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Abstract

In this note, we generalize a theorem of Juan Souto on rank and Nielsen equivalence in the
fundamental group of a hyperbolic fibered 3—manifold to a large class of hyperbolic group exten-
sions. This includes all hyperbolic extensions of surfaces groups as well as hyperbolic extensions
of free groups by convex cocompact subgroups of Out(F;,).

1 Introduction

Perhaps the most basic invariant of a finitely generated group is its rank, that is, the minimal cardi-
nality of a generating set. Despite its simple definition, rank is notoriously difficult to calculate even
for well-behaved groups. For example, work of Baumslag, Miller, and Short [BMS] shows that the
rank problem is unsolvable for hyperbolic groups. In this note we calculate the rank for a large class
of hyperbolic group extensions and furthermore show that, up to Nielsen equivalence, all minimal
(i.e., minimal-cardinality) generating sets are of a standard form.

Let 1 - H — G —I' — 1 be an exact sequence of infinite hyperbolic groups. We say that the
extension has the Scott—-Swarup property if each finitely generated, infinite index subgroup of H
is quasiconvex as a subgroup of G. Every subgroup A < T induces a new short exact sequence
1 =+ H — Gpo — A — 1, where G, is the full preimage of A under the surjection G — I". Our main
theorem is the following; for the statement /() denotes conjugacy length with respect to any finite
generating set for I'.

Theorem 1.1. Let | - H — G — " — 1 be an exact sequence of infinite hyperbolic groups that has
the Scott—Swarup property and torsion-free kernel H. For every r > 0 there is an N > 0 such that if
A <Tis afinitely generated subgroup with rank(A) < r and ¢r(8) > N for each 6 € A\ {1}, then

rank(Ga) = rank(H) +rank(A).

Moreover, every minimal generating set for Ga is Nielsen equivalent to a generating set which
contains a minimal generating set for H and projects to a minimal generating set for A.

Examples of subgroups A < I' satisfying these conditions can easily be constructed. Indeed,
for any set 8y,...,0, of pairwise independent infinite order elements of I, Theorem 1.1 applies to
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A= (d}",...,0") for all sufficiently large m. Alternately, one can build finite-index subgroups K <T°
such that Theorem 1.1 applies to every rank r subgroup of K.

Theorem 1.1 generalizes a theorem of Juan Souto [Sou], who established this result when I"' =2 Z
and H is the fundamental group of a closed orientable surface S, of genus g > 2. Here the extension
is induced by a hyperbolic S,—bundle over § ! with pseudo-Anosov monodromy f: Sg — Sg, so that
G is the fundamental group of the mapping torus My of f. In this language, Souto proves that the
rank of m; (MfN) = Gpny is equal to 2g + 1 for N sufficiently large. Moreover, any two minimal
generating sets in this situation are Nielsen equivalent. See also the work of Biringer—Souto [BS]
for more on this special case. In this paper, we use techniques previously established by Kapovich
and Weidmann [KW2, KW1] to generalize Souto’s result to Theorem 1.1.

Theorem 1.1 applies to all hyperbolic extensions of surface groups [FM, Ham, KL] as well as all
hyperbolic extensions of free groups by convex cocompact subgroups of Out(F,) [DT2, HH, DT1].
We thus obtain the following corollary:

Corollary 1.2. The conclusions of Theorem 1.1 hold for all extensions of the following forms:
i. Extensions 1 — m(Sy) = G — T — 1 with G and T both infinite and hyperbolic.

ii. Extensions 1 — Fy — G —I' — 1 such that G is hyperbolic and the induced outer action
I" — Out(F,) has convex cocompact image.

Proof. Since the kernels of the above extensions are torsion-free, it suffices to verify the Scott—
Swarup property. For the surface group extensions in (i), this was established by Scott and Swarup
in the case that I' = Z [SS] and by Dowdall-Kent-Leininger in the general case [DKL] (see also
[MR]). For the free group extensions in (ii), Mitra [Mit] established the Scott—Swarup property
when I 22 7Z and the general case was proven by the authors in [DT1] and by Mj—Rafi in [MR]. [

We note that Souto’s theorem is exactly case (i) above with I" a cyclic group; the other cases of
Corollary 1.2 are all new. In particular, the result is new even for free-by-cyclic groups G =F x4 Z
with fully irreducible and atoroidal monodromy ¢ € Out(F, ), where the conclusion is that F x oN L
has rank g + 1 for all sufficiently large N.

