STABILITY ESTIMATES FOR PARTIAL DATA INVERSE
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FREQUENCY LIMIT
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ABSTRACT. We consider the partial data inverse boundary problem for the Schrédin-
ger operator at a frequency k > 0 on a bounded domain in R™, n > 3, with impedance
boundary conditions. Assuming that the potential is known in a neighborhood of the
boundary, we first show that the knowledge of the partial Robin—to-Dirichlet map
at the fixed frequency k& > 0 along an arbitrarily small portion of the boundary,
determines the potential in a logarithmically stable way. We prove, as the principal
result of this work, that the logarithmic stability can be improved to the one of Holder
type in the high frequency regime.

Résumé. Nous considérons un probleme inverse avec des données partielles pour
I'opérateur de Schrodinger a la fréquence £ > 0 sur un domaine borné dans R”, n > 3,
avec des conditions aux limites d’impédance. En supposant que le potential soit connu
sur un voisinage du bord, nous montrons d’abord que la connaissance de 1'opérateur
Robin-Dirichet partiel a la fréquence fixée £ > 0 sur des sous-ensembles arbitrairement
petits du bord, détermine le potentiel de maniere logarithmiquement stable. Nous
montrons, comme le résultat principal de ce travail, que la stabilité logarithmique
peut étre améliorée et remplacée par une estimation de stabilité de type Holdérienne
dans le régime des hautes fréquences.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Q C R™, n > 3, be a bounded connected open set with C*° boundary, let k£ > 0,

and ¢ € L*(Q;R). For any f € H _%(89), the interior impedance problem
A -k +q9u=0 in Q,
( | q) @)
(0, —ik)u=f on 0,

has a unique solution v € H*(€2), see Proposition A.1. Here v is the inner unit normal
to 0€2. Associated to the boundary problem (1.1), is the Robin—to-Dirichlet map
defined by

Ag(k) : H2(0Q) — H2(0Q), f+ uloq. (1.2)
Thanks to Proposition A.2, we have

Ay (k) : L*(09) — H*(09).
1
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Let I' C 092 be an arbitrary non-empty open subset of the boundary of 2, and let us
define the corresponding partial Robin—to—Dirichlet map,

AL (k) = 710 Ag(k) : L*(890) — H'(I), (1.3)

where 71 is the restriction map to I

The inverse boundary problem with partial data that we are interested in is that of
determining the potential ¢ in 2 from the knowledge of the partial Robin—to—Dirichlet
map Aqr(k) at a fixed frequency k > 0. This problem has traditionally been studied
when the map Aqr(k) is replaced by the Dirichlet—to-Neumann map u|sq +— dyulr. In
the full data case when I' = 012, the global uniqueness for this problem was established
by Sylvester—Uhlmann in [44]. Important progress on the partial data problem has
been achieved by Ammari-Uhlmann [4], Isakov [27], Bukhgeim-Uhlmann [9], Kenig-
Sjostrand—Uhlmann [33], Kenig-Salo [34], while the case when I" is arbitrary remains
quite open, see [35] for a review.

Turning the attention to the stability aspects of this inverse problem, still in the
case of the Dirichlet—to-Neumann map, a logarithmic stability estimate for the full
data problem was established by Alessandrini [1]. It has subsequently been shown by
Mandache [41] that the logarithmic stability estimate is optimal. In the case of partial
data, logarithmic stability estimates complementing the uniqueness result of Ammari—
Uhlmann [4], were proved in [17], see also [7], [2] and [43], while for the uniqueness
result of Isakov [27], logarithmic stability estimates were obtained in [22]. For the
uniqueness results of Bukhgeim—Uhlmann [9] and Kenig—Sjostrand—Uhlmann [33], the
log — log type stability estimates were established in [21], and in [12], [13], respectively.

The logarithmic stability estimates above indicate that the inverse problems consid-
ered are severely ill-posed, making it impossible to design reconstruction algorithms
with high resolution in practice, since small errors in the boundary measurements will
result in large errors in the reconstruction of the potential in the interior. Now it has
been observed numerically that the stability may increase when the frequency & of the
problem becomes large [16]. The phenomenon of increasing stability in the large fre-
quency regime, for several fundamental inverse problems, has been studied rigorously
in [23], [28] [29], [32], [31], [30], among others. In particular, for the full data problem,
assuming that the potential is sufficiently regular and is known near the boundary of
), it was shown by Isakov [29] that in the high frequency regime, the stability improves
from a logarithmic one to the one of Lipschitz type, see also [31].

In the case of partial data inverse problems, the question of increasing stability at
large frequencies has only been studied for the uniqueness result of Isakov [27] in [15]
and [36], to the best of our knowledge.

The goal of this paper is to study the issue of increasing stability in the uniqueness
result of Ammari-Uhlmann [4], which establishes that under the assumption that the
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potential is known near the boundary, the knowledge of the Dirichlet—to—Neumann map
measured on an arbitrarily small portion I' of the boundary determines the potential
in 2 uniquely. In doing so we impose Robin boundary conditions, in order to have a
unique solvability of the corresponding boundary problem (1.1) for all £ > 0, whereas
when working with Dirichlet boundary conditions, say, one has to assume that k? is
not a Dirichlet eigenvalue of —A + ¢. The latter requirement becomes impractical if
one wishes to take the high frequency limit & — +o00, as we shall do in this paper. Let
us also remark that the Robin boundary conditions are both natural and important,
as they approximate Sommerfeld radiation conditions at high frequencies, see [3], [5].
They are also of interest to numerical analysts and play a fundamental role in the
theory of integral equations for exterior problems, see [5].

