
Wait-free Dynamic Transactions for Linked Data
Structures

Pierre LaBorde

University of Central Florida

Orlando, USA

pierrelaborde@knights.ucf.edu

Lance Lebanoff

University of Central Florida

Orlando, USA

lancelebanoff@knights.ucf.edu

Christina Peterson

University of Central Florida

Orlando, USA

clp8199@knights.ucf.edu

Deli Zhang

University of Central Florida

Orlando, USA

deli.zhang@outlook.com

Damian Dechev

University of Central Florida

Orlando, USA

dechev@cs.ucf.edu

Abstract
Transactional data structures support threads executing a

sequence of operations atomically. Dynamic transactions

allow operands to be generated on the fly and allows threads

to execute code in between the operations of a transaction,

in contrast to static transactions which need to know the

operands in advance. A framework called Lock-free Transac-

tional Transformation (LFTT) allows data structures to run

high-performance transactions, but it only supports static

transactions. We extend LFTT to add support for dynamic

transactions and wait-free progress while retaining its speed.

The thread-helping scheme of LFTT presents a unique chal-

lenge to dynamic transactions. We overcome this challenge

by changing the input of LFTT from a list of operations to

a function, forcing helping threads to always start at the

beginning of the transaction, and allowing threads to skip

completed operations through the use of a list of return

values. We thoroughly evaluate the performance impact of

support for dynamic transactions and wait-free progress and

find that these features do not hurt the performance of LFTT

for our test cases.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; Concurrent algorithms.

Keywords Transactional Data Structures, Wait-Free, Trans-

actional Memory, Non-blocking

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PMAM’19 , February 17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6290-0/19/02. . . $15.00

https://doi.org/10.1145/3303084.3309491

ACM Reference Format:
Pierre LaBorde, Lance Lebanoff, Christina Peterson, Deli Zhang,

and Damian Dechev. 2019. Wait-free Dynamic Transactions for

Linked Data Structures. In The 10th International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores
(PMAM’19), February 17, 2019, Washington, DC, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3303084.3309491

1 Introduction
The rise of multi-core systems has led to the development

of highly concurrent non-blocking data structures [7, 19,

20, 29]. Traditionally, non-blocking data structures provide

operations which meet the linearizability correctness con-

dition. Linearizable operations appear to execute instanta-

neously, and respect the real-time ordering of operations.

Lock-freedom and wait-freedom are two different kinds of

non-blocking algorithms that guarantee at least one or all

threads make progress in a finite amount of time, respec-

tively. These algorithms are free from common pitfalls as-

sociated with locking such as deadlock, livelock, and prior-

ity inversion, by definition. Wait-free algorithms are also

starvation-free, by definition.

A limitation of non-blocking containers is a lack of support

for composite operations, which precludes modular design

and software reuse. For example, inserting an element into

a lock-free linked list, and incrementing a separate variable

that stores the length of the linked list is not possible without

breaking linearizability, as most non-blocking data structures

can only guarantee atomic updates to a single memory word.

The aforementioned composite operation could fail if two

threads concurrently insert elements at non-adjacent posi-

tions in the linked list, concurrently read the size variable

as ten, and then write the new value which they will both

compute as eleven. The trade-off between correctness and

support for composite operations in non-blocking data struc-

tures does not need to be made if the data structures are

made transactional.

Implementing transactional containers has been the sub-

ject of several recent papers [2, 9, 10, 13, 14, 18]. Transac-

tional execution is essential for applications that require

https://doi.org/10.1145/3303084.3309491
https://doi.org/10.1145/3303084.3309491

PMAM’19 , February 17, 2019, Washington, DC, USA LaBorde, et al.

atomicity and isolation for a series of operations such as

databases and data analysis applications. In this paper, we

discuss data structure transactions, which are sequences of

operations that are executed atomically, in isolation, on a

shared memory data structure. Isolation means concurrent

transaction executions appear to take effect in some sequen-

tial order.

The straightforward way to implement a transactional

data structure from a sequential container is to use soft-

ware transactional memory (STM) [26]. An STM instruments

memory accesses by recording the locations a thread reads

in a read set, and the locations it writes in a write set. If the
read/write sets of different transactions overlap, only one

transaction is allowed to commit, the concurrent transactions

are aborted and restarted. A drawback of STM is that the run-

time system that keeps track of read/write sets and detects

conflicts can have a detrimental impact on performance [3].

The inherent disadvantage of STM concurrency control

is that low-level memory access conflicts do not necessarily
correspond to high-level semantic conflicts. Consider a set im-

plemented as an ordered linked list, where each node has

two fields, an integer value and a pointer to the next node.

The initial state of the set is {0, 3, 6, 9, 10}. Thread 1 and

Thread 2 intend to insert 4 and 1, respectively. Since these

two operations commute, it is feasible to execute them con-

currently [4]. Commutative data structure operations are

those which have no dependencies on each other; reordering

them yields the same abstract state of the container. Existing

concurrent linked lists employing lock-free or fine-grained

locking synchronizations allow concurrent execution of the

two operations. Nevertheless, these operations have a read-

/write conflict and the STM has to abort one of them.

An alternative approach called Lock-free Transactional

Transformation (LFTT) [30] includes semantic conflict de-

tection that uses information about the data structures and

which operations are being executed, to prevent conflicting

operations from unnecessarily causing transactions to abort.

A significant advantage of using data structure transactions

is that this semantic information is available to be used to

increase throughput.

