Wait-free Dynamic Transactions for Linked Data
Structures

Pierre LaBorde
University of Central Florida
Orlando, USA
pierrelaborde@knights.ucf.edu

Deli Zhang
University of Central Florida
Orlando, USA
deli.zhang@outlook.com

Abstract

Transactional data structures support threads executing a
sequence of operations atomically. Dynamic transactions
allow operands to be generated on the fly and allows threads
to execute code in between the operations of a transaction,
in contrast to static transactions which need to know the
operands in advance. A framework called Lock-free Transac-
tional Transformation (LFTT) allows data structures to run
high-performance transactions, but it only supports static
transactions. We extend LFTT to add support for dynamic
transactions and wait-free progress while retaining its speed.
The thread-helping scheme of LFTT presents a unique chal-
lenge to dynamic transactions. We overcome this challenge
by changing the input of LFTT from a list of operations to
a function, forcing helping threads to always start at the
beginning of the transaction, and allowing threads to skip
completed operations through the use of a list of return
values. We thoroughly evaluate the performance impact of
support for dynamic transactions and wait-free progress and
find that these features do not hurt the performance of LFTT
for our test cases.

CCS Concepts + Computing methodologies — Shared
memory algorithms; Concurrent algorithms.

Keywords Transactional Data Structures, Wait-Free, Trans-
actional Memory, Non-blocking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PMAM’19 , February 17, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6290-0/19/02...$15.00
https://doi.org/10.1145/3303084.3309491

Lance Lebanoff
University of Central Florida
Orlando, USA
lancelebanoff@knights.ucf.edu

Christina Peterson
University of Central Florida
Orlando, USA
clp8199@knights.ucf.edu

Damian Dechev
University of Central Florida
Orlando, USA
dechev@cs.ucf.edu

ACM Reference Format:

Pierre LaBorde, Lance Lebanoff, Christina Peterson, Deli Zhang,
and Damian Dechev. 2019. Wait-free Dynamic Transactions for
Linked Data Structures. In The 10th International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores
(PMAM’19), February 17, 2019, Washington, DC, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3303084.3309491

1 Introduction

The rise of multi-core systems has led to the development
of highly concurrent non-blocking data structures [7, 19,
20, 29]. Traditionally, non-blocking data structures provide
operations which meet the linearizability correctness con-
dition. Linearizable operations appear to execute instanta-
neously, and respect the real-time ordering of operations.
Lock-freedom and wait-freedom are two different kinds of
non-blocking algorithms that guarantee at least one or all
threads make progress in a finite amount of time, respec-
tively. These algorithms are free from common pitfalls as-
sociated with locking such as deadlock, livelock, and prior-
ity inversion, by definition. Wait-free algorithms are also
starvation-free, by definition.

A limitation of non-blocking containers is a lack of support
for composite operations, which precludes modular design
and software reuse. For example, inserting an element into
a lock-free linked list, and incrementing a separate variable
that stores the length of the linked list is not possible without
breaking linearizability, as most non-blocking data structures
can only guarantee atomic updates to a single memory word.
The aforementioned composite operation could fail if two
threads concurrently insert elements at non-adjacent posi-
tions in the linked list, concurrently read the size variable
as ten, and then write the new value which they will both
compute as eleven. The trade-off between correctness and
support for composite operations in non-blocking data struc-
tures does not need to be made if the data structures are
made transactional.

Implementing transactional containers has been the sub-
ject of several recent papers [2, 9, 10, 13, 14, 18]. Transac-
tional execution is essential for applications that require

https://doi.org/10.1145/3303084.3309491
https://doi.org/10.1145/3303084.3309491

PMAM’19 , February 17, 2019, Washington, DC, USA

atomicity and isolation for a series of operations such as
databases and data analysis applications. In this paper, we
discuss data structure transactions, which are sequences of
operations that are executed atomically, in isolation, on a
shared memory data structure. Isolation means concurrent
transaction executions appear to take effect in some sequen-
tial order.

The straightforward way to implement a transactional
data structure from a sequential container is to use soft-
ware transactional memory (STM) [26]. An STM instruments
memory accesses by recording the locations a thread reads
in a read set, and the locations it writes in a write set. If the
read/write sets of different transactions overlap, only one
transaction is allowed to commit, the concurrent transactions
are aborted and restarted. A drawback of STM is that the run-
time system that keeps track of read/write sets and detects
conflicts can have a detrimental impact on performance [3].

The inherent disadvantage of STM concurrency control
is that low-level memory access conflicts do not necessarily
correspond to high-level semantic conflicts. Consider a set im-
plemented as an ordered linked list, where each node has
two fields, an integer value and a pointer to the next node.
The initial state of the set is {0,3,6,9,10}. Thread 1 and
Thread 2 intend to insert 4 and 1, respectively. Since these
two operations commute, it is feasible to execute them con-
currently [4]. Commutative data structure operations are
those which have no dependencies on each other; reordering
them yields the same abstract state of the container. Existing
concurrent linked lists employing lock-free or fine-grained
locking synchronizations allow concurrent execution of the
two operations. Nevertheless, these operations have a read-
/write conflict and the STM has to abort one of them.

