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Abstract—We consider a multicast network in which real-time
status updates generated by a source are replicated and sent to
multiple interested receiving nodes through independent links. The
receiving nodes are divided into two groups: one priority group
consists of k nodes that require the reception of every update
packet, the other non-priority group consists of all other nodes
without the delivery requirement. Using age of information as
a freshness metric, we analyze the time-averaged age at both
priority and non-priority nodes. For shifted-exponential link delay
distributions, the average age at a priority node is lower than that
at a non-priority node due to the delivery guarantee. However,
this advantage for priority nodes disappears if the link delay
is exponential distributed. Both groups of nodes have the same
time-averaged age, which implies that the guaranteed delivery of
updates has no effect the time-averaged freshness.

I. INTRODUCTION

The analysis of information freshness arises from a variety

of real-time status updating systems, in which update messages

generated by the sources are sent to interested receivers through

a communication system. For instance, the real-time information

updates of autonomous cars are broadcast to nearby vehicles

and infrastructures. Similarly, live video captured for remote

surgery is required to be available at the doctor with ultra low

delay. In these systems, the knowledge of the source state at

the receiver is desired to be as fresh as possible. This leads

to the introduction and analysis of an “Age of Information”

(AoI) freshness metric [1]–[8]. Age of information, or simply

age, measures the time difference between now and when the

most recent update was generated. At any time t, if the most

recent update at the receiver is generated at time u(t), then the

instantaneous age at the receiver is t− u(t).
In early work on age analysis [1], it was shown that the source

should limit its update rate in order to avoid queueing delay

caused by overloading the system with first-come first-served

(FCFS) policy. Given the observation of unnecessary waiting in

FCFS systems, subsequent research looked at last-come first-

served (LCFS) queueing systems that discard older updates as

soon as a new update comes [3], [5], and last-generated first-

server (LGFS) policy with preemption in service for multihop

networks [6]. When the source has no knowledge of the service

system state, allowing packet preemption at the queue provides

lower average age in general. However, these results are limited

to the case where the update arrival process is given. In [4], the

authors consider a different scenario where the system state is

available at the source such that a new update is generated only

after the service of the previous update is completed. A lazy

updating scheme is proved to be age-optimal, indicating that

the source should wait for a short period before sending a new

update if the service time of the previous update is too small.

The analysis in [4] applies only to systems without preemption.

In this work, we consider an update multicast system in

which real-time update messages generated by the source are

broadcast to a set of nodes through i.i.d. links with random

network delays. The receiving nodes are categorized into two

groups. The priority group consists of nodes that require the

delivery of every update, while all other nodes without the

delivery requirement are regarded as the non-priority group.

Once a node receives an entire update message, it acknowledges

the source by sending instantaneous feedback. This model arises

in a variety of delay-sensitive applications, e.g. vehicle networks

where the update messages are popular and simultaneously

request by large numbers of users. Some receiving nodes require

the history of all updates for the purpose of data aggregation

and processing; thus the delivery of every update message is

crucial.

Our work is closely related to the LCFS and LGFS systems

with preemption and state-dependent updating. Since any new

update generated by the source leads to the termination of the

previous update, each link is equivalent to a LCFS queue with

preemption in service. Thus, the instantaneous feedback enables

the source to submit new updates based on the state of the queue,

either replacing staled updates with a fresh update or waiting for

the service of the current update to be completed. We assume

each update packet is divided into small chunks and encoded

with a rateless code to overcome channel erasure in the multicast

network. In this case, the number of chunks corresponding to

an update is required to reach a certain minimum level for

the update to be successfully decoded. Moreover, the source is

also able to instantaneously terminate an update in the middle

of transmission. Here we consider a simple updating scheme

that exploits instantaneous feedback. Once the current update

is delivered to all the nodes in the priority group, the source

terminates the transmission of the current update and broadcasts

a fresh update. Our goal here is to evaluate the average age for

both types of nodes.

