
()

When is it Beneficial to Provide Freelance Suppliers
with Choice? A Hierarchical Approach for

Peer-to-Peer Logistics Platforms

Seyed Shahab Mofidi, Ph.D.
Rensselaer Polytechnic Institute, mofids@rpi.edu,

Jennifer A Pazour, Ph.D.
Rensselaer Polytechnic Institute, pazouj@rpi.edu,

This paper proposes and evaluates a new hierarchical approach to peer-to-peer logistics platforms, recasting

the platform’s role as one providing personalized menus of requests to freelance suppliers. A bilevel opti-

mization formulation explicitly models the two stage decision process: first, the platform determines which

set of requests to recommend to which suppliers, and second, suppliers have a choice to select which request

(if any) to fulfill. By harnessing the problem’s structure, the computationally expensive mixed-integer linear

bilevel problem is transformed into an equivalent single-level problem that is computationally superior. A

computational study based on ride-sharing quantifies the value of providing suppliers with choices. When a

platform’s knowledge of suppliers’ selections is imperfect, our hierarchical approach outperforms existing rec-

ommendation methods, namely, centralized, many-to-many stable matching, and decentralized approaches.

We show that a platform’s lack of knowledge over suppliers’ selections can be compensated by providing

choices in environments with either inflexible suppliers or when suppliers’ utilities have higher variance

than the platform’s utilities. In these environments, providing choices and recommending alternatives to

more than one supplier can be beneficial to not only the platform, but also freelance suppliers and demand

requests.

Key words : bi-level optimization, recommendation sets, choice, ride-sharing, crowdsourced delivery

1. Introduction.

Peer-to-peer resource sharing platforms, exemplified by companies like Uber and Airbnb,

are a disruptive new business model that match independent suppliers with demand

requests. Nonexistent just ten years ago, it is now a $75 billion industry (Allen 2015).

Because the resources are accessed when needed and not owned by a central system, sup-

ply capacity is elastic, and can be scaled up and down, as well as moved in response

to changing demand requirements. If requests can be interleaved with suppliers’ planned

tasks, platforms can tap into otherwise underutilized or idling capacity. However, these

systems are inherently more complex than traditional systems because supply capacity is

not set. Instead, a fluid set of suppliers must be enticed to provide access to their resources.

1

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
2

To manage this complexity, internet-based platforms facilitate the interactions between

suppliers (who provide access to their resources) and demand requests.

Peer-to-peer logistics platforms match independent suppliers to logistics requests (e.g.,

transport people or goods, store goods, fulfill orders). A wide range of such platforms exist

across the supply chain. For example, companies like Uber and Lyft operate platforms

matching people that need rides with people who are willing to provide them. Whereas,

Deliv and Grubhub are platforms for last-mile delivery. Flexe and Ware2Go are platforms

for warehouse space and order fulfillment capabilities. Instacart is a platform for order-

fulfillment and last-mile delivery of groceries. Cargomatic connects shippers with local

licensed carriers. The nonprofit American Logistics Aid Network matches logistics capa-

bilities with community and agency disaster needs. To capture the variety of peer-to-peer

logistics platforms, in what follows, we use supplier to refer to the ad hoc supply partici-

pants (who provide access to their resources), and request to denote demand for a supplier’s

resource.

Existing peer-to-peer logistics platforms use either a centralized or a decentralized

approach. A centralized approach, such as used by Uber and Instacart, prioritizes meeting

demand commitments and enabling a quick time to match. However, supplier preferences

are not considered. As a result, who is able to participate is limited, and utilizing underuti-

lized capacity is not prioritized. For example, Uber takes a rider-centric view and ignores

driver’s preferences or planned routes. The driver has 15 seconds to accept a recommended

request (without knowing its destination), and is penalized for low acceptance rates (Cook

2015). A decentralized approach, such as used by Flexe and Cargomatic, makes all requests

available to all suppliers. Suppliers must spend time to find suitable matches, which limits

quick resource allocation. For example, suppliers spent two hours a week (on average) find-

ing matches in Taskrabbit’s decentralized system (Newton 2014). Due to myopic supplier

selections, reduced systematic performance, in which some requests receive multiple selec-

tions and others receive none, is an observed problem in decentralized platforms (Cullen

and Farronato 2014, Einav et al. 2016, Fradkin 2017, Horton 2014).

This research proposes a new hierarchical approach, in which the platform - without

control nor perfect knowledge of suppliers’ utilities - uses choices estimated from suppliers’

past behavior to increase participation. As shown in Figure 1, we recast the platform’s

role as one providing personalized recommendations (i.e., a menu of requests) to a set

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
3

Figure 1 A hierarchical approach to decentralized resource allocation.

of suppliers. The platform first decides how multiple, simultaneous recommendations are

made. The same request may be recommended to multiple suppliers to decrease the time

to match and to hedge against suppliers’ autonomy to decline recommendations. Second,

suppliers have autonomy to select requests (if any) from the personalized menus, resulting

in some requests not selected and others selected by more than one supplier. This hierar-

chical approach enables a quick time to match, and does not require suppliers to explicitly

provide preference information for all requests. It also allows for systematic coordination

of suppliers’ resources to try and reduce duplicate and rejected requests. Suppliers retain

autonomy to select requests that can be interleaved with their planned activities, which

both increases who is willing to participate as suppliers, as well as improves resource uti-

lization of existing, idle capacity.

The objectives of this research are to determine when providing suppliers with choices is

beneficial to a platform that must coordinate demand requests with decentralized owned

resources, and to quantify this benefit to the platform, the suppliers, and the demand

requests under different environmental factors. In doing so, this paper makes the follow-

ing contributions. This work is the first to explicitly model both the platform’s decisions

and the suppliers’ selection decisions in an optimization framework. We develop a new

bi-level optimization framework to decide how a platform should make simultaneous sup-

plier recommendations. This is challenging because the platform’s objective is influenced

by both the platform’s recommendation decisions and the suppliers’ interdependent selec-

tion outcomes. A reformulation technique exploits the problem’s structure. We prove our

single-level reformulation technique is equivalent to the bi-level formulation and show it can

solve moderate-sized problems quickly. Using this framework, we answer the open research

question: when is it beneficial for a platform to use personalized recommendations to a

set of freelance suppliers to coordinate demand requests? We simulate different scenarios

using ride-sharing as a computational study. When a platform is uncertain about suppli-

ers’ selections, the hierarchical recommendation model outperforms existing centralized,

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
4

many-to-many stable matching, and decentralized approaches. In platforms where uncer-

tainty over suppliers’ selection exists, choices help the platform when (1) suppliers are

inflexible with a high no-choice utility; and (2) suppliers’ utility values have higher variance

than the platform’s utility values. Choices increase the chance of enticing supplier partic-

ipation, and in both cases, the increase in participation likelihood outweighs the match’s

reduced platform benefit likelihood. However, when (1) the platform’s benefit values have

higher variance than the suppliers’ expected utilities or (2) suppliers are flexible, offering

additional choices, on average, can reduce the platform’s benefit.

2. Literature Review.

Resource sharing platform research is emerging. Many descriptive studies exist (Bardhi and

Eckhardt 2012, Deakin et al. 2010, Hampshire and Sinha 2011, Murphy 2016, Narasimhan

et al. 2018, Rougès and Montreuil 2014, Shaheen and Cohen 2013, Steininger and Bachner

2014, Weber 2016). Prescriptive models are growing (Benjaafar et al. 2018, Jiang and Tian

2016). Subgroups include shared mobility, such as crowdsourced delivery and ride-sharing

systems, in which drivers with excess capacities (e.g., empty seats, extra delivery space)

are assigned to perform additional tasks (e.g., parcel delivery or providing a passenger a

ride) (Cleophas et al. 2019, Mourad et al. 2019). Dynamic ride-sharing focuses on matching

drivers with riders to share one-time trips (Agatz et al. 2012, Furuhata et al. 2013, Li

et al. 2014, Liu and Li 2017, Masoud and Jayakrishnan 2017, Nourinejad and Roorda

2016, Pelzer et al. 2015); all consider either a centralized or decentralized approach. Many

capture more complicated scenarios; for example, Stiglic et al. (2016) study the use of

relay points for drivers to match with more than one rider. Lee and Savelsbergh (2015)

and Arslan et al. (2018) consider a dedicated fleet of drivers as a backup plan for serving

requests not matched. However, at their core, all assume driver full compliance of the

platform’s decisions. None incorporate supplier choice in the optimization model.

While the needs of independent freelances have recently received great public attention,

it has attracted less academic research attention. One exception is Wang et al. (2017),

in which the platform’s and drivers’ preferences are known and considered by enforcing

dynamic ride-sharing matches to be stable. They empirically show that not taking the

preferences of drivers into account could lead to unsustainable ride-sharing systems in the

long run. Other works capture drivers’ willingness to participate and availabilities with

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
5

additional constraints (i.e., limiting number of stops or detour distances but only if the

information is provided by the drivers in advance (Arslan et al. 2018, Archetti et al. 2016).

A centralized approach to crowdsourced delivery requires drivers to provide bids a day

in advance (Kafle et al. 2017). Bottom-up agent-based approaches include Kleiner et al.

(2011), Winter and Nittel (2006), Xing et al. (2009), in which individual suppliers match

themselves based on self-interest and without centralized supervision. While not motivated

by resource sharing, related is Powell et al. (2000), in which a platform recommends a

single alternative to a single dispatcher who can accept or reject it. Powell et al. (2000)

neither incorporates discretion decisions into the optimization model nor considers depen-

dencies in systematic performance due to multiple suppliers’ decisions. Thus, our approach

is innovative, as none of the existing research for matching supply and demand in plat-

forms considers hierarchical approaches modeling a set of suppliers with discretion in the

optimization model.

This is the first work to determine if personalized recommendations made to suppliers can

be used to coordinate decentralized resource allocation decisions. Related is supply chain

coordination literature, given its shared focus on coordinating decentralized entities (Cao

and Zhang 2011). However, coordination mechanisms are designed to influence demand

using pricing (Bernstein and Federgruen 2005, Chen et al. 2001), inventory discounts (Qi

et al. 2004), information sharing (Ha et al. 2017, Lee and Whang 1999), buy-back con-

tracts (Heydari et al. 2017, Krishnan and Winter 2010), and revenue sharing (Cachon and

Lariviere 2005, Govindan and Popiuc 2014, Tsay and Agrawal 2004). In contrast, this

work considers personalized recommendations as mechanisms to coordinate decentralized

supply. To entice suppliers, Cachon et al. (2017) analyze platform pricing and wage con-

tracts; while Bai et al. (2018), Chen and Sheldon (2016), explore dynamic pricing, but

none consider recommendation sets.

Recommender systems are a well-studied response to the problem of creating personal-

ized recommendations that a platform hopes will be of interest to a certain user. While

different approaches to recommender systems exists, all “rely on some kind of representa-

tion of users’ preferences” (Price and Messinger 2005). “Since information about users is

incomplete and uncertain and since preference representations are often based on simplified

models of users and alternatives, the single best alternative for the user is uncertain. The

common solution to this problem is to present the user with a set of the top-k alternatives

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
6

in the hope that one of these alternatives will be the true best” (Price and Messinger

2005). While these deterministic methods do not guarantee optimal recommendation sets

in the stochastic environment, they are commonly used and were the starting point of

this field. The field of recommender systems literature varies from this work as what is

being recommended has an infinite capacity and no penalty exists for something not being

selected. Recommendation decisions are made independently for each user. Methods focus

on predicting user preferences, not combinatorial optimization (Ekstrand et al. 2011, Lops

et al. 2011).

Market theory is a well-studied decentralized approach to distributed resource allo-

cation. Related are centralized matching algorithms that take rank-order preferences of

bipartite sets and suggest matches achieving a given criteria, such as stability, Pareto opti-

mality, strategy proofness, social welfare (Gale and Shapley 1962, Roth and Sotomayor

1992). Achieving optimal performance for all criteria is not possible due to incompatibil-

ity (Anshelevich et al. 2013). Constraints to overcome imbalances and to meet quotas are

studied in a decentralized market (Fragiadakis et al. 2016, Kamada and Kojima 2014),

but a hierarchical approach using recommendation sets in matching mechanisms has not

been studied. While combinatorial auctions allow interdependency among a user’s utility

through request bundles, interdependency in systematic performance is not captured. Mar-

kets for peer-to-peer resource sharing platforms have been cumbersome in practice due to

effort to elicit supplier information, and for suppliers to identify requests and determine

bids (Einav et al. 2016). In this work, the platform prioritizes match quickness and supplier

effort reduction. Thus, personalized recommendations are a substitute for a market, and

systematic performance, influenced by interdependent suppliers’ selections, is not additive.

The platform must consider suppliers’ selection behavior when making personalized rec-

ommendations, because suppliers have autonomy not to comply with the recommendations

they do not prefer. Thus, our hierarchical approach will be formulated as a bi-level program.

Also known as Stackelberg Leader-Follower Games (Bracken and McGill 1973, Von Stack-

elberg 1952), bi-level programs model a hierarchy, in which a leader makes decisions that

affect the followers’ feasible decision set (Colson et al. 2007, Dempe 2018). Bi-level opti-

mization problems are recognized as difficult (Dempe and Franke 2016); even linear bi-level

programming is NP-hard (Audet et al. 1997, Bard 1998, Frangioni 1995). Focus has been

on developing specialized algorithms for specific problems. Effective specialized approaches

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
7

exist for network interdiction, which model the attacker-defender problem (Sullivan et al.

