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Introduction

Joan Birman published her first paper, “On braid groups,”
in January 1969. That work introduced one of the most
important tools in the study of braids and surfaces, now
called the Birman exact sequence. Fifty years and more
than one hundred papers later, Birman is an active resear-
cher and has long been established as a leading figure in
the field of low-dimensional topology.

The goal of this article is to give a broad overview of Bir-
man’s mathematics. In the process, we will see several re-
lated themes emerge. Time and again, Birman has shown a
knack for asking the right questions, for pursuing and em-
bracing unlikely collaborations across mathematical disci-
plines, and for uncovering and revitalizing hidden or for-
gotten fields. Because of this, her work has often been
ahead of its time, with important implications and appli-
cations found years or decades after the original discov-
eries. For instance, her book on braids is credited with
bringing that theory from the fringes to the fore. Similarly,
when Birman began working on mapping class groups and
Torelli groups, she was working in isolation. Now these
are core topics in topology, and her contributions are of
fundamental importance. In fact, Birman's work has un-
derpinned two Fields medals.

Birman's research revolves around the theories of knots,
braids, mapping class groups of surfaces, and 3-manifolds.
Figure 1 shows a diagram of these topics and gives a road
map for this article. We will introduce the various objects
and the connections between them in the sections indi-
cated. It is a bit of a miracle that these subjects are so
closely intertwined. In what follows we will see how Bir-
man’s work has influenced and interacted with this beau-
tiful circle of ideas.

81 Knots

A knot is the image of a smooth embedding of the circle
S!into R3. We can think of a knot as a piece of string with
its ends glued together. We can draw a diagram of a knot
by projecting it to a plane and indicating the over/under-
crossings of the strands by putting a break in the strand
that is crossing below; see Figure 2. Two knots are equiva-
lent if they are isotopic, that is, if one knot can be contin-
uously deformed into the other without creating any self-
intersections along the way.

The fundamental problem in knot theory is to decide if
two knots are equivalent. A (not really) simpler version is
to decide if a given knot is equivalent to the trivial knot.
The knots in Figure 2 fall into two equivalence classes (left
and right trefoils). Which are equivalent?

For permission to reprint this article, please contact:
reprint-permission@ams.org.
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Figure 1. A road map for this article (and Birman'’s career).
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Figure 2. Some examples of knots.
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As this exercise illustrates, knot theory is difficult be-
cause there are many diagrams for the same knot that are
very different from one another. There is no easy way to
move between two different diagrams, and there is no sys-
tematic way to choose a canonical diagram for a knot.

Among the many successes of knot theory is the discov-
ery of knot invariants. An invariant for a knot is an object
(number, polynomial, etc.) we can associate to a knot with
the property that equivalent knots have the same invariant.
If we find two knots with different invariants, then they are
inequivalent knots.

One of the most famous and important knot invariants
is the Alexander polynomial, a Laurent polynomial that
can be computed from any knot diagram. The Alexander
polynomial is not a complete invariant: it attains the same
value on the left- and right-handed trefoil knots, and also
Kinoshita and Terasaka found a nontrivial knot with the
same Alexander polynomial as the trivial knot. The sim-
plest diagram for the latter has 11 crossings. It is still an
open problem to find an easily computable, complete in-
variant for knots (more on this later).
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Knot theory has applications to statistical mechanics,
molecular biology, and chemistry; see Murasugi’s book [ 71]
for a survey. Later in this article we will see several connec-
tions of knot theory with other parts of topology, group
theory, dynamics, and number theory.

82 Braids

A braid on n strands is a collection of n disjoint paths in
R? X [0, 1], connecting n points in R? X {0} to the corre-
sponding points in R? X {1}, and intersecting each plane
R? X {t} in exactly n points. The n paths are called the
strands of the braid.

We consider two braids to be equivalent if they are iso-
topic, that is, if we can continuously deform one to the
other while holding the endpoints fixed and without al-
lowing strands to pass through each other. Figure 3 shows
two equivalent braids. The set of braids on n strands forms
a group By, with the group operation given by stacking

/ /
/
/
( (

Figure 3. Two equivalent braids.

There is a more succinct (and sophisticated) way to de-
fine the braid group. Let C,; denote the configuration space
of n distinct points in the plane. We have

B, = m(Cy).

The isomorphism is obtained as follows. Let eta be a braid
on n strands. For each t in [0, 1] we may consider the cor-
responding plane parallel to the original two planes. If we
intersect this plane with the braid eta, we obtain a point
in Cy. As t changes from 0 to 1, we obtain a loop in Cy,
that is, an element of 711 (C};). This map is the desired iso-
morphism.