The following counter examples show that neither the torsion-free hypothesis on H nor the
Scott—Swarup hypothesis on the extension can be dropped from Theorem 1.1.

Counter Example 1.3 (Lack of Scott—-Swarup property). In [Bri, Section 1.1.1], Brinkmann builds
a hyperbolic automorphism ¢ of the free group F = F,, % (ay,...a,), where m > 3, of the form

¢(Fm):Fma
¢(a-):{ai+1 if 1<i<n

wav if i=n,

where w,v € F,. Notice that the induced extension Gy = F X Z does not have the Scott—Swarup
property: F;, is not quasiconvex in Fy, Xy Z (which is hyperbolic) and hence not quasiconvex in
Gy. Focusing on the case where n = 2, one sees that for each k odd, ¢* has the property that
0F(a1) = wrazvy and ¢F(ap) = wiay v, for some wy, v, w;, v, € F,. Hence, when k is odd, Gk is
generated by F;,, a1, and a generator of Z, making its rank at most m+2 < rank(F) + 1.

Counter Example 1.4 (Torsion in H). Here we exploit the failure of Lemma 3.1.iii in the presence
of torsion. Fix m > 3 and a prime ¢, and let F, Z < H be the groups

H=/{ai,...,am,s | s?=1,]a;,s] =1Yi), F={a,...,an) <H, and Z=(s) <H.



Thus F is free with rank(F) = m and H decomposes as a direct product H = F x Z with rank(H) =
m—+1and [H:F]=gq. Let p: H— F denote the projection onto the F factor and 1: F — H the
inclusion of F into H. Let B: H — H be the homomorphism defined by the assignments

B(s)=s and B(a;)=a;s foreachi=1,...,m.

Observe that 4 is the identity, thus f is in fact an automorphism of H. Since f(a;) ¢ F, we have
B(F) # F. Let T € Aut(F) be any fully irreducible and atoroidal automorphism. Using the product
structure of H, set & = T x idz. We note that & is an automorphism of H and that

pt=idp,  pB=p, pa=1p, and  paf=r1p.

Now let ¢ = o8 € Aut(H) and consider the extension G = H x4 Z. Notice that ¢(F) # F.
However, since H contains only finitely many index g subgroups, we may choose n > 1 so that
¢"(F) =F. Let G, < G be the preimage of nZ under the projection G — Z; this is an index n
subgroup with G,, = H x¢n Z. The further subgroup G, = F x4, Z has [G, : G, ] = q. Since ¢"|r =
p¢"t = 1" is fully irreducible and atoroidal, G, is hyperbolic [BF2] and each finitely generated
infinite index subgroup of F is quasiconvex in G, [Mit]. Since [G : G)] is finite, our extension
G = H %y Z is also hyperbolic and has the Scott—Swarup property. However, the extension G
does not satisfy the conclusion of Theorem 1.1: For all k > 1, the observation (F,p*"*1(F)) = H
implies that the subextension H X yi.+1 Z is generated by F and the stable letter and thus rank at most
m+1 <rank(H)+ 1.

Acknowledgments: This work drew inspiration from Souto’s paper [Sou] and owe’s an intellectual
debt to the powerful machinery provided by Kapovich and Weidmann [KW1, KW2]. We thank the
referee for helpful suggestions.

2 Setup

Fix a group G with a finite, symmetric generating set S and let X = Cay(G, S) be its Cayley graph.
Equip X with the path metric d in which each edge has length 1, making (X,d) into a proper,
geodesic metric space. For subsets A, B C X, define d(A,B) = inf{d(a,b) | a € A,b € B} and declare
the e—neighborhood of A to be N¢(A) = {x € X | d({x},A) < £}. The Hausdorff distance between
sets is defined as

duaus(A,B) = inf{e > 0| A C Ng(B) and B C N¢(A)}.

We identify G with the vertices of X and define the wordlength of g € G by |g|g = d(e,g),
where e is the identity element of G. A tuple in G is a (possibly empty) ordered list L = (g1,...,&n)
elements of g. The length of a tuple L= (g1,...,g,) is the number ¢(L) = n of entries of the list, and

its magnitude is defined to be ||L| = max; |g;|s; for & € G we denote the tuple (hgih™',... hg,h™")
by hLh~'. We define the conjugacy magnitude of a tuple L to be €(L) = minjeg ||hLh~"||. The
following three operations are called elementary Nielsen moves on a tuple L = (g1,...,8x):

e Forsomei € {1,...,n}, replace g; by g;l in L.
e Forsomei,je {1,...,n} withi# j, interchange g; and g; in L.

e Forsomei,je {1,...,n} withi# j, replace g; by g;g; in L.



