GLOBAL IDENTIFIABILITY OF LOW REGULARITY FLUID
PARAMETERS IN ACOUSTIC TOMOGRAPHY OF MOVING
FLUID

BOYA LIU

ABSTRACT. We are concerned with inverse boundary problems for first order
perturbations of the Laplacian, which arise as model operators in the acoustic
tomography of a moving fluid. We show that the knowledge of the Dirichlet—
to-Neumann map on the boundary of a bounded domain in R, n > 3, de-
termines the first order perturbation of low regularity up to a natural gauge
transformation, which sometimes is trivial. As an application, we recover the
fluid parameters of low regularity from boundary measurements, sharpening
the regularity assumptions in the recent results of [1] and [3]. In particular,
we allow some fluid parameters to be discontinuous.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Q C R", n > 3, be a bounded open set with smooth boundary and let us
consider a moving fluid in ) characterized by the sound speed ¢, density p, fluid
velocity vector v, and absorption coefficient o = a(-,w) at a fixed frequency
w > 0. The time-harmonic acoustic pressure p(z,t) is of the form p(z,t) =
Re (u(z)e™™"), where u satisfies the following second order elliptic equation,

L) gt = (A = 2iA(w) - V+qw))u=0 in £, (1.1)

with
| _wela) i Vo)
AT = ) Y o)
q(z;w) = —C;Ex) — 2iw @)

This model was considered for instance in [1], [2], [3], [5], [11], [30], [31], [32],
and [33]. In this paper we are interested in the inverse boundary problem of
identifiability of the fluid parameters ¢, p, v, and « from boundary measurements.
Such an inverse problem has applications in ocean tomography, where one wishes
to determine the ocean temperature and heat transferring currents from acoustic
measurements, and in medical diagnostics, where scalar inhomogeneities and the
blood flow are to be determined.

(1.2)
oz, w) = w@ag(z).
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To state the problem in precise terms, let us assume that A(w) € L>(2;C") and
q(w) € L>(;C), and let us first observe that the operator

L a@w)qw) : Hy(Q) = HH(Q)

is Fredholm of index zero. Here and in what follows the spaces H*(2), H§(£2),
s € R, are the standard L*-based Sobolev spaces on (2, see [14]. Indeed, the
operator L 4(,) 4(w) differs from the invertible operator —A : Hg(Q) — H~1(Q2) by
a compact perturbation. We shall make the following standing assumption:

Assumption A. The operator L) qw) : Hg(Q) — H () is injective.
Hence, it follows that for any f € H'/?(9%), the boundary value problem
LA(w),q(w)u =0 in Q,

tlon = f. (1.3)

has a unique solution u € H'(f2), depending continuously on f. Let v be the unit
outer normal vector to the boundary of 2. We shall define the trace of the normal
derivative 0,u € H~1/2(0Q) as follows. Let ¢ € HY2(98) and let v € H'(Q) be
a continuous extension of ¢. We define

(O, @) g-1/2(00) x H1L/2(00) = /[Vu -V — 2i(A(w) - Vu)v + q(w)uv]dz.  (1.4)
Q

Here (-, -) is the distributional duality. As u solves (1.3), the definition of the trace
0,u on 0f) is independent of the choice of an extension v of ¢. The Dirichlet—to—
Neumann map A g is then defined as follows,

AA(W):(I(W) : Hl/Q(aQ) - H_l/Q(GQ)a f — a,,U|aQ.

The problem of acoustic tomography of moving fluids that we are interested in is
as follows: given the Dirichlet-to-Neumann map A4,)qw) for some frequencies
w > 0, determine the fluid parameters ¢, p, v and « in ), see (1.2). This problem
was studied in [1], [3], under the assumption that 2 is simply connected and that
the fluid parameters enjoy the following regularity properties,

c€ Wh((Q;R), ¢>0, peC(Q)NC*Q), p>0,
veWh2(Q;R"), ap € C(LR), ¢€C(LR), ¢ #0.

Specifically, it was shown in [1] that the knowledge of the Dirichlet-to-Neumann
map A4(w)qw) at a fixed frequency w > 0 determines the sound speed ¢ and the
fluid velocity v in € uniquely provided that o = 0 and p is a constant. In [3] it
is proven that the knowledge of the Dirichlet-to-Neumann map A 4(),4w) at two
distinct frequencies determines ¢, v in €2 uniquely, and p up to a multiplication by
a constant provided that o = 0, and the knowledge of the Dirichlet—to—Neumann
map A 4(w)qw) at three distinct frequencies determines ¢, v, a in € uniquely, and
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p up to a multiplication by a constant. The works [1], [3] discuss also the two-
dimensional case, see also [2] for the study of the corresponding inverse scattering
problem in dimension 2.

The crucial idea of [1], [3] is that thanks to the regularity assumptions (1.5), one
has A(w) € WH>(Q;C"), q(w) € L*>*(Q;C), and one can then view the operator
L A(w) q(w) as the magnetic Schrodinger operator

(D, + AW)? +G(w), Dy = la (1.6)

where

(W) = qw) +i(V - A(w)) — Aw)* € L=(Q; C). (1.7)
These regularity assumptions allow one to use the global uniqueness result for
the inverse boundary problem for the magnetic Schrodinger operator with elec-
tromagnetic potentials of class L>, established in [21].