Let us first state the following logarithmic stability estimate for the partial data
inverse problem in the case of the Robin—to—Dirichlet map at a fixed frequency ky > 0.

Theorem 1.1. Let Q) C R™, n > 3, be a bounded connected open set with C*> boundary,
and let I' C 082 be an arbitrary non-empty open subset of the boundary of 2. Let kg > 0
be fized, let M > 0 and let ¢1,q2 € L®(S;R) be such that ||g;]| @) < M. Assume
that g1 = qo 1n wo, where wy C ) is a neighborhood of 0S2. Then there exists C' > 0
such that for 0 < § := ||A} (ko) — AL (ko) || z200)—m1(r) < 1/e, we have

a1 = @2l m—1(0) < Cllogd| ™.
Here C' > 0 depends on kg, 2, wy, and M.

The following is the main result of this paper, showing that the stability of the
partial data inverse boundary problem increases as k becomes large.

Theorem 1.2. Let ) C R", n > 3, be a bounded connected open set with C*° boundary,
and let I" C 0N be an arbitrary non-empty open subset of the boundary of Q). Let M > 0
and let q1,q2 € L®(S4;R) be such that ||g;||pe) < M. Assume that ¢1 = q2 in wo,
where wy C §2 1s a neighborhood of 0S2. Then there exists a constant C' > 0 such that
forallk > 1 and 0 < & := ||A; (k) — A, (k)| 200 a1 @) < 1/e, we have

C
(k +log %)n%? .
Here C' > 0 depends on €2, wy, M but independent of k.

lan — @l -1(0) < eCkgr (1.4)

Remark 1. The result of Theorem 1.2 can be summarized informally by saying
that at high frequencies, the stability estimate is of Hélder type, modulo an error term
with a power-like decay as k£ becomes large.

Remark 2. As is often the case for partial data inverse boundary problems, a
fundamental role in the proof of Theorem 1.2 is played by Carleman estimates, here
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exploited to suppress the contribution of the boundary region away from I'. The price
to pay for relying on such exponentially weighted estimates is that the constant in the
Holder estimate (1.4) grows exponentially in k. It is an interesting problem to find
conditions on the boundary portion I', in the spirit of control theory, see [11], that
would allow one to replace the exponentially growing factor in (1.4) by a polynomially
growing one, as in the full data result [31].

Remark 3. Theorem 1.1 follows from Theorem 1.2 and we shall therefore only be
concerned with the proof of Theorem 1.2.

Assuming that the potentials ¢; and ¢s enjoy regularity properties and a priori
bounds that are better than L>, we get the following corollary of Theorem 1.2.

Corollary 1.1. Let Q C R", n > 3, be a bounded connected open set with C* bound-
ary, and let I' C 02 be an arbitrary non-empty open subset of the boundary of 2. Let
M >0, s> 1%, and let q1,q2 € H*(S;R) be such that ||q;||ms) < M. Assume that
¢1 = @2 1n wy, where wy C § is a neighborhood of 0S). Then there exists a constant
C > 0 such that for all k > 1 and 0 < § = ||A}, (k) — AL (K)|| 200> m1 @) < 1/e, we

have

! C 26+
lar — 2l (o) < (60k52 + ﬁ) '
(k? + IOg 3) n+2
Here C' > 0 depends on (), wg, M, s but independent of k.

&

Let us now proceed to describe the main ideas in the proof of Theorem 1.2 along
with the plan of the paper. The starting point is boundary Carleman estimates for
the operator —A — k2, k > 1, for functions u satisfying the Robin boundary conditions
(0, — ik)u = 0 on 0. Such Carleman estimates are essentially well known and
are discussed in Section 2, following the works by Fursikov-Imanuvilov [19], Lebeau—
Robbiano [39], [40], Burq [10], and Buffe [8], see also [37] and [38]. Let us mention that
the presence of the large parameter k£ in the boundary conditions makes the situation
more complicated and in addition to 1/k, it becomes natural to introduce a second
small parameter h such that 0 < h < 1/k. Using the boundary Carleman estimates
and following the approach of [7], in Section 3 we prove a version of quantitative
unique continuation from the boundary portion I', valid for solutions of the Schrodinger
equation, satisfying Robin boundary conditions. In Section 4, using the estimates of
Section 3 and a recent result by Baskin—Spence-Wunsch [5] on bounds on solutions
to the interior impedance problem, we obtain some crucial control on the difference of
the potentials integrated against the product of solutions to the Schrodinger equations
with a large frequency in terms of the difference of the corresponding partial Robin—to—
Dirichlet maps. Taking solutions to be complex geometric optics solutions, we conclude
the proof of Theorem 1.2 using standard arguments. Corollary 1.1 is established at
the end of Section 4. The paper is concluded by three appendices, assembled for the
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convenience of the reader. In Appendix A, we discuss the solvability of the interior
impedance problem (1.1) and bounds on the solutions. Appendix B is devoted to
a sketch of the proof of Theorem 2.1, due to Fursikov—Imanuvilov [19]. Appendix
C discusses complex geometric optics solutions for the Helmholtz equation with a
potential following Hahner [24].

2. SEMICLASSICAL CARLEMAN ESTIMATES WITH ROBIN BOUNDARY CONDITIONS

Let Q C R™ be a bounded domain with C*° boundary, and let v be the unit inner
normal to 0€). Let

P(h,E) = —h*A - E,
where 0 < h <1and 0 < E < 1. Letting p € C®(; R), we set
P,(h,E)=¢ek o P(h,E)oe .