2014). In transportation network design problems, the network design and its capacities

are leader decisions; followers solve shortest path problems (Brotcorne et al. 2001, Fara-

hani et al. 2013, Gao et al. 2005). Assortment optimization determines what product

assortment to offer to an aggregated set of shoppers, who then make consumer selection

choices from the recommended assortment (Kök et al. 2015). Capacity constraints of a

single shared assortment have been considered in assortment optimization (Feldman and

Topaloglu 2015). In all problem types, a single aggregate leader decision is made and shared

among the followers. For example, all users make routing or interdiction decisions using the

same shared network, and all consumers make purchasing selections from the same prod-

uct assortment. Revenue management considers what assortment of products (e.g., flight

tickets and prices) to display to what segment of users at varying times to sell remaining

capacity of a finite resource (Bitran and Caldentey 2003, Gallego et al. 2014, Phillips 2005).

Existing revenue management work assumes demand selections occur sequentially and

recommendations are independent of each other. Similarly, dynamic assortment optimiza-

tion considers personalized recommendations of finite capacities to sequentially arriving

customers (Bernstein et al. 2015, Johari et al. 2016). In contrast, this work makes mul-

tiple, simultaneous personalized recommendations. Existing work in bi-level optimization

either models the leader problem as deciding (i) a single aggregate recommendation, or (ii)

multiple independent recommendations. The bi-level models proposed here are innovative

because the leader problem has to make multiple personalized recommendations, in which

platform performance is dependent on multiple selection outcomes.

3. Hierarchical Approach: A Bi-Level Optimization Framework

The bi-level optimization framework (BLF) models the platform as the leader, who decides

what personalized subset of demand requests to recommend to a set of decentralized inde-

pendent suppliers (the followers). A single period (static) model is presented. Thus, we

assume that the platform makes recommendations at defined decision epochs (e.g., Grub-

hub resolves a static optimization problem every minute). At each decision epoch, the

following sets exist: a set of potential suppliers S = {1,2, . . . , n}, a set of demand requests to

be fulfilled R= {1,2, . . . ,m}, and the no-choice set N , which has a single element N = {0}.

Recommendations to suppliers are a subset of the set of alternatives A, which is the union

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
8

of the requests and the no-choice sets, i.e., A=R∪N . Given all suppliers must be recom-

mended the no-choice alternative, the use of a no-choice set is what allows us to capture

suppliers’ ability to have autonomy to reject all recommended requests and not participate.

The menu size, θ, denotes the required number of integer requests (excluding the no-choice

alternative) to be recommended to each supplier.

We model the case in which the set of suppliers have specific preferences for the set of

alternatives. We assume the platform can estimate the expected value of each suppliers’

utility for each alternative. This estimate is based on suppliers’ past behavior collected as

historical information by the platform (e.g., past destinations given time of day and current

origin), and current information captured via the platform (e.g., suppliers’ current GPS

location). Therefore, a deterministic optimization model is presented, in which the plat-

form inputs the expectation of suppliers’ estimated utilities (νij) to make recommendation

decisions.

Demand requests are assumed to have a capacity of 1 and have no discretion (i.e.,

demand users will accept any supplier). Recommendation menus are made simultaneously

to the set of suppliers and overlapping requests can be recommended to more than one

supplier. Thus, demand request i∈R can experience one of three observed outcomes after

suppliers’ selections: A request can be selected by (1) multiple suppliers (a collision); (2)

no suppliers (a rejection); or (3) one and only one supplier (a 1-to-1 match). These are

platform outcomes, which occur due to multiple suppliers’ selections and are captured in

the leader objective function in (1).

Decision Variables:
xij 1 if the platform recommends alternative i∈A to supplier j ∈ S; 0 otherwise.
yij 1 if supplier j ∈ S selects alternative i∈A; 0 otherwise.
zi Integer number of suppliers who select request i∈R, but are not matched (collision)
wi 1 if no supplier selects request i∈R (rejection); 0 otherwise.

Bi-Level Optimization Formulation (BLF):

max
∑
i∈R

∑
j∈S

cijyij −
∑
i∈R

dizi−
∑
i∈R

riwi (1)

s.t.
∑
i∈R

xij = θ ∀j ∈ S (2)∑
j∈S

xij ≤ ai ∀i∈R (3)

x0j = 1 ∀j ∈ S (4)

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
9∑

j∈S

yij ≤ zi + 1 ∀i∈R (5)

1−
∑
j∈S

yij ≤wi ∀i∈R (6)

xij ∈ {0,1} ∀i∈A, ∀j ∈ S (7)

zi ∈ {Z≥0} ∀i∈R (8)

wi ∈ {0,1} ∀i∈R (9)

max
∑
i∈A

∑
j∈S

νijyij (10)

s.t. yij ≤ xij ∀i∈A, ∀j ∈ S (11)∑
i∈A

yij ≤ 1 ∀j ∈ S (12)

0≤ yij ≤ 1 ∀i∈A, ∀j ∈ S (13)

The leader problem is captured in (1)-(9). In (1), the platform takes a holistic view

by maximizing it’s expected benefit. If request i ∈ R is selected by supplier j ∈ S, cij

denotes the platform’s benefit. We let di denote the linear collision penalty per supplier who

selected request i, but was not matched, and ri denote the rejection penalty per request

if request i ∈ R is not selected by any suppliers. Thus, the platform’s objective function

depends on the suppliers’ decisions (i.e., notice yij and not xij in (1)). Also, (1) captures the

dependencies among suppliers’ selections by accounting for collisions and rejected request

penalties. With zi being an integer variable, the second term in the platform’s objective

function penalizes linearly per number of suppliers who selected a request but did not fulfill

it. For example, if request i is selected by three suppliers, only one supplier can provide the

service, two other suppliers are told by the platform their service is not needed, and the

corresponding zi variable is 2. To model a platform that only receives benefit in a 1-to-1

match, di should be set such that di >maxj∈S {cij},∀i∈R.

Constraints (2) enforce that all suppliers j ∈ S must be recommended menus of size

θ. By changing θ values, we use this model to quantify the impact of providing different

number of choices on the platform and suppliers’ performance (see Sections 6 and 7). Con-

straints (3) enforce at most ai suppliers can be recommended request i∈R. Constraints (4)

enforce the no-choice alternative has to be recommended to all suppliers. Thus, all suppli-

ers have autonomy to choose the no-choice alternative, i.e., have autonomy to choose not

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
10

to participate. Constraints (5) and (6) capture the dependency among multiple suppliers,

whether a request is selected by more than one supplier (collision); or it is not selected by

any suppliers (rejection), respectively. Constraint (7) - (9) provides bounds on the leader’s

decision variables.

The suppliers’ (followers) problem is captured in (10)-(13). Suppliers are assumed myopic

rational utility maximizers without a commitment to the platform and make decisions

independently of other suppliers. Multiple follower decisions are captured in a single objec-

tive function, i.e., maximize suppliers utilities, summed over all suppliers in (10). Because

each of the suppliers’ decisions are made independently of the other suppliers, the lower-

level problem given in (10)-(13) is decomposable by supplier j into multiple, independent

follower problems. For alternative i∈A, νij denotes the platform’s expectation of supplier

j ∈ S utility. These expectation values are assumed all to be greater than or equal to zero

(i.e., νij ≥ 0∀i ∈ A,∀j ∈ S). Constraints (11) enforce suppliers’ selections to be a subset

of their recommendation set. In (12), supplier j ∈ S must select at most one alternative,

from the requests recommended and no-choice option. Therefore, if the supplier’s no-choice

option has higher utility than any of the other recommended requests, the lower-level

problem captures that the supplier will choose the no-choice option (which represents the

supplier not participating). The followers’ decision variables, while binary, can be relaxed

to continuous in constraints (13) because in standard form, the lower level problem’s con-

straint coefficient matrix is unimodular and each element of the right hand side vector is

either 0 or 1 (integers) (Shapiro 1979).

4. A Specialized Solution Approach

The bilevel optimization framework in this research is a discrete-continuous linear bilevel

programing problem (DCL-BLPP). Although general algorithms and open sourced solvers

exist (Bard and Moore 1992), challenges in solving large scale bi-level problems remain

(Bard 1998, Zeng and An 2014). Therefore, we develop a specialized solution approach

to convert the BLF problem, represented in (1)-(13), into an equivalent single level prob-

lem. The reformulation technique is focused on the lower-level problem (i.e., the suppliers

myopic selections). Specifically, we replace the lower level objective function in (10) with

a set of linear constraints. These constraints enforce a set of logical, if-then statements:

if the platform recommends a given recommendation set, then the supplier will select the

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
11

alternative recommended with the highest utility. This is achievable because the platform

makes recommendations based on the assumption that suppliers’ selection behaviors are

based on maximizing their expected utility values, νij. For example, if ν1j > ν2j > ν3j, sup-

plier j prefers alternative i= 1 over i= 2 over i= 3 (i.e., 1�j 2�j 3). Thus, the platform

can determine supplier j will select alternative 3, only if alternatives 1 and 2 are not rec-

ommended (i.e., if x1j = 0, x2j = 0, and x3j = 1, then y3j = 1). Thus, supplier j’s selection

behavior of choosing the recommended alternative with the supplier’s highest utility –

previously captured by the lower level objective function (10) – can be captured with a set

of linear constraints in (14). The constraint set (14) uses a new set of binary variables tij,

which is 1 if xij = 1 (i.e., if supplier j selects alternative i); 0 otherwise.

+x1j ≤ t1j, y1j ≥ t1j for k= 1

−x1j +x2j ≤ t2j, y2j ≥ t2j for k= 2 (14)

...
...

...

−x1j −x2j −x3j . . .−x(q−1)j +xqj ≤ tqj, yqj ≥ tqj for k= q

Constraints (14) represent the set of linear constraints for only one supplier j. Because

each supplier can have a different highest alternative, second highest, and so on, we use the

notation k to represent an alternative’s ranking index, given supplier j’s preference profile.

These constraints represent all the possible selection outcomes for supplier j and capture

that the only way supplier j will pick its kth most desired alternative, is if none of the

k− 1 and higher alternatives are offered in the recommendation. Supplier j will pick their

k = 1 alternative if it is recommended (refer to the first line in (14)). However, supplier

j will pick their k = 2 highest alternative only if their first highest alternative is NOT

recommended (refer to the second line in (14)). The least preferred alternative has an index

of k= q and supplier j will only pick their qth highest alternative if no other alternative is

recommended. Similarly, we can write the logical expressions for all other suppliers based

on their preferences. We represent the coefficients of xij, yij, and tij in (14) by αijk, βijk, and

γijk, respectively. These coefficient are used in the constraints (15)- (17), which capture the

selection decision of suppliers for all possible recommendation sets. Thereby, Algorithm 1

takes suppliers’ expected utility matrix V = [νij], and outputs coefficient tensors A= [αijk],

B = [βijk], and Γ = [γijk]. The numerical example below shows how the third dimension of

the tensor (i.e., k) is constructed with this algorithm. This example has 3 suppliers and

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
12

3 alternatives, and the given V matrix, νij = [
3 2 1
2 1 2
1 3 3

]. Then, for this example, the resulting

tensor values for αijk are: [
1 0 0
0 0 0
0 1 1

] for k= 1; [
−1 1 0
1 0 1
0 −1 −1

] for k= 2, and [
−1 −1 1
−1 1 −1
1 −1 −1

] for k= 3. For

βijk = γijk are: [
1 0 0
0 0 0
0 1 1

] for k= 1; [
0 1 0
1 0 1
0 0 0

] for k= 2, and [
0 0 1
0 1 0
1 0 0

] for k= 3. The layer k= 1 of the

tensors represents the situation where all suppliers are given their first preference. For this

example, α311 = β311 = γ311 = 1 construct constraints that forces y31 = 1 if x31 = 1 through

(15)- (17).

Algorithm 1 Output Coefficients for Logical Expression Constraints

1: // Initial Call: A← 0q×n×q, B← 0q×n×q, Γ← 0q×n×q, where q= |k|

2: for j = 1 to n do

3: for k= 1 to q do

4: i← arg maxi∈A Vj

5: αijk← 1, βijk← 1, γijk← 1

6: Remove i from Vj

7: for k′ = k+ 1 to q do

8: αijk′←−1

9: Return A, B, and Γ

q∑
i=1

αijkxij −
q∑
i=1

γijktij ≤ 0 ∀j ∈ S, ∀k ∈K (15)

q∑
i=1

γijktij −
q∑
i=1

βijkyij ≤ 0 ∀j ∈ S, ∀k ∈K (16)

tij ∈ {0,1}, ∀i∈A, ∀j ∈ S (17)

The reformulation technique (RFT) is to solve the following single-level optimization

model: maximize (1), subject to (2) - (9), (11) - (13), (15) - (17). That is, the reformulation

technique keeps the upper level objective and constraints, which continue to enforce the

platform outcomes due to interdependence in multiple suppliers’ selections, and adds the

lower-level objective as a set of constraints. The specific reformulation technique used here

adds q × n variables and 2q × n constraints to the original BLF problem. However, the

formulation could be completed without the use of tij variables and advanced approaches

could be applied to generate constraints only as needed in an iterative approach.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
13

Theorem 1. RFT and BLF are equivalent.