II. PROBLEM FORMULATION

We consider a status updating system with a single source

broadcasting time-stamped updates to multiple nodes through

independent links with random delays, as shown in Fig. 1. Each

update message j is time-stamped when it is generated at the

source, and it takes time Xij to be successfully delivered to

node i. The priority group consists of nodes 1, . . . , k, and the
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Fig. 1: System diagram: source broadcasts status updates to n
nodes through i.i.d. channels. The k nodes in the priority group

are shaded. The transmission of update j + 1 is initiated only

after update j is delivered to all k nodes in the group.

source guarantees the delivery of every update to all of these

priority nodes. In this work, we assume there is an instantaneous

feedback channel from every node i back to the source, and

node i acknowledges the source instantly as soon as the update

is delivered to the node i. When all k nodes in the priority

group report receiving the update j, this update is considered

completed and the transmissions of this update to all other

nodes are terminated. The source immediately generates the

next update j + 1 and repeats the multicast process.

When most recently received update at time t at node i is

time-stamped at time ui(t), the status update age or simply the

age, is the random process ∆i(t) = t− ui(t). When an update

reaches node i, ui(t) is advanced to the timestamp of the new

update message. The time average of age process at a node,

which is also called the age of information, is defined as

∆i = lim
τ→∞

1

τ

∫ τ

0

∆i(t). (1)

In this work, we derive the average age at both the priority

node and the non-priority nodes, and we will show that the

average age depends on the order statistics of the random link

delay Xij .

Definition 1. The k-th order statistic of random variables

X1, . . . , Xn, denoted Xk:n, is the k-th smallest variable.

For shifted exponential X with CDF FX(x) = 1− e−λ(x−c),

Xk:n has expectation and variance

µk:n = E[Xk:n] = c+
1

λ
(Hn −Hn−k), (2a)

σ2
k:n = Var[Xk:n] =

1

λ2

(

Hn2 −H(n−k)2
)

, (2b)

where Hn and Hn2 are the generalized harmonic numbers

defined as Hn =
∑n

j=1
1
j

and Hn2 =
∑n

j=1
1
j2

.

III. PRIORITY NODES

We start by evaluating the average age at a single node in the

priority group. Fig. 2 depicts a sample path of the age over time

at some node i in priority group with k nodes. Update 1 begins

transmission at time t = 0 and is timestamped T0 = 0. Here

we remark that Xij is the service time to deliver the update

j to node i. Since the Xij are i.i.d. for all i and j, the ∆i(t)

∆P (t)

t•
T1

•
Tj−1

•
Tj

•

Ai1 Aij

Y1 Yj

Xi1 Xi2 Xij

Fig. 2: Sample path of the age ∆P (t) for node i within the

priority group with k nodes. Update delivery instances are

marked by •.

processes are statistically identical and each node i has the same

average age ∆i. If one node gets an update earlier than any of

the other k− 1 nodes, it has to wait for an idle period until that

update is delivered to all k priority nodes. The transmission

time of an update j to all k nodes, which we call a service

interval, is given by

Yj = max(X1j , . . . , Xkj) = Xk:k. (3)

We denote that update j goes into service at time Tj−1 and

gets delivered to all k nodes at time Tj = Tj−1 + Yj . Using

similar techniques as in [9], we represent the area under the

age sawtooth as the concatenation of the polygons Ai1, . . . , Aij ,

thus the average age is

∆P =
limJ→∞

1
J

∑J

j=1 Aij

limJ→∞
1
J

∑J

j=1 Yij

=
E[A]

E[Y ]
. (4)

It follows from Fig. 2 that

Aij = Yj−1Xij +X2
ij/2 +Xij(Yj −Xij) + (Yj −Xij)

2/2

= Yj−1Xij + Y 2
j /2. (5)

Since Xij is independent of the transmission time Yj−1 of the

previous update,

E[A] = E[Y ] E[X] + E
[

Y 2
]

/2. (6)

Denoting µ = E[X], (2), (4) and (6) yield the next theorem.

Theorem 1. The average age at an individual node in the

priority group is

∆P = µ+
µk:k

2
+

σ2
k:k

2µk:k
.

