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Random Fiber Networks With
Superior Properties Through
Network Topology Control
In this work, we study the effect of network architecture on the nonlinear elastic behavior
and strength of athermal random fiber networks of cellular type. We introduce a topology
modification of Poisson–Voronoi (PV) networks with convex cells, leading to networks with
stochastic nonconvex cells. Geometric measures are developed to characterize this new
class of nonconvex Voronoi (NCV) networks. These are softer than the reference PV net-
works at the same nominal network parameters such as density, cross-link density, fiber dia-
meter, and connectivity number. Their response is linear elastic over a broad range of
strains, unlike PV networks that exhibit a gradual increase of the tangent stiffness starting
from small strains. NCV networks exhibit much smaller Poisson contraction than any
network of same nominal parameters. Interestingly, the strength of NCV networks increases
continuously with an increasing degree of nonconvexity of the cells. These exceptional prop-
erties render this class of networks of interest in a variety of applications, such as tissue
scaffolds, nonwovens, and protective clothing. [DOI: 10.1115/1.4043828]

1 Introduction
Materials made from, or containing, fibers are a common occur-

rence in our everyday lives. A subset of these are “network materi-
als,” in which the fibers are connected in a random network that
percolates through the domain occupied by the respective object.
In network materials, the fiber network performs the central struc-
tural function and, in most cases, determines the mechanical prop-
erties of the material.
Examples of network materials include nonwovens, paper and

cellulose products, insulation, buckypaper, rubber, and gels [1–3].
Biological materials are mostly of network type. Collagen and
elastin fibers are the essential components of connective tissue,
various membranes, and blood vessels in the animal and human
bodies and define the mechanical properties of these biological enti-
ties [4–6].
The relationship between the network structure and mechanics

has been a subject of intense research over the last several
decades [7–14]. In networks with limited internal dissipation
(e.g., due to viscoelastic fibers or interfiber friction) and which do
not accumulate damage during loading, the response is hyperelastic.
This response is characterized by three regimes [15,16]: a linear
elastic response is observed at small strains (regime I), followed
by the power law or exponential stiffening (regime II), after
which the response becomes linear again at larger strains and
stresses (regime III). Two parameters are typically used to charac-
terize this behavior: the small strain modulus E0, which is represen-
tative for regime I, and the type of strain hardening taking place in
regime II. Strain hardening can be either of exponential or power-
law type and depends on network architecture [17].
Damage occurs in networks either by fiber or cross-link rupture.

Failure of cross-links is more common, as observed in paper [18–
20] and nonwovens [21–24] and is likely the dominating failure
mechanism in most biological networks. Damage initiation may
begin in any of the three regimes described here, the function of
the strength of the cross-links (or/and fibers). Damage accumulation
reflects at the macroscale as a gradual reduction of the tangent stiff-
ness.Networks being stochastic by definition, damage accumulation,

localization, and failure are complex processes tightly coupled with
the network architecture. The relation between network strength and
material parameters was discussed in a number of publications
[19,25–31].
Defining the relationship between structure and properties is a

long-standing quest in materials science. In random networks, this
effort is rendered more complex by the difficulty of defining what
is meant by “structure.” Here, we divide the quantities used to
define the network structure in three categories: (a) parameters con-
trolled when the network is constructed, (b) geometric parameters
measurable in the network, but which are not directly controllable,
and (c) aspects of the network architecture. Typical parameters of
type (a) are the density ρ (total length of fiber per unit volume)
and material properties of fibers. For elastic fibers, the characteristic
fiber properties are their axial and bending rigidities EfA and EfI,
where Ef represents the modulus of the fiber material and A and I
are the area and moment of inertia of the fiber cross section. Note
that the two rigidities are not independent if the fiber cross
section is circular, since A ∼ d2 and I ∼ d4, where d is the fiber dia-
meter. However, situations exist when A and I are independent
parameters, as for example with molecular bundles (silk, tropocol-
lagen). The cross-link number density (total number of cross-links
per unit volume) ρbmay be a parameter of type (a) or (b) in different
applications. The connectivity index �z representing the mean
number of segments emerging from a cross-link is a parameter of
type (a). Preferential fiber orientation is characterized by the orien-
tation tensor, which is typically measured after the network is con-
structed, and hence is a parameter of type (b). In most works,
random networks are characterized exclusively using these five
parameters: ρ, ρb, �z, EfA, and EfI.
It was established [32] that, when ρ, ρb, and/or EfI are small, the

small strain network modulus scales as E0 ∼ ρxEf I (where exponent
x depends on the network architecture and network embedding
space dimensionality), while in the opposite situation E0 ∼ ρEf A.
This indicates that, in the first case, fibers deform predominantly
in their bending mode and network deformation is nonaffine,
while in the second case, fibers deform predominantly in their
axial mode, which implies that network deformation is approxi-
mately affine. This general behavior is independent of the
network architecture, but the transition from one type of scaling
to the other happens at different values of the respective parameters
in networks of different architectures.
Parameters of type (c) are more difficult to define. It may be