Proof: Equivalency requires for a given solution to the upper level problem in BLF

(i.e., given a recommendation matrix xij), the feasible region of (11) -(13), (15) - (17) is a

unique point equivalent to the optimal solution to (10)-(13). We provide the proof for one

driver j and extend it for ∀j ∈ S. Given xij ∈ {0,1} and constraint set (4) enforces that the

no-choice alternative is always offered to all suppliers, it is guaranteed that at least one of

the xij variables is nonzero (i.e., xij 6= 0,∃i∈A). Then, according to (11), the upper bounds

for corresponding yij variables are one in the BLF. Due to unimodularity of the lower-level

of the BLF and (12), only one of the yij variables can be equal to one. Because the lower-

level of the BLF objective, given in (10), is to maximize, all νij values are greater than

or equal to zero, and the lower-level problem captures suppliers’ independent decisions,

a single yij is set to one in BLF’s optimal solution that has the highest corresponding

multiplier νij among the alternatives in the recommendation set, i.e., yij = 1, where i =

arg maxi∈A|xij 6=0 νij. In RFT, because the upper level constraint (4) still applies, at least

one of the xij variables will be nonzero (i.e., xij 6= 0,∃i∈A). This implies that only one of

the constraints in (15) for each j is binding, and thus the lower bound on one of the tij

variables is one. Consequently, due to (16), the lower bound on the corresponding variable

yij is also one. For verification, consider the first two lines in (14) assuming two alternatives,

i = 1, i = 2. If the recommendation vectors are xij = (1,0) or xij = (1,1), this will result

in t1j = 1 and thus y1j = 1. This makes the first row of constraint (14) binding. Similarly,

for the recommendation vector xij = (0,1), this makes the second row of the constraint

set binding, resulting in t2j = 1 and thus y2j = 1. Moreover, the upper bound for only one

of the yij variables can become one because of (12). Therefore, it is guaranteed that one

and only one yij = 1 is equal to one for each supplier j. Due to Algorithm 1, line 4, the

binding constraint has yij with the highest corresponding multiplier νij, i.e., yij = 1, where

i= arg maxi∈A νij. As suppliers’ selections in the lower level are independent, this argument

can be extended for all drivers ∀j ∈ S. End Proof.

In Appendix A we test the computational performance of the reformulation technique

(RFT) against a common bi-level solution approach. We find that the reformulation tech-

nique is computationally superior and able to solve reasonably-sized problem instances

quickly.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
14

5. Optimal Recommendation Set Properties

In this section, we explore properties about the optimal solutions from our bi-level opti-

mization problem. A natural question is why not use the recommendation set when θ= 1

and then add choices when the menu size requirement increases. However, as we show in

Theorem 2, the optimal recommendation sets are not guaranteed to be a subset of smaller

menu sizes.

Theorem 2. The optimal recommendation set with menu size θ = 1 is not guaranteed

to be a subset of the optimal recommendation set with a menu size θ greater than one.

Proof: Proof by counterexample: Let there be two suppliers S = {1,2} and three requests

R= {1,2,3}, and the no-choice alternative is not offered, i.e., N = ∅. The platform’s benefit

matrix and the suppliers’ expected utility matrices are cij = [(1,1), (2,3), (3,2)], and νij =

[(3,1), (2,3), (1,2)], respectively, and di = ri = 1. If the menu size is θ = 1, the optimal

recommendation matrix and the selection matrix are xij = [(0,0), (0,1), (1,0)], and yij =

[(0,0), (0,1), (1,0)], respectively. Now consider the same utility values, but with a menu

size of θ = 2; the optimal recommendation matrix and the selection matrix are: xij =

[(0,1), (1,0), (1,1)], and yij = [(0,0), (1,0), (0,1)], respectively. When the menu size is two,

supplier 2 is recommended alternative 2. Whereas, with a menu size of 1, alternative 2 is

removed from the recommendation set and instead, alternative 1 and 3 are recommended.

The optimal recommendation set with θ= 1 is not a subset of the optimal recommendation

set with a larger menu size. End Proof.

Consequently, creating recommendation sets, with a given menu size, for multiple sup-

pliers is challenging due to the interaction effects of suppliers’ outcomes captured in the

platform’s objective function. The problem is less challenging if the menu size is flexible;

i.e., when constraint (2) is relaxed from a “=” to a “≤” constraint. The optimal solution

to the flexible menu size is equivalent to solving for a single menu size (i.e., θ= 1) and then

adding alternatives to suppliers recommendations that are strictly less attractive to the

suppliers (i.e., with lower νij values than ν0j). In Theorem 3, we prove for flexible menu

sizes that if a platform has perfect knowledge about suppliers’ selections, providing choice

cannot improve the platform’s objective value.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
15

Theorem 3. It is guaranteed that when suppliers are rational utility maximizer, and

their selection behavior is deterministically known to the platform, in a flexible menu situ-

ation, adding one more alternative either degrades the platform’s objective function value

or it remains the same.

Proof: An optimal solution to BLF, when constraint (2) is relaxed from a “=” to a “≤”

constraint, is to recommend at most one request to all suppliers, i.e., to have
∑

i∈R xij ≤

1∀j ∈ S. Adding additional alternatives has only two outcomes. Either the recently added

alternative has a higher supplier utility value than the supplier’s current selection, or the

supplier’s utility value of the new alternative is less than or equal to the supplier’s current

selection. In the former case, the supplier would select the new alternative instead of the

previous selection to increase her utility, which would result in an equal or worst benefit

for the platform. Because otherwise, if an alternative can increase both the platform’s

objective function and the supplier’s utility, that alternative would be in the optimal

recommendation set in the first place. In the latter case, the supplier has no incentive to

change her selection, assuming that in the case of alternatives with equal supplier utility

values, the supplier will always select with a tie breaking rule known to the platform. Thus,

the benefit of the platform remains the same in this case, because the supplier does not

change her selection. Instead, multiple optimal solutions may exist, but an optimal solution

is one without additional alternatives. End Proof.

6. Computational Study Structure

Acquiring suppliers’ utilities in advance is typically not feasible because eliciting utility

values of all requests is time consuming and tedious for suppliers. Therefore, suppliers’

selections are typically not fully known by the platform. Instead, exogenous factors play

a role in supplier selection, resulting in a platform being able to only partially estimate

suppliers’ selection outcomes through, for example, multi-attribute random utility models

(Huber 1974, Train 2009). In such cases, providing choices to suppliers has the potential

to improve the platform’s objective function. As the menu size θ increases, suppliers have

a higher chance to be recommended a request they are willing to select. This benefits

the platform, up to a point. However, due to misalignment between the suppliers and

the platform’s utilities, larger values of θ lead to higher chances of suppliers selecting a

request with lower platform benefit. Also, as the number of choices increases, less systematic

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
16

coordination occurs. Thus, higher chances of rejected or collided requests negatively impact

the platform’s objective function. Therefore, in this section we explore the concept of

providing choice when a platform has uncertainty about suppliers’ selections.

We develop a computational study to investigate whether personalized recommendation

sets can be used as a coordination mechanism for distributed resources when the platform

has neither perfect knowledge nor control over suppliers. We use as a case study, a ride-

sharing platform, in which (1) demand requests are riders who request a ride from one

point of interest (origin) to another (destination), (2) suppliers are drivers who travel from

their origins to their destinations and may be willing to offer a ride if it meets their criteria;

and (3) the platform receives requests from riders and facilitates matches by recommending

a personalized set of ride requests to each driver.

Our goals are to (1) compare the performance of our proposed hierarchical model with

existing platform matching methods, namely, centralized, decentralized, and many-to-many

stable matching mechanisms; (2) quantify the platform’s value of providing choices in on-

demand environments; and (3) determine under what scenarios it is better to recommend

only one alternative, a few alternatives, or all alternatives, and to investigate when it

is useful for the recommendations to contain overlapping alternatives. To achieve these

goals, our computational experiment consists of four phases represented in Figure 2, which

together captures a platform that can only partially estimate the selection outcomes of

suppliers when it makes recommendations.

In phase one, data generation, we describe how a ride-sharing application is used to gen-

erate a set of computational experiments. Factors vary the distribution of origin-destination

(O-D) points for riders and drivers, rejection penalties, expected thresholds, and platform

estimation errors, which account for the platform’s lack of visibility into drivers’ true selec-

tion outcomes. In the second phase, a set of optimization engines input expected values

of parameters to determine personalized recommendations for a set of drivers. We con-

sider four optimization engines, namely a centralized, decentralized, many-to-many stable

matching, and our hierarchical approach. Third, in the simulation environment, the drivers’

selections (i.e., the reaction of drivers to the platform’s recommendations) are simulated.

Finally, in phase four, we compare the platform’s performances when the four recommen-

dation models are used to determine recommendations. We report the platform’s objective

function values attained after the drivers’ actual selections, as a function of menu size

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
17

Figure 2 Phases of the Computational Study

and experimental factors. We also report on the value of choice for the drivers and riders.

We implement all phases in MATLAB 8.5 (R2015a) programming language, using Gurobi

Optimization 7.5.2. as the solver, on a quad-core 1.9 GHz CPU with 32GB RAM.

6.1. Data Generation Based on a Ride-Sharing Application

The specific ride-sharing platform we consider is as follows. First, we consider the static

version, meaning the platform solves the recommendation problem periodically and we

focus on one period only. Solving the snap shot version, while a simplification, allows us

to accomplish our three goals. Second, we assume that n riders and m drivers exist in the

system, and n=m= 10. All riders simultaneously request rides by announcing their trip’s

O-D pairs. However, drivers’ willingness to provide a ride depends on the characteristics of

the ride request. The drivers in the platform only allow the platform to observe their origin

and do not disclose their destination. Instead, the platform estimates drivers’ destinations

based on past history. This results in the platform able to perfectly determine cij values, but

only partially estimate drivers’ utilities for a ride, νij. Therefore, the optimization engines

use νij, whereas, we incorporate uncertainty about drivers’ destinations in the simulation

phase. Drivers have the capacity to provide at most one ride (i.e., one pickup and delivery

of a rider) per trip, and no ride transfers are allowed. The platform has to recommend a

set (a menu) of ride requests to drivers. Drivers can choose at most one alternative. All

drivers are recommended and have the option to choose the no-choice alternative (i.e.,

decide not to participate in the ride-sharing platform by not accepting any of the ride

requests recommended). We also set ai = n= 10,∀i ∈A, which means a single alternative

can be recommended to all drivers in the system. The collision penalty, di = 1.5,∀i ∈ R.

We test all integer values of the menu size θ in the range of [1,10]. The first two columns

of Table 1 provide the five factors and their level values in our design of experiments. We

conduct a full factorial design, which results in 288 cases. We generate 1440 instances by

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
18

replicating each case 5 times, in which a replication is a specific outcome generated from

the given probability distributions.

6.1.1. Expected Utility Estimation We assume the ride-sharing platform operates in

an unit square zone; that is, all drivers’ and riders’ O-D are specified by a 2-tuple (x, y)

containing coordinates in two-dimensional Euclidean space in [0,1]× [0,1]. The trip of rider

i is denoted by the rider’s origin and destination Oi, and Di, respectively. Similarly, Oj

and D̂j, denote the origin and expected destination of driver j’s trip, respectively. In the

context of ride-sharing, the distribution of O-D points may vary. Riders destinations may

concentrate in a particular region (e.g., to be dropped off at a football stadium); riders

origins may also concentrate (e.g., most of the weekend night rides originate from certain

downtown areas). Similarly, drivers’ destinations and origins may be concentrated due to

commuting patterns. We generate O-D pairs under three scenarios, in which the first letter

determines the distribution of the origin point and the second letter the distribution of

the destination point. In all cases, we randomly generate x and y coordinates for points

independently. Uniform-Uniform (UU): A trip is equally likely to start and end at

any point inside the unit square, i.e., x ∼ U(0,1) and y ∼ U(0,1). Uniform-Centered

(UC): A trip is equally likely to start at any point inside the unit square, but it is more

likely to end at a point near the center. The origin’s coordinates are x ∼ U(0,1) and

y ∼ U(0,1). The destination is normally distributed with x ∼N(µ = 0.5, σ2 = 0.122) and

y ∼ N(µ = 0.5, σ2 = 0.122). Centered-Uniform (CU): Origins are concentrated in the

center, but destinations are spread uniformly across the zone. The origin’s coordinates are

normally distributed with µ = 0.5, and σ = 0.12. However, the destination’s coordinates

are uniformly distributed as x∼U(0,1) and y∼U(0,1). We consider these three scenarios

for riders and for drivers, resulting in nine cases.

As defined in Section 3, the platform’s benefit of having request i be fulfilled by driver

j is captured by cij. The platform’s benefit is a linear function of the Euclidean distance

from driver j’s origin to rider i’s origin, as shown in (18). The value cij is deterministically

known to the platform and prioritizes matches with a driver with an origin close to the

rider’s origin. In the unit square, the distance between the origins of any driver j and any

rider i is at most
√

2 and at least zero.

cij =
√

2− |Oi−Oj| ∀i∈R,∀j ∈ S (18)

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
19

Figure 3 Distributions of platform benefit values, cij , and estimated drivers benefit values, νij , for the nine O-D

pair combinations.

The drivers’ goals are modeled as minimizing their empty travel distances after dropping

off the rider at the rider’s destination. We assume a driver’s destination can be estimated

based on past travel history, which the platform captures in the estimated destination D̂j.

We define the expected utility of driver j for ride request i in (19).

νij =
√
2− |Di − D̂j| ∀i∈R,∀j ∈ S (19)

Figure 3 provides the relative frequencies of the 100 elements of cij and νij for each of

the nine O-D pair distribution combinations. This generation approach provides a variety

of distributions for utility matrices νij and cij, which represent varying alignment between

the platform and drivers utilities. For example, if both riders and drivers O-D pairs are

generated by a UC scenario, the destinations of both groups occur around the center, but

their origins are spread out. Thus, the νij values have less variance than the cij values

(see Figure 3 right-most distributions). Our data also captures a group of drivers inter-

ested in similar rides due to similarities in their individual planned trips. To test this, we

calculate the Pearson correlation coefficients of νij values between all pairwise combina-

tions of drivers, and similarly of cij values between all pairwise combinations of riders. In

all instances, there exists at least a pair of drivers who have similar preferences (i.e., the

maximum pairwise νij correlation value is close to 1) (Mofidi 2018).