Note that Theorem 1 is valid for any distribution of X . In

terms of the Euler-Mascheroni constant γ ≈ 0.577, we also

have the following result.

Corollary 1. For shifted exponential (λ, c) service time X , the

average age at an individual node in the priority group is lower

bounded by

∆P ≥
3c

2
+

1

λ
+

log k + γ

2λ
, (7)
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Fig. 3: Sample path of the age ∆E(t) in the non-priority group:
successful update deliveries (at times marked by •) occur in intervals
1, j − 1, j, and j + 3. Updates to the node are terminated in intervals
j + 1 and j + 2.

Proof appears in the Appendix. Corollary 1 indicates that

the average age in the priority group ∆P is independent of the

number of nodes n in the system, and it behaves almost like a

logarithmic function as the number of nodes k increases.

IV. NON-PRIORITY NODES

For a node in the non-priority group, the transmission of

the current update is terminated right after the delivery of the

update to all the k nodes in the priority group. That is, a non-

priority node i fails to receive the update j if and only if the

service time Xij is larger than the service times of all the k
nodes in the priority group. Let’s further denote that the priority

nodes have service times X1, X2, . . . , Xk, and the non-priority

node has service time Xk+1. For i.i.d. service time X , the

probability that Xk+1 is the largest among all k + 1 nodes is

simply q = 1/(k + 1), since the rank of Xk+1 among k + 1
random variables is uniform from 1 to k+1. Here we also refer

to q as the failure probability for a non-priority node.

If update j is not delivered to a node i, the node waits

for a service interval Yj until the source generates the next

update. Suppose an update is delivered to node i during service

interval j and the next successful update delivery to node i is

in service interval j +Ml. In this case, Ml is a geometric r.v.

with probability mass function (PMF) PM (m) = qm−1(1− q),
and first and second moments

E[M ] =
1

1− q
=

k + 1

k
, (8)

E
[

M2
]

=
1 + q

(1− q)2
=

(k + 1)(k + 2)

k2
. (9)

We remark that Ml and Yj are independent.

An example of the age process is shown in Figure 3. The

update j is delivered in service interval j with end time Tj , and

the node k+1 waits for Ml = 3 service intervals until the next

successful delivery in interval j + 3. We represent the shaded

trapezoid area as Al and the length in time between two service

intervals with successful updates as Wl =
∑j+Ml−1

j′=j Yj′ . The

time-averaged age for non-priority node is then

∆E =
limL→∞

1
L

∑L

l=1 Al

limL→∞
1
L

∑L

l=1 Wl

=
E[A]

E[W ]
. (10)

Denote the random variable X̃j as the service time of a

successful update sent to a non-priority node with CDF

FX̃j
(x) = FXj |Xj<Yj

(x). Evaluating Fig. 3, we have

Al =
1

2

(

Wl + X̃j

)2

−
1

2
X̃2

j =
W 2

l

2
+ X̃jWl. (11)

Since X̃ and W are independent, the average age in (10) is

∆E =
1

E[W ]

(1

2
E
[

W 2
]

+ E
[

X̃
]

E[W ]
)

=
E
[

W 2
]

2E[W ]
+ E

[

X̃
]

. (12)

We first define YS as the length of a service interval given

that the update is successfully delivered to the non-priority node

k + 1, and YF as the length of a service interval given that

the update is failed to be delivered. Thus, YS and YF have

PDFs fYS
(y) = fY |Y≥Xk+1

(y) and fYF
(y) = fY |Y <Xk+1

(y),
respectively. Furthermore, E[Y ] = qE[YF ] + (1− q) E[YS ].

Lemma 1. W has first and second moments

E[W ] = E[M ] E[Y ], (13)

E
[

W 2
]

= (E[M ]− 1)Var[YF ] + Var[YS ]

+
(

E
[

M2
]

− 2E[M ] + 1
)

(E[YF ])
2

+ (E[YS ])
2 + 2(E[M ]− 1)E[YF ] E[YS ]. (14)

Proof of the lemma appears in the Appendix. Lemma 1 leads

to the following result for non-priority nodes.

