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Abstract

In this note, we generalize a theorem of Juan Souto on rank and Nielsen equivalence in the
fundamental group of a hyperbolic fibered 3–manifold to a large class of hyperbolic group exten-
sions. This includes all hyperbolic extensions of surfaces groups as well as hyperbolic extensions
of free groups by convex cocompact subgroups of Out(Fn).

1 Introduction

Perhaps the most basic invariant of a finitely generated group is its rank, that is, the minimal cardi-
nality of a generating set. Despite its simple definition, rank is notoriously difficult to calculate even
for well-behaved groups. For example, work of Baumslag, Miller, and Short [BMS] shows that the
rank problem is unsolvable for hyperbolic groups. In this note we calculate the rank for a large class
of hyperbolic group extensions and furthermore show that, up to Nielsen equivalence, all minimal
(i.e., minimal-cardinality) generating sets are of a standard form.

Let 1 → H → G → Γ → 1 be an exact sequence of infinite hyperbolic groups. We say that the
extension has the Scott–Swarup property if each finitely generated, infinite index subgroup of H

is quasiconvex as a subgroup of G. Every subgroup ∆ ≤ Γ induces a new short exact sequence
1 → H → G∆ → ∆ → 1, where G∆ is the full preimage of ∆ under the surjection G → Γ. Our main
theorem is the following; for the statement ℓΓ(·) denotes conjugacy length with respect to any finite
generating set for Γ.

Theorem 1.1. Let 1 → H → G → Γ → 1 be an exact sequence of infinite hyperbolic groups that has

the Scott–Swarup property and torsion-free kernel H. For every r ≥ 0 there is an N ≥ 0 such that if

∆ ≤ Γ is a finitely generated subgroup with rank(∆)≤ r and ℓΓ(δ )≥ N for each δ ∈ ∆\{1}, then

rank(G∆) = rank(H)+ rank(∆).

Moreover, every minimal generating set for G∆ is Nielsen equivalent to a generating set which

contains a minimal generating set for H and projects to a minimal generating set for ∆.

Examples of subgroups ∆ ≤ Γ satisfying these conditions can easily be constructed. Indeed,
for any set δ1, . . . ,δr of pairwise independent infinite order elements of Γ, Theorem 1.1 applies to
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∆= 〈δ m
1 , . . . ,δ m

r 〉 for all sufficiently large m. Alternately, one can build finite-index subgroups K ≤Γ

such that Theorem 1.1 applies to every rank r subgroup of K.
Theorem 1.1 generalizes a theorem of Juan Souto [Sou], who established this result when Γ ∼= Z

and H is the fundamental group of a closed orientable surface Sg of genus g ≥ 2. Here the extension
is induced by a hyperbolic Sg–bundle over S1 with pseudo-Anosov monodromy f : Sg → Sg, so that
G is the fundamental group of the mapping torus M f of f . In this language, Souto proves that the
rank of π1(M f N ) ∼= G〈 f N〉 is equal to 2g+ 1 for N sufficiently large. Moreover, any two minimal
generating sets in this situation are Nielsen equivalent. See also the work of Biringer–Souto [BS]
for more on this special case. In this paper, we use techniques previously established by Kapovich
and Weidmann [KW2, KW1] to generalize Souto’s result to Theorem 1.1.

Theorem 1.1 applies to all hyperbolic extensions of surface groups [FM, Ham, KL] as well as all
hyperbolic extensions of free groups by convex cocompact subgroups of Out(Fn) [DT2, HH, DT1].
We thus obtain the following corollary:

Corollary 1.2. The conclusions of Theorem 1.1 hold for all extensions of the following forms:

i. Extensions 1 → π1(Sg)→ G → Γ → 1 with G and Γ both infinite and hyperbolic.

ii. Extensions 1 → Fg → G → Γ → 1 such that G is hyperbolic and the induced outer action

Γ → Out(Fg) has convex cocompact image.