The purpose of this paper is to weaken the regularity assumptions (1.5) on the
fluid parameters ¢, v, p, and « in the results of [1], [3], and in particular, to allow
some parameters to be discontinuous. In doing so, motivated by the recent work
[23], we shall impose regularity assumptions on the fluid parameters, weaker than
those in (1.5), implying that A(w) € (H' N L>®)(€;C") and ¢(w) € L>*(;C). In
this case the reduction to the magnetic Schrédinger operator (1.6) is not useful
since g(w) given by (1.7) is no longer in L*°(€2) and we only have g(w) € L*(2). To
the best of our knowledge, there are no results available for the inverse boundary
problem for the magnetic Schrodinger operator with electromagnetic potentials of
such low regularity. See [17], [21] for the sharpest results in this direction. There-
fore, we shall deal with our inverse problem directly, relying on the techniques
developed in [23].

Our results for the problem of acoustic tomography of moving fluids will be
a consequence of a general result for the following inverse boundary problem,
which we shall study first. To state the problem, let

LA,q: —A—2z’A-V+q,
where A € (H'NL>®)(Q;C") and q € L>(2; C), and let us suppose that assump-
tion (A) holds for L4 ,. Notice that here A and ¢ need not be of the form (1.2).
The inverse problem under consideration is to determine A and ¢ in €2, given
the Dirichlet-to-Neumann map A4 4. Similarly to the inverse boundary problem
for the magnetic Schrédinger operator, there is an obstruction to uniqueness in
this problem given by the following gauge transformation: if ¢ € C*°(Q) and
©loa = 0,0,p]a0 = 0, then Ay, 4, = Aa, 4 where

A1 = A2 + V(,D and q1 = g2 + 2142 : VQO + (VQD)Q - ZA(,D, (18)
see [36]. This follows from the fact that

6_i¢LA2,QQ (éﬂpu) - LAluqlu (19)
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and ‘ _

U|8Q == (e“’ou)|3g, (8Vu)|59 = a,/(ewu”ag (110)
Therefore, one can only hope to recover the coefficients A and ¢ of the opera-
tor La, in © up to the gauge transformation (1.8) from the knowledge of the
Dirichlet-to-Neumann map A4 ,. In this direction, our main result is as follows.

Theorem 1.1. Let Q C R™, n > 3, be a bounded open set with smooth boundary.
Suppose that Ay, Ay € (H' N L>®)(;C") and q1,q2 € L>(;C) are such that
assumption (A) holds for La, 4 and La, g, If Aa, g = N4y q,, then there exists
© € WH(Q; C) such that Ay = Ay + Vo and q; = qa + 245 -V + (Vo)? —iAp
mn €.

Our first corollary is a generalization of a result of [1] to the case of the vector
field A of low regularity. Notice that here the vector fields and scalar potentials
are both real-valued.

Corollary 1.2. Let Q C R™, n > 3, be a bounded open set with smooth boundary.
Suppose that Ay, Ay € (H'' N L®)(Q;R™) and q1,q2 € L®(Q;R) are such that
assumption (A) holds for La, 4 and La,g. If Aa, g = M4, g, then Ay = Ay and
@ = q2 1 L

Remark. The assumption A € (H' N L>)(;C") in Theorem 1.1 corresponds
to the optimal space on the scale of spaces H* N L*>, s > 0, for which the
inverse boundary problem for the operator L4, can be solved by means of the
techniques of L? Carleman estimates.This could be seen in particular from the

estimate (3.31) which is of purely qualitative nature, see also the discussion in
23].

Let us now return to the problem of acoustic tomography of moving fluid. Let
L 4;(w),q;(w) be of the form (1.1), (1.2), j = 1,2. We make the following regularity
assumptions on the fluid parameters, which are strictly weaker than those in
(1.5),

Cj € (HIQLOOXQ;R), CjZC()>0, p < (H2QW1’OO>(Q;R), Pj > po >0,

v; € (H' NL®)(GRY), ap; € L°(4R), ¢ € L2(R), ¢ #0.

(1.11)

In particular, we allow the parameters c;, v;, and «; to be discontinuous. The
regularity assumptions (1.11) imply that A;(w) € (H' N L>)(Q;C") and ¢;(w) €
L¥(Q;C), j = 1,2.
The following direct consequence of Corollary 1.2 gives an improvement of the

corresponding result of [1] in terms of the regularity of the parameters c;, v;, and
can be stated as follows.

Corollary 1.3. Let Q C R™, n > 3, be a bounded open set with smooth boundary.
Assume that oy = ag = 0, py, po are constant in €2, and that c¢1, co, v1, V9 satisfy
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(1.11). Suppose that assumption (A) holds for L, (w).q ) ond Layw)g(w), and
that Aa,(w)g(w) = Mow)gw) for a fived frequency w > 0. Then ¢y = c; and
v = vy in €.