6.1.2. Estimation Errors Driver j’s true utility for ride request i (i.e., uij) is measured

as the distance between the driver’s and rider’s true destinations. Although Oi, Di, and

Oj are known to the platform, Dj is unknown. We define driver j’s true utility as uij =
√
2−|Di−Dj|, where Dj = D̂j + εj. We specify εj as a 2-tuple (xεj , yεj) vector, and assume

xεj and yεj are generated independently with mean zero and equal variances. Thus, uij is

decomposed into an estimated value observable to the platform and an error term, i.e., uij

is the vector sum of νij and εj. As described in Table 1, we consider two variance levels for

the destination error. This approach models the platform’s uncertainty of supplier selection

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
20

via imperfect estimate of drivers’ destinations. This is a surrogate measure to account for

the platform’s lack of visibility into drivers’ true selection outcomes. Alternatively, the error

term εj can represent other exogenous factors influencing drivers’ utilities not captured by

the platform’s historical data.

6.1.3. No-Choice Alternative Utilities The no-choice alternative corresponds to a

driver deciding not to select any of the recommended ride requests. If the no-choice alter-

native is selected by a driver, the platform receives no benefit, and c0j = 0,∀j ∈ S. However,

the no-choice alternative can have value for a driver, as it represents a driver who would

rather go directly to their planned destination than participate in the ride-sharing plat-

form. A driver will select the no-choice alternative only if the utility is larger than all

recommended ride requests. To be consistent with Section 6.1.1, we define the utility of

no-choice as a function of the maximum distance a driver is willing to travel empty after

dropping off a rider at their destination. Beyond this threshold, the driver would not offer

a ride. We model driver true utility of the no-choice option as only partially estimated by

the platform. To do so, we generate an expected utility for no-choice (i.e., ν0j)) based on a

driver’s past no-choice utilities and calculated in (20).

ν0j =
√

2− δj ∀j ∈ S (20)

where δj is the expected empty travel distance threshold of driver j, which we refer to as the

expected threshold throughout this study. To differentiate inflexible drivers with flexible

ones, Table 1 provides low and high expected threshold values. We simulate an error in

this estimate, such that driver j’s utility for the no-choice alternative is u0j = ν0j + ej.

A realization of the true utility is simulated by randomly sampling ej from a normal

distribution with two levels given in Table 1.

6.2. Optimization Engines

We analyze four techniques to generate recommendation sets: a centralized (ctr), decen-

tralized (dec), many-to-many stable matching (msm), and our proposed hierarchical model

(hrc). These are all deterministic optimization approaches, and the expected value of all

parameters are used as inputs to the optimization models. The hrc recommendation is

determined by solving the single-level optimization problem, resulting from the reformu-

lation technique. The dec recommendation shows all available alternatives to all drivers.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
21

This does not require optimization, and is also equivalent to the hrc recommendation with

a menu size of θ= 10. The ctr recommendation solves the traditional assignment problem

using only platform utilities (i.e., cij values, but ignoring νij values). The ctr always recom-

mends each driver exactly one request and no two drivers are recommended the same ride

request. While ctr ignores drivers’ no-choice preferences, this information can be captured

in a centralized optimization engine that recommends a single ride request to all drivers

by solving hrc with θ= 1.

For msm, we solve the many-to-many stable matching model with a maximum cardi-

nality objective function. We solve the linear programming representation, which enforces

the pairwise stability criteria via blocking pair constraints, as defined in Roth et al. (1993).

Sotomayor (1999) highlights the usefulness of pairwise-stable matching in competitive

labor markets and proves there always exists a pairwise-stable matching. In many-to-many

matching, a match is a recommendation that forms a connection between a rider to a

driver. So, a one-to-one match means a ride request is only recommended to a single driver

and the drivers’ menus contain one recommended ride request. A many-to-many matching

denotes recommending a subset of ride requests to a subset of drivers. For example, a

2-to-2 matching means each ride request is recommended to two drivers and each driver’s

menu contains two possible ride requests. Stability means that no other ride requests other

than the current recommendation set exists by which both the platform and the drivers

can individually improve their objective function values simultaneously. The pairwise sta-

bility constraints ensure that either alternative i is recommended to supplier j, or another

alternative i
′

is recommended to supplier j with a corresponding supplier utility greater

than or equal to the utility of i, or the platform recommends the alternative i to supplier

j
′

that has a benefit of greater than or equal to recommending it to supplier j.

To investigate the value of choice, we force hrc and msm models to show each driver j a

menu size θ incremented by one unit from 1 to 10. The case of a menu size of 10 does not

require optimization because the solution is to show each driver all requests. Therefore, for

each of the 1440 instances, we solve 19 optimization problems (i.e, 1 for ctr, and 9 each

for the hrc and msm models).

6.3. Simulation Environment and Performance Measures

For a given recommendation matrix, we simulate drivers’ selections and then compare the

recommendation models’ performance when the platform has neither control nor perfect

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
22

knowledge about the drivers’ utilities. The drivers are assumed to be rational utilitar-

ian individuals. Thus, given the recommendation set of each driver (i.e., xij), and the

driver’s true utility vector (i.e., uij), the actual selection of driver j (denoted by ŷij) is

the alternative in the menu of driver j that has maximum cardinal utility, i.e., imax =

arg maxi∈A(uij � xij) ∀j ∈ S; and ŷij = 1 if i= imax; 0 o.w. � is the element-wise multipli-

cation. After extracting the drivers’ actual selection matrix Ŷ = [ŷij], the actual collision

vector ẑi, and the actual rejection vector ŵi are the minimum values that enforces con-

straints (5), and (6), respectively, when yij is replaced with ŷij. We calculate the platform’s

simulated objective function value (ϕ) by calculating the objective function given in expres-

sion (1) using the values of ŷij, ẑi, and ŵi. For each instance and recommendation engine,

we perform 100 simulation replications by generating 100 error values. We use ϕ to refer

to the average platform’s objective function value over the 100 simulation replications.

Because ϕ can contain positive or negative values, defining relative performance between

the different methods is not possible. Thus, we rescale the objective function values (using

unity-based normalization) to a [0,1] range by defining each method’s platform’s achieve-

ment ratio (πmeth) as in (21). In our computational study, an upper bound to ϕ is 10
√

2

when all drivers are matched with maximum cij =
√

2 values. This upper bound is not

always achievable because of the way O-D pairs are generated. A lower bound has ϕ=−27,

which occurs when the platform collects zero benefit and incurs maximum penalties of -1.5

for 9 collisions and 9 rejections.

πmeth =
(ϕ−min(ϕ))

(max(ϕ)−min(ϕ)
=

(ϕ+ 27)

(10
√

2 + 27)
∀meth= {hrc, ctr, msm, dec} (21)

7. Results and Insights

In this section, we compare the platform’s achievement ratios (π) of the hrc recommenda-

tion method with the ctr, dec, and msm methods, and analyze performance as a function

of varying control factors and menu sizes. Figure 4 displays each recommendation model’s

achievement ratio (π) averaged over all 1440 instances and grouped by menu sizes, θ =

1,2, . . . ,10. Although the achievement ratios are not a function of menu size θ for neither

ctr nor dec, we draw a constant line parallel to the x-axis for easier visual comparison. On

average, hrc outperforms the other models when θ ≥ 4. Also, on average, θ = 1 achieves

the highest performance for both hrc and msm (however, as we subsequently explore, the

best performance does not always occur with θ = 1). Moreover, for a menu size of θ = 1,

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
23

the achievement ratios vary whether a hrc, ctr, or msm is used. Although all recommend

drivers a single ride request, what is recommended varies due to each approach solving a

different optimization model. For the case with θ= 10, the recommendation set is to show

all drivers all requests, which is the same recommendation for hrc, msm, and dec.

Figure 4 Achievement ratios (π) averaged over all 1440 instances, as a function of menu size θ.

7.1. Impact of Factors on Platform Performance and Value of Choice

In this section we perform a similar analysis, but broken down by factor levels, namely,

expected threshold, destination error, O-D pair distributions, and rejection penalties.

By categorizing the instances by low and high expected thresholds, Figure 5 displays two

distinct patterns for the achievement ratios. Therefore, the value of choice is influenced by

drivers’ no-choice utilities. When the expected threshold is low drivers are inflexible; the

average platform objective function of hrc is at its maximum for the menu size of θ = 7

(Figure 5a, left). With low expected thresholds, the platform gets value by providing more

choices, because choices increase the chance of enticing inflexible drivers to participate.

However, high expected thresholds mean more flexible drivers, who are more likely to

participate even if the platform’s recommendations are less aligned with their preferences,

i.e., riders need to be dropped off longer distances from their destination. With a high

expected threshold, the best average performance for hrc and msm occurs when θ = 1.

As the number of choices increases, flexible drivers select requests with high driver utility,

but which hurt the platform’s objective. Hence, by providing more than two choices, the

platform is sacrificing its benefit. The discrimination between when choice is valuable is

further supported by comparing the outcomes of the dec and ctr methods. In the presence

of a low expected threshold (Figure 5a, left), dec outperforms ctr. However, the opposite

result occurs when the expected threshold increases (i.e., when drivers have low no-choice

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
24

utilities). On average, higher values of π can be obtained when the expected threshold is

high, regardless of recommendation method.

Figure 5 Achievement ratios (π) as a function of menu size θ, averaged over given expected thresholds: Figure

5a. (left) low expected threshold; Figure 5b. (right) high expected threshold.

Figure 6 visualizes the pairwise comparison between achievement ratios (π) of hrc (hor-

izontal axis) and ctr (vertical axis) models across varying menu sizes θ. This analysis

supports the previous findings, but at a finer comparison. A dot in Figure 6 is a pairwise

comparison between one of the 1440 instances’ achievement ratios of hrc versus ctr. A dot

on the diagonal line indicates that for a particular instance, the two models achieve the

same performance. A dot below the diagonal line indicates hrc outperforms ctr. Dark dots

identifies an instance with a high expected threshold; a light dot an instance with a low

expected threshold. In Figure 6, hrc results in better achievement ratios when the menu

size θ is small. For a single-alternative menu (θ= 1), hrc has the highest performance rate

(the portion of the dots below the diagonal is highest). Focusing on the colors, when an

observation has a low expected threshold (light dots), hrc outperforms ctr most of the

times across all menu sizes. However, when the expected threshold is high (dark dots),

the improved performance of hrc decreases as the menu size θ increases (the dark dots

transition from below the diagonal to above). In the presence of low thresholds, hrc accom-

modates the inflexible drivers’ preferences and provides better recommendations than ctr.

However, this advantage only works up to a point. As the menu size θ increases, accommo-

dating drivers’ preferences comes at a cost of degrading platform performance. To achieve

higher benefit for the platform, on average, the menu size should be set with lower values

when the expected threshold is high and with larger values when the expected threshold

is low.

Figure 7 explores the impact of the destination error and the expected threshold fac-

tors on achievement ratios. The destination error captures the platform’s uncertainty over

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
25

Figure 6 Pairwise comparison between achievement ratios (π) of hrc and ctr (vertical axis) models across varying

menu sizes θ, for high (dark color) and low (light color) expected threshold levels.

drivers’ selections and is varied at two levels, low and high. Comparing the left and right

plots in Figure 7, the achievement ratio is higher, on average, when the error is low (the

platform is less uncertain about the drivers’ selections). However, when this uncertainty is

high and the expected threshold is low (Figure 7d, bottom right), on average the value of π

increases as the menu size θ increases. Also, dec outperforms ctr. Thus, choice has value in

the presence of high driver selection uncertainty and inflexible drivers. When the platform

has only a vague idea about drivers’ selections, the more alternatives recommended, the

higher the likelihood of a selection. Whereas, discretion is less beneficial when the plat-

form can predict drivers’ selections with more precision. In this case (Figures 7, a and c),

hrc’s achievement ratio, averaged across low destination instances, has a strictly-decreasing

behavior as a function of menu size, regardless of threshold levels. Also, ctr has higher π

values than dec. The platform obtains higher objective function values (on average) when

more knowledge about the drivers’ destinations are available. On the other hand, with high

uncertainty about inflexible drivers’ selections, the platform’s objective function can be

improved if more choices are provided to inflexible drivers (see Figures 7, b and d). That

is, the platform’s lack of knowledge over inflexible drivers selections can be compensated

by providing more choices.

Figure 8 explores the impact of requests’ and drivers’ O-D pair distributions on the plat-

form’s performance. Choice is not useful when the requests’ and drivers’ O-D distribution

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
26

Figure 7 Achievement ratios (π) as a function of menu size θ, averaged by expected thresholds and destination

errors.

are both UC (see Figure 8c). A UC-UC scenario results in the steepest decrease for hrc and

msm as a function of menu size. It’s achievement ratio with θ= 1 has the highest π value

on average among all nine scenarios. This occurs because the destinations of both drivers

and requests are clustered in the center, and the drivers’ utility values have low variance

(see Figure 3, bottom right). Whereas, requests’ origins and drivers’ are uniformly scat-

tered in UC-UC. Thus, when the platform’s benefit values have higher variance than the

drivers’ expected utilities, offering additional choices, on average, jeopardizes significantly

the platform’s benefit. Because drivers are utility maximizers, by offering more choices,

they improve their utility, although only by a little. While, the platform loses much more

utility. The reverse happens when requests’ and drivers’ O-D distributions are (CU, CU)

(see Figure 8e). On average, hrc is superior, and achieves the highest average π for θ= 7.