observed that, in general, random networks are of two types: cellular
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and fibrous. Cellular networks resemble open cell foams and are
composed of fibers with two cross-links per fiber, located at the
two fiber ends. Fibrous networks are composed of long fibers,
which are not necessarily straight, each having multiple cross-links
with other fibers. Most biological networks, as well as nonwovens,
paper, cellulose products, and insulation, are of a fibrous type.
The mechanical behavior of random fibrous and cellular net-

works is qualitatively the same, but with some important differ-
ences. For example, the exponent x of the power law dependence
of E0 on ρ is x= 2 for cellular networks (same as for open cell
foams [33–35]), and x= 3 for fibrous networks (see experimental
and numerical results in Refs. [17,36,37]). Furthermore, cellular
networks strain stiffen exponentially, while fibrous networks
exhibit a power law strain stiffening relation [17].
Progress in relating themechanics of cellular networks to elements

of the network architecture has beenmade beyond these general con-
siderations, as discussed in the literature on open cell foams [38–43].
The parameter used to characterize the architecture, in this case, is the
polydispersity of cell volumes. If the density is kept constant,
increasing cell volume polydispersity leads to a reduction of the
modulus and of the yield stress (when the foam material is elastic-
plastic) or of the onset of shear localization (when the foam material
is elastic) [38,41]. This is similar to the behavior of stochastic com-
posites in which the material subdomains have elastic constants
selected from a distribution. As the variance of the distribution of
local properties increases while the mean is kept constant, the
homogenized elastic constants of the composite decrease [44,45].
If the fluctuating local parameter is the yield stress, the homogenized
yield stress also decreases with increasing variability [46].
Fibrous networks have a more disordered microstructure than

cellular networks and identifying parameters that describe the archi-
tecture beyond the five structural parameters of types (a) and (b)
specified above is difficult.
In this work, we focus on cellular networks and explore the effect

on the mechanical behavior of a new parameter of type (c) character-
izing the cell shape.We keep all structural parameters of types (a) and
(b), aswell as the polydispersity of cell sizes constant, and explore the
effect of introducing variability in the shape of the cells, allowing
some of the cells to become nonconvex. It is shown that this has a sig-
nificant effect on mechanical properties. This defines a class of net-
works, which we name nonconvex Voronoi (NCV) networks, with
unusual properties, which we expect may be important in various
applications.

2 Geometric Considerations: Definition of Nonconvex
Voronoi Network Architecture
In this section, we establish NCV as a class of stochastic cellular

networks and contrast this architecture with that of Voronoi cellular
networks with controlled cell volume variability.
In order to isolate the effect of the cell shape variability charac-

teristic for NCV on the mechanical behavior of the network, we
aim to work with networks in which all other parameters of types
(a) and (b) are constant. The connectivity parameter in cellular net-
works in 3D is�z = 4. We aim to generate a family of networks, start-
ing from a periodic network with no randomness, and control
independently the cell size and cell shape variability.
Since we wish to construct networks of the same connectivity at

all cross-links, we consider the Archimedean solids, which are poly-
hedra composed of regular polygons that meet at identical vertices.
Not all 13 Archimedean solids are space filling. Therefore, we look
for the intersection of the set of Archimedean solids with the set of
plesiohedra (space-filling polyhedra) with exactly four edges
meeting at each vertex z= 4. This intersection contains two types
of cells: the truncated octahedron and the truncated icosahedron.
A different perspective on this issue is obtained when starting

with the class of parallelohedra, which are polyhedra that fill
space such that each cell can be obtained from another cell by trans-
lation without rotation. There are five parallelohedra: the cube,
which, when forming a network has z= 6, the hexagonal prism,

with z= 5, the elongated dodecahedron, with z= 5, the rhombic
dodecahedron which has two types of vertices, and hence, �z of
the resulting network is between 4 and 5, and the truncated octahe-
dron, with z= 4.
Therefore, we select as the reference periodic network with no

disorder, a honeycomb of truncated octahedra, known also with
the more generic name of tetrakaidecahedra. This type of structure
was considered in most works on open cell foams (e.g., Refs.
[39,42,43]). Such a network can be obtained by Voronoi tessellating
a body-centered cubic (BCC) lattice of points (seeds).
Randomness can be introduced in this structure in two ways, as

defined by the following two network generation procedures:
Procedure 1: The starting point of this procedure is the periodic