Our starting point is the following boundary Carleman estimates which are due to
Fursikov—Imanuvilov [19], see also [37].

Theorem 2.1. Let ¢p € C®°(Q;R) be such that 1) > 0 on Q and |[Vy| > 0 in Q, and
set o = . Then there exist vg > 0, hg > 0 and C > 0, such that for all v > o,
0<h<hg and 0 < E <1, and u € H*()), we have

/|P¢(h,E)u|2dx+h<73/ ¢3|u|2d5+7/ g0|hVu|2dS)
Q 199 o0

(2.1)
> Ch(74/g03|u|2dx+72/go|hVu|2dx).
Q Q
Notice that in Theorem 2.1 there is no assumption that d,¢|aq # 0, in contrast
to the boundary Carleman estimates of Burq [10, Proposition 3.1], see also [39], [40].
For the convenience of the reader, a sketch of the proof of Theorem 2.1 is given in
Appendix B.

Let ¢ € C=(€%; R). Next we shall discuss local boundary Carleman estimates near a
point zg € 9Q where 0,p(x¢) > 0 for functions satisfying Robin boundary conditions.
These estimates can be obtained as a consequence of the local Carleman estimates
for functions satisfying inhomogeneous Neumann boundary conditions which are due
to Lebeau—Robbiano [40, Proposition 2], or as a limiting case of the local Carleman
estimates for functions satisfying inhomogeneous Ventcel boundary conditions, due to
Buffe [8, Theorem 1.5]. To state the result, following [39], [40], [10], and [8], we require
that ¢ satisfies Hormander’s hypoellipticity condition uniformly in 0 < E < 1: there
exists ¢ > 0 such that for all 0 < F <1, and

all (2,£) € AxR", py(z,§,E)=0 = {Rep,,Imp,} >c, (2.2)
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where p,(z,&, E) = (€ + i, (x))? — E is the semiclassical leading symbol of P,(h, F),
and {f,g} = >_; 0 f0.,9 — 0., f O, g is the Poisson bracket of the functions f and g.
Furthermore, we also assume that

V| >0 in Q. (2.3)
We have the following local boundary Carleman estimates, see [10], [8].

Theorem 2.2. Let xy € 02 and let w be a sufficiently small neighborhood of xo in €.
Let ¢ satisfy (2.2), (2.3), and

8u90|8Qmw > 0. (2.4)

Then there exist 0 < hg < 1 and C' > 0 such that for all0 < E<1,k>1,0<h < %,
and all uw € H*(Q) with supp(u) C w satisfying (0, — ik)u =0 on Q2 Nw, we have

/ e | P(h, E)ul?dz > C’h/ e (Jul? + |hVu|?)da. (2.5)
Q Q

Proof. Introducing boundary normal coordinates near the point x(, we get a reduction
to the case: Q@ =R? = {z € R" : x,, > 0}, w = {x € R} : |z] < 1o} for some ry > 0
small enough, v € H*(R%), supp(u) C w, and (9,, — ik)u =0 on z,, = 0, see [40].

It follows from (2.4) that 0,,¢ > 0 in @ for 7y small enough. Now thanks to [40,
Proposition 2] the following Carleman estimate holds, see also [8, Theorem 1.5]: there
exist C' > 0, hy > 0 such that for all 0 < h < hy, 0 < E <1, and all u € C“(M),
supp(u) C w, satisfying the inhomogeneous Neumann boundary conditions 0,,u = go
on z,, = 0, we have

J

JﬂmmEm&m+h/

Rn—1

e |hgo|2da’ > Ch/ e (Juf® + [hVul?)da
= (2.6)
+Ch/ e (Ju(a', 0)]% + |hVu(2, 0)[2)da.
Rn—1

n
+

We refer to [10, Remark 3.8] for the explanation regarding the uniformity of (2.6) in
0 < E <1, see also [8].

By density, (2.6) remains valid for v € H*(R"), supp(u) C w, satisfying d,,u = go
on x, = 0. Applying now (2.6) to u such that 0,,u = iku on x, = 0, and letting
ho > 0 be small enough so that the term h [, e (hk)?|u(a’,0)[2dz’ can be absorbed
into the right hand side of (2.6) for all hk < hg, we get

J

This completes the proof of Theorem 2.2. 0

e%\P(h, E)ul*dz > C’h/ e%(\u|2 + |hVul?)dx.

n n
+ RY

We have the following corollary of Theorem 2.2.



STABILITY ESTIMATES IN THE HIGH FREQUENCY LIMIT 7

Corollary 2.1. Let o € 09 and let w be a sufficiently small neighborhood of zy in €.
Let o satisfy (2.2), (2.3), and (2.4). Then there exist 0 < hg < 1 and C > 0 such that
foral0 < E<1,k>1,0<h<2 andallve H*Q) with supp(v) C w satisfying
dv — (%2 +ik)v =0 on 02 Nw, we have

/ﬂ |P,(h, E)o|*dz > C'h||v||§1;d(m‘
Here ||v||§151d(m = ”U”%?(Q) + ||hvv||%2(9)'

Next we shall state global boundary Carleman estimates with Robin boundary condi-
tions by gluing Theorem 2.1 and Corollary 2.1 together. To that end, let ¢» € C>(); R)
be such that ¢(z) > 0 for all x € Q and |V > 0 in Q. Then there is 8y = Bo() > 0
sufficiently large such that ¢ = %% is a Carleman weight for the operator P(h, E) =
—h?A — E, i.e. o satisfies (2.2), uniformly in 0 < E < 1, see [10, Section 4.1]. We
shall also assume that 3, is so large that Theorem 2.1 holds for ¢ = e%¥.