Also, dec outperforms ctr. For this scenario, the values of cij are very close to each other

(see Figure 3), resulting in the platform being almost indifferent between the assignment

of drivers to requests. On the other hand, the large range of νij values means drivers have

strong and variable preferences. Similar phenomenon occurs in two other scenarios, in

which riders requests’ and drivers’ O-D distributions are (1) CU and UU (Figure 8h); and

are (2) UU and CU (Figure 8d). In both scenarios, the variance of drivers’ utility values is

higher than the variance of the platform’s benefit values. In these cases, providing choice

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
27

is beneficial because the increase in likelihood of participation outweighs the reduced plat-

form benefit of a match. In general, the menu size depends on the O-D pair distributions of

riders and drivers in the region the platform operates. Providing choice is beneficial for the

platform, on average, when drivers’ destinations are scattered. On the other hand, when

riders are distributed across the region, the platform needs to act more like a dispatcher,

recommending a small number of alternatives to increase its performance.

Figure 8 Achievement ratios (π) as a function of menu size θ, averaged by O-D pair distributions.

Figure 9 explores the impact of the rejection penalty value. As the menu size of hrc

increases, average π values decrease across different penalty levels. Moreover, the value

of π is highly influenced by the rejection values (i.e., higher rejection penalties lead to

decreasing objective function values), regardless of recommendation engine.

7.2. Best Menu Size

Table 1 provides the relative frequency of the best menu size θ∗ from hrc. For each instance,

we select the best menu size θ∗ as the menu size achieving hrc’s maximum achievement

ratio π, out of all θ values 1 to 10. This information is then followed by a set of columns that

provide the percentage of instances in which: (a) a single choice was best (i.e., θ∗ = 1), (b)

providing recommendations for suppliers to choose from was best (i.e., 2≤ θ∗ ≤ 9), or (c)

providing all requests to all suppliers (i.e., θ∗ = 10) was best. Among the 1440 instances, the

best menu size is equal to 1 in 54.9% of instances and equal to 10 in 11% of the instances.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
28

Figure 9 Achievement ratios (π) as a function of menu size θ, averaged by rejection penalty values.

In 34% of the instances, the best menu size is between 2 and 9, and in these instances

providing choices and recommending alternatives to more than one driver is beneficial.

Factor values influence the distribution of best menu sizes. The factor with the highest

percentage of best menu size between 2 and 9 is when the expected threshold is low. Thus,

when drivers are less flexible and more picky, providing a menu size between 2 and 9 is

most beneficial. Also, a relatively high percentage of a best menu size being between 2 and

9 occurs for the case of UC, CU, as well as CU, CU. For UC, CU both νij values and cij

values are concentrated. For CU, CU, the platform’s cij values are concentrated, but the

νij values are variable.

7.3. Quantifying Methods’ Performance

Next, we measure the percent difference, ∆, between the achievement ratios of hrc with

the best menu size θ∗ and the other models. Similar to hrc, we define msm’s best menu size

θs∗ as the menu size achieving the highest achievement ratios and use this for comparisons.

Table 2 provides the achievement ratios of each method. For hrc and msm, we report

the achievement ratios when their corresponding best menu size is used, i.e., πhrcθ∗ and

πmsmθs∗ . Next, for each level, we report the percent of instances in which hrc achieves better

performance than other approaches; that is, the percentage of instances, in which πhrcθ∗ ≥

πctr, and in which πhrcθ∗ ≥ πmsmθs∗ . We did not report the difference between hrc and dec,

because in all instances, hrc achieves a π value equal or higher than for dec. With θ∗, hrc

outperforms ctr and msm in 87.3% and 82.4% of the times, respectively. Finally, Table 2

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
29

Table 1 The distribution of the best hrc menu size θ∗, broken down by factor value. Followed by the

percentage when the best menu size is 1, between 2 and 9, and 10.

Factor Levels and Values 1 2 3 4 5 6 7 8 9 10 1 2-9 10

Average over all 1140 instances 54.9 4.3 3.0 3.5 2.9 4.0 4.9 5.2 6.1 11.0 54.9 34.0 11.0

expected threshold low: δj =∼N(µδj =
√

2/5, σ2
δj

= 0.12) 21.7 5.3 4.6 5.7 4.4 6.1 8.9 9.6 11.7 22.1 21.7 56.3 22.1

expected threshold high: δj =∼N(µδj =
√

2/2, σ2
δj

= 0.12) 88.2 3.3 1.4 1.4 1.4 0.0 1.9 1.0 0.8 0.6 88.2 11.3 0.6

rejection penalty ri = 0.1 58.1 4.4 4.2 3.3 1.9 3.9 3.6 5.6 6.7 8.3 58.1 33.6 8.3

rejection penalty ri = 0.5 57.5 4.2 3.1 2.2 3.1 3.1 5.0 5.3 5.6 11.1 57.5 31.4 11.1

rejection penalty ri = 1.0 54.7 5.6 1.9 3.6 2.5 3.6 5.0 5.6 6.7 10.8 54.7 34.4 10.8

rejection penalty ri = 1.5 49.4 3.1 2.8 5.0 4.2 5.6 6.1 4.4 5.6 13.9 49.4 36.7 13.9

destination error low: εj =∼N(µεj = 0, σ2
εj

= 0.12) 63.3 6.5 4.4 5.4 3.3 3.9 5.1 3.6 3.3 1.0 63.3 35.7 1.0

destination error high: εj =∼N(µεj = 0, σ2
εj

= 0.52) 46.5 2.1 1.5 1.7 2.5 4.2 4.7 6.8 8.9 21.1 46.5 32.4 21.1

no-choice error low: ej =∼N(µej = 0, σ2
ej

= 0.12) 52.6 2.9 2.6 2.9 2.9 3.3 4.9 5.6 6.8 15.4 52.6 31.9 15.4

no-choice error high: ej =∼N(µej = 0, σ2
ej

= 0.12) 57.2 5.7 3.3 4.2 2.9 4.7 5.0 4.9 5.4 6.7 57.2 36.1 6.7

riders’ O-D, drivers’ O-D distributions UU, UU 51.3 5.6 3.1 2.5 4.4 1.9 5.6 6.3 8.1 11.3 51.3 37.5 11.3

riders’ O-D, drivers’ O-D distributions UU, UC 54.4 6.9 3.8 5.6 1.9 3.8 5.0 1.9 6.3 10.6 54.4 35.0 10.6

riders’ O-D, drivers’ O-D distributions UU, CU 52.5 4.4 1.3 1.9 3.8 2.5 4.4 5.0 10.6 13.8 52.5 33.8 13.8

riders’ O-D, drivers’ O-D distributions UC, UU 52.5 3.8 4.4 5.0 4.4 5.6 3.8 9.4 5.6 5.6 52.5 41.9 5.6

riders’ O-D, drivers’ O-D distributions UC, UC 84.4 1.9 0.6 0.0 3.8 1.3 1.9 3.1 2.5 0.6 84.4 15.0 0.6

riders’ O-D, drivers’ O-D distributions UC, CU 51.9 4.4 4.4 4.4 1.3 8.8 7.5 6.3 5.0 6.3 51.9 41.9 6.3

riders’ O-D, drivers’ O-D distributions CU, UU 47.5 5.6 3.8 4.4 1.3 5.6 5.0 6.9 3.8 16.3 47.5 36.3 16.3

riders’ O-D, drivers’ O-D distributions CU, UC 59.4 3.1 3.8 5.0 1.3 1.9 3.1 1.9 4.4 16.3 59.4 24.4 16.3

riders’ O-D, drivers’ O-D distributions CU, CU 40.6 3.1 1.9 3.1 4.4 5.0 8.1 6.3 8.8 18.8 40.6 40.6 18.8

reports the maximum, mean, and standard deviation of the percent difference in π between

hrc and other methods, across all levels of the control factors. On average, hrc improves

upon msm, ctr, dec, and hrc with a single recommendation, 5.2%, 2.6%, 10.7%, and 2.6%,

respectively, but achieves improvements as high as 40.8% over msm and 23.6% over ctr.

Table 2 also illustrates that environmental factors influence platform performance.

Regardless of methods, drivers who are more flexible (which have higher expected thresh-

olds) result in higher platform performance compared with less flexible drivers (which have

low expected thresholds). Rejection penalty values and estimation errors are both nega-

tively correlated with platform performance. Finally, platform performance increases when

both the drivers and the riders have a centralized origin or destination, and the drivers

and riders O-D patterns match (i.e., either both CU, CU, or both UC, UC).

7.4. The Value of Choice to Drivers and Riders

Here, we assess the value of choice for the two other entities in the system (i.e., drivers and

riders). As the number of choices increases, the lower level objective function will increase.

However, because of duplicates and collisions, not all drivers will be ultimately matched

with the request they selected. Hence, the lower-level objective function is not useful to

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
30

Table 2 Design factors, levels and values, followed by each method’s associated achievement ratios (using best

menu sizes), number of instances in which hrc achieves equal or better performance, as well as the maximum,

average, and standard deviation of the percent difference in achievement ratios between hrc and other methods.

∆(πhrcθ∗ , πmsmθs∗) ∆(πhrcθ∗ , πctr) ∆(πhrcθ∗ , πdec) ∆(πhrcθ∗ , πhrcθ=1)

Factor Levels and Values πhrcθ∗ πmsmθs∗ πctrθs∗ πdecθs∗ πhierθ∗ ≥ πctr πhierθ∗ ≥ πmsmθs∗ max mean std max mean std max mean std max mean std

Average over all 1140 instances 70.6 68.6 67.2 62.3 87.3 82.4 40.8 5.2 7.4 23.6 2.6 3.8 58.4 10.7 10.5 29.7 2.6 5.0

expected threshold low: δj =∼N(µδj =
√

2/5, σ2
δj

= 0.12) 63.7 62.6 58.8 60.6 83.6 83.2 40.8 8.0 8.9 19.5 1.6 2.7 32.2 4.6 5.7 29.7 5.1 6.1

expected threshold high: δj =∼N(µδj =
√

2/2, σ2
δj

= 0.12) 77.5 74.6 75.6 64.0 91.0 81.5 27.7 2.4 3.9 23.6 3.6 4.3 58.4 16.8 10.8 9.3 0.2 0.9

rejection penalty ri = 0.1 78.3 76.7 76.5 71.6 84.2 78.9 15.0 2.4 3.5 17.7 1.9 2.9 31.4 8.0 7.5 8.7 1.1 1.9

rejection penalty ri = 0.5 73.9 72.0 71.1 66.1 87.5 84.4 21.5 3.8 4.9 17.8 2.4 3.2 40.4 9.6 9.0 13.6 1.8 3.0

rejection penalty ri = 1.0 68.1 65.8 64.1 59.1 89.4 85.0 35.7 6.1 7.5 20.3 3.0 4.0 45.8 11.8 10.9 20.3 2.9 4.8

rejection penalty ri = 1.5 62.1 59.9 57.1 52.4 88.1 81.1 40.8 8.6 10.3 23.6 3.1 4.6 58.4 13.4 13.2 29.7 4.8 7.5

destination error low: εj =∼N(µεj = 0, σ2
εj

= 0.12) 76.3 73.1 72.2 63.2 86.0 85.8 40.8 5.6 8.1 23.6 4.0 4.4 58.4 16.2 11.0 15.5 1.0 2.1

destination error high: εj =∼N(µεj = 0, σ2
εj

= 0.52) 64.9 64.1 62.1 61.4 88.6 78.9 34.1 4.8 6.7 14.6 1.1 2.2 28.4 5.1 6.2 29.7 4.3 6.3

no-choice error low: ej =∼N(µej = 0, σ2
ej

= 0.12) 72.1 69.7 66.8 62.7 96.9 85.3 40.8 8.1 8.7 23.6 3.1 4.3 58.4 11.6 11.9 29.7 3.4 6.1

no-choice error high: ej =∼N(µej = 0, σ2
ej

= 0.12) 69.1 67.5 67.6 61.9 77.6 79.4 27.3 2.3 4.3 22.1 2.1 3.1 44.9 9.7 8.9 17.5 1.9 3.4

riders’ O-D, drivers’ O-D distributions UU, UU 69.8 67.9 64.9 62.8 92.5 81.3 39.5 7.4 8.3 19.2 2.4 3.4 37.0 9.0 8.6 25.2 2.8 5.1

riders’ O-D, drivers’ O-D distributions UU, UC 70.2 67.3 68.2 59.0 80.6 86.9 28.9 3.3 6.4 20.3 3.7 4.2 58.4 14.4 14.0 29.6 3.1 5.8

riders’ O-D, drivers’ O-D distributions UU, CU 70.2 68.9 64.5 64.6 95.6 76.9 35.7 8.5 7.7 13.5 1.6 3.3 34.8 7.2 8.1 25.7 2.9 5.3

riders’ O-D, drivers’ O-D distributions UC, UU 68.7 67.1 67.7 59.0 75.0 76.9 21.7 1.6 4.4 18.3 2.1 3.3 41.3 12.7 10.8 14.5 2.1 3.3

riders’ O-D, drivers’ O-D distributions UC, UC 73.6 70.1 72.8 61.3 84.4 94.4 21.3 1.2 3.4 23.6 4.4 4.5 37.4 15.5 9.8 10.5 0.6 2.0

riders’ O-D, drivers’ O-D distributions UC, CU 69.2 68.0 67.7 60.4 78.1 70.6 25.4 2.4 4.9 15.0 1.6 3.0 43.2 11.6 10.1 16.7 2.0 3.4

riders’ O-D, drivers’ O-D distributions CU, UU 70.2 68.6 64.6 64.5 98.1 83.8 40.8 8.5 8.4 16.0 2.0 3.2 38.8 7.4 7.8 26.0 3.0 5.3

riders’ O-D, drivers’ O-D distributions CU, UC 70.9 68.0 68.2 61.2 84.4 88.1 29.3 4.3 6.9 19.5 3.8 4.3 50.3 12.4 12.3 29.7 3.6 6.5

riders’ O-D, drivers’ O-D distributions CU, CU 72.8 71.5 66.2 67.8 96.9 82.5 34.3 9.5 8.4 18.9 1.6 3.2 28.9 6.1 7.0 28.6 3.7 5.9

U denotes the point is uniformly distributed between 0 and 1, and C denotes the point is normally distributed with µ= 0.5 and σ2 = 0.122. Drivers’ destinations are estimated.

measure the ultimate outcome of suppliers’ utilities. Instead, we take both a rider and

driver perspective and report the following rates based on the simulation results after one

recommendation cycle:

• 1-to-1 match rate (F): number of ride requests selected by a unique driver divided by

m.