Two tuples are Nielsen equivalent if one may be transformed into the other via a finite chain of ele-
mentary Nielsen moves. Nielsen proved that any two minimal generating sets of a finitely generated
free group are Nielsen equivalent [Nie]. Hence, two tuples L; and L, of length » are Nielsen equiv-
alent if and only if there is an automorphism y: F, — F, such that ¢; = ¢, o v, where ¢;: F;, - G
is the homomorphism taking the jth element of a (fixed) basis for F;, to the jth element of L;. Note
that Nielsen equivalent tuples generate the same subgroup of G.

Following Kapovich—Weidmann [KW2, Definition 6.2], we consider the following variation:

Definition 2.1. A partitioned tuple in G is a list M = (Y1,...,Y;T) of tuples Vy,...,Y,T of G
with s > 0 such that (1) either s > 0 or ¢(T) > 0, and (2) (Y;) # {e} for each i > 0. Thus (;7T)
(where ¢(T) > 0) and (Y1;) (where (Y;) # {e}) are examples of partitioned tuples. The length of
M is defined to be ¢(M) = £(Y1)+--- 4+ £(Y;) + ¢(T). The underlying tuple of M is the ¢/(M)-
tuple WM) = (Y1,...,Y;,T) obtained by concatenating Y1,...,Y;,T. The elementary moves on a
partitioned tuple M = (Yy,...,Y;; (t1,...,t,)) consist of:

e Forsomei€ {1,...,s} and g € ((U;,Y;) U{t1,....1,}), replace ; by g¥;g~".

e For some k € {1,...,n} and elements u,u’ € ((U;Y¥;) U{t1,....ti_1,tk11,-..,t}), Teplace
by utul.

Two partitioned tuples M and M’ are equivalent if M can be transformed into M’ via a finite chain
of elementary moves. In this case, it is easy to see that the underlying tuples U(M) and U(M’) are
Nielsen equivalent.

We henceforth assume that G is a hyperbolic group, which is equivalent to requiring that X
be d-hyperbolic for some fixed § > 0. This means that every geodesic triangle A(a,b,c) in X
is 0—thin in the sense that each side is contained in the §—neighborhood of the union of the other
two. A geodesic in X is a map y: J — X of an interval J C R such that |s —¢| = d(y(s), y(¢)) for
all s,# € J. Two geodesic rays 1,7 : Ry — X are asymptotic if dius(71 (R1),2(R4)) < o. The
Gromov boundary of X is defined to be the set dX of equivalence classes of geodesic rays in X.
Note that every isometry of X induces a self-bijection of dX. The equivalence class or endpoint of
aray y: Ry — X is denoted y(e0) € dX, and ¥ is said to join y(0) to y(eo). A biinfinite geodesic
v: R — X determines two rays and is said to join their respective endpoints y(—eo) and y(eo). The
fact that X is proper and 6—-hyperbolic ensures that any two points of X UdX can be joined by a
geodesic segment, ray, or line; see [KB, KW1]. The convex hull of a set ¥ C X UJX is the union
Conv(Y) of all geodesics joining points of ¥ (including degenerate geodesics of the form {0} — Y).
The set Y is e-quasiconvex if Conv(Y) C N¢(Y). A subgroup U < G is e—quasiconvex if it is so
when viewed as a subset of X. We refer the reader to [Gro, GdIH, BH] for further background on
hyperbolic groups.

A sequence {x,} in X is said to converge to { € dX if for some (equivalently every) geodesic
y: Ry — X in the class § and sequence {#,,} in R with #,, — oo, one has

1;1}"1 (d(,%0) +d(Y(tm),X0) — d(Xn, ¥(1m))) = oo.

The limit set of a subgroup U < G is the set A(U) accumulation points § € dX of an orbit U - xo C X;
the fact that any two orbits of U have finite Hausdorff distance implies that this is independent of the
point xo. Following Kapovich—Weidmann [KW 1, Definition 4.2] we define the hull of a subgroup
U tobe

H(U) = Conv (Conv (A(U)U{x € X | d(x,u-x) <1008 for some u € U\{e}}))
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We leave the following fact as an exercise for the reader. Alternatively, it follows from a slight
modification of [KW1, Lemma 4.10 and Lemma 10.3].

Lemma 2.2. There is a constant A = A(€) for each € > 0 such that dyaus(U,H(U)) < A for every
torsion-free e—quasiconvex subgroup U of G.