An alternative approach called Lock-free Transactional
Transformation (LFTT) [30] includes semantic conflict de-
tection that uses information about the data structures and
which operations are being executed, to prevent conflicting
operations from unnecessarily causing transactions to abort.
A significant advantage of using data structure transactions
is that this semantic information is available to be used to
increase throughput.

The main drawback of using LFTT is that it only supports
static transactions—it requires all operations to declare their
operands in advance, and a thread cannot execute any code
between the operations of a transaction. LFTT needs a static
list of operations and operands before the transaction begins,
because it has threads help each other complete pending
operations before starting new ones; this is how LFTT guar-
antees system-wide progress. This limitation restricts the
applicability of LFTT to small applications whose inputs are
known in advance. For example, the following code snip-
pet could not be executed by LFTT. LFTT would need to
transform this code into a list of operands and operations,
but result is unknown, and operations cannot be executed
conditionally.

LaBorde, et al.

if (! list.find (key)) {
result = // some computation

list.insert(result); }

In this paper, we present Dynamic Transactional Trans-
formation (DTT), a framework that builds upon LFTT to
increase its applicability; namely, to add support for (1) dy-
namic transactions, (2) wait-free progress, and (3) transac-
tions among multiple data structures. First, dynamic transac-
tions allow operands to be generated during the transaction,
and threads can execute code between the operations of a
transaction. In contrast to other transactional methodologies,
LFTT presents a nontrivial challenge to support dynamic
transactions due to its thread-helping scheme. To address
this issue, we require that the user writes a function that
encompasses all of the operations to be performed in the
transaction as well as any code that the user wants to run
between the operations. To maintain correctness in the pres-
ence of this code between operations, we modify the helping
scheme so that helping threads always start at the beginning
of the transaction. Then to reduce duplicate work, we main-
tain a list that contains the return value for each operation
in the transaction, which allows helping threads to skip com-
pleted operations. Second, we support wait-free progress
by employing the fast-path-slow-path technique [17]. Third,
transactions among multiple data structures can be simply
implemented by modifying a structure in LFTT representing
an operation, to add a field that references the container on
which to operate.

Like LFTT, our approach is applicable to the class of linked
data structures that implement the set and dictionary abstract
data types. We apply DTT to create dynamic transactional
versions of a linked list [12], a skip list [8], an MDList [28],
a dictionary [29], and a binary search tree [16]. Lock-free
transactional versions of the linked list and skip list were
presented as a proof of concept for LFTT in [30].

We analyze the impact of these new features on the per-
formance of LFTT. Our evaluation shows that DTT performs
on par with LFTT, while providing the benefits of dynamic
transaction support, a stronger progress guarantee, and trans-
actions among multiple containers. There is less than a 1%
difference when averaged over all tested scenarios, and like
LFTT, our approach is 3 times faster than STM.

This paper makes the following contributions:

e We present DTT, an extension to LFTT to provide sup-
port for dynamic data structure transactions, which
allow code to be run between data structure opera-
tions.

e We add support for wait-freedom to DTT, so lock-free
containers can be transformed into wait-free transac-
tional versions.

Wait-free Dynamic Transactions for Linked Data Structures

e We analyze the performance impact of these features
to LFTT and other transactional methodologies. Ex-
perimental results report that the throughput is on par
with LFTT while improving its applicability.

2 Related Work

Significant research has been devoted to non-blocking linked
data structures [12, 20, 22, 28]. Transactions on a data struc-
ture traditionally involve executing all shared memory ac-
cesses in coarse-grained atomic sections. High-level conflict
detection approaches [2, 14, 18] avoid false conflicts due to
low-level accesses.

2.1 Transactional Memory

Transactional memory, initially proposed as a set of hard-

ware extensions by Herlihy and Moss [15]. HTM’s cache-

coherency based conflict detection causes spurious failures

during page faults and context switches [6]. On Intel’s Haswell
microarchitecture, the performance of applications that fre-
quently encounter data access conflicts will degrade to coarse-
grained locking. This makes HTM undesirable for container

implementations.

Since STM detects conflicts at the granularity of read and
write accesses, excessive aborts due to frequent accesses
substantially limit concurrency.

Spiegelman, et al. [27] propose an approach called Transac-
tional Data Structure Libraries (TDSL) that collects a read-set
and write-set for a transaction in a way similar to STM. While
this approach eliminates rollbacks, any data structure that it
is applied to cannot guarantee lock-freedom or wait-freedom
due to the locks used for synchronization.

2.2 Transactional Boosting

Transactional boosting transforms non-blocking data struc-
tures into locking transactional data structures. Boosting
fails to preserve the non-blocking property, because locks
are used for transaction-level synchronization.