Theorem 2.3. Let () # ' C 9Q be open and let ¢ € C°(Q;R) be such that y(x) >0
for all x € Q and |Vy| > 0 in Q, and

Outlaonr > 0. (2.7)

Let o = %Y, By > 1. Then there exist 0 < hy < 1 and C > 0 such that for all
0<E<1,k>1,0<h< % and all v € H*(Q) satisfying 0,v — (aﬁf +ik)v =0 on
0f), we have

/Q|P<p(h,E)v|2dx + h/r(|v|ag|2 [V vlonl? + [hD,0lonl)dS > ChollE: o (28)
Here V., is the tangential component of the gradient.

Proof. The assumption (2.7) implies that there is an open set [ C 99 so that T # 99,
OQ\T ccT, and

0, > 0. (2.9)

Let @, w1, ...,wy be a open cover of Q such that wy,...,wys is an open cover of the
boundary 052 so that w; are sufficiently small, and if w; N (ONQ\I') # 0 then w;NON C T,
j=1...,M,and @N 90 = 0. Let x € C(@), 0 < x < 1, and x; € C§(w;),
0<x;<1,75=1,...,M, be such that )Z—l—zjl\ilxj > 1 near . We can arrange so
that 0,x;loa =0, 7 =1,..., M, see [25].
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When w; N (02 \T') = 0, by Theorem 2.1, we get for h > 0 small enough, and
0<E<I,
h||XjU||§{slcl(Q) < C[Py(h, E)U||2L2(Q) + C|[[Py(h, E)?Xj]UH%Q(Q)
+Ch [ (elonl + 19 (x0)lanf?)aS
r
) 9 ) (2.10)
< Ol Po(h, E)vllz20) + O vl (o

+cw/ﬂmmmﬁ+mmvmmﬁms+ow%/ﬁ%MMS
I I

When w;N(OQ\T') # 0, in view of (2.9) and the fact that d, (x;v)—(%2+ik)(x,v) = 0
on 0f) , we can apply Corollary 2.1, and obtain that there exist 0 < hg < 1 and C' >0
such that foral 0 < E <1, k>1,0<h < ko,

Bl oy < CIPA b E)ol3a + P B), xilolae)

) , , (2.11)
< C||P,(h, E)U”LZ(Q) + O(h )HUHHsld(Q)'

For the interior piece v, the same estimate as (2.11) holds. Summing up the estimates
(2.10) and (2.11) and absorbing the error terms, we get (2.8). This completes the
proof. [l

We have the following corollary of Theorem 2.3.

Corollary 2.2. Let ) # T' C 0 be open and let p € C®(;R) be such that ¥(z) > 0
for all x € Q and |V¢| > 0 in Q, and (2.7) holds. Let p = %%, By > 1. Then there
exist 0 < hg < 1 and C' > 0 such that for all 0 < E <1,k > 1, 0<h§% and all
u € H*(Q) satisfying (0, — ik)u = 0 on 99, we have

/ e%]P(h,E)u\zdx + h/ G%OU‘OQ‘Q + |hV ruloal? + |hd,ulaal*)dS
O r (2.12)
Z(N{/efﬂuP+JhVM%dx
Q

To use Corollary 2.2, we need the following result on existence of a weight function
with special properties, see [19, Lemma 1.1], [26, Lemmas 2.1 and 2.3].

Theorem 2.4. Let ) # I' C 9Q be an arbitrary open subset. Then there exists

e C®(Q) such that

Y(r) >0, VreQ, |Vy() >0 VrecQ,
Yloarr = 0, 9ublaaar > 0.
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3. CONSEQUENCES OF CARLEMAN ESTIMATES

Let 2 C R", n > 3, be a bounded domain with C* boundary. Let w; C € be
neighborhoods of 02 with C*° boundaries such that 02 C dw;, j = 0,1,2,3, and
W; Cwj_1, J =1,2,3. Let ) # ' C 9Q be an arbitrary non-empty open set.

Let ¢ € L®(Q;R), k > 1, and let u € H*(Q) be such that
(A= +qu=0 in wy,

3.1
(0, —ik)u=0 on ON. (3.1)

We have the following result in the case of Robin boundary conditions which is an
analog of [7, Lemma 2.4], obtained in the case of Dirichlet boundary conditions, see
also [6].

Proposition 3.1. There are constants 0 < hg <1, C > 0, a; > 0, and ag > 0 such
that for allk > 1,0 < h < h—ko and all uw € H*(Q) satisfying (3.1), we have

_ o1 a2
ull i wanamy < Cle™* ullmoy + e [Juloallmr)- (3.2)

Proof. Letting h > 0, we rewrite (3.1) semiclassically as follows,

(—=h*A — (hE)? +h%qQu =0 in wy,

(0, —ik)u=0 on 0. (3:3)
Thanks to Theorem 2.4 there exists ¢ € C*°(Wy) such that
Y(x) >0, Vrew, |Vy(x)>0, Ve, (3.4
Y(x) =0, Vredw\T, 0,¥|au\r > 0.
Let
© = eP¥ (3.5)

with By > 0 sufficiently large as in Corollary 2.2.