By noting that there are only finitely many subgroups of G that may be generated by elements
from the finite set N, ({e}), we have the following lemma:

Lemma 2.3. There is a constant ¢ = c(r) for each r > 0 such that every quasiconvex subgroup
U < G generated by elements from the r-ball N,({e}) is c—quasiconvex.

The following technical result of Kapovich and Weidmann is a key ingredient in our argument:

Theorem 2.4 (Kapovich—-Weidmann [KW2, Theorem 6.7], c.f. [KW1, Theorem 2.4]). For ev-
ery m > 1 there exists a constant K = K(m) > 0 with the following property. Suppose that M =
(Y1,...,Y:T) is a partitioned tuple in G with {(M) = m and let H = (W(M)) be the subgroup gen-
erated by the underlying tuple of M. Then either

H={Y))*--x(Ys)x(T),

with (T) free on the basis T, or else M is equivalent to a partitioned tuple M' = (Y{,...,Y;T') for
which one of the following occurs:

1. Therearei,j€{1,...,s} withi# jand d(H((Y})), H((Y}))) <K.
2. Thereis somei€{l,...,s} andt € T' such that d(H((Y!)),t - H({Y!))) < K.
3. There exists an element t € T' with a conjugate in G of wordlength at most K.

We conclude this section with the following lemma, which ties into the conclusions of Theo-
rem 2.4 and is an adaptation of [KW2, Propositions 7.3—7.4] to our context. Since the hypotheses of
[KW2] are not satisfied here, we include a short proof.

Lemma 2.5. For every K,r > 0 there is a constant B = B(K,r) with the following property: Let
Y1,Y2,Y3 be tuples in G generating torsion-free quasiconvex subgroups U; = (Y;) and satisfying
C(Y;) <rforeachi=1,2,3.

o Ifd(H(U;),H(U>)) <K, then (Y1,Y2) is Nielsen equivalent to a tuple Y satisfying C(Y) < B.

o Ifd(H(Us),g-H(U3)) < K for g € G, then (Y3,(g)) is Nielsen equivalent to a tuple Z with
C(Z) <B.

Proof. For brevity, we prove the claims simultaneously. By assumption, we may choose points
x1 € H(U1), x2 € H(U>) and z3,24 € H(U3) with d(x1,x2) < K and d(z3,824) < K. Fori=1,2,3, we
also choose h; € G such that ||hi)’ihi_1 || < r. The subgroups U/ = h,'U,-hi_1 are then ¢(r)—quasiconvex
by Lemma 2.3 and hence satisfy dpays(U!,H(U/)) < A(c(r)) by Lemma 2.2. Noting that H(U/) =
hiH(U;), we may choose u; € U; for i = 1,2 such that d(hiuihfl,hixi) < A(c(r)). Similarly choose
w; € Us so that d(hsw;hs ' haz;) < A(c(r)) for j=3,4. Set B=4A(c(r)) +2K +r.

To conclude the second claim, observe that

|h3(w3_1gvv4)h3_1 |S = d(W3h3_1,gW4h3_1)

<d(wshy',z3) +d(z3,824) + d(gza, gwah3 ')
<2A(c(r)) +K.



Since Hh3Y3h3_ ! H < ras well, the concatenated tuple Z = (Y3, (w5 ' gw4)) clearly satisfies C(Y") < B.
Further, since w3, w4 € (Y3), it is immediate that Z is Nielsen equivalent to (¥3, (g)).
For the first claim, set f = h ufluzh; !"and use the triangle inequality to observe

|fls = d(wihy " ushy ")
< d(ulhl_l,xl) —|—d(x1,x2) +d(xZ,u2h2_1)
<2A(c(r)) +K.

Since thYth’ ! H < r, another use of the triangle inequality gives
||/’l1 (ul_lu2Y2M2_1u1)hl_1 || = ||f(/’l2Y2h2_1)f_1 H <4A(c(r))+2K+r=B.

The concatenated tuple ¥ = (Yl,ul_lqugugul_l) thus evidently satisfies C(Y) < B. To complete
the proof, it only remains to show that (¥;,Y») is Nielsen equivalent to Y. But this is clear: since
up € (Y2) the tuple (¥1,Y>) is equivalent to (Y7, uzYou, l) which, since ufl € (Y1), is in turn equivalent
toY. O]

3 Proof of the main result
Suppose now that our fixed group G fits into a short exact sequence
1—H—G5T—1 Q)

of infinite hyperbolic groups that enjoys the Scott—Swarup property with torsion-free kernel H.
Recall that the conjugation action of G on H induces a homomorphism ®: I" — Out(H) and that,
since G is hyperbolic, ® has finite kernel. For any subgroup A < T, we set Gy = p~'(A) < G, and
note that this subgroup of G fits into the sequence | - H — Gy - A — 1.