• Hot rider rate (H): number of ride requests selected by more than one driver divided

m.

• Angry rider rate (W): number of ride requests not selected by any driver divided by

m.

• Serviced ride rate (G): number of ride requests matched to a driver divided by n.

• Angry driver rate (Z): number of drivers who selected a ride request but was not

matched due to collisions, divided by n.

• Repelled driver rate (Q): number of drivers who selected the no-choice selection,

divided by n.

Tables 3 and 4 provide these rates from the riders’ and drivers’ perspectives, respectively.

These rates are presented for all methods and factor values. The hrc column presents the

results assuming the best menu size was used, i.e., θ∗. We also present the special case of

the hrc approach when θ = 1. The ctr and the hrc with θ = 1 both always recommends

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
31

each driver exactly one request and no two drivers are recommended the same ride request.

The difference is that ctr ignores expected driver no choice utilities, but hrc with θ = 1

considers drivers’ expected no choice utilities. We present hrc with θ = 1 to illustrate

that the improved performance rates of the hrc approach is not due solely to considering

expected no-choice preferences. Instead, the benefit comes from the hrc method’s ability to

consider drivers’ no-choice preferences, its ability to offer a personalized recommendation

set to suppliers to choose from, and to offer overlapping requests to drivers.

Overall all instances, the best serviced ride rate is achieved by hrc at 52.8% (i.e., 49.9%

for 1-to-1 matches and 2.9% hot requests), followed by msm. The dec and ctr models have

similar serviced ride rates at 43.4%. These results are based on a single recommendation

cycle. In practice, the angry ride requests would be offered in subsequent recommendation

cycles until a given service rate is achieved. Despite a higher rate of repelled drivers,

compared to msm and dec, the average angry driver rate of hrc is the lowest at 47.2%.

While ctr results in zero angry drivers, it has the highest repelled driver rate of 56.6%,

because drivers reject ctr’s single-sized menu recommendation and do not participate. A

centralized approach considering drivers’ no choice utilities (i.e., hrc with θ = 1), does

better with 50.4% repelled drivers, but still not as good as hrc. The msm recommendation

is second (after hrc) due to a low average angry driver rate of 7.5%. As excess discretion

creates collisions, dec has the worst average underutilized resource rate. Choice is thus

problematic even for the drivers themselves. These results indicate that neither ctr nor

dec are a suitable recommendation mechanism. Although they represent two extremes,

both provide a low rate of 43.4% serviced rides, and a high angry rider rate of 56.6%.

Instead, we find that providing choices and recommending alternatives to more than one

driver can improve the average serviced ride rate. Consequently, using recommendation

sets as a coordination mechanism is beneficial to not only the platform, but also drivers

and requests.

The performance rates in Tables 3 and 4 vary for different input parameter levels.

However, the trends identified for the platform objective in previous sections are aligned

to driver and rider performance rates. For example, with flexible drivers (high expected

threshold) the 1-to-1 match rates and serviced ride rates are higher regardless of methods

compared to the case of inflexible drivers.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
32

Table 3 Riders’ perspective rates for the different recommendation methods and factors, where F denotes the

1-to-1 match rate, H denotes the Hot rider rate, and W the Angry rider rate.

hrc ctr msm dec hrc with θ= 1

Factor Levels and Values F H W F H W F H W F H W F H W

Average over all 1140 instances 49.9 2.9 47.2 43.4 0.0 56.6 44.0 6.7 49.3 27.5 15.9 56.6 47.7 0.8 51.5

expected threshold low: δj =∼N(µδj =
√

2/5, σ2
δj

= 0.12) 34.8 4.8 60.4 25.4 0.0 74.6 31.5 6.5 62.0 26.1 10.8 63.1 29.9 1.7 68.4

expected threshold high: δj =∼N(µδj =
√

2/2, σ2
δj

= 0.12) 65.0 1.1 34.0 61.3 0.0 38.7 56.5 6.9 36.5 28.9 21.1 50.0 65.4 0.0 34.6

rejection penalty ri = 0.1 49.9 2.4 47.7 43.2 0.0 56.8 44.2 6.2 49.6 27.5 15.8 56.7 47.5 0.8 51.6

rejection penalty ri = 0.5 50.1 2.8 47.1 43.6 0.0 56.4 44.2 6.6 49.2 27.5 16.0 56.5 47.8 0.9 51.3

rejection penalty ri = 1.0 50.1 3.0 46.9 43.4 0.0 56.6 43.7 7.1 49.2 27.3 16.1 56.6 48.0 0.8 51.2

rejection penalty ri = 1.5 49.3 3.6 47.1 43.2 0.0 56.8 44.0 7.0 49.0 27.7 15.8 56.5 47.3 0.8 51.9

destination error low: εj =∼N(µεj = 0, σ2
εj

= 0.12) 62.2 2.5 35.3 54.0 0.0 46.0 52.7 8.0 39.3 28.1 19.5 52.4 61.6 1.1 37.2

destination error high: εj =∼N(µεj = 0, σ2
εj

= 0.52) 37.5 3.4 59.0 32.7 0.0 67.3 35.3 5.5 59.2 26.9 12.4 60.7 33.7 0.5 65.8

no-choice error low: ej =∼N(µej = 0, σ2
ej

= 0.12) 53.0 3.3 43.8 42.5 0.0 57.5 45.9 7.5 46.6 27.8 17.4 54.8 50.2 0.4 49.4

no-choice error high: ej =∼N(µej = 0, σ2
ej

= 0.12) 46.8 2.6 50.6 44.3 0.0 55.7 42.1 5.9 51.9 27.2 14.5 58.3 45.1 1.3 53.6

riders’ O-D, drivers’ O-D distributions UU, UU 49.7 3.0 47.3 38.6 0.0 61.4 44.5 6.5 49.1 31.2 15.9 52.8 46.9 0.8 52.4

riders’ O-D, drivers’ O-D distributions UU, UC 49.4 3.8 46.8 45.6 0.0 54.4 40.7 8.9 50.5 24.3 17.0 58.7 46.7 1.0 52.3

riders’ O-D, drivers’ O-D distributions UU, CU 49.4 3.2 47.5 37.9 0.0 62.1 44.6 7.0 48.4 31.4 15.6 53.0 47.0 0.7 52.2

riders’ O-D, drivers’ O-D distributions UC, UU 46.7 2.1 51.3 44.3 0.0 55.7 43.6 4.0 52.5 23.2 14.4 62.4 44.2 1.2 54.6

riders’ O-D, drivers’ O-D distributions UC, UC 57.6 0.7 41.7 55.5 0.0 44.5 49.4 5.6 45.0 27.9 16.9 55.2 56.8 0.2 43.0

riders’ O-D, drivers’ O-D distributions UC, CU 47.6 2.1 50.3 45.2 0.0 54.8 43.7 4.7 51.6 22.9 14.7 62.4 45.6 1.1 53.3

riders’ O-D, drivers’ O-D distributions CU, UU 49.1 3.6 47.3 38.4 0.0 61.6 44.2 6.8 49.0 30.8 15.6 53.6 46.8 0.7 52.4

riders’ O-D, drivers’ O-D distributions CU, UC 50.6 3.4 46.0 46.1 0.0 53.9 40.9 9.7 49.4 24.4 17.5 58.0 47.5 1.1 51.4

riders’ O-D, drivers’ O-D distributions CU, CU 48.9 4.7 46.4 38.5 0.0 61.5 44.5 7.4 48.0 31.3 15.8 52.9 47.3 0.8 51.9

Table 4 Drivers’ perspective rates for the different recommendation methods and factors, where G denotes the

Serviced ride rate, Z denotes the Angry driver rate, and Q the Repelled driver rate.

hrc ctr msm dec hrc with θ= 1

Factor Levels and Values G Z Q G Z Q G Z Q G Z Q G Z Q

Average over all 1140 instances 52.8 3.3 43.8 43.4 0.0 56.6 50.7 7.5 41.7 43.4 23.6 32.9 48.5 1.1 50.4

expected threshold low: δj =∼N(µδj =
√

2/5, σ2
δj

= 0.12) 39.6 5.5 54.9 25.4 0.0 74.6 38.0 7.6 54.4 36.9 14.8 48.2 31.6 2.1 66.3

expected threshold high: δj =∼N(µδj =
√

2/2, σ2
δj

= 0.12) 66.0 1.2 32.7 61.3 0.0 38.7 63.5 7.5 29.0 50.0 32.4 17.6 65.4 0.0 34.5

rejection penalty ri = 0.1 52.3 2.7 45.0 43.2 0.0 56.8 50.4 6.9 42.7 43.3 23.4 33.3 48.4 1.0 50.6

rejection penalty ri = 0.5 52.9 3.1 44.0 43.6 0.0 56.4 50.8 7.3 42.0 43.5 23.7 32.8 48.7 1.0 50.3

rejection penalty ri = 1.0 53.1 3.4 43.4 43.4 0.0 56.6 50.8 8.0 41.2 43.4 24.0 32.5 48.8 1.1 50.1

rejection penalty ri = 1.5 52.9 4.1 42.9 43.2 0.0 56.8 51.0 8.0 41.0 43.5 23.4 33.0 48.1 1.1 50.8

destination error low: εj =∼N(µεj = 0, σ2
εj

= 0.12) 64.7 2.7 32.6 54.0 0.0 46.0 60.7 8.9 30.4 47.6 30.7 21.7 62.8 1.5 35.8

destination error high: εj =∼N(µεj = 0, σ2
εj

= 0.52) 41.0 4.0 55.1 32.7 0.0 67.3 40.8 6.2 53.0 39.3 16.6 44.1 34.2 0.7 65.1

no-choice error low: ej =∼N(µej = 0, σ2
ej

= 0.12) 56.2 3.7 40.1 42.5 0.0 57.5 53.4 8.5 38.1 45.2 26.6 28.2 50.6 0.4 49.0

no-choice error high: ej =∼N(µej = 0, σ2
ej

= 0.12) 49.4 3.0 47.6 44.3 0.0 55.7 48.1 6.6 45.4 41.7 20.7 37.7 46.4 1.7 51.9

riders’ O-D, drivers’ O-D distributions UU, UU 52.7 3.4 43.9 38.6 0.0 61.4 50.9 7.1 42.0 47.2 21.5 31.3 47.6 0.9 51.4

riders’ O-D, drivers’ O-D distributions UU, UC 53.2 4.4 42.4 45.6 0.0 54.4 49.5 10.1 40.3 41.3 30.5 28.2 47.7 1.3 51.0

riders’ O-D, drivers’ O-D distributions UU, CU 52.5 3.5 43.9 37.9 0.0 62.1 51.6 7.8 40.6 47.0 20.9 32.2 47.8 0.8 51.4

riders’ O-D, drivers’ O-D distributions UC, UU 48.7 2.3 49.0 44.3 0.0 55.7 47.5 4.3 48.2 37.6 20.9 41.5 45.4 1.6 52.9

riders’ O-D, drivers’ O-D distributions UC, UC 58.3 0.7 41.0 55.5 0.0 44.5 55.0 5.9 39.1 44.8 23.7 31.5 57.0 0.2 42.8

riders’ O-D, drivers’ O-D distributions UC, CU 49.7 2.3 48.0 45.2 0.0 54.8 48.4 5.0 46.6 37.6 21.8 40.6 46.7 1.4 51.9

riders’ O-D, drivers’ O-D distributions CU, UU 52.7 4.1 43.3 38.4 0.0 61.6 51.0 7.9 41.1 46.4 21.3 32.4 47.6 0.9 51.6

riders’ O-D, drivers’ O-D distributions CU, UC 54.0 3.9 42.1 46.1 0.0 53.9 50.6 11.3 38.1 42.0 31.0 27.0 48.6 1.4 50.0

riders’ O-D, drivers’ O-D distributions CU, CU 53.6 5.4 41.0 38.5 0.0 61.5 52.0 8.5 39.5 47.1 21.2 31.7 48.1 0.9 51.0

8. Conclusions and Future Research

In peer-to-peer resource sharing systems, the platform does not set capacity; instead,

capacity must be enticed from decentralized suppliers who own the resources. This is the

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
33

first work to study how platforms can coordinate decentralized resources to fulfill demand

requests using personalized recommendations (i.e., providing a menu of choices). We pro-

pose a new hierarchical approach, in which the platform first decides the composition

of multiple, simultaneous personalized recommendations. Then, suppliers have autonomy

to select/reject the recommended requests. A novel bi-level optimization framework cap-

tures the platform’s performance as a function of interdependent suppliers’ selections. We

develop an equivalent single-level reformulation technique that is shown computationally

superior to an existing solution technique. Through a design of experiment with five lev-

els and 1440 instances, we explore a platform with uncertainty about suppliers’ selections

and find that providing choices and recommending alternatives to more than one supplier

simultaneously provide value, on average, to the platform, suppliers, and demand requests.