We shall now follow [7], [6] closely. We observe that the fact ¢ (z) > 0, for all z € wy,
implies that there exists k > 0 such that

Y(x) > 2K, V€ wy\ ws, (3.6)

and the fact that ¢(x) = 0 for all z € dwy \ I" gives that there is a neighborhood w’ of
Owyp \ 09 such that w' Nwy = 0 and

() <k, Vred. (3.7)

Let w” C w’ be an arbitrary fixed neighborhood of dwy \ 952, and let 8 € C*°(wy) such
that 0 <0 < 1,0 =0on w” and # =1 on wy \ w'. Setting v = Hu, where u satisfies
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(3.3), we get that v satisfies the following problem,

(—=h*A — (hEk)? + h*q)v = [-h*A,0lu  in  wy,

(0, —ik)v =0 on OJuwp.
Applying the Carleman estimate (2.12) for the operator P(h, (kh)?) = —h?A — (hk)?
on the domain wy, with the Carleman weight ¢ given by (3.5), (3.4), and v € H?*(wy)

satisfying (3.8), we obtain that there exist 0 < hy < 1 and C' > 0, such that for all
k>1,0<h<ho

(3.8)

Ch/aeyﬂvﬁ+ﬂhvwﬁdx§u/ e | P(h, (hk)*)v|*dw
wo wo

(3.9)
2¢
+ h/eh(|v|3w0|2 + |V 0o, [2)dS.
r
Perturbing (3.9) by h%q and using (3.8), we get
Ch/ne?UvP+ﬂhvm%dx§u/ e ([=h2A, Olul2dz
wo wo (3.10)
2¢
+ h/ e (|V]awy|* + WV 10 au,|*)dS.
r
As 0 =1 on wy \ w3 and in view of (3.6), we get
Ch/ e ([v]? + [hVo[)dz > Cher ™™ ful%y o (3.11)
wo scC
Using that [—h2A, 6] is a first order semiclassical differential operator such that
supp([—h*A,0]) C W'\ W’
and (3.7), we obtain that
20 2 2 ZeBor g 211, 112
[;ehH—th0W|¢v§eh R2ull3s - (3.12)
Finally,
h/e?w%mﬁ+mvﬂmwﬁm5ghﬁﬁw“mwmm@mn- (3.13)
F SC.

Putting (3.11), (3.12) and (3.13) together, in view of (3.10), we have

2 .28k 2 2
Chen* HUHHSld(wQ\uTO,) < en

eﬂomh2 %eBOHwHLOO

||U||%1§d(w/\w~) + he ||U|BQ||?1;01(F)-

Setting
o = ¥ _ Por 5 0y = ePllYllee _ 2008 -

we get
2a9

_ 2
Il ) < e hllullgy @ € llon iy, o))
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and therefore,

[l 11

scl

_o1 .1 2
wnam) < O™ h2|lull o) + e |luloallmrry)-

Passing to the non-semiclassical H'-norm and replacing a1, as, by S, 20, respec-
tively, we obtain that

o1 @2
ull g1 @aam) < Cle™ ullae) + e lluloallm @),

forall k> 1,0 < h < %, and some «q,as > 0 independent of h and k. Thus, the

bound (3.2) follows. This completes the proof of the proposition. O

4. PROOF OF THEOREM 1.2

We shall first follow the approach of [7]. Let k > 1 and let uy € H?(2) be a solution
to

(A —k*+qus =0 in Q. (4.1)

In the sequel, we shall choose us to be a complex geometric optics solution to (4.1).
Let v € H'(Q) be the solution to the following problem

(~A -k +q)v=0 in Q,
(0, — ik)v = (0, —ik)uy on OS.
Then by the a priori estimate (A.4), we conclude that v € H?(Q).

Setting u = v — uy € H?(2), we see that u satisfies the following problem,

(—A — k2 + G)u = (g2 — q1)uy in €,

4.2
(0, —ik)u=0 on OS. (4.2)

Let us assume that wy C Q is a neighborhood of 02 with C* boundary where
¢ = ¢2. Now let w; C € be neighborhoods of 92 with C*° boundaries such that
0Q C Owj, j =1,2,3, and W; C wj_1, j = 1,2,3. Let x € C5°(2) be a cutoff function
satisfying 0 < x <1, x =0 on ws and x = 1 on Q\ wy. We set @ = yu. Thus, we have

(A =k + )i = x(@ — @)uz + [-A, x]u = (@1 — 2)uz + [-A,xJu in Q. (4.3)
Let u; € H%(2) be a solution to
(—A -k +q)u; =0 in Q. (4.4)

Multiplying (4.3) by u; and integrating by parts, we get

/((h — q2)uruzdr + / [—A, xJuuydz = 0. (4.5)
Q Q
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Now [—A, x] is a first order differential operator with supp([—A, x]) C ws \ w3, and
hence, we obtain that

/Q[—A7X]UU1dx < A, xlull 2o \ws) llur | 220) < Cllull g1 @w\as) | url 22 (4.6)

Now it follows from (4.5) and (4.6) with the help of (3.2) that there are constants
O<h0§1,a1>0,a2>0,suchthatfork21,O<h§h—k°,

‘/(Ch - Q2)U1U2d$
Q

We have

_ o1 2
< C(em lullavoylullzz) + e llulrllma @) (4.7)

ulr = vlr — uzlr = (Agl(k) - Ag2(k)) ((3,/ - ik)u?‘aﬂ)'
Using the mapping properties of the partial Robin—to—Dirichlet map (1.3) and the
trace theorem, we get

ulp|l oy < ClIAL (k) — AL (k)| L200)— 11 (100 — ik)uszloall 1200y
< C|IAL, (k) — AL (k)| z200)— (k|| 20