2.3 LFIT

Zhang et al. [30] present LFTT, a methodology for trans-
forming high-performance lock-free linked data structures
into lock-free transactional containers. The key advantage
of using DTT over LFTT is that dynamic transactions al-
low the user to generate operands on the fly, which allows
the developer to create non-trivial programs. Our approach
also provides wait-free progress which is essential for appli-
cations that operate under strict deadlines, including hard
real-time systems. Further, our approach allows the composi-
tion of operations on multiple data structures within a single
transaction. These capabilities are desirable for large-scale
database and data analysis applications.

PMAM’19 , February 17, 2019, Washington, DC, USA

3 Dynamic Transactional Transformation

In this section, we provide an overview of our approach,
an example of how to use DTT, and the details of the im-
plementation and extensions for wait-freedom and multi-
container transactions. Our approach is built on Lock-free
Transactional Transformation (LFTT) [30]. LFTT provides
a framework that allows a developer to transform a non-
blocking container into a lock-free transactional container.
LFTT adds a new code path to the data structure that syn-
chronizes transactions. In [1], the cooperative technique is
presented, which is essential to LFTT’s transactional syn-
chronization. This technique is based on the observation that
multiple threads can work together if they all “write down
exactly what they are doing,” in a descriptor. The descriptor
contains the information necessary for other threads wait-
ing on a transaction to help it finish before attempting to
begin their own transactions. By ensuring all threads work
together to finish pending operations before beginning new
ones, system-wide progress is guaranteed, as specified by
the definition of lock-freedom. Note, throughout the paper
we refer to line number X of algorithm Y as Y.X.

LFTT eliminates the overhead of physical rollbacks by
using logical rollbacks, which allow the effects of an aborted
transaction to appear to be undone through an inverse in-
terpretation of the status of a node. Semantic knowledge of
the data structure is used to allow commutative operations
to proceed concurrently in a lock-free manner. Conflicts for
non-commutative method calls are identified through the
node-based conflict detection. In order to reduce aborts due
to conflicts, the thread that identifies a conflict will help com-
plete the transaction associated with the node of interest.

3.1 Overview

Our goal is to design an algorithm that executes arbitrary
side-effect free code within a transaction, while retaining
the ability to undo any and all operations and code in be-
tween. We call code that is executed within a transaction
intra-transactional code. We require intra-transactional code
to be side-effect free so that conflicts can be avoided outside
of data structure operations, and the entire transaction can
be rolled back without our approach requiring semantic in-
formation about the code added to the dynamic transaction.
In STM, all code within a transaction is delineated using
annotations that mark the beginning and end of the transac-
tional block. Since we already require users to treat their data
structures as white boxes, we do not place additional burdens
on the user that are inherent in annotation languages, such
as additional compilation time to perform static analysis. We
do not consider the use of a run-time system, as in STM,
because we aim to produce performance that is comparable
to LFTT. Instead we encapsulate calls to data structure op-
erations of transactional containers, and intra-transactional

PMAM’19 , February 17, 2019, Washington, DC, USA

code, within a transactional function. A pointer to the trans-
actional function is stored in the transaction descriptor, since
threads need to access each other’s transactional functions
in order to help complete their transactions.

Now that we have added transactional functions to our
descriptor, we need to add support for them to the rest of
the algorithm. This means that we need to synchronize the
additional code that exists between operations within a trans-
action. To synchronize this code, we must find a way to inte-
grate our new transactional functions to the helping scheme.
In LFTT, a helping thread is allowed to help a transaction
starting from any of the transaction’s operations. Since the
transactional function may contain intra-transactional code
that affects which operations are executed later in the trans-
action, we must always start transactions from the beginning,
even if the helped thread has already performed some work
on the transaction. This causes helping threads to perform
duplicate work. To reduce the amount of work that is dupli-
cated, we maintain a list of return values in the transaction
descriptor. When a thread completes a data structure opera-
tion in a transaction, it stores the return value in the list. This
allows helping threads to avoid duplicate work by checking
the return values list before executing an operation, to pos-
sibly skip the operation and simply return the previously
calculated return value.

Since we now support transactional functions, we also
need a way to get data into and out of these functions. In
LFTT, the user cannot specify variables other than the static
list of operands for the data structure operations, and the
user cannot obtain the return values of data structure opera-
tions. LFTT only returns true or false, to indicate the success
of a specific data structure operation. These return values
are meant for internal use so that transactions can abort
if any operations failed. In DTT, the user creates an input
map, which is a hash map containing variables that have
been defined outside of the transactional function that the
user wants to use inside the transaction. Any data structure
could be used, but we choose a map because it allows the
programmer to retrieve values by name, within the transac-
tional function. We store this input map into the transaction
descriptor so that helping threads can read these variables.
Once we begin executing a transaction, we copy the input
map into a local map so that a thread can keep track of the
values of these variables throughout the execution of the
transaction. We create the local map so that the variables can
be modified without interference from helping threads. To
allow the user to access these variables after the transaction
has completed, we copy the final values of the variables from
the local map into an output map, which is stored in the
transaction descriptor.