Proof. Since the kernels of the above extensions are torsion-free, it suffices to verify the Scott–
Swarup property. For the surface group extensions in (i), this was established by Scott and Swarup
in the case that Γ ∼= Z [SS] and by Dowdall–Kent–Leininger in the general case [DKL] (see also
[MR]). For the free group extensions in (ii), Mitra [Mit] established the Scott–Swarup property
when Γ ∼= Z and the general case was proven by the authors in [DT1] and by Mj–Rafi in [MR].

We note that Souto’s theorem is exactly case (i) above with Γ a cyclic group; the other cases of
Corollary 1.2 are all new. In particular, the result is new even for free-by-cyclic groups G = F ⋊φ Z

with fully irreducible and atoroidal monodromy φ ∈ Out(Fg), where the conclusion is that Fg ⋊φN Z

has rank g+1 for all sufficiently large N.
The following counter examples show that neither the torsion-free hypothesis on H nor the

Scott–Swarup hypothesis on the extension can be dropped from Theorem 1.1.

Counter Example 1.3 (Lack of Scott–Swarup property). In [Bri, Section 1.1.1], Brinkmann builds
a hyperbolic automorphism φ of the free group F = Fm ∗ 〈a1, . . .an〉, where m ≥ 3, of the form

φ(Fm) = Fm,

φ(ai) =

{

ai+1 if 1 ≤ i < n

wa1v if i = n,

where w,v ∈ Fm. Notice that the induced extension Gφ = F ⋊φ Z does not have the Scott–Swarup
property: Fm is not quasiconvex in Fm ⋊φ Z (which is hyperbolic) and hence not quasiconvex in
Gφ . Focusing on the case where n = 2, one sees that for each k odd, φ k has the property that
φ k(a1) = wka2vk and φ k(a2) = w′

ka1v′k for some wk,vk,w
′
k,v

′
k ∈ Fm. Hence, when k is odd, Gφ k is

generated by Fm, a1, and a generator of Z, making its rank at most m+2 < rank(F)+1.

Counter Example 1.4 (Torsion in H). Here we exploit the failure of Lemma 3.1.iii in the presence
of torsion. Fix m ≥ 3 and a prime q, and let F, Z ≤ H be the groups

H = 〈a1, . . . ,am,s | sq = 1, [ai,s] = 1∀i〉, F = 〈a1, . . . ,am〉 ≤ H, and Z = 〈s〉 ≤ H.
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Thus F is free with rank(F) = m and H decomposes as a direct product H = F ×Z with rank(H) =
m+ 1 and [H : F ] = q. Let ρ : H → F denote the projection onto the F factor and ι : F → H the
inclusion of F into H. Let β : H → H be the homomorphism defined by the assignments

β (s) = s and β (ai) = ais for each i = 1, . . . ,m.

Observe that β q is the identity, thus β is in fact an automorphism of H. Since β (a1) /∈ F , we have
β (F) 6= F . Let τ ∈ Aut(F) be any fully irreducible and atoroidal automorphism. Using the product
structure of H, set α = τ × idZ . We note that α is an automorphism of H and that

ρι = idF , ρβ = ρ, ρα = τρ, and ραβ = τρ.

Now let φ = αβ ∈ Aut(H) and consider the extension G = H ⋊φ Z. Notice that φ(F) 6= F .
However, since H contains only finitely many index q subgroups, we may choose n > 1 so that
φ n(F) = F . Let Gn ≤ G be the preimage of nZ under the projection G → Z; this is an index n

subgroup with Gn
∼= H⋊φn Z. The further subgroup G′

n
∼= F ⋊φn|F Z has [Gn : G′

n] = q. Since φ n|F =
ρφ nι = τn is fully irreducible and atoroidal, G′

n is hyperbolic [BF2] and each finitely generated
infinite index subgroup of F is quasiconvex in G′

n [Mit]. Since [G : G′
n] is finite, our extension

G = H ⋊φ Z is also hyperbolic and has the Scott–Swarup property. However, the extension G

does not satisfy the conclusion of Theorem 1.1: For all k ≥ 1, the observation 〈F,φ kn+1(F)〉 = H

implies that the subextension H⋊φ kn+1 Z is generated by F and the stable letter and thus rank at most
m+1 < rank(H)+1.