The follow lemma summarizes some of the basic properties we will require.

Lemma 3.1. For the sequence (1), we have the following:

i. For every infinite order g € T, ®(g) € Out(H) does not fix the conjugacy class of any infinite
index, finitely generated subgroup of H.

ii. The kernel H is either free of rank at least 3 or else isomorphic to the fundamental group of a
closed surface of genus at least 2.

iii. Every proper subgroup U < H is either quasiconvex in G or else has rank(U) > rank(H).

Proof. To prove item (i), suppose towards a contradiction that g € I" of infinite order fixes the con-
jugacy class of an infinite index, finitely generated subgroup A of H. Then, after applying an inner
automorphism of H, we see that the semidirect product A x4 Z is contained in G, where ¢ is an
automorphism in the class ®(g). However, it is well-known that the subgroup A is distorted (i.e. not
quasi-isometrically embedded) in A x4 Z and hence distorted in G. This, however, contradicts the
Scott—Swarup property and proves item (i).

Next, the theory of JSJ decompositions for hyperbolic groups [RS] (see also [Lev]) shows that
a sequence of hyperbolic groups as in (1) with torsion-free kernel H must have H isomorphic to
the free product (*f?:lZ,-) x F,, where F), is free of rank n and each X; is the fundamental group of a
closed surface. We must show that this factorization is trivial, i.e. either k = 0 or n = 0. This follows



from the fact that such a nontrivial free product decomposition is canonical (e.g. [SW, Theorem
3.5]) and so is preserved under any automorphism of H (up to permuting the factors). Hence, for
each infinite order g € ', some power of ®(g) fixes the conjugacy class of a surface group factor of
H, contradicting item (i) above unless k = 0 or n = 0. This proves (ii).

For (iii), let J = [U : H] > 1. If J = o, then U is quasiconvex in G by the Scott—Swarup prop-
erty. Otherwise basic covering space theory implies rank(U) = m(1 —J) +Jrank(H) for m € {1,2}
depending, respectively, on whether H is free or the fundamental group of a closed surface. O

The following lemma is essential proven in [KK, Corollary 11] in the case where H is free and
I" is cyclic. We sketch the argument for the reader.

Lemma 3.2. If 1 - H — G — I" — 1 is a sequence of infinite hyperbolic groups such that H is
torsion-free and G has the Scott—Swarup property, then G does not split over a cyclic (or trivial)
group. Moreover, the same holds for G < G whenever the subgroup A < T is infinite.

Proof. We prove the moreover statement since it is clearly stronger. Let A <T be an infinite sub-
group. Suppose towards a contradiction that G has a minimal, nontrivial action on a simplicial tree
T with cyclic (or trivial) edge stabilizers. Since H is normal in G, the action H ~ T is also mini-
mal. Hence the main theorem of [BF1], implies that 7' /H is a finite graph. Notice that A acts on the
corresponding graph of groups decomposition of H (via ®: I' — Out(H)). First, this decomposition
must have trivial edge groups: an infinite cyclic edge stabilizer would be fixed under some infinite
order g € A <T, contradicting that G is hyperbolic. Hence, the nontrivial graph of groups 7' /H has
trivial edge stabilizers, but this implies that A virtually fixes this splitting of H. From this we obtain
an infinite order element g € A <T  which fixes a vertex group A of the splitting. Since A is finitely
generated and has infinite index in H, we have a contradiction to Lemma 3.1.i. This completes the
proof. O

Let us establish notation and specify the constants for the proof Theorem 1.1. Let § C T be the
image of our fixed generating set S C G. We assume that ¢r(-) is conjugacy length in I" with respect
to S. For the given r, let K be the maximum of the constants K(1),...,K (rank(H) + r) provided by
Theorem 2.4. Set Dy = K and use Lemma 2.5 recursively to define D, +; = max{D,,B(K,D,)} for
each n € N. Set N = 1 + Dy () and suppose that A <T"is any subgroup with rank(A) < r and
¢r(8) > N for all § € A\ {1}. Let G be the preimage of A under the projection p: G — I'. We
make the following observations:

Lemma 3.3. IfY is a tuple in G withY C Gp and C(Y) < N, then (Y) <H.