3.2 Using DTT

We now explain how a developer uses DTT to perform dy-
namic transactions.

LaBorde, et al.

In our library, transactional functions are restricted to
those in which all shared memory accesses occur through
data structure calls, and all other instructions in the transac-
tion must occur locally. A user of DTT begins with a block of
code and wants it to be executed atomically. The user then
transforms the block of code into two parts: a transactional
function, and a library call.

The transformed code using our library is shown in Algo-
rithm 1, including the corresponding library call and trans-
actional function. First, the user creates an input map and
populates it with the variables that are needed in the trans-
action (lines 1.2-1.3) Then the user calls the EXECUTETXN
method to run the transactional function (line 1.5). After the
transaction completes execution, the user can access vari-
ables from the output map (line 1.6). In the transactional
function, data structure calls are replaced with invocations
of the CALLOP method, so that the library can handle these
operations behind the scenes (lines 1.9, 1.11, and 1.13). Ac-
cesses to variables that were added to the input map are
handled by accessing the local hash map (lines 1.8 and 1.10).

ALGORITHM 1: Example of Transformed Code

1 Function Main()

HashMap* inputMap < new HashMap()
inputMap.Put("x”, 3)

HashMap® outputMap «— Null
ExecUTETxXN(TxFunction, inputMap, outputMap)
PrinT(output Map.GeT("val”))

A G e W N

Function TxFunction(Desc” desc, HashMap*
localMap)

8 int x « localMap.GET("x”
9 T val « CaLLOr(desc, skiplist, Find, x)
10 localMap.Put("val”, val)

=

11 bool success «—

CarLOr(desc, skiplist, Insert, 4, val)
12 if success = true then
13 L CaLLOP(desc, skiplist, Delete, 5)
14 return success

3.3 Implementation Details

We now explain the details that allow DTT to execute the
user’s transactional function.

We list the data type definitions for LFTT in Algorithm 2.
LFTT adds a new field to the nodes stored by the base lock-
free data structure, called info, as seen in NoDE. NODEINFO
stores desc, a reference to the shared transaction descrip-
tor, and an index opid, which provides a record of the last
access. The LFTT transaction descriptor, DEsc, contains
three variables. LFTT keeps track of the status of a transac-
tion in status. The type of operation that is being executed

Wait-free Dynamic Transactions for Linked Data Structures

and its operands are kept in an array called ops, and its
length, size, is also stored. Given a node n, we can iden-
tify the most recent operation that accessed the node as
n.info.desc.ops[n.desc.opid]. A node is considered active when
the last transaction that accessed the node had an active
status, this is expressed as n.info.desc.status = Active. Our
transaction descriptor stores all of the necessary context
for helping finish a delayed transaction, and it shares the
transaction status among all nodes participating in the same
transaction.

ALGORITHM 2: Type Definitions

1 enum TxStatus

12 struct Desc 20 struct Node

2 Active 13 int size 21 NodelInfo*
3 Commited 14 TxStatus info

4 Aborted status 22 int key
5 enum OpType 1 Operation 23

6 Insert ops| |

7 Delete 16 int

s Find returnValues| |

9 struct —

Operation 17 struct Nodelnfo
10 OpType 18 Desc* desc
type 19 | intopid
11 int key

The ExecuTETXN function, shown in Algorithm 3, is a
wrapper function. We modify the corresponding method
from LFTT by storing the transactional function, input map,
and output map into the transaction descriptor (lines 3.4).
Then we call the HELPTRANSACTION method.

The HELPTRANSACTION function is the entry point for
transactional execution. Since threads in DTT can recursively
help multiple transactions, we maintain a thread-local help
stack. The procedure in lines 3.9-3.10 is inherited from LFTT
to prevent the livelock situation described in Section 3.3.Then
we copy the data contained in the input map into the local
map (line 3.11). Copying to a local hash map allows threads
to modify and maintain local values of variables in the trans-
actional function without interfering with the corresponding
variables in other threads. Then we invoke the transactional
function (line 3.12). The transactional function contains data
structure operations encapsulated in CALLOP library method
calls, along with intra-transactional code. An example trans-
actional function is shown in Algorithm 1. The use of a
transactional function in this way contrasts with LFTT, in
which the thread would execute the transaction based on
a simple list of OPERATION objects, which would not sup-
port dynamic code paths. The transactional function’s return
value indicates whether or not it successfully executed all
of its operations. If so, we perform a COMPAREANDSWAP
operation to change the transaction descriptor’s status to
Committed; otherwise we change the descriptor’s status to

PMAM’19 , February 17, 2019, Washington, DC, USA

Aborted (lines 3.14-lines 3.14). After the transaction has com-
pleted (whether by committing or aborting), we copy the
data from the local map into the output map if no other
thread has done so yet (line 3.18). This allows the user to
extract values of local variables from the output map after
the transaction has executed.