The following results provide improvements of the corresponding results of [3] in
terms of the regularity of the fluid parameters, and can be stated as follows.

Corollary 1.4. Let Q) C R", n > 3, be a bounded open set with smooth connected
boundary. Assume that oy = as = 0, and that c1, co, v1, v, p1, p2 Ssatisfy
(1.11). Suppose that assumption (A) holds for L, (w)qw) ond Layw)g(w), and
Ay @)qi (@) = Mo(w),ge(w) for two fized distinct frequencies w = wy > 0 and w =
wy > 0. Then ¢y = cg, v1 = v9, and py = Cpy in Q, where C' > 0 is a constant.

Corollary 1.5. Let Q C R™, n > 3, be a bounded open set with smooth con-
nected boundary. Assume that c¢1, ca, vi, va, p1, p2, a1, Qg satisfy (1.11). Sup-
pose that assumption (A) holds for La,(w)q ) and Loy gw): and Aa,(w)qw) =
A dy(w),qo(w) for three fized distinct frequencies w = w; >0, w = wy >0, w = w3 >
0. Then ¢y = ca, v1 = vy, p1 = Cpo, and oy = ap in €.

Let us emphasize that the issues of relaxing regularity assumptions on the co-
efficients in inverse boundary problems have recently been studied extensively.
Let us illustrate this by discussing the following three fundamental inverse prob-
lems: the Calderén problem, and inverse boundary problems for the magnetic
Schrodinger operator, as well as for the advection diffusion equation. The work
[37] established the global identifiability for C? conductivities in the Calderén
problem, see also [26] for the global uniqueness in the closely related inverse scat-
tering problem at a fixed energy. Subsequently, the regularity of the conductivity
has been relaxed in [7], [10], [29] to conductivities having 3/2 derivatives in a suit-
able sense. The paper [18] obtained the global uniqueness for C* conductivities
and Lipschitz continuous conductivities close to the identity. The latter small-
ness condition was removed in [12], and the global uniqueness for conductivities
in Wln with n = 3,4, was obtained in [16].

Turning the attention to the inverse problem for the magnetic Schrodinger oper-
ator, starting with the work [36], where the global identifiability of the magnetic
field and electric potential was established for magnetic potentials in W2, satis-
fying a smallness condition, there has been a substantial amount of work reducing
the regularity of the magnetic potential, see [17], [21], [25], [27], [34], [38]. The
sharpest results in terms of the regularity of the magnetic potentials are given
in [21] and [17], where the global identifiability is obtained for L> magnetic and
electric potentials in any dimension n > 3 and for small magnetic potentials in
W3, s> 0, and electric potentials in W =3, in dimension n = 3.

We shall finally make some comments concerning the inverse boundary problem
for the advection diffusion equation. Starting with [13], regularity issues for this
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problem were addressed in [20], [23], [28], and [34]. The sharpest results in terms
of the regularity of the advection term are due to [28] and [23], showing the global
uniqueness in the inverse boundary problem for the advection diffusion equation,
with a Holder continuous advection term, with the Holder exponent in the range
(2/3,1], and with the advection term of class H' N L*°, respectively.

The paper is organized as follows. Section 2 is devoted to the construction of
complex geometric optics solutions for our equations, relying on the techniques
developed in [19], [21], [23], and [35]. Theorem 1.1 together with Corollary 1.2 are
established in Section 3, and Section 4 is concerned with the proofs of Corollary
1.4 and Corollary 1.5, following the approach of [3] and noticing that it still works
in our low regularity setting. Appendix A reviews the boundary determination
of the vector field A of class H* N L™ from boundary measurements.

2. CONSTRUCTION OF COMPLEX GEOMETRIC OPTICS SOLUTIONS

We begin this section by introducing the following operator, which comprises
(1.1) and its formal L? adjoint,

Prwg=-A+V -V+(V-W)+gq, (2.1)

where VW € L>*(Q;C") and ¢ € L*>(Q; C). Here the divergence V-W is defined
in the sense of distribution theory and we have (V-W)u =V - (uW)—-Vu-W €
H7Y(Q) for u e HY(Q). Thus, Pyw, : HY(Q) = H Q).

Let 0 < h <1 be a semiclassical parameter. Our starting point is the following
solvability result for the operator h% Py, conjugated by an exponential weight.

Proposition 2.1. Let p(x) = o - x, where o € R™ is such that |a| = 1, and
assume that VW € L*(Q;C") and q € L>*(Q;C). If h > 0 is small enough,
then for any v € H=1(Q), there is a solution u € H*(Q) of the equation

er(W2Pywg)e fu=v in Q (2.2)

satisfying ||u|| g

scl

@ = %HUHH;}(Q)-
Here
[(u, ¥)q
[l o = lullZey + 1190l Nullrg = sup  Aowtdel
HSCI(Q) L (Q) L (Q) Hscl (Q) 0751116080(9) ||¢||Hs1cl(9)

where (-, -)q is the distributional duality on 2. Proposition 2.1 is established in
the work [23, Proposition 2.3] in the setting of admissible compact Riemannian
manifolds with boundary, relying crucially on the works [19], [21], [24], and [35].
The arguments in the Euclidean case are exactly the same.