Acknowledgments: This work drew inspiration from Souto’s paper [Sou] and owe’s an intellectual
debt to the powerful machinery provided by Kapovich and Weidmann [KW1, KW2]. We thank the
referee for helpful suggestions.

2 Setup

Fix a group G with a finite, symmetric generating set S and let X = Cay(G,S) be its Cayley graph.
Equip X with the path metric d in which each edge has length 1, making (X ,d) into a proper,
geodesic metric space. For subsets A,B ⊂ X , define d(A,B) = inf{d(a,b) | a ∈ A,b ∈ B} and declare
the ε–neighborhood of A to be Nε(A) = {x ∈ X | d({x},A)< ε}. The Hausdorff distance between
sets is defined as

dHaus(A,B) = inf{ε > 0 | A ⊂Nε(B) and B ⊂Nε(A)}.

We identify G with the vertices of X and define the wordlength of g ∈ G by |g|S = d(e,g),
where e is the identity element of G. A tuple in G is a (possibly empty) ordered list L = (g1, . . . ,gn)
elements of g. The length of a tuple L = (g1, . . . ,gn) is the number ℓ(L) = n of entries of the list, and
its magnitude is defined to be ‖L‖= maxi |gi|S; for h ∈ G we denote the tuple (hg1h−1, . . . ,hgnh−1)
by hLh−1. We define the conjugacy magnitude of a tuple L to be C(L) = minh∈G

∥

∥hLh−1
∥

∥. The
following three operations are called elementary Nielsen moves on a tuple L = (g1, . . . ,gn):

• For some i ∈ {1, . . . ,n}, replace gi by g−1
i in L.

• For some i, j ∈ {1, . . . ,n} with i 6= j, interchange gi and g j in L.

• For some i, j ∈ {1, . . . ,n} with i 6= j, replace gi by gig j in L.
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Two tuples are Nielsen equivalent if one may be transformed into the other via a finite chain of ele-
mentary Nielsen moves. Nielsen proved that any two minimal generating sets of a finitely generated
free group are Nielsen equivalent [Nie]. Hence, two tuples L1 and L2 of length n are Nielsen equiv-
alent if and only if there is an automorphism ψ : Fn → Fn such that φ1 = φ2 ◦ψ , where φi : Fn → G

is the homomorphism taking the jth element of a (fixed) basis for Fn to the jth element of Li. Note
that Nielsen equivalent tuples generate the same subgroup of G.

Following Kapovich–Weidmann [KW2, Definition 6.2], we consider the following variation:

Definition 2.1. A partitioned tuple in G is a list M = (Y1, . . . ,Ys;T ) of tuples Y1, . . . ,Ys,T of G

with s ≥ 0 such that (1) either s > 0 or ℓ(T ) > 0, and (2) 〈Yi〉 6= {e} for each i > 0. Thus (;T )
(where ℓ(T ) > 0) and (Y1;) (where 〈Y1〉 6= {e}) are examples of partitioned tuples. The length of
M is defined to be ℓ(M) = ℓ(Y1) + · · ·+ ℓ(Ys) + ℓ(T ). The underlying tuple of M is the ℓ(M)–
tuple U(M) = (Y1, . . . ,Ys,T ) obtained by concatenating Y1, . . . ,Ys,T . The elementary moves on a
partitioned tuple M = (Y1, . . . ,Ys;(t1, . . . , tn)) consist of:

• For some i ∈ {1, . . . ,s} and g ∈ 〈(∪ j 6=iYj)∪{t1, . . . , tn}〉, replace Yi by gYig
−1.