ALGORITHM 3: Transaction Execution
1 thread_local Stack helpstack
2 Function ExecuteTxn(Function™ func, HashMap*
inMap, HashMap™ outMap)
helpstack.INTT()

3
4 Desc” desc < new Desc(func, inMap, outMap)
5
6

HeLPTRANSACTION(desc)
return desc.status = Committed

8 Function HelpTransaction(Desc” desc)

9 /] Search helpstack to prevent livelock

10 helpstack.PusH(desc)

11 HashMap* localMap « Cory(desc.inputMap)

12 bool ret « desc.Func(desc, localMap)
13 helpstack.Por()
14 if ret = true then

15 L CAS(&desc. flag, Active, Committed)

16 else
17 L CAS(&desc. flag, Active, Aborted)

18 | desc.outputMap < Cory(localMap)

ALGORITHM 4: Call Operation
1 Function CallOp(Desc* desc, Container ¢, OpType
type, args...)
if desc.status = Aborted then return Null
int opid « helpstack.GETOPID()
if desc.returnValues[opid] exists then
L return desc.returnValues[opid]
NodelInfo* info < new NodelInfo(desc, opid)
desc.ops[opid] < new Operation(args)
if type = Find then
L int ret «— c.FIND(desc, info, opid, args)

G WN

o ® N

10 else if type = Insert then

11 L int ret « c.INserT(desc, info, opid, args)
12 else if type = Delete then

13 L int ret « c.DELETE(desc, info, opid, args)
14 desc.returnValues[opid] « ret

15 helpstack NexTOP()

16 return ret

PMAM’19 , February 17, 2019, Washington, DC, USA

The CaLLOP method, shown in Algorithm 4, calls a data
structure operation. Before performing the operation, we
check if the transaction has already been aborted, and if so,
it can be skipped (line 4.2). In DTT, the help stack is im-
plemented such that it keeps track of the transactions that
the thread is currently helping, as well as the index of the
current operation within each transaction. In the first step
of CaLLOP, we obtain the index of the current operation
from the help stack (line 4.3). In the next step, we handle the
problem of duplicate work, which is unique to DTT. LFTT
avoids the problem of duplicate work by allowing a helper
thread to start the transaction from any operation, includ-
ing an operation in the middle of the transaction. However,
DTT cannot employ this technique because helper threads
not only need to execute the data structure operations, but
they also need to execute the local intra-transactional code
as well. Therefore, helper threads must always start at the
beginning of the transaction, which causes them to perform
unnecessary work. To address this problem, we store return
values of completed operations in a return values list. At the
beginning of the CALLOP method, we check to see if the
return values list contains an entry for the current operation
(line 4.4). If so, that means that another thread has already
performed this operation, so the current thread avoids du-
plicate work by simply returning the value from the return
values list corresponding to the current operation (line 4.5).
Otherwise, the thread performs the operation. As in LFTT,
we create a NODEINFO object, which will be placed into the
info field of the node is being accessed. Then we create a new
OPERATION object and place it into the transaction descrip-
tor’s ops list (line 4.7). This contrasts with LFTT in that LFTT
requires the user to input a list of pre-defined OPERATION
objects at the start of the transaction. Instead, DTT requires
the user to input a transactional function, and each Car-
LOp method builds the list of operations dynamically over
the course of the transaction. Then, we call the specific data
structure operation specified from the transactional function.
After performing the operation, the thread stores the return
value into the return values list (line 4.14). Then, the thread’s
help stack is updated to increment the index of the current
operation within the current transaction (line 4.15).

3.4 Transactions Among Multiple Data Structures

We add support for transactions among multiple data struc-
tures simply by modifying the information stored per opera-
tion in the transaction descriptor, to add a field that stores
a reference to the container on which the data structure
operation should be performed.

3.5 Wait-free Transactions

To guarantee wait-freedom, we modify the transactional
code path that LFTT adds to the base data structure, by imple-
menting the fast-path-slow-path approach [17]. As such, we
limit the number of retries for any data structure operation

LaBorde, et al.

to a user-defined constant which can be tuned to trade-off
performance versus fairness. When the limit is reached the
thread places their transaction descriptor in a global table,
called the announcement table, which other threads peri-
odically check. If a thread finds a transaction descriptor in
the announcement table, then the thread helps execute the
other transaction’s operations regardless of whether or not
that transaction’s operations conflict with its own. Using
the announcement table in conjunction with limiting the
number of retries yields a wait-free approach [17].

4 Correctness

We have developed a proof of correctness similar to the one
in [30] to prove that any data structure transformed by DTT
guarantees the strict serializability correctness condition.
However, we omit the proof for lack of space. We plan to
distribute the full proof in an extended journal version of
this paper.