When the platform is only partially able to estimate suppliers’ utilities, the hierarchical

approach creates recommendation sets with higher average platform performance than

centralized, decentralized, and many-to-many stable matching approaches. A centralized

approach does not perform well due to a higher chance of suppliers electing not to partici-

pate in the platform’s assignment. However, too much choice can be problematic even for

the suppliers themselves. As excess discretion creates collisions, the decentralized approach

had the worst angry driver rate and lowest serviced ride rate. Thus, in uncertain envi-

ronments, the proposed hierarchical approach can benefit the platform, drivers, and ride

requests.

A platform with uncertainty about suppliers’ selection outcomes can sometimes improve

its performance by offering choices to suppliers, but not always. In platforms where uncer-

tainty over suppliers’ selection exists, choices help the platform when (1) suppliers are

inflexible with a high no-choice utility; and (2) suppliers’ utility values have higher variance

than the platform’s utility values. Choices increase the chance of enticing supplier partic-

ipation, and in both cases, the increase in participation likelihood outweighs the match’s

reduced platform benefit likelihood. However, when (1) the platform’s benefit values have

higher variance than the suppliers’ expected utilities or (2) suppliers are flexible, offering

additional choices, on average, can reduce the platform’s benefit.

This work provides the first proof-of-concept that recommendation sets can be used as a

coordination mechanism for distributed resource allocation problems. It creates the foun-

dation for a number of future research directions, including (1) incorporating stochastic

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
34

supplier selection into the optimization model, which would allow determining directly,

via the optimization formulation, optimal menu size and request overlaps; (2) capturing

dynamic aspects of arriving suppliers, requests, and recourse actions; (3) determining how

best to influence suppliers’ utilities through compensation decisions and how to learn sup-

pliers’ behaviors overtime; and (4) developing online optimization and heuristic methodolo-

gies. Future research also includes the opportunity to explore varied scenarios, for example,

when suppliers can filter requests that meet their threshold, when suppliers can select and

fulfill more than one request, when tasks require more than one supplier, and when tasks

have additional capacity constraints.

Acknowledgments

This work was partially funded by the National Science Foundation CAREER award 1751801.

References

Agatz N, Erera A, Savelsbergh M, Wang X (2012) Optimization for dynamic ride-sharing: a review. European

Journal of Operational Research 223(2):295–303.

Allen D (2015) The sharing economy. Review-Institute of Public Affairs 67(3):24.

Anshelevich E, Das S, Naamad Y (2013) Anarchy, stability, and utopia: creating better matchings.

Autonomous Agents and Multi-Agent Systems 1–21.

Archetti C, Savelsbergh M, Speranza MG (2016) The vehicle routing problem with occasional drivers. Euro-

pean Journal of Operational Research 254(2):472–480.

Arslan AM, Agatz N, Kroon L, Zuidwijk R (2018) Crowdsourced delivery a dynamic pickup and delivery

problem with ad hoc drivers. Transportation Science online.

Audet C, Hansen P, Jaumard B, Savard G (1997) Links between linear bilevel and mixed 0–1 programming

problems. Journal of Optimization Theory and Applications 93(2):273–300.

Bai J, So KC, Tang CS, Chen X, Wang H (2018) Coordinating supply and demand on an on-demand service

platform with impatient customers. Manufacturing & Service Operations Management .

Bard JF (1998) Practical Bilevel Optimization: Algorithms and Applications, volume 30 (Springer Science &

Business Media).

Bard JF, Moore JT (1992) An algorithm for the discrete bilevel programming problem. Naval Research

Logistics (NRL) 39(3):419–435.

Bardhi F, Eckhardt GM (2012) Access-based consumption: the case of car sharing. Journal of Consumer

Research 39(4):881–898.

Benjaafar S, Kong G, Li X, Courcoubetis C (2018) Peer-to-peer product sharing: Implications for ownership,

usage, and social welfare in the sharing economy. Management Science .

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
35

Bernstein F, Federgruen A (2005) Decentralized supply chains with competing retailers under demand uncer-

tainty. Management Science 51(1):18–29.

Bernstein F, Kök AG, Xie L (2015) Dynamic assortment customization with limited inventories. Manufac-

turing & Service Operations Management 17(4):538–553.

Bitran G, Caldentey R (2003) An overview of pricing models for revenue management. Manufacturing &

Service Operations Management 5(3):203–229.

Bracken J, McGill JT (1973) Mathematical programs with optimization problems in the constraints. Oper-

ations Research 21(1):37–44.

Brotcorne L, Labbé M, Marcotte P, Savard G (2001) A bilevel model for toll optimization on a multicom-

modity transportation network. Transportation Science 35(4):345–358.

Cachon GP, Daniels KM, Lobel R (2017) The role of surge pricing on a service platform with self-scheduling

capacity. Manufacturing & Service Operations Management 19:368–384.

Cachon GP, Lariviere MA (2005) Supply chain coordination with revenue-sharing contracts: strengths and

limitations. Management Science 51(1):30–44.

Cao M, Zhang Q (2011) Supply chain collaboration: impact on collaborative advantage and firm performance.

Journal of Operations Management 29(3):163–180.

Chen F, Federgruen A, Zheng YS (2001) Coordination mechanisms for a distribution system with one supplier

and multiple retailers. Management Science 47(5):693–708.

Chen MK, Sheldon M (2016) Dynamic pricing in a labor market: surge pricing and flexible work on the uber

platform. EC, 455.

Cleophas C, Cottrill C, Ehmke JF, Tierney K (2019) Collaborative urban transportation: Recent advances

in theory and practice. European Journal of Operational Research 273(3):801–816.

Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Annals of Operations Research

153(1):235–256.

Cook J (2015) Uber’s internal charts show how its driver-rating sys-

tem actually works. Business Insider, https://www.businessinsider.com/

leaked-charts-show-how-ubers-driver-rating-system-works-2015-2.

Cullen Z, Farronato C (2014) Outsourcing tasks online: matching supply and demand on peer-to-peer internet

platforms. Working Paper .

Deakin E, Frick KT, Shively KM (2010) Markets for dynamic ridesharing? Transportation Research Record:

Journal of the Transportation Research Board 2187(1):131–137.

Dempe S (2018) Bilevel optimization: theory, algorithms and applications. Optimization On-line URL http:

//www.optimization-online.org/DB_HTML/2018/08/6773.html.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
36

Dempe S, Franke S (2016) On the solution of convex bilevel optimization problems. Computational Opti-

mization and Applications 63(3):685–703.

Einav L, Farronato C, Levin J (2016) Peer-to-peer markets. Annual Review of Economics 8:615–635.

Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Foundations and

Trends in Human-Computer Interaction 4(2):81–173.

Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design

problems. European Journal of Operational Research 229(2):281–302.

Feldman JB, Topaloglu H (2015) Capacity constraints across nests in assortment optimization under the

nested logit model. Operations Research 63(4):812–822.

Fortuny-Amat J, McCarl B (1981) A representation and economic interpretation of a two-level programming

problem. Journal of the Operational Research Society 32(9):783–792.

Fradkin A (2017) Search, matching, and the role of digital marketplace design in enabling trade: evidence

from airbnb. NBER Working Paper .

Fragiadakis D, Iwasaki A, Troyan P, Ueda S, Yokoo M (2016) Strategyproof matching with minimum quotas.

ACM Transactions on Economics and Computation 4(1):6.

Frangioni A (1995) On a new class of bilevel programming problems and its use for reformulating mixed

integer problems. European Journal of Operational Research 82(3):615–646.

Furuhata M, Dessouky M, Ordóñez F, Brunet ME, Wang X, Koenig S (2013) Ridesharing: the state-of-the-art

and future directions. Transportation Research Part B: Methodological 57:28–46.

Gale D, Shapley LS (1962) College admissions and the stability of marriage. The American Mathematical

Monthly 69(1):9–15.

Gallego G, Ratliff R, Shebalov S (2014) A general attraction model and sales-based linear program for

network revenue management under customer choice. Operations Research 63(1):212–232.

Gao Z, Wu J, Sun H (2005) Solution algorithm for the bi-level discrete network design problem. Transporta-

tion Research Part B: Methodological 39(6):479–495.

Govindan K, Popiuc MN (2014) Reverse supply chain coordination by revenue sharing contract: a case for

the personal computers industry. European Journal of Operational Research 233(2):326–336.

Ha AY, Tian Q, Tong S (2017) Information sharing in competing supply chains with production cost reduc-

tion. Manufacturing & Service Operations Management 19(2):246–262.

Hampshire RC, Sinha S (2011) A simulation study of peer-to-peer carsharing. 2011 IEEE Forum on Integrated

and Sustainable Transportation System (FISTS), 159–163.

Heydari J, Choi TM, Radkhah S (2017) Pareto improving supply chain coordination under a money-back

guarantee service program. Service Science 9(2):91–105.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
37

Horton JJ (2014) Misdirected search effort in a matching market: causes, consequences and a partial solution.

Proceedings of the Fifteenth ACM Conference on Economics and Computation, 357–357 (ACM).

Huber GP (1974) Multi-attribute utility models: a review of field and field-like studies. Management Science

20(10):1393–1402.

Jiang B, Tian L (2016) Collaborative consumption: Strategic and economic implications of product sharing.

Management Science 64(3):1171–1188.

Johari R, Kamble V, Kanoria Y (2016) Know your customer: multi-armed bandits with capacity constraints.

Working Paper available at arXiv preprint arXiv:1603.04549 .

Kafle N, Zou B, Lin J (2017) Design and modeling of a crowdsource-enabled system for urban parcel relay

and delivery. Transportation Research Part B: Methodological 99:62–82.

Kamada Y, Kojima F (2014) Efficient matching under distributional constraints: theory and applications.

The American Economic Review 105(1):67–99.

Kleiner A, Nebel B, Ziparo VA, Srl A (2011) A mechanism for dynamic ride sharing based on parallel

auctions. Procedings of the Twenty-Second International Joint Conference on Artificial Intelligence,

266–272.

Kök AG, Fisher ML, Vaidyanathan R (2015) Assortment planning: review of literature and industry practice.

Retail Supply Chain Management, 175–236 (Springer).

Krishnan H, Winter RA (2010) Inventory dynamics and supply chain coordination. Management Science

56(1):141–147.

Lee A, Savelsbergh M (2015) Dynamic ridesharing: is there a role for dedicated drivers? Transportation

Research Part B: Methodological 81:483–497.

Lee H, Whang S (1999) Decentralized multi-echelon supply chains: incentives and information. Management

Science 45(5):633–640.

Li B, Krushinsky D, Reijers HA, Van Woensel T (2014) The share-a-ride problem: People and parcels sharing

taxis. European Journal of Operational Research 238(1):31–40.

Liu Y, Li Y (2017) Pricing scheme design of ridesharing program in morning commute problem. Transporta-

tion Research Part C: Emerging Technologies 79:156–177.

Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. Computer Aided Control

Systems Design, 2004 IEEE International Symposium on, 284–289 (IEEE).

Lofberg J (2016) solvebilevel. online, https://yalmip.github.io/command/solvebilevel/.

Lops P, De Gemmis M, Semeraro G (2011) Content-based recommender systems: state of the art and trends.

Recommender Systems Handbook, 73–105 (Springer).

Masoud N, Jayakrishnan R (2017) A real-time algorithm to solve the peer-to-peer ride-matching problem in

a flexible ridesharing system. Transportation Research Part B: Methodological 106:218–236.

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
38

McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part iconvex

underestimating problems. Mathematical programming 10(1):147–175.

Mofidi SS (2018) Two Stage Resource Allocation Decisions in Modern Distribution. Ph.D. thesis, Rensselaer

Polytechnic Institute.

Mourad A, Puchinger J, Chu C (2019) A survey of models and algorithms for optimizing shared mobility.

Transportation Research Part B: Methodological .

Murphy C (2016) Shared mobility and the transformation of public transit. The National Academies Trans-

portation Research Board TCRP J-11/TASK 21 .

Narasimhan C, Papatla P, Jiang B, Kopalle PK, Messinger PR, Moorthy S, Proserpio D, Subramanian U,

Wu C, Zhu T (2018) Sharing economy: Review of current research and future directions. Customer

Needs and Solutions 5(1-2):93–106.

Newton C (2014) Taskrabbit is blowing up its business model and becoming the

uber for everything. The Verge, http://www.theverge.com/2014/6/17/5816254/

taskrabbit-blows-up-its-auction-house-to-offer-services-on-demand.

Nourinejad M, Roorda MJ (2016) Agent based model for dynamic ridesharing. Transportation Research Part

C: Emerging Technologies 64:117–132.

Pelzer D, Xiao J, Zehe D, Lees MH, Knoll AC, Aydt H (2015) A partition-based match making algorithm

for dynamic ridesharing. IEEE Transactions on Intelligent Transportation Systems 16(5):2587–2598.

Phillips RL (2005) Pricing and Revenue Optimization (Stanford University Press).

Powell WB, Towns MT, Marar A (2000) On the value of optimal myopic solutions for dynamic routing and

scheduling problems in the presence of user noncompliance. Transportation Science 34(1):67–85.

Price R, Messinger PR (2005) Optimal recommendation sets: Covering uncertainty over user preferences.

AAAI, volume 10, 5.

Qi X, Bard JF, Yu G (2004) Supply chain coordination with demand disruptions. Omega 32(4):301–312.

Roth AE, Rothblum UG, Vande Vate JH (1993) Stable matchings, optimal assignments, and linear program-

ming. Mathematics of operations research 18(4):803–828.

Roth AE, Sotomayor M (1992) Two-sided matching. Handbook of Game Theory with Economic Applications

1:485–541.