The main drawback of using LFTT is that it only supports

static transactions—it requires all operations to declare their

operands in advance, and a thread cannot execute any code

between the operations of a transaction. LFTT needs a static

list of operations and operands before the transaction begins,

because it has threads help each other complete pending

operations before starting new ones; this is how LFTT guar-

antees system-wide progress. This limitation restricts the

applicability of LFTT to small applications whose inputs are

known in advance. For example, the following code snip-

pet could not be executed by LFTT. LFTT would need to

transform this code into a list of operands and operations,

but result is unknown, and operations cannot be executed

conditionally.

i f (! l i s t . f i n d (key)) {

r e s u l t = . . . / / some c ompu ta t i o n
l i s t . i n s e r t (r e s u l t) ; }

In this paper, we present Dynamic Transactional Trans-

formation (DTT), a framework that builds upon LFTT to

increase its applicability; namely, to add support for (1) dy-

namic transactions, (2) wait-free progress, and (3) transac-

tions among multiple data structures. First, dynamic transac-
tions allow operands to be generated during the transaction,

and threads can execute code between the operations of a

transaction. In contrast to other transactional methodologies,

LFTT presents a nontrivial challenge to support dynamic

transactions due to its thread-helping scheme. To address

this issue, we require that the user writes a function that

encompasses all of the operations to be performed in the

transaction as well as any code that the user wants to run

between the operations. To maintain correctness in the pres-

ence of this code between operations, we modify the helping

scheme so that helping threads always start at the beginning

of the transaction. Then to reduce duplicate work, we main-

tain a list that contains the return value for each operation

in the transaction, which allows helping threads to skip com-

pleted operations. Second, we support wait-free progress

by employing the fast-path-slow-path technique [17]. Third,

transactions among multiple data structures can be simply

implemented by modifying a structure in LFTT representing

an operation, to add a field that references the container on

which to operate.

Like LFTT, our approach is applicable to the class of linked

data structures that implement the set and dictionary abstract

data types. We apply DTT to create dynamic transactional

versions of a linked list [12], a skip list [8], an MDList [28],

a dictionary [29], and a binary search tree [16]. Lock-free

transactional versions of the linked list and skip list were

presented as a proof of concept for LFTT in [30].

We analyze the impact of these new features on the per-

formance of LFTT. Our evaluation shows that DTT performs

on par with LFTT, while providing the benefits of dynamic

transaction support, a stronger progress guarantee, and trans-

actions among multiple containers. There is less than a 1%

difference when averaged over all tested scenarios, and like

LFTT, our approach is 3 times faster than STM.

This paper makes the following contributions:

• We present DTT, an extension to LFTT to provide sup-

port for dynamic data structure transactions, which

allow code to be run between data structure opera-

tions.

• We add support for wait-freedom to DTT, so lock-free

containers can be transformed into wait-free transac-

tional versions.

Wait-free Dynamic Transactions for Linked Data Structures PMAM’19 , February 17, 2019, Washington, DC, USA

• We analyze the performance impact of these features

to LFTT and other transactional methodologies. Ex-

perimental results report that the throughput is on par

with LFTT while improving its applicability.

2 Related Work
Significant research has been devoted to non-blocking linked

data structures [12, 20, 22, 28]. Transactions on a data struc-

ture traditionally involve executing all shared memory ac-

cesses in coarse-grained atomic sections. High-level conflict
detection approaches [2, 14, 18] avoid false conflicts due to

low-level accesses.

2.1 Transactional Memory
Transactional memory, initially proposed as a set of hard-

ware extensions by Herlihy and Moss [15]. HTM’s cache-

coherency based conflict detection causes spurious failures

during page faults and context switches [6]. On Intel’s Haswell

microarchitecture, the performance of applications that fre-

quently encounter data access conflicts will degrade to coarse-

grained locking. This makes HTM undesirable for container

implementations.

Since STM detects conflicts at the granularity of read and

write accesses, excessive aborts due to frequent accesses

substantially limit concurrency.

Spiegelman, et al. [27] propose an approach called Transac-

tional Data Structure Libraries (TDSL) that collects a read-set

andwrite-set for a transaction in away similar to STM.While

this approach eliminates rollbacks, any data structure that it

is applied to cannot guarantee lock-freedom or wait-freedom

due to the locks used for synchronization.

2.2 Transactional Boosting
Transactional boosting transforms non-blocking data struc-

tures into locking transactional data structures. Boosting

fails to preserve the non-blocking property, because locks

are used for transaction-level synchronization.

2.3 LFTT
Zhang et al. [30] present LFTT, a methodology for trans-

forming high-performance lock-free linked data structures

into lock-free transactional containers. The key advantage

of using DTT over LFTT is that dynamic transactions al-

low the user to generate operands on the fly, which allows

the developer to create non-trivial programs. Our approach

also provides wait-free progress which is essential for appli-

cations that operate under strict deadlines, including hard

real-time systems. Further, our approach allows the composi-

tion of operations on multiple data structures within a single

transaction. These capabilities are desirable for large-scale

database and data analysis applications.

3 Dynamic Transactional Transformation
In this section, we provide an overview of our approach,

an example of how to use DTT, and the details of the im-

plementation and extensions for wait-freedom and multi-

container transactions. Our approach is built on Lock-free

Transactional Transformation (LFTT) [30]. LFTT provides

a framework that allows a developer to transform a non-

blocking container into a lock-free transactional container.

LFTT adds a new code path to the data structure that syn-

chronizes transactions. In [1], the cooperative technique is
presented, which is essential to LFTT’s transactional syn-

chronization. This technique is based on the observation that

multiple threads can work together if they all “write down

exactly what they are doing,” in a descriptor. The descriptor
contains the information necessary for other threads wait-

ing on a transaction to help it finish before attempting to

begin their own transactions. By ensuring all threads work

together to finish pending operations before beginning new

ones, system-wide progress is guaranteed, as specified by

the definition of lock-freedom. Note, throughout the paper

we refer to line number X of algorithm Y as Y .X .