• For some k ∈ {1, . . . ,n} and elements u,u′ ∈ 〈(∪ jYj)∪{t1, . . . , tk−1, tk+1, . . . , tn}〉, replace tk
by utku′.

Two partitioned tuples M and M′ are equivalent if M can be transformed into M′ via a finite chain
of elementary moves. In this case, it is easy to see that the underlying tuples U(M) and U(M′) are
Nielsen equivalent.

We henceforth assume that G is a hyperbolic group, which is equivalent to requiring that X

be δ–hyperbolic for some fixed δ ≥ 0. This means that every geodesic triangle △(a,b,c) in X

is δ–thin in the sense that each side is contained in the δ–neighborhood of the union of the other
two. A geodesic in X is a map γ : J → X of an interval J ⊂ R such that |s− t| = d(γ(s),γ(t)) for
all s, t ∈ J. Two geodesic rays γ1,γ2 : R+ → X are asymptotic if dHaus(γ1(R+),γ2(R+)) < ∞. The
Gromov boundary of X is defined to be the set ∂X of equivalence classes of geodesic rays in X .
Note that every isometry of X induces a self-bijection of ∂X . The equivalence class or endpoint of
a ray γ : R+ → X is denoted γ(∞) ∈ ∂X , and γ is said to join γ(0) to γ(∞). A biinfinite geodesic
γ : R→ X determines two rays and is said to join their respective endpoints γ(−∞) and γ(∞). The
fact that X is proper and δ–hyperbolic ensures that any two points of X ∪ ∂X can be joined by a
geodesic segment, ray, or line; see [KB, KW1]. The convex hull of a set Y ⊂ X ∪ ∂X is the union
Conv(Y ) of all geodesics joining points of Y (including degenerate geodesics of the form {0}→Y ).
The set Y is ε–quasiconvex if Conv(Y ) ⊂ Nε(Y ). A subgroup U ≤ G is ε–quasiconvex if it is so
when viewed as a subset of X . We refer the reader to [Gro, GdlH, BH] for further background on
hyperbolic groups.

A sequence {xn} in X is said to converge to ζ ∈ ∂X if for some (equivalently every) geodesic
γ : R+ → X in the class ζ and sequence {tm} in R+ with tm → ∞, one has

lim
n,m

(

d(xn,x0)+d(γ(tm),x0)−d(xn,γ(tm))
)

= ∞.

The limit set of a subgroup U ≤G is the set Λ(U) accumulation points ζ ∈ ∂X of an orbit U ·x0 ⊂X ;
the fact that any two orbits of U have finite Hausdorff distance implies that this is independent of the
point x0. Following Kapovich–Weidmann [KW1, Definition 4.2] we define the hull of a subgroup
U to be

H(U) = Conv
(

Conv
(

Λ(U)∪{x ∈ X | d(x,u · x)≤ 100δ for some u ∈U \{e}}
)

)

.
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We leave the following fact as an exercise for the reader. Alternatively, it follows from a slight
modification of [KW1, Lemma 4.10 and Lemma 10.3].

Lemma 2.2. There is a constant A = A(ε) for each ε ≥ 0 such that dHaus(U,H(U)) ≤ A for every

torsion-free ε–quasiconvex subgroup U of G.

By noting that there are only finitely many subgroups of G that may be generated by elements
from the finite set Nr({e}), we have the following lemma:

Lemma 2.3. There is a constant c = c(r) for each r > 0 such that every quasiconvex subgroup

U ≤ G generated by elements from the r–ball Nr({e}) is c–quasiconvex.