The goal of this section is to review the construction of complex geometric optics
(CGO) solutions for the equation Py u = 0in Q with VW € (H'NL>)(Q;C")
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and g € L*°(Q;C). In doing so, we shall follow the arguments of [21] and [23]. In
general, CGO solutions are of the form

u(z, (3 h) = e%(a(x,C; h)+r(x,(;h)),

where ( € C",( - ¢ = 0,|C] ~ 1,a is a smooth amplitude, and r is a remainder
term.

First, we shall extend V and W to compactly supported functions in (H* N
L*>®)(R™; C") and denote the extensions by the same letters. We refer to [22,
Section 2.2] for a construction of such extensions. In order to obtain nice re-
mainder estimates for our CGO solutions, we shall work with regularizations of

V and W. To this end, let ¥ (z) = 77" (f) ,7 > 0, be the usual mollifier with
T

Y e CP(R"),0 <9 <1, and [, ¢dr = 1. Assume also that ¢ is radial. Define
Ve =V, € CP(R™; C"). We have the following estimates, which allow us to
approximate V' by its regularization V., see [23, Appendix B] for the proof.

Proposition 2.2. We have
IV = Vel = o(7),  [IVell 2@y = O(1),
IVVell2@ny = O(1),  [10°Vell2@ny = o771, ol =2,
Vel @y = O1),  [VVellzmo@ny = O(71), 7= 0.

We want to find an amplitude a and a remainder r such that
vaque% (CL + T) =0. (23)

Here we shall allow ¢ to depend slightly on h, i.e. ¢ = (o + (1, where (j is
independent of h and ¢; = O(h) as h — 0. We also assume |Re (o] = [Im (o] = 1.

Writing
e’%(hQPV,W,q)eL?LCr = —e’%(hQPV,qu)eLﬁCa,

and computing the conjugated operator, we get
e T (P Puwg)etr =— (= h*A =20 - hV —2¢, - hV + bV - AV

+héo - (V—=Va)+hio- Vi +hV -G+ hA(V-W) —|—h2q)a.
Following the WKB method, we obtain the following equation for the remainder
e (W2Pyywg)e™ r = — [~h?Aa+ hV - hVa + h*(V - W)a + hqa] + 2¢; - hVa

—hGo - (V= Vi)a— RV - (ia,

(2.4)

provided that the amplitude a € C*°(R™) satisfies the regularized transport equa-
tion
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One looks for a solution to (2.5) in the form a = €%, where @, solves the equation
—2C0 V&, +¢-V,=0 in R (2.6)

Using that ¢ - ¢ = 0 where ( = ¢y + O(h), we have (; - o = 0 and |[Re(y| =
IIm (y| = 1. The operator N¢, := (o - V is therefore the 0-operator in suitable
linear coordinates. An inverse of this operator is defined by

(NC_olf>($) f(l" —11Re (o — yoIm Co)

2 Y1+ 1y
We have the following result from [34, Lemma 4.6].

Lemma 2.3. Let f € WE®(R"), k > 0, with supp (f) C B(0,R). Then & =
Ng_olf € Wk’OO(R”) satisfies N, ® = f in R", and we have

[@l[wt.oo ey < Ol lwrnoo ey, (2.7)
where C = C(R). If f € Cy(R"), then ® € C'(R").

1dy2, f S C[)(Rn)

By Lemma 2.3, we see that ®.(z, (o; 7) := N (Co-Vr) € (C®NL>)(R™) satisfies
(2.6). Thus, by Proposition 2.2 and Lemma 2.3, we have

1@ i@y = O1), [V, [imn = O as 70  (28)

We now need the following result established in [37, Lemma 3.1]:

Lemma 2.4. Let —1 < 6 < 0 and let f € L3, | (R™). Then there exists a constant
C > 0, independent of (y, such that

ING fllzeny < Cllf Nz, ny-

Here,
e = [ (L o) 17 (e P
Rn

Using the fact that V, has compact support uniformly in 7, by Lemma 2.4 and
Proposition 2.2, we have

HV(I)THL2(Q) = O(l), ||8°‘<I>THL2(Q) = 0(7'71), ’Oé| = 2, T — 0. (29)

Setting ®(-, (o) == Nc_ol(%CO - V) € L*(R"), it follows from Proposition 2.2 and
Lemma 2.4 that ||® — ®.|/12(q) = o(T) as 7 — 0.

Recalling that a = e®7, and using (2.8) and (2.9), we get
lallLe@) = O), [[VallL=@ =0, [Vallze = O(1). (2.10)
)

Furthermore, we have Aa = aV®, - V&, + aAd,. Using (2.8), (2.9), (2.10), and
the Gagliardo-Nirenberg inequality for u € (L= N H?)(2), see [6, page 313],

]
1/2 1/2
IVl ooy < Cllulli2 o lull 2 (2.11)
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with © = ®,, we obtain that
1Aallz2() < llallz@) (IVO: I Za) + 1AP-[|12() = o(771). (2.12)

The discussion in [23, Section 3| can now be applied exactly as it stands, and we
obtain that the norm of the right hand side of (2.4) in H_; () does not exceed
h%o(771) 4 ho(r) as 7 — 0. Choosing now 7 = h'/2, applying Proposition 2.1 to
(2.4) with a = Re (y and using the fact that it = O(1) with all derivatives and

iz-Im(g

(hD,)*(e—® ) = O(1) for all o, we see that there exists a solution r € H*(Q)
of (2.4) such that [|r||z1 ) = o(h'/?) as h — 0.