We can now see why the braid group is ubiquitous in
mathematics and science: it records the motions of points
in the plane. The points can be roots of polynomials, crit-
ical values of branched covers, particles in a two-dimen-
sional medium, or autonomous vehicles moving through
city streets. See the survey by Birman and her student Bren-
dle for an excellent introduction to the theory [16].
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83 Braids and Knots

There is a simple way to obtain a knot from a braid, namely
by connecting the top of the braid to the bottom by n par-
allel strands. Actually, in general we obtain a link, which
is a disjoint union of knots. The resulting knot or link is
called a closed braid; see the left-hand side of Figure 4 for
an example. In 1923 Alexander proved the remarkable the-
orem that every knot is equivalent to a closed braid [3].

On the face of it, braids are more tractable than knots
because of the group structure, and Alexander’s theorem
gives us hope of applying our knowledge of braid groups to
the theory of knots. The immediate problem is that there
are many braids giving rise to the same knot. For instance,
if two braids are conjugate, then their braid closures are
equivalent.

There are also nonconjugate braids with equivalent
closures, and there are braids with different numbers of
strands that have equivalent closures. One specific way
to construct braids with different numbers of strands and
equivalent closures is through stabilization, illustrated in
Figure 4. In 1936 Markov announced (without proof) the
following surprising theorem: if two braid closures are
equivalent, then, up to conjugacy, the braids differ by a
finite sequence of stabilizations, destabilizations, and ex-
change moves (although it was soon realized that the ex-
change moves were not needed).

Figure 4. A closed braid and its stabilization.

Four decades later, Birman published a monograph,
Braids, links, and mapping class groups [12], based on a grad-
uate course she gave at Princeton University during the
academic year 1971-72. Her book was the first compre-
hensive treatment of braid theory, and its appearance rep-
resented the birth of the modern theory. It contains in
particular the first complete proof of Markov’s theorem.

Our discussion of braids and knots so far points us in
three natural directions:

1. the conjugacy problem for the braid group, namely, the
problem of algorithmically determining whether or not
two elements of B, are conjugate;
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2. the algebraic link problem, namely, the more general
problem of algorithmically determining if two braids
have equivalent closures; and

3. thebig question of whether we can use braid theory to
discover new knot invariants.

Birman’s monograph focused precisely on these prob-
lems. Here we briefly touch on the first two problems, and
some contributions to these made by Birman later in her
career. In the next section we discuss how the book con-
tributed to the third problem.

With respect to the conjugacy problem, Birman’s work
has led in two directions. In the 2000s she wrote three
papers with Gebhardt and Gonzdles-Meneses [21-23] in
which they expand on the Garside approach to the conju-
gacy problem, explored three decades earlier in Birman's
book. A different approach is provided by her paper with
Ko and Lee [7]. There, they introduce a new algebraic ap-
proach to the braid group, a tool now called the Birman-
Ko-Lee monoid for the braid group. This is the second-
most cited paper in Birman's catalog.

In the 1990s Birman and Menasco wrote a series of six
papers with the title “Studying links via closed braids” [31-
36]. The fourth in the series was published in Inventiones
Mathematicae. A basic question is studied in these papers:
If two braids have the same number of strands and have
equivalent closures, can we find a sequence of elementary
moves that pass from one braid to the other without chang-
ing the number of strands? Can we do this algorithmi-
cally?

In the end Birman and Menasco did find a “Markov the-
orem without stabilization,” a calculus for dealing with the
algebraic link problem [37]. Along the way, they devel-
oped connections and applications to the field of contact
topology. In particular, they give examples where the iso-
topy class of a knot and the Bennequin invariant do not
fully determine the transverse isotopy class [38]; see also
Birman'’s work with her student Wrinkle [45] as well as the
work of Etnyre and Honda [47].

84 Birman'’s Book and the Jones Polynomial

While at Princeton, Birman's research focus was on the
third problem described in the last section, namely, using
braid theory to discover new knot invariants. One tool
that becomes available when we have a group in hand is
the subject of representation theory. This is relevant to the
theory of knot invariants because conjugacy classes of ma-
trices have many natural invariants, such as the determi-
nant.

At the time of Birman's book, only one interesting rep-
resentation of the braid group was known, namely, the Bu-
rau representation. This representation gives a knot invari-
ant as follows: given a knot, choose a braid whose closure
is that knot, apply the Burau representation, subtract this
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matrix from the identity, take the determinant, and then
scaleby (1—t)/(1—t"). This conjugacy class invariant for
braids interacts nicely with stabilization, and so we indeed
obtain a knot invariant.

The knot invariant arising from the Burau representa-
tion turns out to be nothing other than the Alexander poly-
nomial. (To paraphrase one of Birman’s sayings, when
you discover a new knot invariant, your task is to figure
out which existing invariant you have just rediscovered.)
The Alexander polynomial is of fundamental importance
in knot theory, but as mentioned earlier it is not a com-
plete invariant. And without any new representations on
the horizon, it seemed hopeless for Birman to use her ideas
to extract knot invariants from braids.

