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Humanmesenchymal stem cells (hMSCs) are themost commonly-tested adult stem cells

in cell therapy. While the initial focus for hMSC clinical applications was to exploit their

multi-potentiality for cell replacement therapies, it is now apparent that hMSCs empower

tissue repair primarily by secretion of immuno-regulatory and pro-regenerative factors.

A growing trend in hMSC clinical trials is the use of allogenic and culture-expanded

cells because they are well-characterized and can be produced in large scale from

specific donors to compensate for the donor pathological condition(s). However, donor

morbidity and large-scale expansion are known to alter hMSC secretory profile and

reduce therapeutic potency, which are significant barriers in hMSC clinical translation.

Therefore, understanding the regulatory mechanisms underpinning hMSC phenotypic

and functional property is crucial for developing novel engineering protocols that

maximize yield while preserving therapeutic potency. hMSC are heterogenous at the

level of primary metabolism and that energy metabolism plays important roles in

regulating hMSC functional properties. This review focuses on energy metabolism in

regulating hMSC immunomodulatory properties and its implication in hMSC sourcing and

biomanufacturing. The specific characteristics of hMSC metabolism will be discussed

with a focus on hMSC metabolic plasticity and donor- and culture-induced changes

in immunomodulatory properties. Potential strategies of modulating hMSC metabolism

to enhance their immunomodulation and therapeutic efficacy in preclinical models will

be reviewed.

Keywords: MSCs (mesenchymal stromal cells), immunomodulation, metabolic plasticity, biomanufacturing,

therapeutic potentials

BACKGROUND

Human mesenchymal stem or stromal cells (hMSCs) are the most commonly-tested adult stem
cells in experimental cell therapy and have been used in more than 50% of clinical trials using
stem cells since 2000. Clinically, the most beneficial aspects of hMSCs are their multilineage
differentiation for damage tissue replacement and their ability to empower tissue repair by
secretion of immuno-regulatory and pro-regenerative factors. Clinical applications of hMSC-based
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therapy initially exploited their multi-potentiality but
increasingly focused on their secretion of immunomodulatory
and trophic factors. In this immunoregulatory scenario,
hMSCs promote tissue regeneration by coordinating an
anti-inflammatory response through communication with
the host’s inflammatory microenvironment, making hMSC
logical candidates for the treatment of immune disorders and
inflammatory diseases. In contrast to the promising results from
preclinical studies and small-scale clinical trials, the clinical
outcomes using manufactured hMSC have been inconsistent
and suboptimal (1–3). The close scrutiny of the discrepant
outcome from these studies suggests that culture expansion,
cryopreservation, and inappropriate delivery routes and dosage,
are major factors that adversely influence hMSC’s therapeutic
efficacy (1, 4). For example, in graft-vs.-host disease, 1-year
survival for patients receiving hMSC at passages 1–2 was 75%
in contrast to 21% using hMSC at passages 3–4 (5). In clinical
application, hMSC therapeutics are often cryobanked as “off-the-
shelf ” products prior to transfusion. However, cryopreservation
is known to reduce hMSC immunomodulatory properties as a
result of cellular stress such as cellular acidosis and metabolic
uncoupling induced during freezing and thaw cycles (6, 7).
It is worth noting that many of these functional changes are
not readily reflected in the assessment of the minimal criterial
and potency assays, suggesting the need for the identification
of additional surrogate markers and regulatory pathways
that can be readily assessed, and modulated to restore hMSC
therapeutic potency.

