak as increasing amounts of Br™ reagent are added.

TMSBr, PbBr,, OAm-HBr, and benzoyl bromide'” by plotting
the energy of the emission maximum as a function of added
equivalents of Br~ in each case. Compared with TMSX, anion
exchange using OAm-HBr requires a large excess of reagent.
This result highlights the contrasting thermodynamics of anion
exchange with TMSX and reagents such as OAm-HBr; the
latter reaction is thermodynamically uphill and hence requires
a large excess of reagent to force the equilibrium in favor of
bromide incorporation. Using PbBr,, the nanocrystal compo-
sition approaches only ~CsPbCl, ;Br, 5 once ~3 equiv of Br~
have been added. Anion exchange reactions with PbBr, and
OAm-HBr have been examined previously, with results similar
to what we observe here.”'® We also observed that some of
these reagents, particularly OAm-HBr and the PbBr, solution,
sometimes lead to partial decomposition of the nanocrystal
products (see SI). In contrast, CsPbX; nanocrystals remain
stable in the presence of extremely large excesses of TMSX,
even in pure TMSX, highlighting the inertness of these
reagents with respect to undesired side reactions (see SI).
To probe whether the specific reactions described in Scheme
1 are actually operative, we probed the anion-exchange
reaction mixtures by '"H NMR. TMS groups have character-
istically sharp, upfield '"H NMR resonances that facilitate
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identification of TMS-containing species in solution, and
TMSCI, TMSBr, and TMSI can be readily distinguished in dg-
toluene (Figure 3). Figure 3A shows the "H NMR spectrum of
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Figure 3. NMR data on CsPbCl; nanocrystals and on anion exchange
reactions. (A) 'H NMR spectrum of initial 7 nm CsPbCl,
nanocrystals in dg-toluene; Asterisk denotes solvent resonances
(C,HD,). The vinylic resonance likely includes contributions from
both oleylamine and oleate species. (B) 'H NMR spectra of TMSC],
TMSBr, and TMSL (C, D) 'H NMR spectra of anion exchange
reactions treating CsPbCl; or CsPbBr; nanocrystals with TMSBr or
TMSI, respectively, at partial conversion (red) and after full
conversion (blue). See SI for full spectra.

a starting sample of 7 nm CsPbCl; nanocrystals in dg-toluene;
broad resonances characteristic of ligands associated with the
nanocrystal surfaces are evident.'"” The relatively downfield
shift of the @ protons and the peak at ~7.5 ppm attributable to
a protonated amine moiety suggest that the associated
oleylamine is primarily present as oleylammonium, consistent
with evidence from experimental and computational studies
suggesting that CsPbX; nanocrystals are stabilized in solution
in large part by ionic interactions between surface halides and
alkylammonium cations.'”*° Upon addition of TMSBr to this
sample, a 'H NMR resonance corresponding to TMSCI
appears that increases in intensity as more TMSBr is added
(Figure 3C), with concomitant changes to the absorption and
emission spectra, indicating anion exchange. Significant
TMSBr is only observed after anion exchange has reached
completion. Only minor amounts of other TMS-containing
species are observed. In particular, a resonance is observed at
0.13 ppm that was also detectable in the reference spectrum of
pure TMSX and that may be due to reaction with trace water
or hydroxide. Other possible side reactions such as with oleates
to generate silyl oleates seem to be negligible. Similar behavior
is observed by "H NMR for reaction of CsPbBr; nanocrystals
with TMSI (Figure 3D). These results confirm the reactions
illustrated in Scheme 1.

From a practical standpoint, a key advantage of TMSX for
nanocrystal anion exchange is that, in general, no workup is
required to obtain pure product. Because of the volatility of
these species, the exchanged halide (in the form of TMSX), as
well as any residual TMSX reagent, can be fully removed after
reaction by drying the nanocrystals, either in vacuo, with a dry
nitrogen stream, or simply through passive evaporation. TMSX
can also be removed by partial evacuation for nanocrystals in
less volatile solvents. This feature is especially important given
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the poor stability of perovskite nanocrystals when exposed to
many of the polar solvents commonly used in the purification
of other classes of semiconductor nanocrystals: purification of
perovskite nanocrystals without decomposition or degradation
can be challenging, particularly if the sample must be subjected
to multiple cycles of precipitation. Unlike with TMSX,
nanocrystals do require such purification after anion exchange
using the other reagents in our comparison.