But then in 1984, after Birman became a professor at
Columbia University, Vaughan Jones asked to meet with
Birman to discuss a new representation of the braid group
he had discovered through his work on von Neumann al-
gebras. His representation was a direct sum of matrix rep-
resentations, one of the summands being the Burau rep-
resentation. From the representation, Jones extracted a
conjugacy class invariant for braids. This was not a deter-
minant (as for the Alexander polynomial) but a weighted
sum of the traces of the summands [56].

Birman explained the Markov theorem to Jones, who
then realized that his conjugacy invariant for braids gave a
new invariant of knots, similar to how the Burau represen-
tation gives the Alexander polynomial.

Jones’ new polynomial was quickly seen to be an im-
provement over the Alexander polynomial, as it could dis-
tinguish the left- and right-handed trefoil knots. Even bet-
ter, it evaluated nontrivially on the 11-crossing Kinoshita—
Terasaka knot [58]. And so the Jones polynomial was born,
and a revolution in knot theory was begun.

Jones received the Fields Medal in 1990 for this work.
Fittingly, Birman gave the laudation at the International
Congress of Mathematicians. See Birman'’s article from
the proceedings [17] and also her personal recollections
in this journal [1]. In his Annals paper [57], Jones writes,
“The author would like to single out Joan Birman among
the many recipients of his thanks. Her contribution to this
new topic has been of inestimable importance.”

Jones showed that his polynomial is not a complete
knot invariant: the Conway knot and the 11-crossing
Kinoshita-Terasaka knot have the same Jones polynomial.
In a paper published in Inventiones Mathematicae, Birman
further found many inequivalent closed 3-braids with the
same Jones polynomial [15]. It is an open question whe-
ther or not there is a nontrivial knot with trivial Jones poly-
nomial.

Birman and Wenzl used the theory of the Jones poly-
nomial (specifically, the two-variable polynomial of Kauft-
man) to construct a new representation of the braid group
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[42]. Both Jones and Birman’s student Zinno [78] proved
that one summand of this representation is the same as
the Lawrence representation, famously proved to be faith-
ful by Bigelow [5] and Krammer [61].

Shortly after Jones” discovery, Vassiliev discovered new
invariants of knots, named for him (and sometimes called
finite-type invariants). Birman and Lin gave a simplified,
axiomatic, combinatorial approach to these invariants [29].
This is Birman's most cited paper and was also published
in Inventiones Mathematicae. Birman wrote a beautiful sur-
vey paper explaining this work and the connection to the
Jones polynomial [18]; this article won the Chauvenet
Prize in 1996.

85 Mapping Class Groups

We now move on from the world of knots and braids, which
are one-dimensional objects, to the realm of surfaces, which
are inherently two-dimensional. The theory of mapping
class groups of surfaces was initiated by Dehn in the 1920s.
Dehn was the doctoral advisor of Magnus who, in turn,
was the advisor to Birman. As we will see, mapping class
groups will play a prominent role in Birman'’s career.

To start at the beginning, a surface is a two-dimensional
manifold. For each g = 0 there is a surface S of genus g,
obtained as the connect sum of g tori (so Sy is the sphere,
and S is the torus). The classification of surfaces says that
these are all of the surfaces that are closed (compact and
without boundary) and orientable.

@‘

Figure 5. The first few closed, orientable surfaces.

While surfaces are completely classified, there are many
open questions, and the theory of surfaces is an active area
of research today. Of particular interest is the mapping
class group MCG(S) of a surface S, the group of homo-
topy classes of homeomorphisms of §. This is a discrete
group that encodes the symmetries of S. One source of
nontrivial elements of MCG(S) is the set of rotations of S.
For instance the surface S3 in Figure 5 admits an obvious
rotation of order 3.

An important type of infinite order element is a Dehn
twist. In Figure 6 we depict a twist of the annulus. A Dehn
twist on a surface is a homeomorphism that performs such
a twist on some annulus and is the identity on the com-
plement. If ¢ is a simple closed curve in S, then the Dehn
twist about an annular neighborhood of ¢ is a well-defined
element T, of MCG(S).
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Figure 6. A twist of an annulus.

Dehn proved the foundational theorem that MCG(Sy)
is finitely generated by Dehn twists. Dehn'’s point of view
was motivated by the following analogy:

linear maps : vectors :: mapping classes : curves

More specifically, Dehn was interested in simple closed
curves, those with no self-intersections. He referred to the
set of these as the arithmetic field of the surface.

After the early work of Dehn and his student Nielsen,
the subject of mapping class groups was largely forgotten.
Birman reignited interest in the subject through her thesis
work (see Section 8, “The Birman Exact Sequence”), her
book, and her various survey articles [13, 14, 20]. The sub-
ject really exploded with the work of Thurston, which was
announced shortly after Birman’s book was published; see
the next section.