We summarize the discussion above in the following proposition.

Proposition 2.5. Let V,W € (H' N L>®)(;C"), g € L>°(; C), and let { € C"
be such that ¢ - ¢ =0, ( = (o + ¢ with {y being independent of h > 0, |Re (o] =
Im (o] = 1, and ¢ = O(h) as h — 0. Then for all h > 0 small enough, there
exists a solution u(x,(;h) € H(Q) to the equation Pyw,u =0 in Q, of the form

u(z,(h) = e%(a(x, Cosh) +7r(z, ¢ h)),

where a = @) with Oy(+, ) € (C= N LX) (R™). We have ||® — @p||12(0) =
o(h'?) as h — 0 where ®(-, () := NC_Ol(%Co V) € L*(R"). Moreover, a satisfies

lal|ze@) = O(1), [[Vallre@) = O(h™2), |[[Vallr2@q) = O(1),

_; (2.13)
|Aall 2@y = o(h™2).

The remainder 1 is such that ||| g ) = o(hz), h — 0.

3. PROOF OF THEOREM 1.1 AND COROLLARY 1.2

Let A, Ay € (H' N L™®)(Q;C"). Using a standard Seeley extension argument,
we observe that the vector fields A; and A, can be extended to elements of
(H' N L™ N &) (R™;C"), see [22, Section 2.2] for a detailed discussion. Letting
v = (A — Ay)lgug € (€N L¥)(R™;C"), we see that v € H'(R™; C") in view
of the fact that A4, 4 = A4, 4, together with Proposition A.1. Here 1p. g is the
characteristic function of the set R™\ €. Replacing A, by A; + v, we achieve that
A=Ay on R" \ﬁ We also extend ¢; and ¢y to all of R™ so that ¢; = ¢ = 0 on
R™\ Q.

Let B C R™ be a large open ball such that @ CC B. Using that Ay, 4 = A4y

and Ay = Ay, ¢1 = g2 on B\ Q, similarly to [21, Proposition 3.4], we conclude
that Ca, 4 (B) = Cay.q(B), where

Ca;q,(B) = {(ulop, Ovulop) : u € H'(B), La, 4;u =0 in B}
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is the set of the Cauchy data for the operator Ly, o, in B. Using that Cy, 4 (B) =
Cy.q(B), similarly to the proof of [23, Proposition 4.1] we then derive the fol-
lowing integral identity,

/ [(2i(Ay — Ay) - Vug)us + (g1 — q2)ugug|dz =0 (3.1)
B
for all uy,uy € H'(B) solving
—Aul — 22A1 . Vu1 + qiu] = 0 in B, (32)
_AU/Q + 27,142 . VUQ + 2z(V . A2)u2 + Qoug = 0 in B. (33)

We shall use (3.1) with u; and us being CGO solutions to (3.2) and (3.3). To this
end, let &, py, g € R™ be such that |uy| = |pe| = 1 and gy - pio = p1-& = po-& = 0.
Similarly to [21] and [36], we set

(= zgf uﬁmW#z; G2 = Zhé “1_i\/w’u2’ (3.4)

so that (;-(; =0, j = 1,2, and % = i£. Moreover, ¢ = p1 +ipug + O(h) and
(o = —p1 —ipg + O(h) as h — 0. By Proposition 2.5, for all A > 0 small enough,
there exists a solution u;(z,¢;h) € H'(B) to (3.2) of the form

wi(z, Gy h) = e (ePrn@imting o (p 1o R)), (3.5)
and uy(z, (s h) € HY(B) to (3.3) of the form
s, o5 h) = €1 (%I o (o, Cy: ), (3.6)
where ®;;, € (C* N L>)(R"), and
|®; — ®;nll 2y = o(h?), h—0, j=1,2. (3.7)
Here
Oy (-, +ipn) = N, (4 ipn) - (—iAy)) € L°(R™), (3.8)
and

Dy (-, =1 — ipta) = N2y, ((—p1 — ipia) - (i42)) € L¥(R"). (3.9)
The remainder r; is such that
1 .
7l sy = o(hZ), h—0, j=12 (3.10)

We next substitute the CGO solutions u; and us, given by (3.5) and (3.6), into
the integral identity (3.1), multiply it by h, and let h — 0. First we have

h(Vuy)ug = ¢ (ay + 1) (as + r2) + he™*(Vay + Vry)(ag + r2), (3.11)
where a; = e®in, j=1,2.