LFTT eliminates the overhead of physical rollbacks by

using logical rollbacks, which allow the effects of an aborted

transaction to appear to be undone through an inverse in-

terpretation of the status of a node. Semantic knowledge of

the data structure is used to allow commutative operations

to proceed concurrently in a lock-free manner. Conflicts for

non-commutative method calls are identified through the

node-based conflict detection. In order to reduce aborts due

to conflicts, the thread that identifies a conflict will help com-

plete the transaction associated with the node of interest.

3.1 Overview
Our goal is to design an algorithm that executes arbitrary

side-effect free code within a transaction, while retaining

the ability to undo any and all operations and code in be-

tween. We call code that is executed within a transaction

intra-transactional code. We require intra-transactional code

to be side-effect free so that conflicts can be avoided outside

of data structure operations, and the entire transaction can

be rolled back without our approach requiring semantic in-

formation about the code added to the dynamic transaction.

In STM, all code within a transaction is delineated using

annotations that mark the beginning and end of the transac-

tional block. Since we already require users to treat their data

structures as white boxes, we do not place additional burdens

on the user that are inherent in annotation languages, such

as additional compilation time to perform static analysis. We

do not consider the use of a run-time system, as in STM,

because we aim to produce performance that is comparable

to LFTT. Instead we encapsulate calls to data structure op-

erations of transactional containers, and intra-transactional

PMAM’19 , February 17, 2019, Washington, DC, USA LaBorde, et al.

code, within a transactional function. A pointer to the trans-

actional function is stored in the transaction descriptor, since

threads need to access each other’s transactional functions

in order to help complete their transactions.

Now that we have added transactional functions to our

descriptor, we need to add support for them to the rest of

the algorithm. This means that we need to synchronize the

additional code that exists between operations within a trans-

action. To synchronize this code, we must find a way to inte-

grate our new transactional functions to the helping scheme.

In LFTT, a helping thread is allowed to help a transaction

starting from any of the transaction’s operations. Since the

transactional function may contain intra-transactional code

that affects which operations are executed later in the trans-

action, wemust always start transactions from the beginning,

even if the helped thread has already performed some work

on the transaction. This causes helping threads to perform

duplicate work. To reduce the amount of work that is dupli-

cated, we maintain a list of return values in the transaction

descriptor. When a thread completes a data structure opera-

tion in a transaction, it stores the return value in the list. This

allows helping threads to avoid duplicate work by checking

the return values list before executing an operation, to pos-

sibly skip the operation and simply return the previously

calculated return value.

Since we now support transactional functions, we also

need a way to get data into and out of these functions. In

LFTT, the user cannot specify variables other than the static

list of operands for the data structure operations, and the

user cannot obtain the return values of data structure opera-

tions. LFTT only returns true or false, to indicate the success

of a specific data structure operation. These return values

are meant for internal use so that transactions can abort

if any operations failed. In DTT, the user creates an input
map, which is a hash map containing variables that have

been defined outside of the transactional function that the

user wants to use inside the transaction. Any data structure

could be used, but we choose a map because it allows the

programmer to retrieve values by name, within the transac-

tional function. We store this input map into the transaction

descriptor so that helping threads can read these variables.

Once we begin executing a transaction, we copy the input

map into a local map so that a thread can keep track of the

values of these variables throughout the execution of the

transaction. We create the local map so that the variables can

be modified without interference from helping threads. To

allow the user to access these variables after the transaction

has completed, we copy the final values of the variables from

the local map into an output map, which is stored in the

transaction descriptor.

3.2 Using DTT
We now explain how a developer uses DTT to perform dy-

namic transactions.

In our library, transactional functions are restricted to

those in which all shared memory accesses occur through

data structure calls, and all other instructions in the transac-

tion must occur locally. A user of DTT begins with a block of

code and wants it to be executed atomically. The user then

transforms the block of code into two parts: a transactional

function, and a library call.

The transformed code using our library is shown in Algo-

rithm 1, including the corresponding library call and trans-

actional function. First, the user creates an input map and

populates it with the variables that are needed in the trans-

action (lines 1.2-1.3) Then the user calls the ExecuteTxn

method to run the transactional function (line 1.5). After the

transaction completes execution, the user can access vari-

ables from the output map (line 1.6). In the transactional

function, data structure calls are replaced with invocations

of the CallOp method, so that the library can handle these

operations behind the scenes (lines 1.9, 1.11, and 1.13). Ac-

cesses to variables that were added to the input map are

handled by accessing the local hash map (lines 1.8 and 1.10).

ALGORITHM 1: Example of Transformed Code

1 Function Main()
2 HashMap* inputMap ← new HashMap()
3 inputMap.Put(”x”, 3)

4 HashMap* outputMap ← Null

5 ExecuteTxn(TxFunction, inputMap, outputMap)

6 Print(outputMap.Get(”val”))

7 Function TxFunction(Desc* desc , HashMap*
localMap)

8 int x ← localMap.Get(”x”)

9 T val ← CallOp(desc, skiplist , Find, x)

10 localMap.Put(”val”, val)

11 bool success ←
CallOp(desc, skiplist , Insert , 4, val)

12 if success = true then
13 CallOp(desc, skiplist , Delete, 5)

14 return success

3.3 Implementation Details
We now explain the details that allow DTT to execute the

user’s transactional function.

We list the data type definitions for LFTT in Algorithm 2.