We also check the correctness of the transactional data
structures featured in this paper using the tool TxC-ADT [24].
The correctness conditions evaluated include causal consis-
tency [25], serializability [23], strict serializability [23], and
opacity [11]. All of the tested transactional data structures
satisfy the evaluated correctness conditions.

5 Performance Evaluation

We compare the containers in DTT with transactional boost-
ing, TDSL, STM, and LFTT versions. We also perform ex-
perimental evaluations to analyze the effect of the wait-free
progress assurance scheme on the performance of DTT.

We perform our STM comparison using NOrec STM [5]
from the Rochester STM package [21]. We make an excep-
tion for the skip list, as Fraser provides an implementation
that uses his own object-based STM implementation [8]. For
the TDSL approach, we apply their methodology to trans-
form a lock-free linked list into a transactional linked list and
compare to our transactional linked list. We also compare
against LFTT. LFTT does not include a wait-free progress
assurance scheme, a way to perform multi-container trans-
actions, or support for dynamic transactions. We show this
comparison to demonstrate the low performance overhead
of the progress assurance scheme and dynamic transaction
support.

The transactional boosting, TDSL, and STM algorithms
all easily support dynamic transactions, so we do not need
to modify them for our performance evaluation. LFTT does
not support dynamic transactions, so we hard-code 500 cy-
cles of busy work between each data structure operation for
the purpose of our tests. Because each alternative approach
performs memory management differently, we statically allo-
cate all nodes at the beginning of the evaluation and disable
node reclamation for a fair comparison of each approach’s
conflict management scheme.

Wait-free Dynamic Transactions for Linked Data Structures

5.1 Experimental Setup

We use a micro-benchmark to evaluate performance across
three different operation distributions: read-dominated, mixed,
and write-dominated. In this canonical evaluation method [5,
12], each thread repeatedly performs transactions with ran-
domly chosen mixtures of INSERT, DELETE and FIND oper-
ations. This loop continues to execute transactions for 10
seconds. The transaction size (i.e., the number of operations
in a transaction) is chosen randomly for each transaction in
the test up to a maximum size of 7 operations, as in [27]. We
test on a 64-core NUMA system (4 AMD Opteron 6272 CPUs
with 16 cores per chip @ 2.1 GHz). All code is compiled with
GCC 4.8 with C++17 features and 03 optimizations. !

In this section, we graph the throughput and number of
spurious aborts for each container. The throughput is mea-
sured in committed transactions per second. The number of
spurious aborts takes into account the number of aborted
transactions except self-aborted ones (i.e., those that abort
due to failed operations). We include the number of spurious
aborts as an indicator of the effectiveness of the contention
management strategy. The three operation distributions are
15% INSERT, 5% DELETE, 80% FIND (read-dominated); 33%
INSERT, 33% DELETE, 34% FIND (mixed); and 50% INSERT,
50% DELETE, 0% FIND (write-dominated). To save space, we
only display the graphs for the read-dominated and mixed
scenarios, as they are the closest to real-world operation dis-
tributions [19]. The graphs for the write-dominated scenario
are very similar to the other distributions, and we present
the average results of the three distributions. Each wait-free
transactional data structure is run with HELP_DELAY set
to 10 and MAX FAILURES set to 5. We denote LFTT as LFT,
and transactional boosting as BST, in the graphs. The upper
portion of the figures represents the throughput with the
x-axis in logarithmic scale and the y-axis in linear scale. The
key for all of the performance graphs is the same, and can be
found in Figure 1. The bottom half of all figures represents
the histogram of spurious aborts, with the x- and y-axes
in logarithmic scale; the key is shown on the right half of
Figure 1.

5.2 Overall Results

Across all data structure evaluations, DTT outperforms BST
by an average of 108%, TDSL by an average of 247%, STM by
an average of 196%, and LFT by an average of 26.9%. DTT
gains an advantage over BST, TDSL, and STM because of its
semantic conflict detection and logical interpretation, which
allows it to avoid the costs of excessive aborts and physical
rollbacks. DTT outperforms LFTT because it allows threads
to avoid the cost of duplicate work by utilizing a return
values list. Also, because the MAX_FAILURES parameter of
the progress assurance scheme is set to 5, this means that a
thread will wait until it has retried an operation five times

1 All source code will be made available upon publication.

PMAM’19 , February 17, 2019, Washington, DC, USA

before posting an announcement, which is rarely observed
in practice [19]. As a result, threads rarely need to pause
their own operations to help other threads. Therefore, our
library provides dynamic transaction execution, wait-free
progress, and multi-container transactions at no additional
cost.

-~ DTT — DTT
LFT LFT
BST Exa BST
TDSL TDSL

—A— STM —3 STM

Figure 1. Key for Performance Graphs

5.3 Transactional List

We compare the throughput of five different implementa-
tions of transactional linked lists in Figure 2. The base data
structure used by all of the implementations is the lock-free
list by Harris [12]. Each thread in the transactional list per-
forms transactions for 10 seconds with a key range of 10, 000.