Rougès JF, Montreuil B (2014) Crowdsourcing delivery: new interconnected business models to reinvent

delivery. 1st International Physical Internet Conference, 28–30.

Shaheen SA, Cohen AP (2013) Carsharing and personal vehicle services: worldwide market developments

and emerging trends. International Journal of Sustainable Transportation 7(1):5–34.

Shapiro J (1979) Mathematical Programming: Structures and Algorithms (Wiley).

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
39

Sotomayor M (1999) Three remarks on the many-to-many stable matching problem. Mathematical social

sciences 38(1):55–70.

Steininger KW, Bachner G (2014) Extending car-sharing to serve commuters: an implementation in Austria.

Ecological Economics 101:64–66.

Stiglic M, Agatz N, Savelsbergh M, Gradisar M (2016) Making dynamic ride-sharing work: The impact

of driver and rider flexibility. Transportation Research Part E: Logistics and Transportation Review

91:190–207.

Sullivan KM, Smith JC, Morton DP (2014) Convex hull representation of the deterministic bipartite network

interdiction problem. Mathematical Programming 145(1-2):349–376.

Train KE (2009) Discrete Choice Methods with Simulation (Cambridge University Press).

Tsay AA, Agrawal N (2004) Channel conflict and coordination in the e-commerce age. Production and

Operations Management 13(1):93–110.

Von Stackelberg H (1952) The Theory of the Market Economy (Oxford University Press).

Wang X, Agatz N, Erera A (2017) Stable matching for dynamic ride-sharing systems. Transportation Science

52:739–1034.

Weber TA (2016) Product pricing in a peer-to-peer economy. Journal of Management Information Systems

33(2):573–596.

Winter S, Nittel S (2006) Ad hoc shared ride trip planning by mobile geosensor networks. International

Journal of Geographical Information Science 20(8):899–916.

Xing X, Warden T, Nicolai T, Herzog O (2009) Smize: a spontaneous ride-sharing system for individual

urban transit. Multiagent System Technologies, 165–176 (Springer).

Zeng B, An Y (2014) Solving bilevel mixed integer program by reformulations and decomposition. Optimiza-

tion On-line .

Appendix A: Computational Performance of Reformulation Technique

In this section, we test the computational performance of the reformulation technique (RFT) against a

common bi-level solution approach, the Fortuny-Amat and McCarl (1981) method. This method, which

we denote as BLF-KKT, derives the Karush-Kuhn-Tucker (KKT) conditions of the lower level problem

(i.e., (10)-(13)) as a single-level mixed integer program. This translates the lower level problem into sets of

constraints, incorporated into the upper level problem, resulting in a single level problem. Nevertheless, the

complementarity terms are nonlinear; thus, we employ the YALMIP package, a MATLAB based toolbox

provided by (Lofberg 2004), which models the complementary slackness conditions using a big-M approach.

For more details, readers are referred to Lofberg (2016), McCormick (1976). This approach was chosen for

comparison as KKT based reformulation methods remain popular to solve bilevel problems, in which the

follower problem is replaced with nonlinear complementarity terms (Zeng and An 2014), and are a common

benchmark due to it being computationally available for implementation in Lofberg (2016). We set ai = n∀i∈

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
40

A, such that no restriction exists on how many suppliers the platform can recommend a single request. All

suppliers are offered the no-choice alternative, which has a platform benefit of zero. We randomly generate

supplier j’s utility for the no-choice alternative using the normal distribution ν(i∈N)j ∼
√

2−N(0.282,0.12).

Collision and rejection penalties are di = ri = 0.1. We test instances with varying menu sizes, for both

balanced systems, in which m= n, and unbalanced systems, in which the number of requests (m) double or

triple the number of suppliers (n) and vice versa. The platform’s benefit matrix and suppliers’ utility matrix

are calculated based on generating O-D pairs for n suppliers and m requests as uniformly random variables

in a unit square (see Section 6.1.1). Five replications generate different platform and suppliers utility values

(i.e., different cij and νij values).

To solve both approaches we adopt YALMIP, a MATLAB based toolbox, provided by Lofberg (2004)

and call Gurobi Optimization 7.5.2. Computations are performed on a quad-core 2.7 GHz with 16GB RAM

using MATLAB 8.5 (R2015a). The global run-time limit (including pre-solve and optimization) is set to

600 seconds. Table 5 reports each approach’s maximum, average, and standard deviation of the runtime (in

seconds) across five replications. If the runtime limit is reached without finding the optimal solution, the

number of such instances (out of 5) is reported in parenthesis in the max column. As shown in Table 5, the

RFT method always outperforms BL-KKT in terms of computational time, and both are exact approaches.

The advantage in computational time becomes more evident as the problem size increases. The solution time

for the BL-KKT grows very fast. For the largest problem size 35× 35, BL-KKT fails to reach the optimal

solution in 600 seconds for all θ values and all replications tested; while the reformulation technique finds an

optimal solution in less than 6.5 seconds.

Table 5 Balanced network computational comparisons (in seconds) for BL-KKT and RFT methods.

BL-KKT RFT BL-KKT RFT BL-KKT RFT

mxn θ Max Ave. Std Max Ave. Std θ Max Ave. Std Max Ave. Std θ Max Ave. Std Max Ave. Std

5× 5 1 2.2 2.2 0.1 0.2 0.2 0.0 5 2.8 2.7 0.1 0.2 0.2 0.0

10× 10 1 7.7 7.3 0.3 0.4 0.3 0.0 5 9.7 9.1 0.6 0.4 0.4 0.0

15× 15 1 26.2 24.9 0.8 0.4 0.4 0.0 5 31.5 30.0 0.9 0.5 0.5 0.0 10 29.4 28.2 0.8 0.5 0.4 0.0

20× 20 1 80.2 78.2 1.7 0.4 0.4 0.0 5 89.7 87.3 1.8 0.8 0.6 0.1 10 90.3 88.2 1.9 0.7 0.6 0.1

25× 25 1 229.1 218.7 8.0 0.5 0.4 0.0 5 240.6 227.6 10.4 1.1 1.0 0.1 10 237.4 227.2 8.5 1.2 1.0 0.1

30× 30 1 600.0(1) 580.9 17.8 0.5 0.5 0.0 5 600.0(1) 584.1 17.1 3.4 2.1 1.1 10 600.0(2) 581.9 17.6 2.7 1.9 0.8

35× 35 1 600.0(5) 600.0 0.0 0.5 0.5 0.0 5 600.0(5) 600.0 0.0 6.5 4.1 1.7 10 600.0(5) 600.0 0.0 6.5 4.1 1.9

Table 6 presents computational results for unbalanced networks. RFT computationally outperforms BL-

KKT across all instances, with BL-KKT’s runtime growth increasing at a higher rate. For both the BL-KKT

and the RFT methods, the number of demand requests (m) influences the solution time more than the

number of suppliers (n). As m increases, the number of combinations of selecting θ alternatives in the menu

from m requests increases combinatorially. Even so, RFT solves all replications tested in less than 6 seconds.

Next, we test the computational limitations of our reformulation technique. To do so, we explore balanced

problem instances with the same inputs as described for Tables 5 and 6. Table 7 reports the maximum,

average, and standard deviation of the runtime (in seconds) and the optimality gap. If the optimal solution

Mofidi and Pazour: A Hierarchical Approach for Peer-to-Peer Logistics Platforms
41

Table 6 Unbalanced network computational comparisons (in seconds) for BL-KKT and RFT methods.

BL-KKT RFT BL-KKT RFT

m×n θ Max Ave Std Max Ave Std m×n θ Max Ave Std Max Ave Std

5× 10 1 3.7 3.5 0.2 0.3 0.3 0.0 10× 5 1 12.0 12.0 0.1 0.3 0.3 0.0

5× 10 3 3.8 3.6 0.2 0.3 0.3 0.0 10× 5 3 12.1 12.0 0.1 0.3 0.3 0.0

5× 10 5 3.7 3.6 0.2 0.3 0.3 0.0 10× 5 5 12.1 12.0 0.1 0.3 0.3 0.0

5× 15 1 6.0 5.9 0.1 0.3 0.3 0.0 15× 5 1 14.0 13.8 0.2 0.3 0.3 0.0

5× 15 3 6.0 5.9 0.1 0.3 0.3 0.0 15× 5 3 14.0 13.8 0.3 0.3 0.3 0.0

5× 15 5 6.2 5.9 0.2 0.3 0.3 0.0 15× 5 5 14.1 13.8 0.3 0.3 0.3 0.0

10× 20 1 22.0 21.5 0.3 0.3 0.3 0.0 20× 10 1 29.5 28.8 0.6 0.3 0.3 0.0

10× 20 3 22.1 21.6 0.4 0.4 0.3 0.0 20× 10 3 29.6 28.8 0.7 0.4 0.4 0.0

10× 20 5 22.2 21.6 0.4 0.3 0.3 0.0 20× 10 5 29.8 28.9 0.7 0.4 0.4 0.0

10× 30 1 48.7 47.8 0.7 0.3 0.3 0.0 30× 10 1 54.8 52.3 2.5 0.3 0.3 0.0

10× 30 3 48.7 48.0 0.7 0.3 0.3 0.0 30× 10 3 54.8 52.4 2.4 0.6 0.4 0.1

10× 30 5 49.2 48.1 0.8 0.4 0.3 0.0 30× 10 5 55.1 52.6 2.5 0.6 0.4 0.1

15× 30 1 115.8 113.2 2.0 0.3 0.3 0.0 30× 15 1 320.4 291.4 17.5 0.4 0.4 0.0

15× 30 3 116.5 113.9 2.0 0.5 0.4 0.0 30× 15 5 327.0 309.5 21.3 0.8 0.7 0.1

15× 30 5 116.5 113.8 2.0 0.5 0.4 0.0 30× 15 10 290.0 285.4 4.3 0.7 0.6 0.1

15× 45 1 286.6 278.5 6.4 0.3 0.3 0.0 45× 15 1 478.0 464.6 13.7 0.4 0.4 0.0

15× 45 3 284.3 279.0 4.3 0.5 0.5 0.0 45× 15 5 519.9 478.5 29.4 2.1 1.1 0.6

15× 45 5 281.8 277.9 4.0 0.5 0.5 0.0 45× 15 10 529.4 477.1 35.0 1.5 0.9 0.4

20× 40 1 451.8 438.8 10.2 0.4 0.4 0.0 40× 20 1 600.0(5) 600.0 0.0 0.4 0.4 0.0

20× 40 5 458.1 445.4 12.6 0.7 0.6 0.1 40× 20 5 600.0(5) 600.0 0.0 1.7 1.2 0.4

20× 40 10 455.2 441.0 12.8 0.7 0.6 0.1 40× 20 10 600.0(5) 600.0 0.0 1.7 1.2 0.4

20× 60 1 600.0(5) 600.0 0.0 0.4 0.4 0.0 60× 20 1 600.0(5) 600.0 0.0 0.4 0.4 0.0

20× 60 5 600.0(5) 600.0 0.0 0.8 0.7 0.1 60× 20 5 600.0(5) 600.0 0.0 6.0 3.9 2.0

20× 60 10 600.0(5) 600.0 0.0 1.0 0.8 0.2 60× 20 10 600.0(5) 600.0 0.0 5.8 3.3 1.7

is not found, we calculate the gap between the best bound and the best solution found within the 600

second time limit. As the problem size grows, RFT’s solution time increases. Also, the menu size influences

computational times. When θ= 1, RFT provides optimal solutions for large problems quickly, e.g., the RFT

found optimal solutions for 500×500 problem instances under 30.7 seconds. If θ > 1, RFT provides solutions

with low optimality gaps for moderate size problems (e.g., a maximum optimality gap less than 4.86% is

reported for 100× 100 problem sizes after 600 seconds). However, for large problem sizes of 500× 500 when

θ > 1, quality solutions are not found in the 600 second time limit.

Table 7 RFT’s computational runtime (in seconds) and optimality gap (in %).

Time (seconds) Optimality Gap (%) Time (seconds) Optimality Gap (%) Time (seconds) Optimality Gap (%)

mxn θ Max Ave. Std Max Ave. Std θ Max Ave. Std Max Ave. Std θ Max Ave. Std Max Ave. Std

50× 50 1 36.0 33.1 2.0 0.0 0.0 0.0 5 138.5 126.6 9.7 0.0 0.0 0.0 20 172.1 151.1 17.7 0.0 0.0 0.0

75× 75 1 38.1 35.1 3.2 0.0 0.0 0.0 5 600.0(1) 421.3 107.1 1.5 0.3 0.7 20 600.0(1) 461.5 113.9 0.9 0.2 0.4

100× 100 1 37.6 34.5 2.0 0.0 0.0 0.0 5 600.0(4) 590.3 21.7 2.0 0.9 0.8 20 600.0(5) 600.0 0.0 4.9 2.6 1.6

200× 200 1 52.3 44.5 4.5 0.0 0.0 0.0 5 600.0(5) 600.0 0.0 23.1 21.1 2.2 20 600.0(5) 600.0 0.0 23.8 22.6 1.7

300× 300 1 63.7 45.3 20.7 0.0 0.0 0.0 5 600.0(5) 600.0 0.0 37.6 34.1 5.6 20 600.0(5) 600.0 0.0 40.5 35.9 4.9

400× 400 1 25.7 25.1 0.6 0.0 0.0 0.0 5 600.0(5) 600.0 0.0 41.3 33.4 4.8 20 600.0(5) 600.0 0.0 44.5 36.4 5.1

500× 500 1 60.7 58.1 1.7 0.0 0.0 0.0 5 600.0(5) 600.0 0.0 58.9 57.7 1.3 20 600.0(5) 600.0 0.0 59.7 58.4 1.0