LFTT adds a new field to the nodes stored by the base lock-

free data structure, called info, as seen in Node. NodeInfo

stores desc , a reference to the shared transaction descrip-

tor, and an index opid , which provides a record of the last

access. The LFTT transaction descriptor, Desc, contains

three variables. LFTT keeps track of the status of a transac-

tion in status . The type of operation that is being executed

Wait-free Dynamic Transactions for Linked Data Structures PMAM’19 , February 17, 2019, Washington, DC, USA

and its operands are kept in an array called ops , and its

length, size , is also stored. Given a node n, we can iden-

tify the most recent operation that accessed the node as

n.info.desc.ops[n.desc.opid]. A node is considered active when
the last transaction that accessed the node had an active

status, this is expressed as n.info.desc.status = Active. Our

transaction descriptor stores all of the necessary context

for helping finish a delayed transaction, and it shares the

transaction status among all nodes participating in the same

transaction.

ALGORITHM 2: Type Definitions
1 enum TxStatus
2 Active

3 Commited

4 Aborted

5 enum OpType
6 Insert

7 Delete

8 Find

9 struct
Operation

10 OpType
type

11 int key

12 struct Desc
13 int size
14 TxStatus

status

15 Operation
ops[]

16 int
returnValues[]

17 struct NodeInfo
18 Desc* desc
19 int opid

20 struct Node
21 NodeInfo*

in f o

22 int key
23 ...

The ExecuteTxn function, shown in Algorithm 3, is a

wrapper function. We modify the corresponding method

from LFTT by storing the transactional function, input map,

and output map into the transaction descriptor (lines 3.4).

Then we call the HelpTransaction method.

The HelpTransaction function is the entry point for

transactional execution. Since threads inDTT can recursively

help multiple transactions, we maintain a thread-local help
stack. The procedure in lines 3.9-3.10 is inherited from LFTT

to prevent the livelock situation described in Section 3.3.Then

we copy the data contained in the input map into the local

map (line 3.11). Copying to a local hash map allows threads

to modify and maintain local values of variables in the trans-

actional function without interfering with the corresponding

variables in other threads. Then we invoke the transactional

function (line 3.12). The transactional function contains data

structure operations encapsulated in CallOp library method

calls, along with intra-transactional code. An example trans-

actional function is shown in Algorithm 1. The use of a

transactional function in this way contrasts with LFTT, in

which the thread would execute the transaction based on

a simple list of Operation objects, which would not sup-

port dynamic code paths. The transactional function’s return

value indicates whether or not it successfully executed all

of its operations. If so, we perform a CompareAndSwap

operation to change the transaction descriptor’s status to

Committed; otherwise we change the descriptor’s status to

Aborted (lines 3.14-lines 3.14). After the transaction has com-

pleted (whether by committing or aborting), we copy the

data from the local map into the output map if no other

thread has done so yet (line 3.18). This allows the user to

extract values of local variables from the output map after

the transaction has executed.

ALGORITHM 3: Transaction Execution

1 thread_local Stack helpstack

2 Function ExecuteTxn(Function* func, HashMap*
inMap, HashMap* outMap)

3 helpstack .Init()

4 Desc* desc ← new Desc(f unc , inMap, outMap)

5 HelpTransaction(desc)

6 return desc .status = Committed

7

8 Function HelpTransaction(Desc* desc)
9 // Search helpstack to prevent livelock

10 helpstack .Push(desc)

11 HashMap* localMap ← Copy(desc .inputMap)

12 bool ret ← desc .Func(desc, localMap)

13 helpstack .Pop()

14 if ret = true then
15 CAS(&desc . f laд, Active, Committed)

16 else
17 CAS(&desc . f laд, Active, Aborted)

18 desc .outputMap ← Copy(localMap)

ALGORITHM 4: Call Operation
1 Function CallOp(Desc* desc, Container c, OpType

type, args...)
2 if desc .status = Aborted then return Null
3 int opid ← helpstack .GetOpid()

4 if desc .returnValues[opid] exists then
5 return desc .returnValues[opid]

6 NodeInfo* in f o ← new NodeInfo(desc , opid)
7 desc .ops[opid] ← new Operation(arдs)
8 if type = Find then
9 int ret ← c .Find(desc, in f o, opid, arдs)

10 else if type = Insert then
11 int ret ← c .Insert(desc, in f o, opid, arдs)

12 else if type = Delete then
13 int ret ← c .Delete(desc, in f o, opid, arдs)

14 desc .returnValues[opid] ← ret

15 helpstack .NextOp()

16 return ret

PMAM’19 , February 17, 2019, Washington, DC, USA LaBorde, et al.

The CallOp method, shown in Algorithm 4, calls a data

structure operation. Before performing the operation, we

check if the transaction has already been aborted, and if so,

it can be skipped (line 4.2). In DTT, the help stack is im-

plemented such that it keeps track of the transactions that

the thread is currently helping, as well as the index of the

current operation within each transaction. In the first step

of CallOp, we obtain the index of the current operation

from the help stack (line 4.3). In the next step, we handle the

problem of duplicate work, which is unique to DTT. LFTT

avoids the problem of duplicate work by allowing a helper

thread to start the transaction from any operation, includ-

ing an operation in the middle of the transaction. However,

DTT cannot employ this technique because helper threads

not only need to execute the data structure operations, but

they also need to execute the local intra-transactional code

as well. Therefore, helper threads must always start at the

beginning of the transaction, which causes them to perform

unnecessary work. To address this problem, we store return

values of completed operations in a return values list. At the
beginning of the CallOp method, we check to see if the

return values list contains an entry for the current operation

(line 4.4). If so, that means that another thread has already

performed this operation, so the current thread avoids du-

plicate work by simply returning the value from the return

values list corresponding to the current operation (line 4.5).