Let us now bound |[|ul[z1 (o) in (4.7). To that end, we recall that u satisfies (4.2) and
use Theorem A.1. We get that there is C' > 0 such that for all £ > 1,

(4.8)

[Vull2) + kllull2) < Cllar]lze@llullzz@) + lan = @2llze@ lluallz2@),
and hence, for k£ > 1 sufficiently large, we obtain that
k
IVullz2@) + S llullrag) < Clluzllzae).
This implies in particular that for k > ko > 1,
[ull @) < Clluzlr2@)- (4.9)

By Proposition A.3, we have that (4.9) is also valid for k € [1, k.
It follows from (4.7), (4.8) and (4.9) that for all k > 1, 0 < h < ko,

/(Ch — @2)urugdx
Q

< O(e™ |Jugl 2@ ] 20

(4.10)
+ e [|AL (k) — AL ()| 200y a0y 2l 2ol [ 220y )
for any uy,us € H?(S) satisfying
(A -k +q)uy =0, (mA—k+q@)u, =0, in Q, (4.11)

respectively. Here we used that £ < % and replace ag by as + 1.

Next let ©Q be open such that @ cc Q cc R, and let us extend ¢, and ¢ by zero
to R™ \ ©Q and denote the extensions by ¢; and ¢, again. We shall take u; and us to
be complex geometric optics solutions constructed in Proposition C.1 on 2, and insert
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them into (4.10). To that end, let £ € R™ and py, e € R™ be such that |u| = |pe| =1
and pg - pp = 1 - § = po - § = 0. We set

2 2
C1=—§+\/k2+a2—%ﬂ1+m#27 sz—g— l{;2—|—a2—%,u1—iau2,

where a is such that
IIm (| = a > max{CyM, 1} (4.12)

and k? + a* > %, see [31]. Then we have (; - (; = k?, and by Propositions C.1 and
(.2, there are solutions u; € H*(Q2) to (4.11) of the form

uj(x) = (1 + 1), (4.13)
where
C .
Irillra@ = lalli=@, 7=1,2. (4.14)
Furthermore, thanks to Proposition C.2, for k > 1, we have
|l m20) < CR|lug 2 (4.15)

In view of (4.15), (4.10) with u; being geometric optics solutions (4.13), has the form
forallk21,0<h§}}€—°,

‘/(Ch - Q2)U1U2dx
Q

a2
+ e [[Ag, (k) = Ay, (B)]| 2oy 10y w2l 2y a2

< 0(6_%||U2||L2(Q)||ul||L2(Q)

(4.16)

where we have replaced as by oo + 1, say. Let R > 0 be such that Q is contained in a
ball centered at zero of radius R. Then thanks to (4.13), (4.14), and (4.12), we have

sl 2@y < Ce™™, j=1,2. (4.17)
It follows from (4.16) with the help of (4.17) and (4.14) that

/(Ch — qo)e T dx
Q

NIRE
< C(ele‘QQaR + 6726201%"/\51 (k) — Agz (k)HLQ(GQ)%Hl(F)) —+ E,

forall k> 1,0 <h <% ¢eR"such that |¢] < 2v/k* + a? and a > max{CoM, 1}.

We shall take % = 7a in (4.18) and choose the constant v > 0 sufficiently large so

that

—aivya+2aR S efaga, eaz'yaJrZaR S €a4a, (419)

for some constants a3 > 0 and a4 > 0. This implies that a > %k

Letting 6 = [|Af, (k) — AL, (K) || 1200)— 1 (1), let us write (4.18) as

e

1 1
| F(q1 — q2)(€)] < C(e ™" + €™ + 5) < O™ + 5), (4.20)
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forall k> 1, a > %k, ¢ € R" such that [£| < 2vk? + a?. Taking p < 2vk? + a? to
be chosen and using (4.20), together with Parseval’s formula, we get

T Pl e)@F,
b =l < (o[ )OSl

(4.21)
< O n 20:4(152_,_ 1 4 C
~0p e ? ?
Setting p = an%?, (4.21) gives that
g1 — ol -1 () < C(aLan'A’eQa““(S2 + a_n-4+2) < 0(640‘4“(52 - a_ni2>, (4.22)
for all kK > 1, and all a > %k Using that 0 < § < 1/e, and choosing
1 log &
a=—=%F% &7
hoy day

we conclude from (4.22) that for all £ > 1,
C

g1 — @1 < K0+ —————.
e (k +log 1)

This completes the proof of Theorem 1.2.

Proof of Corollary 1.1. We follow the classical argument due to Alessandrini [1],
see also [14]. Let € > 0 be such that s = § + 2¢. Then by the Sobolev embedding,
interpolation and the a priori bounds for g;, we get

l—e+s
s+1
H*(2)

HCh - CIQHLoo(Q) < CHQl - C]2’|Hg+s(9) < CHQl - C]2H}f1(Q)HCI1 - C]2|

1

—&+s L
< CRM) g — @l 5= q)-

Corollary 1.1 follows from this bound combined with Theorem 1.2.

APPENDIX A. THE INTERIOR IMPEDANCE PROBLEM

In this section we shall collect some well known results about the solvability of the
interior impedance problem and some bounds on its solution needed in this paper, see
[5], [3], and [42].