This immunoregulatory function is achieved through rapid
hMSC phenotype polarization and sustained production of
immunoregulatory factors in response to inflammatory stimuli,
which requires cellular plasticity and metabolic fitness to enable
this response (8). The metabolic fitness of hMSCs is dependent
on donor age and morbidity, and can be significantly altered by
culture conditions imposed on the cells during in vitro expansion.
Each of these factors, and probably other, currently unknown
factors, can reduce hMSC immunomodulatory capacity and,
therefore, reduce their therapeutic potency. A typical clinical
dose of hMSCs is on the order of tens- to hundreds-
of millions of cells per patient and, with hMSCs being
approved for use in an ever-expanding number of clinical
indications, it is estimated 300 trillion (300 × 1012) hMSCs
will be needed annually by 2030 (9, 10). Current engineering
protocols isolate hMSCs from adult donors and expand
them under nutrient-rich conditions that significantly promote
proliferation but ultimately and inadvertently reduce stemness
and therapeutic potency. To compensate for the culture-
induced decline of hMSC therapeutics potency, non-genetic
preconditioning such as hypoxia pretreatment or 3D culture
has demonstrated significant potential in restoring hMSC
properties (1). To better preserve hMSC property during
cryopreservation, hydrogen peroxide preconditioning has also
been shown to enhance adipose derived stem cells (ASCs)
resistance and survival under oxidative stress (7). While
many of these preconditioning strategies have demonstrated
effectiveness in restoring hMSC functional properties, the
regulatory mechanism remains to be fully understood for

widespread implementation in hMSC manufacturing and
translation (11).

Among the core pathways to improving hMSC function,
metabolism has emerged as an important hub. In their
native environment, hMSCs are present in a quiescent state
characterized by low proliferation and high multi-potentiality,
which is maintained throughout adult life. In this state,
stem cells appear to be primarily glycolytic, with “young”
mitochondria maintained by active autophagy and mitophagy
(12, 13). However, numerous studies show that transferring
hMSC into the nutrient-rich artificial culture environment
that promotes rapid proliferation reconfigures their central
energy metabolism to become significantly more dependent
on oxidative phosphorylation (OXPHOS) to support the rapid
proliferation (14, 15). The high OXPHOS-fueled metabolic
profile also results in accumulation of cytotoxic metabolic
byproducts, including reactive oxygen species (ROS) (16),
that reduce the basal autophagy and mitophagy rate while
simultaneously increasing the fraction of senescent cells with
reduced clinical potency (17). Similar metabolic alterations
have been reported for hMSC undergoing large-scale expansion
in bioreactor systems (18). The influence of these metabolic
changes on hMSC functional properties has just begun to be
revealed. Beyond providing cells with building blocks and energy
source to power cellular processes, the energy metabolism and
intermediate metabolites play important roles in shaping cellular
functional properties (19). Therefore, a clearer understanding of
how hMSC metabolism is affected by long-term culture and how
specific metabolic states impact immunomodulatory function
may be the missing link between engineering practices for
expansion and consistent, predictable outcomes in hMSC-based
therapies. This review focuses on the role of energy metabolism
in regulating hMSC immunomodulatory properties and
discusses its implication for hMSC large-scale manufacturing
and therapy. The specific characteristics of hMSC metabolism,
culture-induced metabolic changes, and the metabolism
underpinning hMSC’s immunomodulatory properties will be
discussed. We will also review and discuss recent studies on
hMSC metabolic modulation of their immunomodulatory
properties and therapeutic efficacy.

HMSCS METABOLIC PLASTICITY AND
CULTURE-INDUCED METABOLIC
CHANGES

Once viewed as a mere consequence of the cellular state,
energy metabolism not only provides energy and substrates
for cell growth but is also intimately linked to cell signaling
and control of cell fate (16, 20, 21). As depicted in Figure 1,
freshly isolated hMSCs mainly compressed a clonogenic subset
with high glycolytic activity. Expansion under currently
adopted engineering protocols reduces the fraction of
clonogenic/glycolytic cells and increases the fraction of
mature/OXPHOS-based cells. In fact, this phenotypic and
metabolic heterogeneity exists even at the clonal level of hMSCs
(22). It has been suggested that changes in the microenvironment
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FIGURE 1 | Current hMSC manufacturing practices lead to metabolic shift that reduces therapeutic properties. hMSC manufacturing utilizes freshly isolated hMSCs

and expand under artificial environment to obtain sufficient cell number for clinical application. However, external stresses during replicative expansion, and

cryopreservation shift hMSC metabolism from glycolysis toward OXPHOS, which increases senescent subset and contributes to a breakdown of cellular homeostasis.