The following technical result of Kapovich and Weidmann is a key ingredient in our argument:

Theorem 2.4 (Kapovich–Weidmann [KW2, Theorem 6.7], c.f. [KW1, Theorem 2.4]). For ev-

ery m ≥ 1 there exists a constant K = K(m) ≥ 0 with the following property. Suppose that M =
(Y1, . . . ,Ys;T ) is a partitioned tuple in G with ℓ(M) = m and let H = 〈U(M)〉 be the subgroup gen-

erated by the underlying tuple of M. Then either

H = 〈Y1〉 ∗ · · · ∗ 〈Ys〉 ∗ 〈T 〉,

with 〈T 〉 free on the basis T , or else M is equivalent to a partitioned tuple M′ = (Y ′
1, . . . ,Y

′
s ;T ′) for

which one of the following occurs:

1. There are i, j ∈ {1, . . . ,s} with i 6= j and d(H(〈Y ′
i 〉),H(〈Y ′

j〉))≤ K.

2. There is some i ∈ {1, . . . ,s} and t ∈ T ′ such that d(H(〈Y ′
i 〉), t ·H(〈Y ′

i 〉))≤ K.

3. There exists an element t ∈ T ′ with a conjugate in G of wordlength at most K.

We conclude this section with the following lemma, which ties into the conclusions of Theo-
rem 2.4 and is an adaptation of [KW2, Propositions 7.3–7.4] to our context. Since the hypotheses of
[KW2] are not satisfied here, we include a short proof.

Lemma 2.5. For every K,r > 0 there is a constant B = B(K,r) with the following property: Let

Y1,Y2,Y3 be tuples in G generating torsion-free quasiconvex subgroups Ui = 〈Yi〉 and satisfying

C(Yi)≤ r for each i = 1,2,3.

• If d(H(U1),H(U2))≤ K, then (Y1,Y2) is Nielsen equivalent to a tuple Y satisfying C(Y )≤ B.

• If d(H(U3),g ·H(U3)) ≤ K for g ∈ G, then (Y3,(g)) is Nielsen equivalent to a tuple Z with

C(Z)≤ B.

Proof. For brevity, we prove the claims simultaneously. By assumption, we may choose points
x1 ∈H(U1), x2 ∈H(U2) and z3,z4 ∈H(U3) with d(x1,x2)≤ K and d(z3,gz4)≤ K. For i = 1,2,3, we
also choose hi ∈ G such that

∥

∥hiYih
−1
i

∥

∥≤ r. The subgroups U ′
i = hiUih

−1
i are then c(r)–quasiconvex

by Lemma 2.3 and hence satisfy dHaus(U
′
i ,H(U ′

i )) ≤ A(c(r)) by Lemma 2.2. Noting that H(U ′
i ) =

hiH(Ui), we may choose ui ∈ Ui for i = 1,2 such that d(hiuih
−1
i ,hixi) ≤ A(c(r)). Similarly choose

w j ∈U3 so that d(h3w jh
−1
3 ,h3z j)≤ A(c(r)) for j = 3,4. Set B = 4A(c(r))+2K + r.

To conclude the second claim, observe that
∣

∣h3(w
−1
3 gw4)h

−1
3

∣

∣

S
= d(w3h−1

3 ,gw4h−1
3 )

≤ d(w3h−1
3 ,z3)+d(z3,gz4)+d(gz4,gw4h−1

3 )

≤ 2A(c(r))+K.
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Since
∥

∥h3Y3h−1
3

∥

∥≤ r as well, the concatenated tuple Z = (Y3,(w
−1
3 gw4)) clearly satisfies C(Y ′)≤ B.

Further, since w3,w4 ∈ 〈Y3〉, it is immediate that Z is Nielsen equivalent to (Y3,(g)).
For the first claim, set f = h1u−1

1 u2h−1
2 and use the triangle inequality to observe

| f |S = d(u1h−1
1 ,u2h−1

2 )

≤ d(u1h−1
1 ,x1)+d(x1,x2)+d(x2,u2h−1

2 )

≤ 2A(c(r))+K.