Using (3.10) and (2.13), we obtain that

/ QZ(AQ — Al) . Cleixf(alrg + riag + Tl’l"g)dﬂf = O(h%) — 0, h — O, (312)
B
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‘h/ 22€Z$§<A2 — Al) : (Val + V’f’l)(ag + TQ)dIL’ = O(h%), h — 0, (313)
B

—O(h), h—0. (314

h/ (Q2 - Ql)eim'g(al + 7’1)(612 + Tz)dx
B
Therefore, from (3.1) in view of (3.12), (3.13), and (3.14), we get

lim [ (Ay — Ay) - (g + ipg)e™sePrrt®2ndy = 0,
h—0 Jp

Using (3.7), similarly to [21], we obtain that
(p1 +ip2) - / (Ay — Ap)e™ Pt %2y = (. (3.15)

Here the integration is extended to all of R™ since supp (As — A;) C B.
In view of N_’éf = —Nglf, we have
q)l -+ (I)Q = Nil (—Z(/,Ll —+ ZILLQ) . (Al - Ag)) (316)

p1tipe
An application of [21, Proposition 3.3] allows us to get

(1 + iia) - / (As — Ay)e™dy = 0, (3.17)

and we conclude as in [21] that

see also [15]. Here we view the vector field A := A — A; as a one form and dA
is a two form given by

dA =" (Ou,Ax — O Aj)da; A day.

1<j<k<n
Our next goal is to recover A and ¢ up to a gauge transformation. To this end,
similarly to [21] we observe that (3.18) implies that there exists
o € (Wh>n H?*)(R") with supp (p) C B (3.19)
such that Vi = A; — As. Tt follows that

67“0 ©) (—A — 22A2 -V + q2) e} ein =—-A— 2@./41 -V + V- (—ZV(,O) + CE = PV,W,qE;
(3.20)

where
G = q2 + 245 - Vo + (V)? € LR C), (3.21)

V =—2iA; € (H'NL®)(R";C"), W =—iVyp e (H NL>®)(R",C").
Associated to the operator Py g is the set of the Cauchy data,
OV,W,@(B) = {(u|aB,&,u|33) Tu e Hl(B), PV’W,(TQUJ = 0}
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Using (3.20) and arguing as in [23], we see that

Cyvwa(B) = Ca,q,(B),

and therefore, Cywg,(B) = Ca, 4 (B). Similarly to [23] this equality of the sets
of the Cauchy data implies that the following integral identity holds,

/B[(évg — q1)urug + 1tV - V(ugug)]dz = 0, (3.22)

for all uy, us € H*(B) solving
—Au; — 2iA; - Vu +qui =0 in B, (3.23)
—Aug + 2iA1 - Vug +2i(V - A))ug + V- (—=iVp)us + Gous =0 in - B. (3.24)
The next step is to substitute CGO solutions to (3.23) and (3.24) into the integral
identity (3.22). To this end, let (;,(y € C" be given by (3.4) and let us recall

from Proposition 2.5 that for all A~ > 0 small enough, there exists a solution
uy(x, 3 h) € HY(B) to (3.23) of the form

x-(q

wy(z,Cys h) = e n (ePrn(@mting) g (110 b)), (3.25)
and uy(z, (o3 h) € HY(B) to (3.24) of the form
us(w, Goih) = € (P27 gy, G ), (3.26)
where
Oy (- i + i) == Nl (i +ipg) - (—iAv ), (3.27)
and
Do (-, —p1 — ip2) = N7y, ((—pa — i) - (iA1R)). (3.28)

Here Ay is the regularization of A; as above. Notice that @y (-, 1 + ip2) +
Dy 1, (-, —p1 — ipg) = 0. Let us also recall that the remainders r; satisfy (3.10).

Letting a; = e®ir j =1,2, so that ajay = 1, we write

uuy = (1 + ayry 4 riag + 117r2),

V(uiug) = i€e™ (1 + ayry + rias + r1ry) 4+ €75V (ayry + riag 4 71779).
It follows from (2.13) and (3.10) that

/(672 — q1)uugdr — /(672 — Ch)em'gd% h —0, (3.29)
B B

/ iV -i€e™S(1 4 ayry + riag + riry)dr — / iV -ife™Sdx, h— 0. (3.30)

B B

Using (3.10), we also have

/ iV - eV (riry)da| < CIV@ll e (Vrillzzllrallzz + [ Vrall 2 llrillz2) = o(1),
B

(3.31)
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as h — 0. Finally we claim that

N[

‘ / iV - eV (a1ry + agri)dz| = o(h?), h— 0. (3.32)
B

Following [28], [23], when establishing (3.32) we introduce the regularization ¢, =
p*x € Cg°(R™), 7 > 0. Here ¢, () = 7™ (E) with ¢ € Cg°(R"),0 <1 <1,
T

and [, ¥dz = 1. Assume also that ¢ is radial. We have supp (¢,) C B, for all
7 > 0 small enough. Using that Vo € (H' N L*>)(R™) and Proposition 2.2, we
get

IVo — Vol =0(7), ||Ag.|rz =O(1), 7—0. (3.33)

In view of (3.33), (2.13) and (3.10), we obtain that

/ iV - eV (arry)d
B

< / (Ve = V,) - V(ars)|de +/ |(Apr)arrs|de
B B
= o(r)o(h™%) + o(h%) = o(h%), h — 0,
where we take 7 = h. The estimate (3.32) follows.
Combining (3.22), (3.29), (3.30), (3.31), and (3.32), we get

/ (@ — @) + V- i€)e™Ede = 0.
B

In other words, F (g —q1 —iA¢) = 0 in the sense of distributions, and therefore,
G2—q —iAp=0 in R" (3.34)
In the view of (3.21), the proof of Theorem 1.1 is now complete.