truncated octahedral honeycomb (TOH), Fig. 1(a), which results
by Voronoi tessellating a periodic BCC lattice of seed points.
Random displacements are given to the position of these seeds.
Increasing the magnitude of these displacements leads, after tessel-
lation, to increasingly irregular cells. The connectivity parameter
remains z= 4, but the number of faces per cell and the number of
edges per face vary from cell to cell and the variability becomes
more pronounced as the magnitude of the seed displacements
increase [47]. This procedure was used to construct the family of
open cell foams studied in Refs. [39,42,43]. Since the Voronoi tes-
sellation is used to produce networks from all these spatial arrange-
ments of seeds, the cells are always convex. The limit structure
(corresponding to maximum disorder) obtained through this proce-
dure is that which would otherwise result by Voronoi tessellating a
random spatial distribution of seeds. This is denoted as the Poisson–
Voronoi (PV) network (as the seeds are obtained from a Poisson
process, Fig. 1(b)). The transition of the network structure from
TOH to PV was studied in Ref. [47].
Procedure2:The startingpoint of this procedure is thePVnetwork.

This network is perturbed by applying random displacements
(of magnitude δ) to the cross-links. This does not affect the connec-
tivity of the network, which remains z= 4, and does not change the
distribution of the number of faces per cell and the number of edges
per face. Likewise, the cross-link density ρb remains unchanged
as perturbation is introduced, while the density ρ increases as δ
increases. As discussed below, the cells become gradually noncon-
vex as δ increases. The average cell volume is independent of δ.
This procedure is used to generate NCV networks (Fig. 1(c)).
Comparing the two procedures, it results that procedure 1 pro-

duces networks of convex cells of increasing cell volume variability
[47], while procedure 2 produces networks with increasing cell non-
convexity, without modifying the statistics of other parameters
describing fiber connectivity and cell structure. Here, we focus on
the class of NCV networks produced using procedure 2.
Since the parameter δ describing the degree of perturbation

applied to the PV networks is only of algorithmic importance, it
is useful to develop a related parameter that can be controlled or
measured in experiments. To this end, we start with the observation
that the density of the network ρ is related to the mean segment
length lc through the 3D equivalent of the Kallmes–Corte relation
for 2D Mikado networks [31,48]:

ρl2c = q (1)

where q is an architecture-specific constant. In the current work,
fibers are straight between cross-links. If the crimp is present, rela-
tion (1) is still valid, with q becoming a function of crimp [31].
Figure 2(a) shows the variation of ρ with lc for the TOH regular

network, for PV networks, and for a family of NCV networks with
increasing δ. All edges of the truncated octahedron are of the same
length lc, the total volume of the polyhedron is 8

��
2

√
l3c , and the total

length of fiber per unit volume is ρ = 3
��
2

√
/4

( )
l−2c . Therefore, for

the regular TOH network q = 3
��
2

√
/4 = 1.06. The value of q for

the PV network is obtained numerically and results q= 0.95
(Fig. 2(a)). It is seen that TOH and PV networks, i.e., the two
limit types of networks produced using procedure 1, have values
of q, which are very close to each other. However, q increases
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monotonically with δ for NCV networks produced using procedure
2. Therefore, q is a parameter that discriminates between these
two classes of structures and is descriptive for NCV networks.
Figure 2(b) shows the variation of q with δ.
We note that using q is also desirable because it can be evaluated

in experiments based on ρ and lc, ρ is a parameter of type (a) and is
controlled when the network is constructed or can be easily

measured a posteriori, while lc can be measured by direct observa-
tion of the network.
To characterize the size and shape of the cells obtained with the

two network generation procedures and further relate parameters δ
and q to the resulting architectures, we evaluate the volumes of the
cells and a measure of their nonconvexity. For convex cells, the
cell volume Vi results directly from the Voronoi tessellation proce-
dure. To evaluate the volume of a nonconvex cell, we use the proce-
dure outlined in the Appendix. For each network, the mean and
coefficient of variation of the distribution of cell volumes are evalu-
ated. To quantify the cell nonconvexity, we use the relative differ-
ence between the volume of the convex hull of the vertices of a
given cell Vch

i and the actual volume of the cell Vi computed with
the procedure described in theAppendix. This quantity is normalized
by VPV

i , the volume of the corresponding cell in the PV network
(prior to undergoing procedure 2), to get the nonconvexity parameter
βi for the cell.