Metabolic preconditioning targeting specific pathways can restore hMSC cellular homeostasis and enhance their therapeutic potency.

and accumulated replicative stress experienced during extended
in vitro expansion accelerate hMSC cellular and metabolic
heterogeneity by reconfiguring energy metabolism (21, 22).
As mentioned above, hMSCs exhibit a quiescent, glycolytic
phenotype in a hypoxic in vivo niche such as bone marrow
(16, 21). This particular metabolic state may serve to preserve
hMSC cellular homeostasis by minimizing ROS production
(16, 21, 23), because the high glycolytic flux is also cytoprotective
due to increased generation of antioxidant precursors from the
pentose phosphate pathway (PPP) (24). Upon removal from
this hypoxic, in vivo niche and transfer to the oxygenated,
nutrient-rich environment, this quiescent, glycolytic phenotype
is no longer of benefit to hMSC (11, 22). During early passages,
hMSCs still maintain to an aerobic glycolysis profile, despite its
low efficiency for ATP production (25). However, protracted
expansion of hMSCs under this nutrient-rich environment
induces a metabolic shift from glycolysis toward OXPHOS
(22, 26). This metabolic shift is associated with increased
coupling between glycolysis and TCA cycle and significantly
increased production of ROS and dysfunctional mitochondria
(21). A consequence of this culture-induced metabolic shift
is a breakdown of cellular homeostasis, characterized by
reduced autophagy/mitophagy activity and increased senescence
(22, 27–29). A recent proteomic analysis identified several
proteins involved in energy metabolism, mitochondrial

dysfunction, OXPHOS, and nuclear factor erythroid 2–related
factor 2 -mediated oxidative stress response as being among the
top canonical pathways that are altered in large-scale production
of hMSC in bioreactor system (18). In addition, intrinsic
biological factors such as donor disease or chronological age
also alter hMSC metabolic profile. For example, hMSCs from
obese donors have a higher number of defective mitochondria
with reduced dependence on glycolysis and an altered metabolic
profile compared to cells obtained from healthy controls (30, 31).
hMSCs from aged donors also exhibit greater population
heterogeneity with lower mitochondrial-to-cytoplasm area ratio,
reduced level of manganese superoxide dismutase (MnSOD)
expression, and accumulated ROS compared with cells obtained
from young donors (32). Furthermore, hMSCs from donors with
age-related atherosclerosis exhibited impaired mitochondrial
function that also contributed to metabolic alterations compared
to cells obtained from healthy, young donors (33). Culture-based
interventions aimed at restoring the mitochondrial function
of atherosclerotic-hMSCs by treatment with ROS scavengers
effectively restored their immunosuppressive ability to that
of healthy donors (33). This study directly linked metabolic
alteration due to donor morbidity to reduced hMSC therapeutic
potency and demonstrated that metabolic treatment can restore
hMSCs to a state capable of delivering the desired therapeutic
outcomes. In contrast, the extent of influence of culture-induced
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metabolic changes on hMSC therapeutic potency is largely
unknown because few studies have characterized the metabolic
profiles of hMSC used in therapeutic applications. Beyond
supplying energy and anabolic production of macromolecules,
metabolic circuits engage genetic programs to regulate cellular
events and phenotypic and functional properties, reflecting
the metabolic substrate, specific pathways, and environmental
conditions (23). Although large scale hMSC biomanufacturing
often entails significant changes of culture conditions such
as media composition and substrates (e.g., sugar vs. fatty
acids), supplements (e.g., fetal bovine serum vs. platelet lysate),
expansion protocols (e.g., multi-well plates vs. bioreactor), and
cryopreservation (e.g., cryogen and freeze-thaw cycles), few
studies have elucidated the influence of these changes on hMSC
functional properties and clinical outcome (1, 6, 34–38).