Otherwise, the thread performs the operation. As in LFTT,

we create a NodeInfo object, which will be placed into the

info field of the node is being accessed. Then we create a new

Operation object and place it into the transaction descrip-

tor’s ops list (line 4.7). This contrasts with LFTT in that LFTT

requires the user to input a list of pre-defined Operation

objects at the start of the transaction. Instead, DTT requires

the user to input a transactional function, and each Cal-

lOp method builds the list of operations dynamically over

the course of the transaction. Then, we call the specific data

structure operation specified from the transactional function.

After performing the operation, the thread stores the return

value into the return values list (line 4.14). Then, the thread’s

help stack is updated to increment the index of the current

operation within the current transaction (line 4.15).

3.4 Transactions Among Multiple Data Structures
We add support for transactions among multiple data struc-

tures simply by modifying the information stored per opera-

tion in the transaction descriptor, to add a field that stores

a reference to the container on which the data structure

operation should be performed.

3.5 Wait-free Transactions
To guarantee wait-freedom, we modify the transactional

code path that LFTT adds to the base data structure, by imple-

menting the fast-path-slow-path approach [17]. As such, we

limit the number of retries for any data structure operation

to a user-defined constant which can be tuned to trade-off

performance versus fairness. When the limit is reached the

thread places their transaction descriptor in a global table,

called the announcement table, which other threads peri-

odically check. If a thread finds a transaction descriptor in

the announcement table, then the thread helps execute the

other transaction’s operations regardless of whether or not

that transaction’s operations conflict with its own. Using

the announcement table in conjunction with limiting the

number of retries yields a wait-free approach [17].

4 Correctness
We have developed a proof of correctness similar to the one

in [30] to prove that any data structure transformed by DTT

guarantees the strict serializability correctness condition.

However, we omit the proof for lack of space. We plan to

distribute the full proof in an extended journal version of

this paper.

We also check the correctness of the transactional data

structures featured in this paper using the tool TxC-ADT [24].

The correctness conditions evaluated include causal consis-

tency [25], serializability [23], strict serializability [23], and

opacity [11]. All of the tested transactional data structures

satisfy the evaluated correctness conditions.

5 Performance Evaluation
We compare the containers in DTT with transactional boost-

ing, TDSL, STM, and LFTT versions. We also perform ex-

perimental evaluations to analyze the effect of the wait-free

progress assurance scheme on the performance of DTT.

We perform our STM comparison using NOrec STM [5]

from the Rochester STM package [21]. We make an excep-

tion for the skip list, as Fraser provides an implementation

that uses his own object-based STM implementation [8]. For

the TDSL approach, we apply their methodology to trans-

form a lock-free linked list into a transactional linked list and

compare to our transactional linked list. We also compare

against LFTT. LFTT does not include a wait-free progress

assurance scheme, a way to perform multi-container trans-

actions, or support for dynamic transactions. We show this

comparison to demonstrate the low performance overhead

of the progress assurance scheme and dynamic transaction

support.

The transactional boosting, TDSL, and STM algorithms

all easily support dynamic transactions, so we do not need

to modify them for our performance evaluation. LFTT does

not support dynamic transactions, so we hard-code 500 cy-

cles of busy work between each data structure operation for

the purpose of our tests. Because each alternative approach

performs memory management differently, we statically allo-

cate all nodes at the beginning of the evaluation and disable

node reclamation for a fair comparison of each approach’s

conflict management scheme.

Wait-free Dynamic Transactions for Linked Data Structures PMAM’19 , February 17, 2019, Washington, DC, USA

5.1 Experimental Setup
We use a micro-benchmark to evaluate performance across

three different operation distributions: read-dominated, mixed,

and write-dominated. In this canonical evaluation method [5,

12], each thread repeatedly performs transactions with ran-

domly chosen mixtures of Insert, Delete and Find oper-

ations. This loop continues to execute transactions for 10

seconds. The transaction size (i.e., the number of operations

in a transaction) is chosen randomly for each transaction in

the test up to a maximum size of 7 operations, as in [27]. We

test on a 64-core NUMA system (4 AMD Opteron 6272 CPUs

with 16 cores per chip @ 2.1 GHz). All code is compiled with

GCC 4.8 with C++17 features and O3 optimizations.
1

In this section, we graph the throughput and number of

spurious aborts for each container. The throughput is mea-

sured in committed transactions per second. The number of

spurious aborts takes into account the number of aborted

transactions except self-aborted ones (i.e., those that abort

due to failed operations). We include the number of spurious

aborts as an indicator of the effectiveness of the contention

management strategy. The three operation distributions are

15% Insert, 5% Delete, 80% Find (read-dominated); 33%

Insert, 33% Delete, 34% Find (mixed); and 50% Insert,

50% Delete, 0% Find (write-dominated). To save space, we

only display the graphs for the read-dominated and mixed

scenarios, as they are the closest to real-world operation dis-

tributions [19]. The graphs for the write-dominated scenario

are very similar to the other distributions, and we present

the average results of the three distributions. Each wait-free

transactional data structure is run with HELP_DELAY set

to 10 andMAX_FAILURES set to 5. We denote LFTT as LFT,

and transactional boosting as BST, in the graphs. The upper

portion of the figures represents the throughput with the

x-axis in logarithmic scale and the y-axis in linear scale. The

key for all of the performance graphs is the same, and can be

found in Figure 1. The bottom half of all figures represents

the histogram of spurious aborts, with the x- and y-axes
in logarithmic scale; the key is shown on the right half of

Figure 1.