βi =
|Vch

i − Vi|
VPV
i

(2)

The network-scale nonconvexity parameter �β is computed as the
average of βi over all cells i of the given network. The variability
of cell volumes is quantified using the coefficient of variation
σV/�V of the Vi distribution.
Figure 3(a) shows the coefficient of variation of the cell volumes

σV/�V as a function of the perturbation for networks produced by the
two procedures. Figure 3(b) shows the variation of the nonconvex-
ity parameter �β with the perturbation. In each of the two figures, the
left panel refers to networks produced by procedure 1. In this case,
the perturbation is applied to the seeds of the Voronoi tessellation
and is represented here as δ* normalized by the mean segment
length of the TOH network with no perturbation lc. The resulting
networks range from TOH to PV. These have convex cells and
hence �β = 0, while the cell volumes are increasingly polydisperse
as the perturbation δ* increases. The right panel corresponds to
NCV networks generated by procedure 2. In this case, the perturba-
tion refers to the parameter δ used in Fig. 2 and related to q of Eq. (2)
as shown in Fig. 2(b). δ is normalized by the mean segment length
of the PV network. We observe that in NCV networks, the cell
volume variability is independent of the perturbation, while the
cells become progressively more nonconvex as δ (or q) increases.
This quantifies the difference between Voronoi networks of poly-
disperse convex cells (from TOH to PV) and the NCV networks
of nonconvex cells.

Fig. 1 Realizations of the (a) periodic truncated octahedral honeycomb (TOH) network,
(b) Poisson–Voronoi (PV) network, and (c) nonconvex Voronoi (NCV) network

Fig. 2 (a) Modified Kallmes–Corte-type relation for the 3D net-
works considered in this study and (b) dependence of parameter
q on the perturbation δ. The inset shows representative convex
and nonconvex cells.
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In order to relate the structural parameters δ and q to other geo-
metric measures of NCV networks that can be obtained by direct
observations of physical networks, we present in Fig. 4(a), the dis-
tribution of fiber-to-fiber angles at cross-links φ for NCV networks
with several q values. As the degree of structural disorder increases,
the distribution of φ shifts to the left, indicating that fibers make
more acute angles. The variation of the mean of the distribution �φ
with q is shown in Fig. 4(b). This provides an alternative way to
evaluate q based on direct observations of physical networks and
hence σV/�V and �β from Fig. 3.
A discussion of the methods that can be used to manufacture such

networks is required. Various additivemanufacturing (AM)methods
have been used recently to construct periodic and random cellular
materials [49–51]. The selection of the AM method depends on the
desired fiber material. Selective laser sintering is commonly used
in case of ceramic [52] or polymeric fibers [53], while selective
laser melting [54] or electron beammelting [55] are used for metallic
fibers. Another popular choice due to its simplicity is 3D printing
[56] and this method has been used for printing patient-specific

replacement tissues. A review of the influence of different AM
methods on the geometrical features and mechanical properties of
cellular materials can be found in Ref. [51].

3 Models and Methods
The procedure used to construct NCV networks is described

above: seed points are distributed randomly in a cubic domain.
These are used to construct a PV tessellation and the edges of the
resulting polyhedra are considered fibers, while the vertices are con-
sidered cross-links. Further, the cross-link positions are modified by
random displacements of magnitude δ. Values of δ ranging from 0
to lc are considered, where lc is the mean segment length of the PV
network.
Fibers are straight between any two cross-links and have a circu-

lar cross section of diameter d. When working with networks com-
posed of fibers of the same type, parameter lb =

���������
Ef I/Ef A

√
proves

convenient [7,10]. For fibers with circular section, lb= d/4. We con-
sider lb values from 0.001 to 0.01. The excluded volume interaction
between fibers, i.e., the formation of contacts at sites other than the
cross-links, is not considered in these models. Excluded volume
contributions to mechanics are weak under tensile loading due to
the large free volume of the network [17].
The interfiber cross-links are represented as connectors with axial

and bending stiffness and are allowed to rupture at a prescribed effec-
tive load. The failure of networks is generally associated with cross-
link rupture (e.g., in bonded nonwovens and paper) [19,21,57].

Fig. 3 (a) Coefficient of variation of cell volumes σV/�V and
(b) measure of cell nonconvexity �β versus perturbation. In each
figure, the left panel refers to the perturbation of seeds of the
Voronoi tessellation leading, through procedure 1, to the
gradual transition from the periodic TOH structure to the PV
random structures. The right panel refers to NCV networks
obtained, through procedure 2, by perturbing the nodes of a PV
with increasing random displacements δ. The data indicate that
NCV networks have nonconvex cells (�β> 0), while cell volume
polydispersity does not increase with δ. The curve in the left
panel of (a) is based on the data from Ref. [47]. The inset
figures show representative convex and nonconvex cells.