Preclinical studies on the mechanistic connections between
metabolism and hMSC phenotype provide specific molecular
targets and pathways that can be modulated to maintain,
or remodel metabolic profiles of culture expanded hMSCs.
For example, hypoxia culture has been widely used in hMSC
expansion as it better preserves the clonogenic subset during
hMSC expansion by maintaining glycolysis and suppressing
TCA cycle and OXPHOS activity (15, 26, 39, 40), most likely
through activation of hypoxia-inducible factor (HIF) related
genes (41). As a consequence of the glycolytic metabolic
profile, hypoxia culture also activates hMSC autophagy while
reducing senescence and preserving hMSC functional properties
by maintaining cellular homeostasis in vitro (40, 42). However,
hMSCs are not only sensitive to the absolute oxygen level but
also to the fluctuation in oxygen tension, which significantly
complicates implementing hypoxia as an engineering protocol
for maintaining stem cell properties in large scale manufacturing
(43, 44). More recently, the benefits of hMSC hypoxia culture
have been recapitulated at ambient oxygen tensions by treatment
of small molecule modulators that target specific metabolic
regulatory pathways identified in hypoxia studies. Since HIF
is a downstream effector of mTOR, inhibition of Akt/mTOR
signaling pathway with rapamycin and LY294002 reduced
mitochondrial activity, and glycolysis–TCA coupling, prevented
culture-induced senescence (20, 45). These studies highlight
the importance for a balance between AKT/mTOR activity and
intracellular signaling for maintaining glycolytic metabolism
to preserve stem cell functions. Non-hypoxic stabilization of
HIF-1α using hypoxia mimetics such as desferoxamine (DFO),
ciclopirox olamine, the HIF-prolyl hydroxylase (PHD) inhibitor
FG-4497, or cobalt chloride (CoCl2) have also been shown to
overcome the challenge of controlling ambient oxygen tension to
effectively maintain MSC properties (45–47).

hMSCs have intriguing properties of self-assembly into three-
dimensional (3D) aggregates mediated by cell-cell and cell-
ECM interaction, which better preserve hMSC phenotypic
properties compared to their 2D counterparts (48). The benefits
of 3D aggregation culture in preserving hMSC stemness and
enhancing secretion of immunomodulatory cytokines can also
be attributed to aggregation-induced metabolic reconfiguration,
which inhibits mitochondrial activity and increases glycolysis
with increased anaplerotic flux (28, 48–50). While the metabolic

reprograming in 3D aggregates has been commonly attributed to
oxygen diffusion limitation, our recent studies reveal that actin-
mediated cellular compaction activates PI3K/Akt pathway and
induces metabolic shift toward glycolysis (48, 51), highlighting
energy metabolism as a signaling hub in regulating hMSC
functions during in vitro culture.