Since
∥

∥h2Y2h−1
2

∥

∥≤ r, another use of the triangle inequality gives

∥

∥h1(u
−1
1 u2Y2u−1

2 u1)h
−1
1

∥

∥=
∥

∥ f (h2Y2h−1
2 ) f−1

∥

∥≤ 4A(c(r))+2K + r = B.

The concatenated tuple Y = (Y1,u
−1
1 u2Y2u2u−1

1 ) thus evidently satisfies C(Y ) ≤ B. To complete
the proof, it only remains to show that (Y1,Y2) is Nielsen equivalent to Y . But this is clear: since
u2 ∈ 〈Y2〉 the tuple (Y1,Y2) is equivalent to (Y1,u2Y2u−1

2 ) which, since u−1
1 ∈ 〈Y1〉, is in turn equivalent

to Y .

3 Proof of the main result

Suppose now that our fixed group G fits into a short exact sequence

1 −→ H −→ G
p

−→ Γ −→ 1 (1)

of infinite hyperbolic groups that enjoys the Scott–Swarup property with torsion-free kernel H.
Recall that the conjugation action of G on H induces a homomorphism Φ : Γ → Out(H) and that,
since G is hyperbolic, Φ has finite kernel. For any subgroup ∆ ≤ Γ, we set G∆ = p−1(∆) ≤ G, and
note that this subgroup of G fits into the sequence 1 → H → G∆ → ∆ → 1.

The follow lemma summarizes some of the basic properties we will require.

Lemma 3.1. For the sequence (1), we have the following:

i. For every infinite order g ∈ Γ, Φ(g) ∈ Out(H) does not fix the conjugacy class of any infinite

index, finitely generated subgroup of H.

ii. The kernel H is either free of rank at least 3 or else isomorphic to the fundamental group of a

closed surface of genus at least 2.

iii. Every proper subgroup U � H is either quasiconvex in G or else has rank(U)> rank(H).

Proof. To prove item (i), suppose towards a contradiction that g ∈ Γ of infinite order fixes the con-
jugacy class of an infinite index, finitely generated subgroup A of H. Then, after applying an inner
automorphism of H, we see that the semidirect product A⋊φ Z is contained in G, where φ is an
automorphism in the class Φ(g). However, it is well-known that the subgroup A is distorted (i.e. not
quasi-isometrically embedded) in A⋊φ Z and hence distorted in G. This, however, contradicts the
Scott–Swarup property and proves item (i).

Next, the theory of JSJ decompositions for hyperbolic groups [RS] (see also [Lev]) shows that
a sequence of hyperbolic groups as in (1) with torsion-free kernel H must have H isomorphic to
the free product (∗k

i=1Σi)∗Fn, where Fn is free of rank n and each Σi is the fundamental group of a
closed surface. We must show that this factorization is trivial, i.e. either k = 0 or n = 0. This follows
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from the fact that such a nontrivial free product decomposition is canonical (e.g. [SW, Theorem
3.5]) and so is preserved under any automorphism of H (up to permuting the factors). Hence, for
each infinite order g ∈ Γ, some power of Φ(g) fixes the conjugacy class of a surface group factor of
H, contradicting item (i) above unless k = 0 or n = 0. This proves (ii).

For (iii), let J = [U : H] > 1. If J = ∞, then U is quasiconvex in G by the Scott–Swarup prop-
erty. Otherwise basic covering space theory implies rank(U) = m(1−J)+J rank(H) for m ∈ {1,2}
depending, respectively, on whether H is free or the fundamental group of a closed surface.

The following lemma is essential proven in [KK, Corollary 11] in the case where H is free and
Γ is cyclic. We sketch the argument for the reader.

Lemma 3.2. If 1 → H → G → Γ → 1 is a sequence of infinite hyperbolic groups such that H is

torsion-free and G has the Scott–Swarup property, then G does not split over a cyclic (or trivial)

group. Moreover, the same holds for G∆ ≤ G whenever the subgroup ∆ ≤ Γ is infinite.