In overall throughput, DTT outperforms BST by an aver-
age of 170%, TDSL by an average of 247%, and STM by an av-
erage of 461% across all operation distributions. The superior
performance of DTT (as well as LFT) can be attributed to its
logical status interpretation and cooperative contention man-
agement. When BST, TDSL, and STM encounter a conflict,
they abort one of the conflicting transactions, decreasing the
overall throughput. On the other hand, DTT and LFT avoid
most of these spurious aborts because threads help each
other to complete each other’s transactions, allowing both
transactions to commit. This can be observed in the number
of spurious aborts shown in the bottom half of each graph in
Figure 2. For example, in the case of the number of spurious
aborts with 64 threads, BST experiences 3 times more than
DTT and LFT, TDSL experiences three orders of magnitude
more, and STM experiences four orders of magnitude more.

STM’s throughput particularly suffers with more threads,
due to the excessive aborts in response to memory access
conflicts. In a linked list, all operations traverse the nodes
at the beginning of the list, resulting in a high chance of
memory access conflicts and aborts.

DTT outperforms LFT by 39.2% while also providing the
benefits of dynamic transactions and wait-free progress. The
overhead of DTT is low because it rarely needs to activate its
wait-free progress assurance scheme. For each operation, the
performance cost of traversing the linked list far outweighs
the cost of the progress assurance scheme. In addition, by
using a list of return values, DTT allows helper threads to
avoid duplicate work.

5.4 Transactional Skip List

We compare the throughput of four different types of trans-
actional skip lists in Figure 3. The implementations are based

PMAM’19 , February 17, 2019, Washington, DC, USA

LaBorde, et al.

120k 700k
_ 120k
2 100k p 100k gggt H ,/‘
g 80k |
X 80k | cok 400k
= 60k [300k |
3 40k 40k 200k /,A
S 20k | 20k 100k : Z
g o© 0 M 0 &= 0 €
E 10k n 10k 100
F ol (I | 10 &
100 100 I £
H H Il H 1 ﬂ ﬂ n Al 1 n I 1 1 I I -5
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Number of Threads

(b) 33% INSERT, 33% DELETE,
34% FIND

Number of Threads

(a) 15% INSERT, 5% DELETE,
80% FIND

Figure 2. Transactional List Performance

on the skip list presented by Fraser [8]. Because skip lists
have logarithmic search time, we increase the workload such
that the skip list has a key range of 1,000,000.

The skip lists execute transactions much more efficiently
than the linked lists, with a maximum throughput of 1,000,000
transactions per second (versus 80, 000 per second for the
linked lists). Also, because of the increase in key range, con-
current transactions for LFT, DTT, and BST are less likely
to encounter node-level conflicts. Because skip lists traverse
through fewer nodes, concurrent STM transactions are also
less likely to encounter conflicts. As a result, all implementa-
tions of the transactional skip list experience no more than
4% of the spurious aborts that the corresponding linked lists
experience, with DTT and LFT experiencing no spurious
aborts at all.

In overall throughput, DTT outperforms BST by an av-
erage of 68.7% and STM by an average of 77.8%, while per-
forming 20.2% faster than LFT. As with the transactional
linked list, the DTT version of the skiplist experiences low
overhead compared to LFT.

5.5 Transactional MDList

Figure 4 shows the throughput and spurious aborts for the
four types of transactional MDLists. The base data structure
for the transactional MDList of all implementations is the
lock-free MDList by Zhang et al. [28]. Like the skip list,
the MDList has logarithmic search time, so we perform the
evaluation with a key range of 1, 000, 000.

The results are similar to the transactional skip list in Sec-
tion 5.4. In overall throughput, on average, DTT outperforms
BST by 110%, STM by 149%, and LFT by 24.5%.

Recall that the throughput of the STM skip list increases
with more threads. Conversely, the STM MDList’s through-
put increases until 16 threads and then decreases signifi-
cantly. This difference is due to these factors: the MDList’s
insert method, STM’s memory barriers, and inter-processor
communication between remote cores in the NUMA system.
Each node in an MDList has several child nodes. When an
MDList inserts a node, some cases require the new node

Number of Threads

(b) 33% INSERT, 33% DELETE,
34% FIND

Number of Threads

(a) 15% INSERT, 5% DELETE,
80% FIND

Figure 3. Transactional Skip List Performance

to "adopt" its successor node’s children. The new node is
associated with an adoption descriptor object. When another
thread traverses to the new node, it must check the new
node’s adoption descriptor to see if it must help in the child
adoption process. This greatly increases the number of shared
memory locations read during traversal. For each of these
reads, STM uses a memory barrier. To adhere to the memory
barriers, concurrently executing cores must send messages
according to the machine’s cache coherence protocol. On the
NUMA machine, inter-processor communication between
cores on separate chips is expensive and slows the MDList
traversal.