THE ROLE OF METABOLISM IN THE HMSC
IMMUNE RESPONSE AND
IMMUNOMODULATION

Asmentioned earlier in this review, an attractive feature of hMSC
as a cell therapy product is their immunomodulatory properties
in response to environmental stimuli from surrounding tissues
resulting in the secretion of beneficial cytokines and cellular
components such as microRNA and extracellular vesicles; as
might be expected, these properties are significantly influenced
by metabolism. As shown in Figure 2, in the presence of
inflammatory cytokines such as interferon-γ (IFN-γ) alone
or in combination with tumor necrosis factor-α (TNF-α) or
interlukin-1 (IL-1), MSCs secrete chemokines such as CXC-
chemokine receptor 3 (CXCR3), CC-chemokine receptor 5
(CCR5) ligands, CXC-chemokine ligand 9 (CXCL9), CXCL10,
and CXCL11 (52, 53), which attract immune cells via chemotaxis
(52, 54–56). Recruited T cells are inhibited by activated hMSCs
through the secretion of indoleamine 2,3-dioxygenase (IDO),
a catabolic enzyme that regulates tryptophan metabolism (54).
Besides IDO, hMSC is also a potent source of other soluble
immunosuppressive factors, such as nitric oxide (NO, in rodent
MSCs), prostaglandin E2 (PGE2), transforming growth factor-
β1 (TGF-β1), hepatocyte growth factor (HGF), interleukins and
cyclooxygenase 2 (COX-2). MSCs promote the polarization
of macrophages from a pro-inflammatory M1 phenotype to
an anti-inflammatory M2 phenotype and suppress IL-6 and
TNF-α production in macrophages through secretion of PGE2
and IDO (57–61). Similarly, co-culture with MSCs inhibits the
maturation and activation of antigen-presenting dendritic cells
(DCs) and reduces B cell proliferation by increased production
of IL-10, chemokine receptors, and immunoglobulins (62–68).
Compared to B cells, MSCs inhibit T cell proliferation regardless
of their lineage difference (naïve, CD4+ or CD8+ lineage)
(20, 69). Moreover, MSCs from multiple sources exhibit similar
effects on inducing apoptosis of T cells (70). IDO, HGF, TGF-
β, PGE2, and PD-1/PD-L1 ligation from MSCs all contribute
to the immunosuppressive effect (20, 71–75). As the hMSC
secretome is central to their immunomodulatory properties,
preserving the secretory properties of hMSC during long-term
expansion has become an important engineering challenge in
hMSC translation (4).

The profile of MSC secretome is tightly regulated by
intrinsic (e.g., donor morbidity and aging) or external (e.g.,
culture conditions) factors through metabolic regulation.
Adipose-derived stem cells showed a higher secretion of
immunomodulatory cytokines, such as IL-6 and TGF compared
to bone marrow (BM)-MSCs due to higher metabolic activity
(76). Conversely, compared to cells obtained from lean
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FIGURE 2 | hMSC immunomodulation requires polarization by inflammatory environment and is achieved by the secretion of immunomodulatory factors such as

chemokines and cytokines, extracellular vesicles and exosome, and direct cell-cell contact. hMSC’s immunomodulatory property requires a metabolic reconfiguration

toward aerobic glycolysis to sustain the production of secretome. hMSC’s immunomodulatory capacity can be enhanced by modulation of hMSC metabolism via

hypoxia, small molecule metabolic mediators, or 3D aggregation.

patients, ASCs from obese patients exhibiting reduced glycolytic
activity and upregulated expression of inflammatory genes and
increased secretion of inflammatory cytokines such as IL-6 and
IL-8 (30, 77, 78), making them less effective in suppressing
lymphocyte proliferation and activating the M2 macrophage
phenotype (79). The expression of inflammation-response genes
has been reported to decline in hMSC from aged donors as they
have altered metabolic profile, although conflicting results were
also reported (80–82). Interestingly, recent clinical study has
shown that hMSCs isolated from patient with atherosclerosis
have impaired mitochondrial functional properties, contributing
to the reduced suppression of T cell proliferation (33). To identify
the specific role of metabolism in sustaining hMSC secretion
of immunomodulatory cytokines, we observed a pronounced
shift in hMSC energy metabolism toward glycolysis upon
activation by IFN-γ treatment (20) and showed that inhibition
of these metabolic changes prevented the production of the key
immunosuppressive cytokines such as IDO and PGE2. We also
demonstrated that mitochondrial ROS and Akt/mTOR signaling
play a critical role in initiating this metabolic remodeling in
response to inflammatory stimuli (20, 55, 83). It is not surprising
that culture conditions favoring glycolysis also potentiate MSC
immunomodulatory properties. As mentioned above, hypoxia
culture upregulates MSC secretion of IDO, PGE2, PD-L1, ILs,
etc., and enhances inhibition of CD4+/CD8+ T lymphocyte

proliferation while increasing the regulatory T cells (T-reg)
populations (84–86). In addition to the MSC secretome, direct
cell-cell contact could directly interact with immune cells
(87–92), but the influence of specific MSC metabolic profiles on
these interactions remain to be investigated.