It follows from the proof of Theorem 1.1, in particular from (3.19) and (3.34),
in view of the fact that the vector fields A;, As, and the scalar potentials ¢, go
are real-valued, that p € (Wb N H?)(R";R) with supp (¢) C B, is such that
Ay =0 in R". Hence, ¢ = 0. This completes the proof of Corollary 1.2.

4. PROOFS OF COROLLARY 1.4 AND COROLLARY 1.5

The goal of this section is to prove Corollary 1.4 and Corollary 1.5, by following
the arguments of the paper [3]|, and verifying that they still go through in the
present low regularity setting, once Theorem 1.1 and the boundary reconstruc-
tion result of Proposition A.1 have been established. The following discussion is
therefore provided mainly for the convenience of the reader.

Let the fluid parameters ¢;, p;, v; and o satisfy (1.11), and let us define A;(w)
and qj(w) as in (1.2), j = 1,2. Using that AA1(w),q1(w) = AAQ(W)7q2(w) fOl“ W = W1
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and w = wy, we conclude from Theorem 1.1 that there is p(w) € WH>(Q;C)
such that

Aj(w) = Ay(w)+Vp(w), @w)=gw)+24w) - Ve(w)+(Ve(w))* —iAp(w),
for w = wy,wy. Hence,
1(w) = g2(w) +242(w) - (A1(w) = Az(w)) + (A (w) = Ag(w))* =iV - (A1 () — Az (w)),
and therefore,

@(w) — @ (W) + A (w)? — Ay(w)? — iV - (A (w) — Ay(w)) =0, (4.1)

for w = w; and w = wy. Taking the real and imaginary parts in (4.1), using (1.2)
and the following consequence of it,

1)2. 1 N 2 . .
Aj(w)? =w* % — (—E) +z‘w“—; : E, j=1,2,
C; 2 p; G Pj
we get
1 1 2 2 1V N> (1Y)’ Vpr V
) () e (2 )
5 cf i G 2 ; 2 p2 2p1  2po
(4.2)
and
\Y \Y
oG-t T v (G- %) (-0l g
ST | G P2 G G C2 ‘1
for w = w; and w = wy. Using that wy # wy, we obtain from (4.2) that
2 2 1 1
S-%-(3-7)-0 (44
S ) G a
Vpr V 1Vp\>  [(1Vp\°
v. (ﬁ - ﬂ) - (_ﬁ) ; <_ﬁ) _0, (4.5)
20 2p 2 p 2 p2

and from (4.3) that

E.E_%.E_v.(U_;_“_g)_z(%(“)_o‘l(w)) —=0.  (4.6)

Proposition A.1 gives

Vo _ Vel i aq), (4.7)
P1 o0 P2 a0
and
S22 i H2(09). (4.8)
Cllaa  “lan
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Letting u; = 1log p; € (W-*NH?)(Q;R), and using (4.7) and the connectedness
of 0f), we see that ¢ = u; — uo is a constant along 0€). Furthermore, letting
X = Vuy + Vuy € (L N HY)(2;R"), and using (4.5), we get

Ag—X-Vg=0 in Q.
An application of the maximum principle gives that g is a constant in €2, see [4,
Chapter 3, Section 8.2]. Hence, p; = Cpy in €.

Conclusion of the proof of Corollary 1.4. Let w = w;. Taking the real part
of Aj(w) — Az(w) = V(w), we see that

v Uy Re p(w)
- = Vy, 4.9
2 a3 X: X w (4.9)

Setting a = % = % € (L*NHY)(Q;R™), and recalling that a; (w) = ag(w) = 0,
we obtain from (4.6) and (4.8) that

a-Vx—Ax=0 in £,

x=B on 09,

where B is a constant. Another application of the maximum principle gives that
v1

x = B in ©Q, and therefore, 3 — % = 0 in Q. Now (4.4) implies that ¢; = ¢, in
1 2
), and thus, v; = v9 in 2. This completes the proof of Corollary 1.4.

Proof of Corollary 1.5. It follows from (4.6) that

(ﬂ_v_z) 4. (v_;_v_;>+2w<1%_2wczw:0, (4.10)

A A g A3 Ca s
for w = wy,ws, w3 > 0 mutually different frequencies. If (;(x) # ((z) then the
vectors (1,wS @ we@) w = W, wy,ws, are linearly independent in R3. Hence,
(4.10) implies that at the point =, we have

V1 (%) U1 V2
A _2) v (2 -2) =0 4.11
<c% ) ‘ ( ) ’ (4.11)

ot =0, 722 = 0. If G(z) = G(x) then the vectors (1,08 ®) W = wy,ws,

are linearly independent and at the point z, (4.10) gives that (4.11) holds and

%’1 — %Q = 0. As in the proof of Corollary 1.4, we get ¢; = ¢o, and v; = v5 in

Q). Furthermore, a;(x) = as(z). This completes the proof of Corollary 1.5.