Fig. 4 (a) Distributions of interfiber angles at crosslinks φ for
NCV networks of various degrees of disorder quantified by the
parameter q. The inset shows the six pairs of interfiber angles
φ measured at each cross-link. (b) Variation of the mean of the
distributions in (a) �φ with q.
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The connector stiffness is approximately two orders of magnitude
larger than the axial and bending stiffness of a fiber segment of
length equal to the mean segment length lc. This ensures that the
maximum cross-link deformation is always smaller than 6 × 10−3d,
such that cross-link deformation does not contribute to the overall
network kinematics. This is the situation in most athermal networks.
Cases in which cross-links are formed by proteins that may undergo
large deformations before failure also exist in biomolecular networks
[58,59], but these are outside the scope of the present discussion.
Cross-link failure is modeled as described in the previous publi-

cations [25,31]. To summarize, the force and moments associated
with the deformation of the cross-link are defined in the coordinate
system of the cross-link {xb1, xb2, xb3} shown in Fig. 1(d ), as Fbi=
KbFubi andMbi=KbMθbi, where ubi and θbi are the ith components of
the relative displacement and relative rotation of the two fibers in
contact, respectively, and KbF and KbM are the effective bond stiff-
nesses in the translational and rotational modes, respectively. The
bond failure criterion is written as

Feq =

��������������������������������������
F2
b1 + F2

b2 + Fb3 −
6
db

������������
M2

b1 +M2
b2

√ 2
√

= fc (3)

where Fb1, Fb2, and Fb3 are the forces transmitted by the bond in the
direction of the three local coordinate axes, andMb1 andMb2 are the
moments transmitted by the bond about the local axes xb1 and xb2.
db represents the characteristic size of the bond (db< d). 〈 · 〉 indi-
cates Macaulay bracket, which vanishes if the quantity in the
bracket is negative and is equal to the respective quantity when it
is positive. fc represents the critical equivalent force that causes
bond failure and is considered a material parameter.
Fibers are discretized using multiple Timoshenko beam elements

such to ensure adequate representation of the beam kinematics,
while retaining computational efficiency. The cross-links are
modeled as uncoupled springs with both translational and rotational
stiffness (using the connector element CONN3D2 and the connec-
tor section BUSHING in ABAQUS).
The model is loaded in uniaxial tension by imposing displace-

ments to the nodes on opposite faces of the model in the direction
of the loading. The other degrees of freedom of the respective
nodes are left free. Lateral surfaces of the model are constrained
to remain planar but are free to move in the direction perpendicular
to the loading direction, to ensure zero average tractions.
The solution is obtained using the general purpose finite element

solver ABAQUS/EXPLICIT Version 6.13-1. The dynamic scheme used
introduces inertial effects. These are negligible before the onset of
cross-link failure, but become important at larger strains. A numeri-
cal damping scheme (bulk viscosity) is used in order to minimize the
contribution of inertial forces. The kinetic energy is limited to 1% of
the total energy prior to the onset of cross-link failure and to 5%of the
total energy up to a strain larger than that corresponding to the peak
stress. All sections of the stress–strain curves shown here with
symbols and continuous line correspond to conditions in which
this restriction is fulfilled. In addition, we compute the second
Piola–Kirchoff (PK2) stress by taking the derivative of the strain
energy density relative to the Green–Lagrange strain and then
compute the Cauchy stress from the PK2 stress. This procedure
further limits the inertia effects, as discussed in Appendix A of
Ref. [25]. The values of the Cauchy stress reported here are obtained
using this procedure. This method leads to stress values comparable
to those obtained from amuchmore expensive simulation performed
with a strain rate one-order of magnitude smaller and with larger
algorithmic damping, which can be considered quasi-static.

4 Mechanical Behavior of Nonconvex Voronoi
Networks
4.1 Small Strain Stiffness. As discussed in Sec. 1, the small

strain stiffness E0 is a function of ρ and fiber properties. This is
best represented in a plot such as that shown in Fig. 5(a), which

establishes the relation between network stiffness and structural
parameters of types (a) and (b). The plot shows E0, normalized
by ρEfA, versus the nondimensional group ρl2b. The affine model
prediction for the modulus is Eaff

0 = α ρEf A, where α is a numerical
constant equal to ∼0.1. This value is the upper limit of the modulus
of all realizations of the network with given ρ and is independent of
the network architecture.
The plot in Fig. 5(a) has two regimes. At large ρl2b, E0 asymptotes

toward Eaff
0 . In such conditions, the network deforms almost

affinely and stores energy predominantly in the axial deformation
mode of fibers (hence, the proportionality of E0 with EfA). At
small ρl2b, the network deforms nonaffinely and E0 ∼ ρ2Ef I. The
quadratic scaling of the modulus with the density is common to
all cellular networks and to open cell foams [33]. The proportional-
ity of E0 with EfI indicates that the main deformation mode of fibers
is bending.
Data for networks of increasing q are shown along with the curve

corresponding to the reference PV model. The shape of the curve
does not depend on q and E0 ∼ ρ2 in the nonaffine regime for all
NCV networks considered. The dependence of the stiffness on
fiber properties is identical to that of the PV case (E0 ∼ Ef A in the
affine regime andE0 ∼ Ef I in the nonaffine regime). This is expected
since the basic fiber-level mechanics is independent of q. However,
the curves shift gradually to lower values of the ordinate as q
increases.
Perturbing the network by δ increases the mean segment length

lc, which leads to fiber segments of larger slenderness ratio d/lc,
which are more prone to bending. To demonstrate this argument,
we use Eq. (1) and the definition of lb for fibers with circular
section (lb= d/4) to rewrite the nondimensional group on the hori-
zontal axis in Fig. 5(a) as ρl2b ∼ (d/lc)2. Note that d/lc is the