Proof. We prove the moreover statement since it is clearly stronger. Let ∆ ≤ Γ be an infinite sub-
group. Suppose towards a contradiction that G∆ has a minimal, nontrivial action on a simplicial tree
T with cyclic (or trivial) edge stabilizers. Since H is normal in G∆, the action H y T is also mini-
mal. Hence the main theorem of [BF1], implies that T/H is a finite graph. Notice that ∆ acts on the
corresponding graph of groups decomposition of H (via Φ : Γ → Out(H)). First, this decomposition
must have trivial edge groups: an infinite cyclic edge stabilizer would be fixed under some infinite
order g ∈ ∆ ≤ Γ, contradicting that G is hyperbolic. Hence, the nontrivial graph of groups T/H has
trivial edge stabilizers, but this implies that ∆ virtually fixes this splitting of H. From this we obtain
an infinite order element g ∈ ∆ ≤ Γ which fixes a vertex group A of the splitting. Since A is finitely
generated and has infinite index in H, we have a contradiction to Lemma 3.1.i. This completes the
proof.

Let us establish notation and specify the constants for the proof Theorem 1.1. Let S̄ ⊂ Γ be the
image of our fixed generating set S ⊂ G. We assume that ℓΓ(·) is conjugacy length in Γ with respect
to S̄. For the given r, let K be the maximum of the constants K(1), . . . ,K(rank(H)+ r) provided by
Theorem 2.4. Set D0 = K and use Lemma 2.5 recursively to define Dn+1 = max{Dn,B(K,Dn)} for
each n ∈ N. Set N = 1+D2rank(H) and suppose that ∆ ≤ Γ is any subgroup with rank(∆) ≤ r and
ℓΓ(δ ) ≥ N for all δ ∈ ∆ \ {1}. Let G∆ be the preimage of ∆ under the projection p : G → Γ. We
make the following observations:

Lemma 3.3. If Y is a tuple in G with Y ⊂ G∆ and C(Y )< N, then 〈Y 〉 ≤ H.

Proof. Choose g ∈ G so that
∥

∥gY g−1
∥

∥< N. Then for each y ∈ Y we have

∣

∣p(g)p(y)p(g)−1
∣

∣

S̄
=
∣

∣p(gyg−1)
∣

∣

S̄
≤
∣

∣gyg−1
∣

∣

S
< N

which shows that ℓΓ(p(y)) < N. Since we also have p(y) ∈ ∆ by assumption, this gives p(y) = 1
and hence y ∈ H by the hypothesis on ∆. Thus 〈Y 〉 ≤ H.

Lemma 3.4. Fix n ∈ {0, . . . ,2rank(H)− 1} and suppose that M = (Y1, . . . ,Ys;T ) is a partitioned

tuple with 〈U(M)〉= G∆ and ℓ(M)≤ (rank(H)+ r) such that for each i ∈ {1, . . .s} we have C(Yi)≤
Dn with 〈Yi〉 quasiconvex. Then there is a partitioned tuple M̃ = (Ỹ1, . . .Ỹs̃; T̃ ) satisfying C(Ỹj) ≤
Dn+1 for each j ∈ {1, . . . , s̃} such that U(M̃) is Nielsen equivalent to U(M) and either

a. ℓ(T̃ )< ℓ(T ) with s̃ ≤ s+1 or else

b. ℓ(T̃ ) = ℓ(T ) with s̃ < s.
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Proof. Since ℓ(M) ≤ rank(H) + r and 〈U(M)〉 = G∆ does not split as a nontrivial free product
(Lemma 3.2), we may apply Theorem 2.4 to obtain a partitioned tuple M′ = (Y ′