Today, the theory of mapping class groups is a central
topic, connected to many fields of mathematics and phy-
sics. For instance it can be interpreted as:

1. the outer automorphism group of the fundamental
group of the surface;

2. the fundamental group of the moduli space of alge-
braic curves;

3. theisometry group of Teichmiiller space; and

4. the classifying group for surface bundles.

See the primer by Farb and the author [48] for a modern
introduction to mapping class groups.

86 Curves on Surfaces

Birman and Series wrote a number of papers aimed at un-
derstanding the nature of the set of simple closed curves
in a surface. They gave, for instance, an algorithm for de-
termining if an element of the fundamental group of a sur-
face has a simple representative [39]. They also described
a sense in which the action of MCG(S) on the space of
simple closed curves in S is linear, as per Dehn's analogy
above [41].

The most influential result of Birman and Series [40]
addresses the question, What does the set of simple closed
curves look like if we draw them all at once? Precisely, they
fix a surface of negative Euler characteristic and a hyper-
bolic metric on the surface, and they consider the (unique)
geodesic representative of each homotopy class of simple
closed curves. Their main theorem is that the union of all
such geodesics is nowhere dense and has Hausdorff dimen-
sion 1.
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Figure 7. Left(7a): the 88 shortest geodesics on a hyperbolic punctured torus; right(7b): the 88 shortest geodesics on a Euclidean

torus.

This result is illustrated by Figure 7. The left side shows
a square with the four corners deleted. If we identify op-
posite sides, we obtain a punctured torus (a torus minus
one point). The hyperbolic metric on the latter is mapped
to the square by a conformal mapping. Long hyperbolic
geodesics are well approximated by arcs of short ones. So
even though the picture only shows the 88 shortest simple
geodesics, it gives a decent approximation of the union of
all simple geodesics.

Here are two striking points of contrast: (1) the union
of all closed geodesics (including the ones with self-inter-
sections) is dense; and (2) if we consider a Euclidean torus
(the torus obtained by identifying opposite sides of a Eu-
clidean square) and choose one geodesic in each homo-
topy class of simple closed curves, the resulting union of
geodesics is dense (see the right-hand side of Figure 7).

At the end of their paper, Birman and Series suggest an-
other interesting problem: counting the number of simple
geodesics as a function of the length. They write:

In fact the degree of the polynomial Py(n) bound-
ing the number of simple geodesics of length n is
at most 6g + 2b — 6, where g is the genus and b
the number of boundary components of M... In
general the precise nature of the bound seems to
be a very interesting number theoretic question.

Many years later, Mirzakhani did find the precise nature
of the bound (the upper bound of Birman and Series is
also a lower bound), one of the many stunning achieve-
ments in her Fields Medal work [68].
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The Birman-Series result also plays a central role in the
proof of the celebrated McShane identity, which states that
for any hyperbolic metric on the punctured torus, we have

1
27 et 12

where the sum is over all simple closed geodesics and £ (y)
denotes the hyperbolic length [66]. This theorem was also
generalized by Mirzakhani [67], who used her generaliza-
tion to compute the volume of moduli space in the Weil-
Petersson metric.

87 Basic Algebraic Properties of the Mapping
Class Group

In this section we discuss Birman’s work on the following
basic algebraic questions about MCG(Sy):

1. What is the abelianization?
2. Whatis the rank of a maximal torsion-free abelian sub-
group?

These are among the first questions we can ask about any
infinite group.

Mumford was one of the few mathematicians who stud-
ied the mapping class group in the period between Dehn
and Birman. He was interested in the applications to alge-
braic geometry. What he proved [70] is that any abelian
quotient of MCG(S,) is a quotient of Z/10 when g > 3.
Birman [11] improved the Z/10 to Z/2. Building on this,
her student Powell further improved the Z/2 to the triv-
ial group [73], thus establishing the fundamental theorem
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that MCG(Sy) is perfect for g = 3. This completely an-
swers the first question.

The second question was answered in a joint paper by
Birman, Lubotzky, and Birman’s student McCarthy [30].
The three of them were working to understand Thurston'’s
groundbreaking work on the mapping class group. As a
part of his Fields Medal work, Thurston [75] gave a clas-
sification of elements of the mapping class group, now
called the Nielsen-Thurston classification. This theorem
states that every element of the mapping class group has a
representative homeomorphism that preserves a (possibly
empty) collection of disjoint curves and, on the comple-
mentary pieces, is either of finite order or pseudo-Anosov.
A pseudo-Anosov map is one that locally looks like the

action of the matrix (3 Agl ) on R?. So there are two in-

variant foliations, one stretched by A and one by A1,

We should think of Thurston’s theorem as a sort of Jor-
dan form for mapping classes. There is one problem: he
did not prove that the decomposition along curves was
canonical. Birman, Lubotzky, and McCarthy addressed ex-
actly that, by defining the canonical reduction system for
a mapping class.