Fig. 5 (a) Relation between the small strain stiffness of the
network and structural parameters for various NCV networks
with increasing degree of nonconvexity and (b) data in (a) replot-
ted in terms of the mean fiber length lc showing full data collapse
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aspect ratio of the average fiber segment. The data in Fig. 5(a) are
replotted in Fig. 5(b) after ρ in the normalization factor of E0 is also
written in terms of lc using Eq. (1). This leads to the collapse of all
curves, which indicates that the mean segment length lc, instead of
network density ρ, is the controlling parameter in this case.

4.2 Large Deformations. Significantly more pronounced dif-
ferences between PV and NCV networks are observed when the
large deformation behavior is analyzed. Consider first a set of
NCV networks that are obtained from the same PV network by grad-
ually increasing δ (or q). This set corresponds to a locus in Fig. 2(a),
which is a straight line that intersects the lines of constant q as shown.
The configurations selected for the present discussion are indicated
by A, B, C, D, and E in Fig. 2(a), where A is the reference PV struc-
ture. These correspond to points in Fig. 5(b) defined by (lb/lc)

2=
−4.15,− 4.2,− 4.33,− 4.5,− 4.6, for networks A–E, respectively.
The group l2c/A on the vertical axis of Fig. 5(b) can be computed
from these values considering that l2c/A = (1/4π)(lc/lb)2.
Figure 6(a) shows Cauchy stress–stretch curves for networks A to

E,with increasing qvalues. The curves represent themean stress over
three realizations. In order to eliminate the effect of the decrease of
the small strain modulus with increasing q (Fig. 5(a)), the vertical
axis is normalized with E0. All stress–stretch curves exhibit the
regimes discussed in Sec. 1, and qualitatively, the NCV networks
exhibit the same hyperelastic behavior as PV networks. However,
significant quantitative differences are observed. As q increases, net-
works become softer and the range of the linear elastic regime I
increases substantially. Specifically, while the PV network enters
the nonlinear regime II at a strain below 5%, the NCV network
with q= 4.68 enters regime II at a strain larger than 30% (Fig. 6(a)).

To emphasize this result, we compare in Fig. 7 the stress–stretch
curve of network D from Fig. 6(a) with two PV networks: D1,
which has the same mean segment length lc as network D, but dif-
ferent density ρ, and D2, which has the same ρ, but different lc. The
two PV networks D1 and D2 do not exhibit the large increase in the
range of the linear regime I observed in the NCV networks. Hence,
this effect is due to the different network architecture and not to the
fact that D has different lc and/or ρ. This appears to be an intrinsic
property of the NCV network architecture.
The bars in Figs. 6(a) and 7 represent the standard deviation of

the three replicas used. The low replica to replica variability
observed here is due to the fact that samples are large enough to
render the mechanical parameters of the network model size inde-
pendent [8].
Figure 6(b) shows the data in Fig. 6(a) replotted as tangent stiff-

ness versus stress. The tangent stiffness is computed as Et= ∂σ/
∂(ln λ), where σ is the Cauchy stress and ln λ is the logarithmic
strain. The left side of these curves corresponds to regime I and the
value of the respective plateau is E0. At larger stress, all curves col-
lapse on a line of slope 1 which indicates exponential stiffening. It
results that the nature of strain stiffening is independent of q. We
recall that all cellular networks strain stiffen exponentially, while
power law stiffening is observed in fibrous networks [17]. Very
dense networks with large ρb, such as paper, are not hyperelastic
and exhibit softening due to damage accumulation during regime I
[19,60].
Figure 6(c) compares the Poisson effect in PV andNCV networks.

Networks without embeddingmatrix generally exhibit large Poisson
effect that is due to the preferential orientation of fibers in the stretch
direction during regime II [61]. The large free volume of the network
allows large lateral contraction upon uniaxial stretching. The figure