An important subset of the MSC secretome is extracellular
vehicles (EVs) and exosomes, which are small membrane
vesicles (ranging from 50 to 1,000 nm) derived from multi-
vesicular bodies or from the plasma membrane and are
enriched with proteins, lipids, and nucleic acids for intercellular
communication including immune regulation (93, 94). MSC-
derived EVs and exosomes have been tested in several disease
models such as acute kidney injury, experimental autoimmune
encephalomyelitis, type-1 diabetes mellitus and myocardial
ischemic injury through microRNA (miRNA) regulation
(95–99). Mechanistically, MSC-derived EVs and exosomes are
enriched with miRNA such as miR-15a, miR-15b, miR-16 that
inhibit CXC ligands and suppress chemotaxis of macrophage
(95, 100). Recent studies have shown that metabolism regulates
EV biogenesis and cargo composition through regulation of
endosomal secretion pathways. In tumor cells, pyruvate kinase
type M2 (PKM2), the rate limiting enzyme in glycolysis, acts as a
protein kinase to promote exosome release via phosphorylating
snaptosome-associated protein 23 (SNAP-23), which mediates
the fusion of intracellular vesicles with membrane compartments
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TABLE 1 | Metabolic enhancement of mesenchymal stem cell-mediated immunomodulation in preclinical studies.

MSC source Pre-treatment Metabolic

targets

Functional enhancement In vivo study References

Rats adipose Hypoxia HIF Enhance secretion of angiogenesis and

neuroprotection cytokines

Improve functional recovery of DED rat;

enhanced eNOS expression; increased

expression of endothelial and smooth

muscle markers;

(107)

Mice bone marrow Tetrahydrocannabinol

or with AM630

Mitochondrial

respiration

Increased MSC IL-10 production;

activated MSC ERK signaling pathway;

enhance immunomodulation of microglia;

Reduced thermal hyperalgesia and

mechanical allodynia response; reduced

inflammation in chronic constriction injury

model;

(108)

Human bone

marrow

Hypoxia HIF Upregulated mRNA levels of IL-1β, IL-6,

IL-8, and TGF β-1; mitogenic,

chemoattractive and angiogenic

paracrine effects

Enhance Balb/c nude mouse skin

wounds healing process; Increased

macrophage recruitment at wound site;

(109)

Human umbilical

cord blood

Hypoxia and

calcium ion

HIF Reduced secretion of IL-6 and IL-8 and

increased secretion of PGE2. Improve the

inhibition of T cell proliferation.

Improve survival of humanized GVHD

mouse model; decreased immune cell

infiltration and characteristic tissue injuries

(110)

Human umbilical

cords

IL-1β Glycolysis Upregulated COX-2, IL-6, IL-8

gene expression; Enhanced COX-2

protein expression;

Modulate the balance of macrophage

polarization; reduced local inflammation

and improve migration to DSS-induced

murine colitis

(111)

Human bone

marrow or

umbilical cord

blood

IFN-γ Glycolysis

and

mitochondria

Increased gene expression of CXCL9,

CXCL10, CCL8, and IDO. Enhanced

secretion of IDO and inhibition of

hPBMCs proliferation.

Reduced the symptoms of

graft-versus-host disease (GVHD) in

NOD-SCID mice and improve survival

rate;

(112)

Human bone

marrow

3D aggregation Mitochondria Increased gene expression of CXCR4,

TSG-6, STC-1, IL-24, TRAIL, and LIF;

elevated expression of TSG-6, LIF, and

STC-1; Decreased macrophage

activation

Decreased the protein content of the

lavage fluid and neutrophil activity;

reduced levels of the proinflammatory

molecules in mouse model for peritonitis

(113)