In the course of these experiments, we have observed that
complete iodide exchange on CsPbBr; nanocrystals generates
CsPbl; nanocrystals whose powder XRD pattern cannot be
adequately described by the cubic phase of CsPbly; Figure 4A

A. B.

— CsPbl; nanocrystals
- - - Pnma (y phase) CsPbl, fit
| reference pattern

30

15 35 40 45

20

Figure 4. Identification of orthorhombic perovskite y phase in CsPbl;
nanocrystals synthesized by anion exchange. (A) Powder XRD data
for CsPbl; nanocrystals (black), simulated reference pattern (gray
sticks) and fit (red); see text/SI for details. (B) Unit cell of cubic
perovskite CsPbl; (top) and an analogous subunit of the
orthorhombic y phase showing distortions of the Pbl, units (bottom).

shows representative data. Perovskite CsPbl; nanocrystals are
frequently assumed to possess the cubic Pm3m crystal
structure, which has been described at high temperatures in
bulk. Recent detailed studies have suggested that the correct
structure is an orthorhombic y phase related to that observed
in CsPbBr; nanocrystals, however.”' The powder XRD pattern
in Figure 4A can be explained by such an orthorhombic
(Pnma) perovskite phase. In this structure, distortions of Pblg
octahedra (resulting in Pb—I—-Pb bond angles significantly
below 180°) lower the crystal symmetry from cubic to
orthorhombic (Figure 4B).

Experimental identification of this orthorhombic perovskite
7 phase of CsPbl, is relatively rare. Recently, Fu et al. reported
selective stabilization of the y phase in CsPbl; thin films,** and
Marronnier et al. have used in situ synchrotron XRD diffraction
to study the y phase in bulk on an undercooled sample at 325
K.** The likely presence of an orthorhombic perovskite y phase
in colloidal CsPbl; nanocrystals has only recently been

21,24 S

suggested, however, and the structure is still frequently
assumed to be cubic. Figure 4A shows that the powder XRD
data from our CsPbl; nanocrystals agrees well with that
reported for bulk by Marronnier et al.”> Combined with other
recent reports,”’>* our data suggest that the orthorhombic y
perovskite phase is likely widespread for CsPbl; nanocrystals,
as is now well-established for CsPbBr,.>®

Considering these successes in CsPbX; nanocrystal anion
exchange, we were interested in examining whether TMSX
reagents could also be used on polycrystalline perovskite thin
films, and in particular whether TMSI could be used to access
perovskite-phase CsPbl; films that can be difficult to synthesize
directly because of decomposition into the nonperovskite
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orthorhombic & phase. Prior work on anion exchange in
polycrystalline thin films of all-inorganic perovskites is limited,
although Hoffman et al. have recently reported the trans-
formation of sintered nanocrystal films of CsPbBr; to
perovskite CsPbl; by anion exchange using Pbl, solutions,
and anion exchan_%e on hybrid perovskite thin films has also
been reported.”*

To test this chemistry, we prepared 350 nm thick CsPbBr;
films on glass substrates following a previously reported
method;*® absorption spectra and XRD analysis confirm the
formation of orthorhombic CsPbBr; (Figure S). These films
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Figure 5. (A) Photograph of a CsPbBr; film (top) and a sample
treated with TMSL (B) Absorbance spectra of film before and after
treatment with TMSIL. (C) Powder XRD diffraction patterns for
CsPbBr; film and the same film after treatment with TMSIL Data
(black) is overlaid (dotted lines, blue and red) with simulated patterns
of orthorhombic perovskite structures.

were heated to 75 °C in toluene solutions of 10 vol % TMSI
for 4 h under inert atmosphere. Figure 5 shows a photograph
and characterization data (XRD and UV—vis absorbance) of
representative films before and after this reaction. These data
confirm successful anion exchange to yield CsPbl;. Notably,
the XRD is again most consistent with the orthorhombic
perovskite y phase, as observed for our anion-exchanged
nanocrystals, suggesting that the orthorhombic cation sub-
lattice of the starting CsPbBr; film is preserved.””*® The
resulting CsPbl; films are stable in inert atmosphere, but
decompose rapidly to the yellow nonperovskite 6 phase when
exposed to ambient air. At intermediate times before the
CsPbBr; film is fully converted to CsPbl;, we observe
absorption and XRD features consistent with inhomogeneous
exchange creating regions with different CsPbBr; I5(;_,)
compositions, similar to what was observed by Hoffman et
al. for thick films.**

In conclusion, trimethylsilyl halide reagents excel for anion
exchange (Cl™ to Br~, or Br™ to I7) in CsPbX; nanocrystals.
Their key advantages include strong thermodynamic driving
forces for incorporation of heavier halides, their volatility
(which precludes the need for any workup), and their inertness
toward undesired side reactions or nanocrystal decomposition.
Through quantitative studies, we have demonstrated that the
highly favorable formation of stronger Si—Br or Si—Cl bonds
allows nearly stoichiometric anion exchange with these
reagents. We have further demonstrated that TMSI can be
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used to convert polycrystalline thin films of bulk perovskite
CsPbBr; into CsPbl; by anion exchange. With these
advantages, TMSX reagents should find widespread use in
the synthesis and study of all classes of metal-halide
nanocrystals.
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