Theorem 2. The average age at an individual node in the

non-priority group is

∆E =
1

k

k
∑

i=1

µi:k+1 + δ1(k) + δ2(k),

where we denote

δ1(k) =
σ2
k:k+1 + kσ2

k+1:k+1

2(k + 1)µk:k

δ2(k) =
k+2
k

µ2
k:k+1 + kµ2

k+1:k+1 + 2µk+1:k+1 µk:k+1

2(k + 1)µk:k
.

Proof. In (12), X̃ indicates the service time of a non-priority

node k+1 given that Xk+1 < max(X1, . . . , Xk). This condition

implies Xk+1 cannot be the largest among all k+1 nodes. Thus,

E
[

X̃
]

= E[Xk+1 |Xk+1 < Xk+1:k+1] =
1

k

k
∑

i=1

µi:k+1. (15)

The claim follows by substituting (13), (14) and (15) back into

(12), and replacing E[M ] and E
[

M2
]

by (8) and (9).

For exponential service times, Theorems 1 and 2 yield the
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Fig. 4: Average age versus the priority group size k. circle ◦
marks the priority group and cross × marks the non-priority

group. The lower bound for priority group is shown as dashed

line.

next claim.

Theorem 3. For exponential service time X , the average age is

the same for both priority and non-priority nodes and is given

by

∆E = ∆P =
1

λ
+

Hk

2λ
+

Hk2

2λHk

, (16)

where k is the priority group size.

Theorem 3 implies that the average age is identical for both

groups regardless of whether an update is delivered to a node

or not.

V. EVALUATION

Figures 4a and 4b compare the simulation results of the

average age for the priority group ∆P and the non-priority

group ∆E as a function of the priority group size k. In Fig. 4a,

the link delay to every node i is exponentially distributed with

different λ. The average age curves for both groups overlap with

each other and increases monotonically, which matches Theorem

3. The lower bound on the average age for the priority group

in Corollary 1 captures the trend for varying k, and becomes

tighter for sufficiently large k. Fig. 4b shows the similar result

for shifted exponential delay with c = 1. For small group size

k, there is a significant difference between the average age for

0 2 4 6 8 10

0

10

20

non-priority

priority

Fig. 5: Average age versus the exponential shift c with λ = 2.

The priority group size k = 5.

two groups. As k increases, the age for non-priority group ∆E

decreases slightly in the beginning and climbs up after a certain

k. We also observe that the age difference between two groups

vanishes for large enough k.

Fig. 5 depicts the average age as a function of the shift

parameter c for shifted exponential delay X . In Fig. 5 with

exponential rate λ = 2, both groups have almost linear

increasing average age for different the constant shift c. The two

curves start at the same point for c = 0, and the difference in

slopes leads to a larger gap between two curves as c increases.

VI. CONCLUSION

In this work, we examine a status updating multicast network

where the receivers are prioritized in terms of packet deliveries.

The average age at each receiver depends on the order statistics

of the random link service time. If the service time is identically

distributed as exponential for every link, we show analytically

and numerically that the average age at a priority node with

packet delivery guarantee is the same as that without the

guarantee. The difference between two types of nodes arises if

the exponential service time is mixed with a non-zero constant

time shift. The analysis in this work is limited to exponential

class service time, but we believe the difference between two

types of nodes is related to the hazard rate of the service

distribution, which potentially determines when the source

should preempt the service of the current update with a fresh

update.