As a result of this work, Birman, Lubotzky, and McCar-
thy showed that the answer to the second question is
3g — 3 for MCG(Sy). They further proved that every solv-

able subgroup of the mapping class group is virtually abelian.

Like the Jordan canonical form for matrices, canonical
reduction systems feature prominently in modern theory
of mapping class groups, especially in work on their alge-
braic structure. For instance, Ivanov and McCarthy used
canonical reduction systems to prove that mapping class
groups satisfy a Tits alternative, thus strengthening the anal-
ogy between mapping class groups and arithmetic groups
[51,65].

88 The Birman Exact Sequence . ,
There are many connections between the theories of braid

groups and mapping class groups. The two most impor-
tant are the Birman exact sequence and the Birman-Hilden
theory, discussed in this section and the next. One running
theme is that of group presentations for mapping class
groups.

Dehn proved that the mapping class group of the torus
is isomorphic to SL»(Z), which has a well-known finite
presentation. In her thesis work, Birman's goal was to find
group presentations for other mapping class groups. She
succeeded right away in finding an inductive procedure for
computing presentations of mapping class groups of sur-
faces with marked points.

Let S be a surface of negative Euler characteristic, and
let p € S. We consider MCG(S, p), the group of homo-
topy classes of homeomorphisms of S fixing the point p
(it is crucial that the homotopies fix p as well). There is a

March 2019

forgetful map MCG(S, p) - MCG(S). Birman wanted to
understand the kernel.

For [¢p] € MCG(S, p) to be in the kernel, this means
that ¢ is homotopic to the identity as long as we allow p
to move during the homotopy. If we follow the path of p
throughout this homotopy, we obtain a loop in S, that is,
an element of the fundamental group 71 (S, p). Birman'’s
theorem is that this identification is well-defined and that
it gives an isomorphism of 111 (S, p) with the kernel.

The resulting map 17, (S, p) — MCG(S, p) is usually
called the push map because we can think of the image of
x € 11 (S, p) as the element of MCG(S, p) obtained by
pushing p along & (Birman originally called this the spin
map).

Birman's result is usually stated as saying that the fol-
lowing sequence is exact:

1 - m(S,p) - MCG(S,p) - MCG(S) — 1.

Using this, she could promote a presentation of MCG(S)
to a presentation for MCG(S, p). The Birman exact se-
quence is ubiquitous in the theory of mapping class groups,
as it is used in many inductive arguments.

What is the connection to braid groups? The first step in
this direction is to generalize from one point p to a finite
set of points P = {p1,...,pn}. The group MCG(S, P) is
the group of homotopy classes of homeomorphisms of S
fixing P as a set. Let C;,(S) denote the space of configu-
rations of n distinct points in S. Birman’s more general
exact sequence is

1 - m (Cu(S),P) - MCG(S,P) - MCG(S) — 1.

When n = 1, the space Cj,(S) is homeomorphicto S, and
so we obtain the first exact sequence above. Recall that
B,, is defined as 111 (C, (R?), P). The group 111 (Cy(S), P)
is known as a surface braid group. We can visualize the
elements as braided strands in S X [0, 1]. As a special case,
when S is the disk, we conclude that By, is isomorphic to
the mapping class group of a disk with n marked points.

Birman used the more general exact sequence in her the-
sis to obtain presentations for the mapping class groups
of the torus with any number of marked points [10]. The
surface of genus 2 would have to wait for her work with
Hilden.

89 The Birman-Hilden Theory

After graduating from New York University’s Courant In-
stitute in 1968, Birman took a job at Stevens Institute of
Technology, where she began a very successful collabora-
tion with Hilden, a graduate student there at the time.
Birman and Hilden originally set out to find a presen-
tation for MCG(S>), the next natural mountain to climb.
The key idea in their work is to relate MCG(S>) to a braid
group in the following way. The hyperelliptic involution
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L. S — S> is the rotation by 7T about the axis indicated
in Figure 8.

¢

Figure 8. The hyperelliptic involution of S».

The quotient S /(t) is a sphere So ¢ with six distinguished
points (the images of the six fixed points of t). Birman and
Hilden proved that there is an isomorphism

MCG(S2)/([t]) — MCG(Soz).

Since MCG(Sp,6) is closely related to a braid group (with
the sphere replacing the disk), this allowed them to con-
vert a known presentation for MCG(Sy ) into a presenta-
tion for MCG(S>). This work is the subject of Birman's
article, “My favorite paper” [9].

The above isomorphism is defined as follows. As ob-
served earlier by Birman, every element of MCG(S>) has a
representative that commutes with t. Such a representative
descends to a homeomorphism of S 6 and hence gives an
element of MCG(So,6). The hard part of their theorem is
showing that this map is well-defined, that is, that it inter-
acts well with homotopies.