Fig. 6 (a) Cauchy stress–stretch curves for PV network A (q=0.95) and NCV networks B, C, D, and E,
with q=1.20, 1.83, 2.94, and 4.68, respectively. The Cauchy stress is normalized with the small strain
modulus E0. The end of the linear elastic regime I for each network is indicated by a vertical dashed
line. (b) Variation of the tangent stiffness modulus with the Cauchy stress. All NCV networks show
the characteristic exponential stiffening in regime II. (c) Incremental Poisson ratio for the five networks
indicates a reduction in Poisson contraction with an increase of q. (d ) Fiber orientation index for the five
networks shows less pronounced fiber reorientation during deformation in networks with larger q.
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shows the incremental Poisson ratio defined as νi= ∂ ln λ1/∂ ln λ2
(where ln λ1 and ln λ2 are logarithmic strains in the loading and trans-
verse directions, respectively) versus stretch. The incremental
Poisson ratio reduces to the usual Poisson ratio at small strains and
represents the incremental contraction rate at larger strains. In the
PV case (network A), νi is smaller than 0.5 at small strains and
increases rapidly during regime II, with values larger than 6 being
reached. NCV networks (B–E) exhibit a very different behavior.
The Poisson contraction at the given stretch is much smaller than
in the PV case and decreases monotonically with increasing q. The
network with the largest q value does not exhibit a significant varia-
tion of the Poisson ratio during deformation.
This effect is expected considering the nonconvex nature of some

of the network cells. It is known that auxetic behavior results when
cell shapes are made nonconvex in solid cellular materials [62–64].
The effect observed here is of similar nature, although the structure
is stochastic and not all cells are nonconvex. It is expected that the
Poisson ratio can be rendered zero in NCV networks at larger (but
probably physically irrelevant) q values.
The large reduction of the Poisson effect in NCV networks is of

importance in applications.Most networks functionwhile embedded
in a solid or a viscoelastic or viscoplasticmatrix. In gels, the deforma-
tion is isochoric if the gel is nondraining. In biological applications,
drainage is slow, and tissue (e.g., ligaments, cartilage) deformation is
approximately isochoric. In all these cases, the embedding medium
enforces the constant volume constraint. If the embedded network
has a natural tendency to contract significantly when loaded in
tension, large loads are applied by the matrix on the network (and
vice-versa). This leads to a more affine deformation, a stiffer effec-
tive response and likely to enhanced damage accumulation. Net-
works that preserve volume when not embedded, such as the NCV
networks discussed here, are less incompatible with a volume pre-
serving matrix and should develop smaller interaction forces
which, in turn, should delay damage accumulation.
Figure 6(d ) shows the degree of orientation of fibers during

deformation for the networks considered in Fig. 6(a). The orienta-
tion is quantified with P2 = 1

2 (3 cos
2 θ − 1), where θ is the angle

between individual fiber orientation and the loading direction, and
the overbar indicates the average over all fibers in the model. The
degree of fiber orientation is smaller in NCV networks and
decreases as q increases. In the PV case (network A), P2 increases
rapidly once deformation enters regime II. NCV networks do not
exhibit such rapid increase even after the onset of regime II.
To summarize, NCV networks are softer than the PV reference

networks and exhibit two noteworthy features not commonly
observed in random networks: (i) an exceptionally long-ranged

linear regime I, coupled with (ii) an unusually weak Poisson
effect over a broad range of strains. Both the range of the linear
regime and the incremental Poisson ratio can be adjusted by control-
ling the degree of cell nonconvexity quantified by the parameter q.

5 The Strength of Nonconvex Voronoi Networks
To evaluate the strength of NCV networks, the cross-links are

allowed to rupture as defined by Eq. (3). The parameter controlling
the cross-link strength fc is adjusted such that the peak stress in uni-
axial tension is reached in regime II. Figure 8 shows the tensile
stress–stretch curves of networks A–E. The cross-link strength fc is
identical in all these models: ( fc/(Efd

2)= 2.18 × 10−4). Interestingly,
the strength increases continuously with increasing q. The bars rep-
resent the standard deviation of three replicas. The strength increase
is outside of the variability introduced by the stochastic replica
microstructures. Since networks become softer as q increases, the
strain corresponding to the peak stress also increases rapidly in the
presence ofmore pronounced structural perturbation (larger δ and q).
The strength of PV and fibrous networks was studied in detail in

Ref. [31] and a relationship between strength, σc, and network
parameters of type (a) and (b) was established. It was concluded that

σc ∼ fcρblc (4)

while σc is independent of fiber properties. This relation holds for
fibrous and cellular PV networks and for a broad range of fc, ρb,
and lc, with the peak stress being reached in regime I (small fc),
or at large stress and stretch values, deep into regime II (large fc).
Networks A–E have the same ρb and fc but different lc. To test
the hypothesis that the strength increase observed here is due to
the increase of lc with q, we plot in Fig. 9 the peak stress value σc
versus q. The figure includes the five data points corresponding to
systems A–E in Fig. 8, and additional data for NCV networks
with two other fc (fc/(Efd

2)= 1.7 × 10−3 and 2.18 × 10−2) and ρb
values (ρbd

3= 8.32 × 10−6 and 2.35 × 10−5).
Figure 9 supports the conclusion that the strengthening effect

observed here is due to the increase of the mean segment length,
while the cross-link density is kept constant. Given the geometric
relation ρ = ρblc�z/2, ρ increases linearly with lc at given ρb and �z.
Hence, the relation observed here can be also interpreted as a
linear increase of σc with ρ. Such relation is usually reported in the
experimental literature for networks of other architectures [19,26].