Proof. Choose g € G so that Hng’l H < N. Then for each y € Y we have

Ip(@)p)p(8) s =|pleye " )|s < |gve g <N

which shows that £r(p(y)) < N. Since we also have p(y) € A by assumption, this gives p(y) = 1
and hence y € H by the hypothesis on A. Thus (Y) < H. O

Lemma 3.4. Fixn € {0,...,2rank(H) — 1} and suppose that M = (Y1,...,Ys;T) is a partitioned
tuple with (UM)) = G and ¢(M) < (rank(H) + r) such that for each i € {1,...s} we have C(Y;) <
D, with (Y;) quasiconvex. Then there is a partitioned tuple M = (V... Y5 T) satisfying €(¥;) <
Dy for each j € {1,...,5} such that U(M) is Nielsen equivalent to U(M) and either

a. U(T) < {(T)with§<s+1orelse

b. ¢(T)=4(T) with § < s.



Proof. Since ¢(M) < rank(H) + r and (U(M)) = G4 does not split as a nontrivial free product
(Lemma 3.2), we may apply Theorem 2.4 to obtain a partitioned tuple M" = (Y/,...,Y];T’) that
is equivalent to M and satisfies one of the three conclusions of that theorem. Since all elementary
moves on a partitioned tuple (Wy,...,W,;V) preserve the conjugacy class of each tuple W;, we have
C(Y/) < D, with (Y/) quasiconvex for each i. As D, < N, Lemma 3.3 gives (¥/) < H and so ensures
that (Y/) is torsion-free.

We now analyze the conclusions of Theorem 2.4: If M’ satisfies conclusion (1), then after re-
ordering we may assume d(H((¥])),H((¥;3))) < K and use Lemma 2.5 to find a tuple ¥ Nielsen
equivalent to (¥{,Y;) with C(Y) < D,4. The partitioned tuple (¥,Y5,...,Y;;T’) then satisfies the
claim. If M satisfies (2), then after reordering we have d(H((Y{)),t - H((Y{))) < K for some t € T"
and so may use Lemma 2.5 to find a tuple Z equivalent to (Y{, (7)) with C(Z) < D,,;.;. Here we take
M =(Z.Yy,...,Y/;T"\ {t}) to complete the claim. If M’ satisfies (3), then T’ contains an element ¢

with C((¢)) < K < D, and the partitioned tuple (Y{,...,Y/, (¢);T"\ {t}) satisfies the claim. [

odgs

The pieces are now in place to prove our main theorem:

Proof of Theorem 1.1. Let L be any minimal-length tuple with (L) = G4. Since Gy has a standard
generating set of size rank(H) + rank(A), we have ¢(L) < rank(H)+ r. Set My = (;L) and observe
that My satisfies Lemma 3.4 with n = 0. We may therefore inductively apply Lemma 3.4 (with n =
0,1,...) to obtain a sequence My, M|, ... of partitioned tuples each with U(M;) Nielsen equivalent
to L. After inducting as many times as possible, we obtain a partitioned tuple My = (Y1,...,¥;T)
that satisfies C(Y;) < Dy for each i (by construction) but violates the hypotheses of Lemma 3.4,
either because k = 2rank(H) or because some (Y;) fails to be quasiconvex. Since C(¥;) < Dy <N,
Lemma 3.3 ensures that (¥;) < H for each i. Since Gx = (UW(My)) surjects onto A, it follows that
¢(T) > rank(A). Thus at most ¢(L) — rank(A) applications of Lemma 3.4 could have reduced the
length of T (option a) and so at least k — £(L) +rank(A) applications must have combined ¥;’s (option
b). It now follows that k < 2rank(H ), for otherwise k applications of the claim would necessarily
produce a tuple ¥; with £(Y;) > rank(H), contradicting £(Y;) + ¢(T) < rank(H ) +rank(A).

Since M, violates Lemma 3.4 but k < 2rank(H), it must be that some (Y;) fails to be quasicon-
vex. After reordering, let us assume (¥;) < H is not quasiconvex. Note that we also cannot have
rank((Y;)) > rank(H), for otherwise £(Y;) +¢(T') > rank(H) + rank(A) contradicting our choice of
L. The only possibility afforded by Lemma 3.1.iii is therefore (¥;) = H with £(Y;) = rank(H). Since
(M) < rank(H) + rank(A), it follows that M is of the form M = (Y1;T) with ¢(¥;) = rank(H)
and ¢(T) = rank(A). Therefore M, is a standard generating set for G, that is Nielsen equivalent to
L. O
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