(101). HIF-1α overexpression in hMSCs significantly enhanced
exosome secretion and also upregulated Notch ligand Jagged-1,
which induce dendritic cell maturation and regulatory T cell
proliferation (102, 103). Hypoxia is known to mediate the
expression of Rab22 and Rab20 and ceramide production, which
are associated with EV formation and secretion (104). MSCs also
manage intracellular oxidative stress by targeting depolarized
mitochondria to the plasma membrane and unload partially
depolarized mitochondria as EVs to enhance cell survival (105).
Conversely, secreted exosomes regulate metabolism of recipient
cells. For example, MSC exosome carry a cargo rich in active
glycolytic enzymes and promote ischemic myocardium repair
by enhancing glycolytic flux to compensate for the reduced
OXPHOS in defective mitochondria (106). Future studies
are needed to establish the mechanistic connection between
hMSC metabolism and biogenesis and cargo composition of
hMSC-derived EV.

TARGETING HMSC METABOLISM TO
ENHANCE IMMUNOMODULATORY
PROPERTIES IN PRECLINICAL STUDIES

Investigating the mechanistic connections between metabolism
and immunomodulation has identified specific molecular targets
that can be modulated to overcome metabolic deficiency due

to donor age and morbidity, and to enhance the therapeutic
potency of culture-expanded hMSCs. Table 1 summarized
preclinical studies of enhanced MSC immunomodulation via
metabolic regulation. As discussed above, hypoxia treatment
is commonly used to enhance hMSC immunoregulatory
properties by increasing hMSC anti-inflammatory properties
while attenuating the secretion of pro-inflammatory cytokines,
both in vitro and in vivo (84–86). In a preclinical study,
hypoxic pre-treatment of hMSC enhanced the secretion of IL-
10 and Fas ligand, thereby reducing recruitment of inflammatory
cells, resulting in a more organized granulation tissue at
the wound site in an excisional skin-healing mouse model
(85). Transplantation of hMSC expanded under hypoxia in
a humanized mouse graft vs. host disease (GVHD) model
improved animal survival and weight loss, and reduced
histopathologic injuries in GVHD target organs, presumably
due to enhanced PGE-2 secretion and reduced IL-6/IL-8
secretion (110). To overcome the complexity and inconsistency
associated with in vitro hypoxia culture, overexpression of
HIF1-α and hypoxia mimetics targeting HIF pathway are
being actively pursued to enhance hMSC immunomodulatory
properties (114, 115). Oxidative preconditioning of MSCs
by ROS leads to redox-dependent HIF-1α stabilization and
reduced apoptosis in inflammatory environment (116, 117).
Pretreatment with N-acetylcysteine (NAC), which stabilizes
HIF-1, improved MSC anti-inflammation and cell retention in
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Box 1 | Current knowledge and future directions of metabolic perturbation in hMSC biomanufacturing and immunotherapy.

Energy metabolism in hMSC biomanufacturing and immunotherapy

Current knowledge

• hMSC’s are metabolically “plastic” and reconfigure metabolism to match divergent demands of cellular events;

• hMSC’s metabolic “fitness” or the ability to adapt metabolically influences their functional properties;

• Donor morbidity and in vitro bioprocessing such as extended expansion and cryopreservation reduce hMSC metabolic fitness by preconditioning is an effective

strategy to enhance hMSC therapeutic potency.

Open question and future direction

• What is the mechanistic link between hMSC metabolic profile and therapeutic outcome in a given disease?

• Can hMSC metabolism profile be standardized as a potency indicator as part of Critical Quality Attributes (CQA)?

• How the media composition and culture supplement such as human platelet lysate and lipid contents used in hMSC expansion influence metabolic fitness and

functional properties?

• How to maintain a desired metabolic profile during large-scale expansion, harvesting, and cryopreservation (distribution and administration) in hMSC

biomanufacturing?

• How does a given metabolic profile influence specific aspect of hMSC functional properties such as angiogenesis, or immunomodulation?

bleomycin-induced lung injury model by improving antioxidant
capacity (118).