Fig. 8 Normalized Cauchy stress versus stretch curves for net-
works of given bond strength fc/(Efd

2)=2.18× 10−4 and bond
number density ρbd

3=1.45×10−5 but different q. Networks A,
B, C, D, and E have q=0.95, 1.20, 1.83, 2.94, and 4.68,
respectively.

Fig. 7 Cauchy stress–stretch curves for the NCV network D and
two PV networks having the same mean segment length lc
(network D1) and same density ρ (network D2) as network
D. The NCV networks have a longer-ranged linear response
(regime I) than PV networks.
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The network strength decreases continuously with increasing
model size. The proportionality constant implicit in Eq. (4)
accounts for this size effect, but its variation with the model size
is not analyzed in this work. This issue is discussed in detail in
Ref. [25].
As mentioned above, Eq. (4) implies that the network strength is

independent of the fiber elastic properties. This behavior is expected
to be preserved if the fibers are rendered elastic-plastic. In this case,
the constitutive response of the network would nevertheless exhibit
yielding followed by plastic deformation.
These results have a two-fold importance: (a) the collapse in

Fig. 9 indicates the robustness of the strength–structure relation of
Eq. (4) established in Ref. [31]. It also indicates the physical
origin of the increased strength of NCV networks (i.e., the increase
of lc with increasing q). (b) These results indicate ways to obtain
networks that are soft, linear elastic over a large range of strains,
and of high strength. This can have significant implications for
network design and may lead to the development of a new class
of fibrous materials.

6 Conclusions
A new class of cellular random networks obtained by a topolog-

ical modification applied to Poisson–Voronoi networks is reported
in this study. Such NCV structures have the same network param-
eters as the PV network, but a more disordered microstructure char-
acterized by nonconvex cells. The degree of disorder is defined in
terms of a set of structural parameters that can be measured exper-
imentally from physical networks. Increasing the disorder increases
the degree of the nonconvexity of the cells and has interesting
effects on the mechanical behavior of the resulting structures. Spe-
cifically, the NCV networks are softer, but with linear elastic beha-
vior that extends to larger strains than the reference PV network.
Their Poisson contraction decreases as the degree of disorder
increases. Their strength increases continuously with increasing dis-
order. The fact that all these properties are enhanced simultaneously
renders the NCV networks of interest and suggests that unusual
combinations of properties may result in regions of the design
phase space that are not yet explored.
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Appendix
Here, we present the procedure used to calculate the volume of a

nonconvex cell.
Figure 10(a) shows schematically a convex cell in a PV network,

prior to undergoing procedure 2 (Sec. 2). First, we calculate the
position of the centroid O, of this polyhedral cell as,

xOi =

∑N
n=1

xni

N
(A1)

where N is the total number of nodes forming the cell, xni is the posi-
tion of the nth node in the ith direction, and xOi is the position of the
centroid O in the ith direction.
The surface of the convex polyhedral cell is triangulated into T the

number of triangles, and the cell is divided into tetrahedrons formed
by each of these triangles and the centroid O (one of these, OABC
is shown in the figure). The volume of the cell can be computed as
sum of the volumes of all these tetrahedrons. For each of these,
we determine the correct order of vector-cross product, such that

the volume of the tetrahedron calculated as 1
6 (AB
	�

× AC
	�

).OA
	�

(or
1
6 (AC
	�

× AB
	�

).OA
	�

) is positive, and the nodes are stored in the corre-
sponding order as A–B–C (or as A–C–B).
After applying procedure 2 (Sec. 2) to obtain the nonconvex cell of

Fig. 10(b), for each tetrahedron defined previously, we calculate the

volume as 1
6 (AB
	�

× AC
	�

).OA
	�

(or 16 (AC
	�

× AB
	�

).OA
	�

), maintaining the

Fig. 9 Variation of the normalized strength σc/fcρblc of NCV net-
works versus the degree of disorder quantified by the parameter
q. Data are shown for networks of three normalized bond densi-
ties ρbd

3 and two normalized bond strengths fc/(Efd
2). The bars

represent the standard deviation of three realizations.

Fig. 10 (a) Schematic of a convex polyhedral cell in a PV
network and (b) an example of a nonconvex mapping of the
cell in (a) resulting upon the application of procedure 2
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order of the nodes that were stored in the previous step andmaintain-
ingO unchanged. The volumes of some of these tetrahedronsmay be

negative since the dot product of a vector OA
	�

and the outward normal

of the surface (defined in the previous configuration as AB
	�

× AC
	�

or

AC
	�

× AB
	�

) may no longer be positive. The algebraic sum of the
volumes of all these tetrahedrons (with their respective signs) gives
the volume of the nonconvex polyhedral cell.
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