Proposition A.1. Let Q0 C R", n > 3, be a bounded connected open set with C*
boundary, let k > 0, and ¢ € L= (;R). Then for any F € L*(Q), f € H_%@Q), the
interior impedance problem,

(A -k +qu=F in Q,

(0, —ik)u=f on 09, (A1)



STABILITY ESTIMATES IN THE HIGH FREQUENCY LIMIT 15
has a unique solution u € H'(Q). Furthermore, there exists C = C(k) > 0 such that
lull @) < CUE 2@ + 1114 ) (A.2)

Proof. Associated to (A.1), we introduce the following sesquilinear form
a: HY Q) x H(Q) = C,
a(u,v) = / Vu - Vodz + /(q — k*)uvdz + Zk?/ uodsS.
Q 0 o0
Now u € H'(Q) is a solution to (A.1) if and only if
a(u,v) = / Fudr — fods,
Q o0
for allv € H'(Q). The form a is bounded on H'(Q)x H*(), i.e. thereis C' = C(k) > 0
such that
a(u, 0)] < Cllulm@llelman, wo e H(S).
and a is coercive on H'(Q), i.e.
Let A: H'(Q) — (H'(Q))* be the bounded linear operator defined by the form a,
a(u,v) = (Au, ) (g () m@), u,v € H' (Q).
Here (H'(Q))* is the dual space to H'(Q2). By Lax-Milgram’s lemma and (A.3), the
operator A + C : HYQ) — (H'Y(Q))* is an isomorphism provided that C' > 0 is
sufficiently large, and since the imbedding H'(Q) — L?*(Q) is compact, we conclude
that the operator A : H'(Q) — (H'(Q))* is Fredholm of index zero.

Now let uw € H'(Q) be such that Au = 0. Then u satisfies the impedance problem
(A1) with FF =0, f =0, and Ima(u,u) = 0. As ¢ is real valued, this implies that
u =0 and d,u =0 on 0. As ( is connected, by unique continuation for the equation
(A — K>+ qu =01in Q, we get u = 0 in . Thus, A is injective, and therefore,
A: HY Q) — (H'(2))* is an isomorphism.

By the trace theorem, for any F' € L*(Q)) and f € H 2 (092), the antilinear functional

HY(Q) > v~ / Fodx — fodS
Q 20

is continuous. Hence, for any F' € L*(Q) and f € H2(0%), the problem (A.1) has a
unique solution u € H'(Q2) and (A.2) holds. O

We shall need the following mapping property of the Robin—to—Dirichlet map, in-
troduced in (1.2).

Proposition A.2. The operator A,(k) : L*(0Q2) — H'(0Q) is bounded.
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Proof. First it follows from (A.2) that A,(k) : H™2(9Q) — H2(dQ) is bounded. The
claim will follow by interpolation, if we show that A,(k) : Hz(dQ) — H2(8Q) is
bounded. To see the latter, let u € H'(€2) be the solution to (1.1) with f € H2(9%Q).
Then we have Au € L2(Q2) and d,u € Hz(8). By the a priori estimate

ull 20y < C(|Aull2) + [Jullg10) + [0yl (A.4)

H%(am)’

see [20, Theorem 2.3.3.2, p. 106] and [5, p. 253|, we conclude that u € H?*().
Furthermore, combining the estimates (A.4) and (A.2), we see that A, (k) : Hz(99) —
H?3(09) is bounded. The result follows. O

The following result will be needed when establishing Theorem 1.2 for bounded
frequencies.

Proposition A.3. Let K C (0,00) be compact. There exists C' > 0 such that for all
ke K and all F € L*(Q), we have

[ull @) < ClIF |29
Here u € HY(Q) is the unique solution of

(A=K +qu=F in Q,

(0, —ik)u=0 on 0ON. (A.5)
Proof. Assuming the contrary, we get sequences k, € K, F, € L*(Q) such that if
u, € H'(Q) is the corresponding solution of (A.5) then ||u,| 1) > n||Fnll12@) for
all n = 1,2,.... Assuming as we may that |ju,||g1 @) = 1, we get ||F,|[z2@) — 0 as
n — oo and (A.4) implies that the sequence u,, is bounded in H?(Q2). Using Rellich’s
compactness theorem, we may assume, passing to subsequences, that k, — ky € K
and u, — up in H'(Q), |Juo| w1y = 1. Using the weak formulation of the boundary
problem (A.5), we obtain that

/ Vu, - Vudr + / (q — K} )u,vdx + ik, / u,vdS = / F,udz,
Q Q oN Q

for all v € H'(Q). Letting n — oo, we get ug = 0 which contradicts the fact that

The following result, giving sharp bounds on solutions to the interior impedance
problem, established recently by Baskin, Spence and Wunsch [5], will be crucial for us
when proving Theorem 1.2.

Theorem A.1. Let Q C R", n > 3, be a bounded open set with C*° boundary. Given
F e L*(Q), f € L*09), let u € H(Q) be the solution to the interior impedance
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problem,
(-A -k u=F in Q,
(0, —ik)u=f on 0.

Then there is C > 0 such that

IVull2) + [Klllull2) < CUIF 2@ + [ Fll200), (A.6)

for all k € R.

APPENDIX B. PROOF OF THEOREM 2.1

We shall proceed by following the arguments of Fursikov and Imanuvilov [19] as

presented in [37, Theorem 4.3.9]. By density, it is suffices to prove (2.1) for u € C*(£2).
We write

P@(h, E) - AQ + iAl,
where
Ay = (hD)? —|¢'*—E, A =¢ ohD+hDoy =2¢ -hD —ihAp.