Pre-activation of MSCs with immunomodulatory cytokines

has been widely reported to enhance MSC immunomodulatory

effect in various preclinical models. Interestingly, many
such cytokines are also metabolic regulators and the extent
of their effects is influenced by oxygen levels and MSC’s
metabolic plasticity (119, 120). Pretreatment of hMSC with
IFN-γ activates hMSC’s anti-inflammatory properties by
enhancing the secretion of anti-inflammatory cytokines and

inhibits the proliferation of NK cells and CD4+/CD8+
T cells (20, 111, 121, 122). Infusion of IFN-γ pretreated
MSCs in an immunodeficient mouse model significantly

reduced the symptoms of GVHD and improved survival
(112). As mentioned above, IFN-γ treatment reconfigures
hMSC metabolism toward a glycolytic phenotype, generating
a metabolic profile that enhances cell survival and sustains
the secretion of immunomodulatory factors (20). Fan et al.

reported that MSCs preconditioned by IL-1β exposure
significantly attenuated the development of dextran sulfate
sodium (DSS)-induced colitis in mice by enhancing MSC
migration to the inflammatory site via upregulating CXCR4
expression (111). The IL-1 cytokine family members are
important regulators of metabolism and upregulate glycolysis

in various cell types (119, 123). TGF- β, a pleiotropic
cytokine involved in immune regulation, is also a potent
regulator of hMSC immunomodulatory properties and can
display either anti-inflammatory or proinflammatory effects
depending on the cell niche. TGF-β activates MSC to promote

immune response and altered hASC secretory profile (124–
126). Interestingly, TGF-β signaling in tumor growth is

compartment-specific and induces a “Warburg-like” metabolism
in cancer-associated fibroblasts that fuels tumor growth; a

similar metabolic shift toward glycolysis is also observed in
human chondrocytes and plays important role in maintaining

cartilage homeostasis (127, 128). The effects of TGF-β on
hMSC metabolic properties during immune activation remains
to be elucidated.

As mentioned above, 3D aggregation reconfigures hMSC
metabolic state toward glycolysis and this approach has emerged
as a novel engineering strategy to potentiate MSC secretory
and immunomodulatory functions. Bartosh et al. reported
in vivo aggregation of MSCs into 3D spheroid enhanced
macrophage activation in mice with regulated expression of
inflammation-modulating factors TSG-6, STC-1, and COX-2
(129). Zimmerman et al. demonstrated the enhanced suppression
of T cells by MSC spheroids together with IFN-γ via the
secretion of IDO from 3D MSC aggregates (130). Increased
secretion of PGE2 and COX2 from 3DMSC aggregates converted
LPS-activated macrophages into M2 phenotype with reduced
production of TNF-α, IL-6, IL-23, and CXCL2 (113, 131).
Intraluminal injection of MSC aggregates in mice with DSS-
induced colitis reduced local inflammatory cytokines including
TNF-α, IFN-γ, IL-6, and the system inflammation marker serum
amyloid A (132), whereas the local expression of PGE-2 and
COX-2 inmice distal colons were increased, resulting in less body
weight loss and lower disease activity score (132). Inhibition of
this metabolic reconfiguration in hMSC 3D aggregates reduces
secretion of IDO, PGE2, COX2, IL-6, TGF-β and other anti-
inflammatory cytokines (113, 129, 131, 133). These studies
demonstrate the potential of 3D aggregation to potentiate hMSC
immunomodulatory properties.

CONCLUSIONS

This review shows that energy metabolism has emerged as a
central hub connecting hMSC sourcing and biomanufacturing
practices to core signaling pathways that regulate hMSC
phenotypic properties and clinical outcome. Modulation
of hMSC metabolism by specific engineering practices or
metabolic modulators is an effective strategy for enhancing
hMSC functional properties and improving therapeutic
potency. hMSC metabolic characteristics or fitness can also
be used as defining criteria to determine cellular quality
in hMSC sourcing and large-scale manufacturing. As
summarized in Box 1, many open questions remain in the
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implementation of metabolic strategies to enhance hMSC
therapeutic potency in large scale manufacturing. Future
studies that elucidate the signaling roles of other intermediate
metabolites are needed to identify novel targets to improve hMSC
clinical outcomes.
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