5.2 Overall Results
Across all data structure evaluations, DTT outperforms BST

by an average of 108%, TDSL by an average of 247%, STM by

an average of 196%, and LFT by an average of 26.9%. DTT

gains an advantage over BST, TDSL, and STM because of its

semantic conflict detection and logical interpretation, which

allows it to avoid the costs of excessive aborts and physical

rollbacks. DTT outperforms LFTT because it allows threads

to avoid the cost of duplicate work by utilizing a return

values list. Also, because theMAX_FAILURES parameter of

the progress assurance scheme is set to 5, this means that a

thread will wait until it has retried an operation five times

1
All source code will be made available upon publication.

before posting an announcement, which is rarely observed

in practice [19]. As a result, threads rarely need to pause

their own operations to help other threads. Therefore, our

library provides dynamic transaction execution, wait-free

progress, and multi-container transactions at no additional

cost.

Figure 1. Key for Performance Graphs

5.3 Transactional List
We compare the throughput of five different implementa-

tions of transactional linked lists in Figure 2. The base data

structure used by all of the implementations is the lock-free

list by Harris [12]. Each thread in the transactional list per-

forms transactions for 10 seconds with a key range of 10, 000.
In overall throughput, DTT outperforms BST by an aver-

age of 170%, TDSL by an average of 247%, and STM by an av-

erage of 461% across all operation distributions. The superior

performance of DTT (as well as LFT) can be attributed to its

logical status interpretation and cooperative contention man-

agement. When BST, TDSL, and STM encounter a conflict,

they abort one of the conflicting transactions, decreasing the

overall throughput. On the other hand, DTT and LFT avoid

most of these spurious aborts because threads help each

other to complete each other’s transactions, allowing both

transactions to commit. This can be observed in the number

of spurious aborts shown in the bottom half of each graph in

Figure 2. For example, in the case of the number of spurious

aborts with 64 threads, BST experiences 3 times more than

DTT and LFT, TDSL experiences three orders of magnitude

more, and STM experiences four orders of magnitude more.

STM’s throughput particularly suffers with more threads,

due to the excessive aborts in response to memory access

conflicts. In a linked list, all operations traverse the nodes

at the beginning of the list, resulting in a high chance of

memory access conflicts and aborts.

DTT outperforms LFT by 39.2% while also providing the

benefits of dynamic transactions and wait-free progress. The

overhead of DTT is low because it rarely needs to activate its

wait-free progress assurance scheme. For each operation, the

performance cost of traversing the linked list far outweighs

the cost of the progress assurance scheme. In addition, by

using a list of return values, DTT allows helper threads to

avoid duplicate work.

5.4 Transactional Skip List
We compare the throughput of four different types of trans-

actional skip lists in Figure 3. The implementations are based

PMAM’19 , February 17, 2019, Washington, DC, USA LaBorde, et al.

0

20k

40k

60k

80k

100k

120k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

10k

A
b

o
rt

s

Number of Threads

(a) 15% Insert, 5% Delete,

80% Find

0

20k

40k

60k

80k

100k

120k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1
100
10k
1M

A
b

o
rt

s

Number of Threads

(b) 33% Insert, 33% Delete,

34% Find

Figure 2. Transactional List Performance

0

200k

400k

600k

800k

1M

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15% Insert, 5% Delete,

80% Find

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64

100

A
b

o
rt

s

Number of Threads

(b) 33% Insert, 33% Delete,

34% Find

Figure 3. Transactional Skip List Performance

on the skip list presented by Fraser [8]. Because skip lists

have logarithmic search time, we increase the workload such

that the skip list has a key range of 1,000,000.

The skip lists execute transactions much more efficiently

than the linked lists, with amaximum throughput of 1,000,000

transactions per second (versus 80, 000 per second for the

linked lists). Also, because of the increase in key range, con-

current transactions for LFT, DTT, and BST are less likely

to encounter node-level conflicts. Because skip lists traverse

through fewer nodes, concurrent STM transactions are also

less likely to encounter conflicts. As a result, all implementa-

tions of the transactional skip list experience no more than

4% of the spurious aborts that the corresponding linked lists

experience, with DTT and LFT experiencing no spurious

aborts at all.

In overall throughput, DTT outperforms BST by an av-

erage of 68.7% and STM by an average of 77.8%, while per-

forming 20.2% faster than LFT. As with the transactional

linked list, the DTT version of the skiplist experiences low

overhead compared to LFT.

5.5 Transactional MDList
Figure 4 shows the throughput and spurious aborts for the

four types of transactional MDLists. The base data structure

for the transactional MDList of all implementations is the

lock-free MDList by Zhang et al. [28]. Like the skip list,

the MDList has logarithmic search time, so we perform the

evaluation with a key range of 1, 000, 000.
The results are similar to the transactional skip list in Sec-

tion 5.4. In overall throughput, on average, DTT outperforms

BST by 110%, STM by 149%, and LFT by 24.5%.

Recall that the throughput of the STM skip list increases

with more threads. Conversely, the STM MDList’s through-

put increases until 16 threads and then decreases signifi-

cantly. This difference is due to these factors: the MDList’s

insert method, STM’s memory barriers, and inter-processor

communication between remote cores in the NUMA system.

Each node in an MDList has several child nodes. When an

MDList inserts a node, some cases require the new node

to "adopt" its successor node’s children. The new node is

associated with an adoption descriptor object. When another

thread traverses to the new node, it must check the new

node’s adoption descriptor to see if it must help in the child

adoption process. This greatly increases the number of shared

memory locations read during traversal. For each of these

reads, STM uses a memory barrier. To adhere to the memory

barriers, concurrently executing cores must send messages

according to the machine’s cache coherence protocol. On the

NUMA machine, inter-processor communication between

cores on separate chips is expensive and slows the MDList

traversal.

5.6 Transactional Dictionary
The graphs of the performance of the transactional dictio-

naries are omitted, because they are the same as those for

the transactional MDLists in Section 5.5. The dictionary has

the same memory layout and similar underlying code as the

transactional MDList, with the addition of a value parameter

attached to the insert and find operations.