Birman and Hilden vastly generalized this theorem in a
series of papers on hyperelliptic and symmetric mapping
class groups [24-26], culminating in their most general
result [28], which was published in Annals of Mathematics.
This work was later generalized by MacLachlan and Harvey
[63] and by Winarski [76], who gave Teichmdiller-theoretic
and combinatorial-topological points of view.

The Birman-Hilden theory gives a dictionary between
the theories of braid groups and mapping class groups,
with important applications on both sides. For instance
it is used in the proof that MCG(S>) is linear [6, 60] and
also in the resolution of a question of Magnus about the
action of the braid group on the fundamental group of the
punctured disk [28]. We refer the reader to our survey with
Winarski for a detailed discussion [64].

810 Heegaard Splittings, Torelli Groups,
and Homology Spheres

We now turn to the interface between the theories of sur-

faces and 3-manifolds. A 3-manifold is the three-dimensional

analogue of a surface, that is, a space that locally looks like
R3. A first example is the 3-sphere S3. We can use stere-
ographic projection to identify S® as R® with one added
point at infinity, in much the same way that we identify S>
as R? with a point at infinity.
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In this section we will focus on one particular construc-
tion of 3-manifolds from surfaces, namely Heegaard split-
tings. If Sy is the surface of a donut with g donut holes,
then the handlebody Hy is the donut itself. By gluing
two copies of H, along their boundaries, we obtain a 3-
manifold without boundary. For each g there is a particu-
lar gluing ¢ : S; — Sy that results in the sphere S3. (The
usual embedding of Hy in R?® < S3 is a realization of
this gluing: the outside of H is another copy of Hy!) In
general, the decomposition of a 3-manifold into two han-
dlebodies glued along their boundary is called a Heegaard
splitting.

If we take any homeomorphism ¢ of S5 and post-com-
pose the gluing map ( by ¢, we obtain a new 3-manifold.
The resulting 3-manifold only depends on the mapping
class [¢p] € MCG(S,). What is more, every closed, ori-
entable 3-manifold arises in this way. The upshot is that
the theory of Heegaard splittings gives us a set map

MCG(Sy) — 3-manifolds.

The mapping class group MCG(S,) acts on the firsthomol-
ogy group Hi(Sy). The kernel of this action is called the
Torelli group 7(S,4). By the Mayer-Vietoris theorem, we
have the restriction

7(S4) — homology 3-spheres.

Here, a homology 3-sphere is a 3-manifold that has the
same homology groups as $3. This is an important sub-
class of 3-manifolds. Indeed, the fact that there exist non-
trivial homology 3-spheres is the reason that the Poincaré
conjecture cannot be stated in terms of homology alone
(and this is what forced Poincaré to invent 7Ty ).

Birman published a number of works on Heegaard split-
tings, specifically with the aim of classifying 3-manifolds
through the lens of the mapping class group. For instance,
with Hilden [27] she gave an algorithm to determine if a
manifold with a given Heegaard splitting is homeomor-
phic to §3.

811 Birman’s Work on Torelli Groups

Birman made two monumental contributions to the the-
ory of Torelli groups. In particular, her work was aimed at
the following questions:

1. What is a natural generating set for the Torelli
group?
2. What are the abelian quotients of the Torelli
group?
3. Is the Torelli group finitely generated?
As with mapping class groups, these are among the first
properties we would like to know about a group.
There is also a connection with algebraic geometry: the
Torelli group encodes the fundamental group of the Torelli
space, the space of framed curves of genus g. The period
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mapping takes this space to the Siegel upper half-space,
sending a framed curve to its period matrix. (Torelli is the
name of an Italian algebraic geometer.) As such, the above
questions can be reinterpreted as basic questions about the
topology of Torelli space.

Birman spent the academic year 1969-70 in Paris. By
her own account, she was mathematically isolated there
and discouraged [1]. But she had an idea for how to attack
the first question by brute-force calculation. The starting
point is that the mapping class group MCG(S,) and the
Torelli group 7(S,) fit into a short exact sequence

1 - 1(Sy) = MCG(Sy) — Spag(Z) —~ 1.

The group Sp,,(Z) is isomorphic to the automorphism
group of H; (S4;Z) = 729; we have the symplectic group
here instead of the whole general linear group because
automorphisms preserve the algebraic intersection form,
which is symplectic. From this point of view, we can think
of szg( Z) as capturing the linear, easy-to-understand as-
pects of MCG(Sy) and of 7(Sy) as encapsulating the more
difficult, mysterious aspects.

Birman knew that the defining relations for szg(Z)
correspond to generators for 7(S,) (this is a general princi-
ple that applies to any short exact sequence of groups). So
the task then was to find a reasonable group presentation
for Sp,,(Z). She succeeded and obtained a presentation
with three families of generators and 10 families of rela-
tions.