APPENDIX A. BOUNDARY RECONSTRUCTION OF (H' N L*)-VECTOR FIELD

The purpose of this appendix is to provide a proof of the boundary reconstruction
of the (H' N L*)-vector field A from the knowledge of the Dirichlet-to-Neumann
map Ay, for the operator Ly, = —A — 21A -V 4 q. When doing so, we follow
the arguments of [23, Appendix A] closely, the only difference being that here the
potential ¢ is present, whereas it was absent in [23]. We refer to [8], [9], [23], and
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[24] for similar reconstruction arguments. One can also note that in contrast to
[24], here we are able to determine not only the tangential component of A on
0f), but the entire trace of A on 9. Our result is as follows.

Proposition A.1. Let Q C R", n > 3, be a bounded open set with C'*° boundary,
and let Ay, Ay € (H' N L>®)(Q;C"). Suppose that the assumption (A) holds for
both operators La, 4 and La,,,, and that Ay, ¢ = Aa,q,- Then Ajloq = Aszlaq
in HY2(08; C").

Proof. Let f € HY?(0S0). First, arguing similarly to [23, Appendix A] and using
that A4, 4, = A4, g, We obtain the following integral identity,

/[—Qi(Al - Vup)v + quitlde = /[—Qi(Ag - Vu)t + qougv|de, (A.1)
Q 0

valid for all uy, uy € H'(Q2) solving
(—A — 2214] -V + C]j)Uj = 0,
Uj’@ﬂ = f
for j = 1,2, and all v € H'(Q) solving
Ay =
{ v=0, (A.3)

vloa = [

(A.2)

Similarly to [23], we shall construct some special solutions to (A.2) and (A.3),
whose boundary values have an oscillatory behavior while becoming increasingly
concentrated near a fixed boundary point xy € 0€2, see also [8] and [9]. To this
end, it is convenient to straighten out the boundary locally by means of the
boundary normal coordinates.

Let vy = (v,yn) € R" ¢ = (y1,...,yn_1) be the boundary normal coordinates
centered at xy. Thus, y varies in a neighborhood of 0 in R". In terms of y, locally
near xy, the boundary 0f2 is defined by y, = 0, and y,, > 0 if and only if z € €.
In what follows, we shall write x = (2, z,,) instead of y = (v, yn).

Let n € C§°(R™;R) be a function such that supp(n) is in a small neighborhood
of 0, and

/ n(z’,0)%ds’ = 1.
Rn—1

As in [8], [9], [23], [24], we let

where 7/ € R"~! = T,,09. This implies vy € C5°(R™) and supp(vp) is in O(\/?)
neighborhood of zy = 0.
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Let f = vglogn. Then v = v+ vy solves (A.3) if v; € H}(Q) is the unique solution
to the Dirichlet problem

{—Avl = Avg in £, (AA)
v1]aa = 0.
We shall need the following estimates established in [9], [23], and [24],
lvollzaey < OONT ), (A.5)
lorllzz@ < OOTH). (A.6)

Turning the attention to the problem (A.2), we see that u; = vo+ w, solves (A.2)
if w; € Hj(Q) is the unique solution to

(—A — ZZA] -V + Qj)UJj = —(—A - QZAJ -V + Qj)Uo in Q, (A 7)
wj’ag =0. ‘

Using the Lax-Milgram lemma together with the uniqueness of solution to (A.7),
we obtain that

|wjllm @) < CI(=A = 2iA; -V + g;)vollg-1(0)- (A.8)

To bound the right hand side of (A.8), let us recall that the following estimate
was established in [23, Appendix],

I(=A = 2i4; - V)voll-10) < ONT). (A.9)
Using (A.5), we see that

lgjvoll 1) < ONT*2). (A.10)
It follows from (A.8), (A.9), and (A.10) that
w;ll ) < ONT). (A.11)

Now let us plug the solutions u; = vy + w; and v = vy + v; of (A.2) and (A.3),

respectively, into (A.1), multiply it by )\’@, and compute the limit as A — 0.
To this end, using (A.5), (A.6), and (A.11), we first observe that

_ (=1 _
’/\ 2 /quujvdx

(n=1)

<A gl (lvoll 2y + lhwsllzze)) (lvoll 2y + [lvill 2
<OMNY?) 50 as A—0.
Using (A.12), we conclude from (A.1) that

_ (n—1)

= A2 | gi(vo + wy) (w5 + 1) da
!

(A.12)

(n=1)

lim A% / (A - Vuy )ode = lim A~z
Q A—0

/(A2 . VUQ)@dQI,
Q
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which is exactly the same as [23, formula (A.22)]. The arguments in [23] allow
us therefore to conclude from (A.1) that

(7',4) - A1(0) = (7',0) - A2(0),
for all 7/ € R*1. This completes the proof of Proposition A.1. O
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