1, . . . ,Y
′
s ;T ′) that

is equivalent to M and satisfies one of the three conclusions of that theorem. Since all elementary
moves on a partitioned tuple (W1, . . . ,Wp;V ) preserve the conjugacy class of each tuple Wi, we have
C(Y ′

i )≤ Dn with 〈Y ′
i 〉 quasiconvex for each i. As Dn < N, Lemma 3.3 gives 〈Y ′

i 〉 ≤ H and so ensures
that 〈Y ′

i 〉 is torsion-free.
We now analyze the conclusions of Theorem 2.4: If M′ satisfies conclusion (1), then after re-

ordering we may assume d(H(〈Y ′
1〉),H(〈Y ′

2〉)) ≤ K and use Lemma 2.5 to find a tuple Y Nielsen
equivalent to (Y ′

1,Y
′
2) with C(Y ) ≤ Dn+1. The partitioned tuple (Y,Y ′

3, . . . ,Y
′
s ;T ′) then satisfies the

claim. If M satisfies (2), then after reordering we have d(H(〈Y ′
1〉), t ·H(〈Y ′

1〉)) ≤ K for some t ∈ T ′

and so may use Lemma 2.5 to find a tuple Z equivalent to (Y ′
1,(t)) with C(Z)≤ Dn+1. Here we take

M̃ = (Z,Y ′
2, . . . ,Y

′
s ;T ′ \{t}) to complete the claim. If M′ satisfies (3), then T ′ contains an element t

with C((t))≤ K ≤ Dn+1 and the partitioned tuple (Y ′
1, . . . ,Y

′
s ,(t);T ′ \{t}) satisfies the claim.

The pieces are now in place to prove our main theorem:

Proof of Theorem 1.1. Let L be any minimal-length tuple with 〈L〉 = G∆. Since G∆ has a standard
generating set of size rank(H)+ rank(∆), we have ℓ(L) ≤ rank(H)+ r. Set M0 = (;L) and observe
that M0 satisfies Lemma 3.4 with n = 0. We may therefore inductively apply Lemma 3.4 (with n =
0,1, . . . ) to obtain a sequence M0,M1, . . . of partitioned tuples each with U(Mi) Nielsen equivalent
to L. After inducting as many times as possible, we obtain a partitioned tuple Mk = (Y1, . . . ,Ys;T )
that satisfies C(Yi) ≤ Dk for each i (by construction) but violates the hypotheses of Lemma 3.4,
either because k = 2rank(H) or because some 〈Yi〉 fails to be quasiconvex. Since C(Yi) ≤ Dk < N,
Lemma 3.3 ensures that 〈Yi〉 ≤ H for each i. Since G∆ = 〈U(Mk)〉 surjects onto ∆, it follows that
ℓ(T ) ≥ rank(∆). Thus at most ℓ(L)− rank(∆) applications of Lemma 3.4 could have reduced the
length of T (option a) and so at least k−ℓ(L)+rank(∆) applications must have combined Yi’s (option
b). It now follows that k < 2rank(H), for otherwise k applications of the claim would necessarily
produce a tuple Yi with ℓ(Yi)> rank(H), contradicting ℓ(Yi)+ ℓ(T )≤ rank(H)+ rank(∆).

Since Mk violates Lemma 3.4 but k < 2rank(H), it must be that some 〈Yi〉 fails to be quasicon-
vex. After reordering, let us assume 〈Y1〉 ≤ H is not quasiconvex. Note that we also cannot have
rank(〈Yi〉) > rank(H), for otherwise ℓ(Yi)+ ℓ(T ) > rank(H)+ rank(∆) contradicting our choice of
L. The only possibility afforded by Lemma 3.1.iii is therefore 〈Y1〉= H with ℓ(Y1) = rank(H). Since
ℓ(Mk) ≤ rank(H)+ rank(∆), it follows that Mk is of the form Mk = (Y1;T ) with ℓ(Y1) = rank(H)
and ℓ(T ) = rank(∆). Therefore Mk is a standard generating set for G∆ that is Nielsen equivalent to
L.
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