Here D = %8. The idea of Fursikov and Imanuvilov [19] is the following: rather than
considering the equation P,(h, E)u = g, one works with

(Ay +iA))u = g+ huAypu,
where ;1 > 0 is to be chosen and
iA; = 2¢" - hV + h(p+ 1)Agp.
Following [19], [37, Theorem 4.3.9], we get

lg + hulgul[za) = [|A2ullf2q) + | Arull72(q) + 2Re (Azu, id1u) 120

B.1
> 2Re (Agu, iéu)Lz(Q). ( )

We shall next compute

Re (Ayu,iA u)20) = Re /((hD)Qu—|g0'|2u—Eu)(2g0'-hVﬂ+h(,u+1)Ag0ﬂ)dx. (B.2)
Q

In doing so, as in [37, Theorem 4.3.9], we write the integral in (B.2) as a sum of six

terms I, 1 < j < 3,1 <k <2, where [, is the L? scalar product of the jth term in

the expression of Asu and the kth term in the expression of A u.
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For the term I; in (B.2), performing two integration by parts, as in [37, Theorem
4.3.9], we get

I;; = Re /(—hQAu)(ng’ -hVu)de = 2h3/ ¢"Vu - Vudz
Q 0

—R? / Ap|Vul|?*dr — h? / d,p|Vul?dS + 2h°Re / (O,u)¢ - VudS.
Q onN o0

For the term I3 in (B.2), performing an integration by parts, as in [37, Theorem 4.3.9],
we obtain that

I = Re /(—thu)h(u + 1)(Ap)udr = h*(pu+ 1) / Ap|Vul*d
0 0

+h*(u+ 1)Re /

(Vu - VA@)udz + h*(u + 1)Re / (O,u)(Ap)uds.
0

o0N

For the term I in (B.2), proceeding as in [37, Theorem 4.3.9], and performing an
integration by parts, we get

Iy = —2Re / ' |Puy’ - hVTude = h/ V- (J¢' P Juldx + h/ Ayl |2 |ul?dS.
Q Q 90

For the term I in (B.2), we have

Iy = —Re / /Pl + 1) (Apyade = ~h(u +1) / (AP ufd.
Q Q

Finally, using that ¢’ - V|u|> = 2Re (uy’ - V), and integrating by parts, we get

I31 + I3 = —Re / Eu(2¢' - hVT + h(p + 1) Apt)de = —hE/ ¢ - Vl|uldx
Q Q

—hE(u+ 1)/Agpyu\2d:c _ —hEu/ Ag0|u]2d:z:+hE/ (Do) |ul2dS.
Q Q o2

Collecting all the terms together, we obtain that

Re (Agu, iéu)Lz(Q) = h/

070|u]2d95+h3/ oy |Vul*dz + X + bt, (B.3)
0 Q

where
dp = o — Eplp, ag=V-(|¢]P¢) — (n+ 1)(Ap)|¢)?, a1 = ple,

X = 2h3/ ¢"Vu - Vudr + h*(u+ 1)Re /(VA(,D - Vu)udz,
Q Q

bt = —h? / 0,0|Vul?dS + 2h°Re / (O,u)¢’ - VudS
o0 o0

+ h*(pu+ 1)Re /

(D) (A)TdS + h / 9|2 uldS + hE / (0v0)|ul2dS.
[5)9] o0N o0

(B.4)
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Now by Lemma 4.3.10 in [37], we have
ag > Oy’ (B.5)
provided 1 < 2. Assuming that v > 1 and using that ¢ > 0 on §, we get for all

0<E<I,

|Endg] < [p(V* [0 Pe + yAvp)| < Cuy’e’. (B-6)
It follows from (B.5) and (B.6) that ag > Cy*¢?® for v > 1 sufficiently large. As u > 0,
we also have a; > Cy?¢ for v sufficiently large. Hence, fixing y = 1, we conclude from

(B.3), by absorbing the remainder term X as explained in [37], that for all A > 0 small
enough, all v large enough, and 0 < EF <1,

Re (Asu, 1A 1u) 12(0) > C’h74/ ©° lu|*dx + C’h72/ ©|hVulPdz — |bt]. (B.7)
Q Q

It follows from (B.4) that for all 0 < £ <1,

bt| < Ch (73 /(9Q O u|*dS + 'y/mgo|hVu|2dS). (B.8)

Combining (B.1), (B.7) and (B.8) and absorbing the term h*?[| Apu||75 g, by choosing
h small enough independent of 7, we get (2.1). This completes the proof of Theorem
2.1.

APPENDIX C. COMPLEX GEOMETRIC OPTICS SOLUTIONS TO HELMHOLTZ
EQUATIONS

Let 2 C R, n > 2, be a bounded open set, and let £ > 0. We recall the following
result due to Sylvester-Uhlmann [44] and H#hner [24] concerning the existence of
complex geometric optics solutions to the Helmholtz equation, see also [18]. This
result is very useful here since all the constants are independent of the frequency k.

Proposition C.1. Let ¢ € L>®(Q) and k > 0. Then there are constants Cy > 0
and C, > 0, depending on Q and n only, such that for all ( € C*, (- = k%, and
IIm(¢| > max{Co||q||z=(0), 1}, the equation

(A -k +qu=0 in Q

has a solution
u(z) = eic'x(l + r(z)),
where r € L*(Q) satisfies

Ch
171l z2) < == llgll Lo (-
@ < gl

Let us recall the following standard elliptic regularity result, see [45, Theorem 7.1]
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Proposition C.2. Let Q CC Q C R", ¢ € L®(Q), and k > 0. Let u € L*(Q) be a
solution to

(A =k +qu=0 in Q.
Then u € H*(Q) and we have the following bounds,

lullz20) < CL+E)[ull 2@y, Nulla@) < CA+ k) ull2q)-
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