5.7 Transactional Binary Search Tree
Figure 5 shows the performance results of the four types of

transactional binary search trees. The DTT, LFT, and BST im-

plementations are based on the non-blocking binary search

tree proposed by Howley [16]. Because the binary search tree

provides logarithmic search time, we perform the evaluation

with a key range of 1, 000, 000.
The performance results of the transactional binary search

trees resemble those of the transactional MDLists in Sec-

tion 5.5. In overall throughput, DTT outperforms BST by an

average of 124% and STM by an average of 173%, and LFT

by an average of 26.6%.

5.8 Wait-free Transactions
We perform experimental evaluations to study the effect

of the wait-free progress assurance scheme on the perfor-

mance of DTT. We observe the throughput and number of

spurious aborts with the progress assurance scheme enabled,

Wait-free Dynamic Transactions for Linked Data Structures PMAM’19 , February 17, 2019, Washington, DC, USA

0

200k

400k

600k

800k

1M

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15% Insert, 5% Delete,

80% Find

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(b) 33% Insert, 33% Delete,

34% Find

Figure 4. Transactional MDList Performance

0

200k

400k

600k

800k

1M

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15% Insert, 5% Delete,

80% Find

0

200k

400k

600k

800k

1M

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(b) 33% Insert, 33% Delete,

34% Find

Figure 5. Transactional Binary Search Tree Performance

compared to when the scheme is disabled. When enabled,

the data structure is run with HELP_DELAY set to 1 and

MAX_FAILURES set to 1. These parameter settings are at

the highest level in that they cause the progress assurance

scheme to be invoked the most frequently possible. We set

the parameters in this way to clearly observe the effects of the

scheme in the most extreme case. We denote the approach

with the wait-free progress assurance scheme enabled as WF

(shown in the figure as black), and disabled as LF for the

remainder of this section (shown in the figure as orange). In

our test cases, we vary the number of threads between 1 and

64, and we vary the key range between 10 and 1, 000, 000. We

only present the results for the transactional binary search

tree, as they are representative of the other data structure

results.

Overall, the results indicate that the progress assurance

scheme has an insignificant impact on the performance of

the transactional data structure, while offering the guarantee

of wait-free progress. Across all of our test cases, the average

throughput of WF is only 0.88% less than that of LF. For the

extreme test case with a key range of 10, WF falls behind LF

by 5.5%, due to an increase in the number of spurious aborts

and other factors which we discuss in this section.

Figure 6 shows the performance results of the two ap-

proaches across varying key ranges. For each key range, the

figure displays the average throughput (commits per sec-

ond) and number of spurious aborts for all of the test cases

with different numbers of threads. The trend we observe is

that the progress assurance scheme has a lower impact on

the performance of the data structure as the key range is in-

creased. For a key range of 1, 000, 000, the progress assurance
scheme has an insignificant effect on the throughput, with

WF outperforming LF by 0.582%. For a key range of 10, the

progress assurance scheme slightly reduces the throughput;

WF falls behind LF by 5.76%. This trend can be explained

by the difference in contention levels for each key range,

which affects the frequency at which the progress assurance

scheme is activated. A lower key range increases contention

levels, which causes the progress assurance scheme to be

invoked more often.

How does the progress assurance scheme diminish the

throughput? There are three ways to explain this. (1) Posting

to and reading from the announcement table incurs an over-

head to the system. (2) Having threads help each other on

the same transactions reduces parallelism. (3) Helper threads

are delayed, resulting in more conflicts and therefore more

spurious aborts. We observe this phenomenon in the data,

as WF induces 7.97 times as many spurious aborts as LF. To

explain this, we must first describe a type of abort that we

refer to as abort-on-helper. Say a thread t1 begins a transac-
tion T1 and then helps another transaction T2 through the

progress assurance scheme. An abort-on-helper occurs in

the case that another thread t3 running transaction T3 finds
that T3 conflicts with T1, so it aborts T3. We find that for the

test cases with a key range of 10, aborts-on-helper account

for 67.7% of all spurious aborts. These results suggest that

aborts-on-helper play a role in the difference in fake aborts

between WF and LF. We believe that aborts-on-helper oc-

cur so frequently because when the helper thread t1 helps
another thread, its own transaction T1 takes more time to

complete and therefore increases the likelihood that another

transaction T3 will conflict with it, causing a spurious abort.

100k

150k

200k

250k

300k

350k

T
h

ro
u

g
h

p
u

t

LF WF

10 100 1k 10k100k 1m
0

20k

40k

A
b

o
rt

s

Key Range

Figure 6.Wait-free Progress Assurance Scheme Overhead

PMAM’19 , February 17, 2019, Washington, DC, USA LaBorde, et al.

6 Conclusion
While LFTT outperforms the transactional boosting, TDSL,

and STM approaches, its lack of support for dynamic trans-

actions makes it less applicable to general applications. With

DTT, we remove this disadvantage while maintaining the

competitive speed of LFTT, and add support for wait-free

transactions on multiple data structures.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1717515 and Grant

No. 1740095. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of

the author and do not necessarily reflect the views of the

National Science Foundation.

References
[1] Greg Barnes. 1993. A Method for Implementing Lock-free Shared-

data Structures. In Proceedings of the Fifth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA ’93). ACM, New York, NY,

USA, 261–270. https://doi.org/10.1145/165231.165265
[2] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.

2010. Transactional predication: high-performance concurrent sets

and maps for stm. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. ACM, 6–15.

[3] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng

Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software trans-

actional memory: Why is it only a research toy? Queue 6, 5 (2008),
40.

[4] Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich, Robert T

Morris, and Eddie Kohler. 2015. The scalable commutativity rule: De-

signing scalable software for multicore processors. ACM Transactions
on Computer Systems (TOCS) 32, 4 (2015), 10.