APPENDIX

Proof. Corollary 1 Substituting (2a) and (2b) into Theorem 1

gives

∆P =
3c

2
+

1

λ
+

Hk

2λ
+

Hk2

2λ2c+ 2λHk

. (17)

Note that Hk2 =
∑k

i=1
1
k2 is monotonically increasing for

n ∈ Z
+ and limk→∞ Hk2 = π2/6. Thus, given λ and c,

lim
k→∞

Hk2

2λ2c+ 2λHk

↓ 0. (18)

The harmonic number is given asymptotically by Hk ≈ log k +
γ +O( 1

k
), which can be lower bounded by

Hk ≥ log k + γ, for k ∈ Z>0. (19)

Thus, (7) is given by substituting (18) and (19) into (17).
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Proof. Lemma 1 We note the sequence Yj , . . . , Yj+Ml−1 and

the number of summation terms Ml are dependent. Since Ml

is geometric, the event Ml = m indicates a sequence of m− 1
consecutive failures followed by a success. Thus, Yj′ is identical

to YF for j′ =∈ {j, . . . , j +Ml − 2} and the last variable in

the sequence Yj+Ml−1 is identical to YS . This implies

E[W ] =
∞
∑

m=1

PM (m) E

[

m
∑

i=1

Yi

∣

∣

∣M = m

]

=

∞
∑

m=1

PM (m)
(

(m− 1)E[YF ] + E[YS ]
)

= E[YF ](E[M ]− 1) + E[YS ]. (20)

Substituting (8) into (20) yields

E[W ] =
k + 1

k

(

1

k + 1
E[YF ] +

k

k + 1
E[YS ]

)

= E[M ] E[Y ]. (21)

For the second moment, we write E
[

W 2
]

in total expectation

as

E
[

W 2
]

=
∞
∑

m=1

PM (m) E

[

(

m
∑

i=1

Yi

)2∣
∣

∣M = m

]

=
∞
∑

m=1

PM (m)

⎛

⎝Var

[

m
∑

i=1

Yi

]

+

(

E

[

m
∑

i=1

Yi

])2
⎞

⎠ .

(22)

Since the random variables Yi are independent, we let

ω1 =
∞
∑

m=1

PM (m)Var

[

m
∑

i=1

Yi

]

=
∞
∑

m=1

PM (m)
(

(m− 1)Var[YF ] + Var[YS ]
)

= Var[YF ]
(

E[M ]− 1
)

+Var[YS ]. (23)

Similarly, we have

ω2 =
∞
∑

m=1

PM (m)

(

E

[

m
∑

i=1

Yi

])2

=
∞
∑

m=1

PM (m)
(

(m− 1)E[YF ] + E[YS ]
)2

=
(

E
[

M2
]

− 2E[M ] + 1
)

(E[YF ])
2

+ 2(E[M ]− 1)E[YF ] E[YS ] + (E[YS ])
2. (24)

The claim follows by substituting (23) and (24) in (22).

Proof. Theorem 3 For priority nodes, we obtain the average age

by substituting (2a) and (2b) to Theorem 1 with c = 0, which

directly yields (16). For non-priority nodes, the first term in

Theorem 2 is

δ0(k) =
1

k

k
∑

i=1

µi:k+1 (25a)

=
1

k

k
∑

i=1

Hk+1 −Hk+1−i

λ
(25b)

=
Hk+1

λ
−

1

λk

k
∑

i=1

Hi (25c)

=
Hk+1

λ
−

k + 1

λk
(Hk+1 − 1) (25d)

=
1

λ
+

1

λk
−

Hk+1

λk
. (25e)

In (25d), we use the series identity of Harmonic numbers
∑k

i=1 Hi = (k + 1)(Hk+1 − 1). Similarly, substituting (2a)

and (2b) into δ1(k) and δ2(k) gives

δ1(k) =
(H(k+1)2 − 1) + kH(k+1)2

2(k + 1)λHk

=
Hk2

2λHk

−
k

2λ(k + 1)2Hk

, (26)

δ2(k) =
k + 2

2k(k + 1)

(Hk+1 − 1)2

λHk

+
k

2(k + 1)

H2
k+1

λHk

+
1

k + 1

(Hk+1 − 1)Hk+1

λHk

. (27)

We note that δ0(k) in (25e) and δ2(k) in (27) only contain

first order harmonic numbers, thus we combine two terms and

rewrite Hk+1 = Hk + 1/(1 + k), which gives

δ0(k) + δ2(k) =
1

λ
+

Hk

2λ
+

k

2λ(k + 1)2Hk

(28)

The claim is given by the sum of (26) and (28).
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