Birman's student Powell then gave simple descriptions
of the resulting generators for 7(Sy): they are Dehn twists
about separating curves and bounding pair maps [73]. A
bounding pair map is 1,1}, !, where a and b are disjoint,
homologous, nonseparating curves; see Figure 9. Putman,
who gave a geometric proof of the Birman-Powell result
in his thesis [74], describes Birman’s work as “absolutely

heroic.”
o) (o

Figure 9. Left: a bounding pair; right: a separating curve.

Q
N

Birman and Craggs took aim at the second and third
questions, and they made a most spectacular contribution.
They showed that, unlike MCG(Sy), the group 7(Sy) does
have nontrivial abelian quotients. They found a family
of homomorphisms py : 7(S;) — Z/2. Surprisingly,
the definition involves the theories of 3- and 4-manifolds.
One hope they had was that there would be infinitely many
distinct such homomorphisms, thus proving that 7(S,)
was not finitely generated.
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In order to specify one of the Birman-Craggs homomor-
phisms, we need to fix some Heegaard splitting ( of S°.
Now letf € 7(S4). As in Section 10, “Heegaard Splittings,
Torelli Groups, and Homology Spheres,” { determines a
homology 3-sphere My. Every homology 3-sphere is the
boundary of some 4-manifold. The Rokhlin invariant of
My is the signature of this 4-manifold, divided by 8, mod 2
(by Rokhlin’s theorem, this is well-defined). This element
of Z/2 is py(f). Miraculously, this defines a homomor-
phism 7(Sy) — Z/2. The proof features what is probably
the first instance of a 4-manifold trisection, a tool popu-
larized four decades later by David Gay and Robion Kirby
[79].

Several years after these works, Johnson arrived on the
scene. In a stunning series of deep, beautiful papers, he
expanded on the work of Birman and her collaborators.
He proved [55] that 7(Sy) is finitely generated for g > 3.
Also he classified the Birman-Craggs homomorphisms—
showing directly that there were only finitely many—and
gave a complete description of the abelianization of 7(Sy)
[52]. (Amazingly, there is still no definition of these ho-
momorphisms that does not involve the construction of a
4-manifold.) As a byproduct, Johnson showed that 7(Sy)
cannot be generated by Dehn twists about separating curves,
disproving a conjecture of Birman.

See Johnson'’s delightful survey for more about his work
[53]. In the survey, Johnson notes that the interest in Torelli
groups from topologists “was initiated principally through
the work of Joan Birman” [54].

812 Lorenz Knots ) .
We end by discussing the work of Birman and Williams on

Lorenz knots in the early 1980s. This is a fitting finale, as
it combines all four of the main objects of study in this
article. It is also a prime example of work that was ahead
of its time, with 94 of its 106 citations on MathSciNet®
coming after the year 2000.

E. N. Lorenz was a pioneer of chaos theory. He was
particularly interested in the weather, and whether it was
deterministic. Lorenz is perhaps most famous for coining
the phrase “butterfly effect.”

In order to help understand weather patterns, Lorenz
devised a simplified version of the Navier-Stokes equa-
tions, a system of three ordinary differential equations in
three variables [62]. This system has a strange attractor,
called the Lorenz attractor, shown in the top of Figure 10.
Forward trajectories of points converge to the attractor and,
once there, stay forever.

A Lorenz knot is a knot obtained as a periodic orbit in
the Lorenz attractor. Williams showed that Lorenz knots
are exactly the ones that can be drawn on the “template”
shown at the bottom of Figure 10.

A Lorenz braid is a braid consisting of strands that either
go monotonically left to right or from right to left, where
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Figure 10. Top(10a): the Lorenz attractor; bottom(10b): the
Lorenz template.

the strands going from left to right pass over the strands
going from right to left, and where neither the left-to-right
nor the right-to-left strands cross amongst themselves; see
Figure 11. Lorenz knots can also be described as the clo-
sures of Lorenz braids.

Figure 11. A Lorenz braid.

Williams approached Birman at a conference and asked
her if she could identify some of the knots he was study-
ing. She could, and their discussion quickly turned into
a fruitful collaboration. In their first paper [44], Birman
and Williams proved many theorems about Lorenz knots,
including:

There are infinitely many (inequivalent) Lorenz knots.
Lorenz knots are prime.

Every algebraic knot is a Lorenz knot.

Every Lorenz knot is fibered.

Ll

In the third theorem, an algebraic knot is any component
of the link of an isolated singularity of a complex curve.
The fourth theorem requires some explanation. We can
construct a 3-manifold from a surface S by the mapping
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torus construction: for [¢p] € MCG(S), we take the prod-
uct S X [0,1] and glue § X {0} to S X {1} by ¢. The
resulting 3-manifold has a natural map to S! with fiber S,
and we say that the 3-manifold is fibered. A knot in R®
is said to be fibered if its complement in S is a fibered
3-manifold.