[5] Luke Dalessandro, Michael F Spear, and Michael L Scott. 2010. NOrec:

streamlining STM by abolishing ownership records. In ACM Sigplan
Notices, Vol. 45. ACM, 67–78.

[6] Dave Dice, Yossi Lev, MarkMoir, Dan Nussbaum, andMarek Olszewski.

2009. Early experience with a commercial hardware transactional

memory implementation. (2009).

[7] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.

2010. Non-blocking binary search trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on Principles of distributed computing.
ACM, 131–140.

[8] Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. PhD thesis,

Cambridge University Computer Laboratory, 2003. Also available as

Technical Report UCAM-CL-TR-579.

[9] Guy Golan-Gueta, G Ramalingam, Mooly Sagiv, and Eran Yahav. 2015.

Automatic scalable atomicity via semantic locking. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 31–41.

[10] Vincent Gramoli, Rachid Guerraoui, and Mihai Letia. 2013. Composing

relaxed transactions. In Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. IEEE, 1171–1182.

[11] Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of

transactional memory. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming. ACM, 175–184.

[12] Timothy L Harris. 2001. A pragmatic implementation of non-blocking

linked-lists. In Distributed Computing. Springer, 300–314.
[13] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. 2014. On

developing optimistic transactional lazy set. In Principles of Distributed

Systems. Springer, 437–452.
[14] Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: a

methodology for highly-concurrent transactional objects. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming. ACM, 207–216.

[15] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:

Architectural Support for Lock-free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture
(ISCA ’93). ACM, New York, NY, USA, 289–300. https://doi.org/10.
1145/165123.165164

[16] Shane V. Howley and Jeremy Jones. 2012. A non-blocking internal

binary search tree. Spaa (2012), 161. https://doi.org/10.1145/2312005.
2312036

[17] Alex Kogan and Erez Petrank. 2012. A Methodology for Creating

Fast Wait-free Data Structures. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). ACM, New York, NY, USA, 141–150. https://doi.org/10.
1145/2145816.2145835

[18] Eric Koskinen, Matthew Parkinson, andMaurice Herlihy. 2010. Coarse-

grained transactions. ACM Sigplan Notices 45, 1 (2010), 19–30.
[19] Pierre LaBorde, Steven Feldman, and Damian Dechev. 2015. A Wait-

Free Hash Map. International Journal of Parallel Programming (2015),

1–28. https://doi.org/10.1007/s10766-015-0376-3
[20] Jonatan Lindén and Bengt Jonsson. 2013. A Skiplist-Based Concurrent

Priority Queue with Minimal Memory Contention. In Principles of
Distributed Systems. Springer, 206–220.

[21] Virendra J Marathe, Michael F Spear, Christopher Heriot, Athul

Acharya, David Eisenstat, William N Scherer III, and Michael L Scott.

2006. Lowering the overhead of nonblocking software transactional

memory. In Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (TRANSACT).

[22] Maged M Michael. 2002. High performance dynamic lock-free hash

tables and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures. ACM, 73–82.

[23] Christos H Papadimitriou. 1979. The serializability of concurrent

database updates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.
[24] Christina Peterson and Damian Dechev. 2017. A Transactional Correct-

ness Tool for Abstract Data Types. ACM Transactions on Architecture
and Code Optimization (TACO) 14, 4 (2017), 37.

[25] Michel Raynal, Gérard Thia-Kime, and Mustaque Ahamad. 1997. From

serializable to causal transactions for collaborative applications. In

EUROMICRO 97. New Frontiers of Information Technology., Proceedings
of the 23rd EUROMICRO Conference. IEEE, 314–321.

[26] Nir Shavit and Dan Touitou. 1997. Software transactional memory.

Distributed Computing 10, 2 (1997), 99–116.

[27] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-

actional data structure libraries. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. ACM, 682–696.

[28] D. Zhang and D. Dechev. 2015. A Lock-free Priority Queue Design

Based on Multi-dimensional Linked Lists. IEEE Transactions on Parallel
and Distributed Systems PP, 99 (2015), 1–1. https://doi.org/10.1109/
TPDS.2015.2419651

[29] D. Zhang and D. Dechev. 2016. An Efficient Lock-Free Logarith-

mic Search Data Structure Based on Multi-dimensional List. In 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). 281–292. https://doi.org/10.1109/ICDCS.2016.19

[30] Deli Zhang and Damian Dechev. 2016. Lock-free TransactionsWithout

Rollbacks for Linked Data Structures. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’16).
ACM, New York, NY, USA, 325–336. https://doi.org/10.1145/2935764.
2935780

https://doi.org/10.1145/165231.165265
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1007/s10766-015-0376-3
https://doi.org/10.1109/TPDS.2015.2419651
https://doi.org/10.1109/TPDS.2015.2419651
https://doi.org/10.1109/ICDCS.2016.19
https://doi.org/10.1145/2935764.2935780
https://doi.org/10.1145/2935764.2935780

	Abstract
	1 Introduction
	2 Related Work
	2.1 Transactional Memory
	2.2 Transactional Boosting
	2.3 LFTT

	3 Dynamic Transactional Transformation
	3.1 Overview
	3.2 Using DTT
	3.3 Implementation Details
	3.4 Transactions Among Multiple Data Structures
	3.5 Wait-free Transactions

	4 Correctness
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Overall Results
	5.3 Transactional List
	5.4 Transactional Skip List
	5.5 Transactional MDList
	5.6 Transactional Dictionary
	5.7 Transactional Binary Search Tree
	5.8 Wait-free Transactions

	6 Conclusion
	Acknowledgments
	References