Two decades after Birman and Williams, Ghys entered
the picture. He was studying the manifold M = PSL,(R)/
PSL>(Z). The manifold M is homeomorphic to the com-
plement in S3 of the trefoil knot, and it can also be de-
scribed as the unit tangent bundle of the modular surface
(the quotient of the hyperbolic plane by PSL,(Z)). From
the latter description, M has a geodesic flow. Ghys was
studying the closed orbits in this flow, and he proved that
the knots arising from these closed orbits are in natural
bijection with the Lorenz knots (the connection was fur-
ther investigated by Pinsky [72]). He further showed that
the Rademacher function exactly records the linking num-
ber of each knot with the missing trefoil. We recommend
Ghys's beautiful survey, written on the occasion of his ple-
nary lecture at the International Congress of Mathemati-
cians [50].

We next turn to the question, How common are Lorenz
knots? Dehornoy, Ghys, and Jablon showed that of the
1,701,936 knots with at most 16 crossings in their diagrams,
only 20 are Lorenz knots. And so from this point of view
they appear to be rather rare. Birman and her postdoc Kof-
man took a different point of view. In order to explain it,
we take a detour into hyperbolic geometry and the classifi-
cation of 3-manifolds.

Thurston revolutionized the theory of 3-manifolds by
showing that many knots are hyperbolic; that is, their com-
plements in $° could be given complete Riemannian met-
rics of constant sectional curvature —1. By the Mostow
rigidity theorem, hyperbolic structures on 3-manifolds are
unique. In particular, a hyperbolic knot has a well-defined
volume.

Thurston’s work on knots eventually led him to formu-
late his geometrization conjecture, which shaped the field
for several decades. The conjecture states that every 3-man-
ifold can be decomposed into geometric pieces, namely,
Seifert-fibered spaces (completely classified in the 1930s
by Seifert) and hyperbolic manifolds. The Poincaré conjec-
ture is a special case of Thurston’s conjecture because there
are no counterexamples to the latter among the Seifert-
fiber
-ed spaces or the closed hyperbolic manifolds (which have
infinite fundamental group).

The geometrization conjecture was famously proved by
Perelman in 2003; see [46,59,69]. More recently, Agol and
Wise proved that every closed hyperbolic 3-manifold has
a finite cover that is fibered, verifying another conjecture
of Thurston [2,4, 77]. This gives a satisfying description of
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the hyperbolic pieces of a 3-manifold: up to taking finite
covers, they all come from surface homeomorphisms.

We return now to our story about Lorenz knots. Rather
than organizing knots by the number of crossings in their
diagrams, Birman and Kofman organized the hyperbolic
knots by their volumes. They showed that of the 201 hy-
perbolic knots of smallest volume, more than half of them
are Lorenz knots [8]. So among all knots, Lorenz knots are
extremely rare, but among the small-volume hyperbolic
knots, Lorenz knots are quite prevalent.

Birman and Williams wrote a companion paper [43]
where they studied a different flow on 3 and discovered
an appropriate template in that case as well. In his gem
of a thesis, Ghrist [49] showed that this flow is universal,
in that it contains all knots as closed orbits, disproving a
conjecture of Birman and Williams.

There are many other intriguing aspects to the story and
tantalizing questions to answer. As Birman writes at the
end of her survey [19], “There is a big world out there, and
a great deal of structure, waiting to be discovered!”

Epilogue

A distinguishing feature of Birman'’s career is that her re-
search has been motivated by her own vision, interests,
and curiosity. There are very few instances where Birman
was trying to answer someone else’s question or solve some-
one else’s problem. While this may seem like a risky way to
approach a career in mathematics, it is hard to argue with
the results. Besides the beautiful mathematics she has pro-
duced by herself and with her collaborators, she has had
(as we have seen) a direct impact on two Fields Medals
(Jones’ and Mirzakhani’s) and a plenary address at the In-
ternational Congress of Mathematicians (Ghys’), among
the many works she has helped to inspire.

As we touched on at the outset and throughout this ar-
ticle, Birman’s work was in many cases ahead of its time,
her foundational work finding applications (and apprecia-
tion) many years after the original discovery. Braid groups,
mapping class groups, Torelli groups, and Lorenz knots
were fringe topics when she started. With the break-
throughs of Jones, Mirzakhani, Thurston, Johnson, and
Ghys we have seen the impact and validation of Birman'’s
work.

As a recent collaborator of Birman'’s and as a researcher
in the same field, the author has had the pleasure of seeing
Birman's mathematics from up close and being inspired
by her work. We eagerly look forward to the next chapters
of Birman's career, including new discoveries by Birman
herself and new perspectives on her prior work, yet to be
uncovered.
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