5.6 Transactional Dictionary

The graphs of the performance of the transactional dictio-
naries are omitted, because they are the same as those for
the transactional MDLists in Section 5.5. The dictionary has
the same memory layout and similar underlying code as the
transactional MDList, with the addition of a value parameter
attached to the insert and find operations.

5.7 Transactional Binary Search Tree

Figure 5 shows the performance results of the four types of
transactional binary search trees. The DTT, LFT, and BST im-
plementations are based on the non-blocking binary search
tree proposed by Howley [16]. Because the binary search tree
provides logarithmic search time, we perform the evaluation
with a key range of 1, 000, 000.

The performance results of the transactional binary search
trees resemble those of the transactional MDLists in Sec-
tion 5.5. In overall throughput, DTT outperforms BST by an
average of 124% and STM by an average of 173%, and LFT
by an average of 26.6%.

5.8 Wait-free Transactions

We perform experimental evaluations to study the effect
of the wait-free progress assurance scheme on the perfor-
mance of DTT. We observe the throughput and number of
spurious aborts with the progress assurance scheme enabled,

Wait-free Dynamic Transactions for Linked Data Structures

PMAM’19 , February 17, 2019, Washington, DC, USA

i i
M M
800k - 800k -
600k 600k
400k 400k
200k 200k
0 0

™ 00k
g ol 500k ,‘9
£ 800k 400k
= 600k 300k {
2 400k 200k |
S 200k 100k | ’
3 0 0o €
g

' |r1oo
||I, ||I

100

1
1 2 4 8 16 32 64 1
Number of Threads

2 4 8 16 32 64
Number of Threads
(b) 33% INSERT, 33% DELETE,
34% FIND

(a) 15% INSERT, 5% DELETE,
80% FIND

Figure 4. Transactional MDList Performance

compared to when the scheme is disabled. When enabled,
the data structure is run with HELP_DELAY set to 1 and
MAX_FAILURES set to 1. These parameter settings are at
the highest level in that they cause the progress assurance
scheme to be invoked the most frequently possible. We set
the parameters in this way to clearly observe the effects of the
scheme in the most extreme case. We denote the approach
with the wait-free progress assurance scheme enabled as WF
(shown in the figure as black), and disabled as LF for the
remainder of this section (shown in the figure as orange). In
our test cases, we vary the number of threads between 1 and
64, and we vary the key range between 10 and 1, 000, 000. We
only present the results for the transactional binary search
tree, as they are representative of the other data structure
results.

Overall, the results indicate that the progress assurance
scheme has an insignificant impact on the performance of
the transactional data structure, while offering the guarantee
of wait-free progress. Across all of our test cases, the average
throughput of WF is only 0.88% less than that of LF. For the
extreme test case with a key range of 10, WF falls behind LF
by 5.5%, due to an increase in the number of spurious aborts
and other factors which we discuss in this section.

Figure 6 shows the performance results of the two ap-
proaches across varying key ranges. For each key range, the
figure displays the average throughput (commits per sec-
ond) and number of spurious aborts for all of the test cases
with different numbers of threads. The trend we observe is
that the progress assurance scheme has a lower impact on
the performance of the data structure as the key range is in-
creased. For a key range of 1, 000, 000, the progress assurance
scheme has an insignificant effect on the throughput, with
WF outperforming LF by 0.582%. For a key range of 10, the
progress assurance scheme slightly reduces the throughput;
WF falls behind LF by 5.76%. This trend can be explained
by the difference in contention levels for each key range,
which affects the frequency at which the progress assurance
scheme is activated. A lower key range increases contention

B
I £
o
I I 1 -&
2 4 8 16 32 64
Number of Threads
(b) 33% INSERT, 33% DELETE,
34% FIND

1
1 2 4 8 16 32 64 1
Number of Threads
(a) 15% INSERT, 5% DELETE,
80% FIND

Figure 5. Transactional Binary Search Tree Performance

levels, which causes the progress assurance scheme to be
invoked more often.

How does the progress assurance scheme diminish the
throughput? There are three ways to explain this. (1) Posting
to and reading from the announcement table incurs an over-
head to the system. (2) Having threads help each other on
the same transactions reduces parallelism. (3) Helper threads
are delayed, resulting in more conflicts and therefore more
spurious aborts. We observe this phenomenon in the data,
as WF induces 7.97 times as many spurious aborts as LF. To
explain this, we must first describe a type of abort that we
refer to as abort-on-helper. Say a thread t; begins a transac-
tion T; and then helps another transaction T, through the
progress assurance scheme. An abort-on-helper occurs in
the case that another thread t; running transaction T; finds
that Ts conflicts with Tj, so it aborts T3. We find that for the
test cases with a key range of 10, aborts-on-helper account
for 67.7% of all spurious aborts. These results suggest that
aborts-on-helper play a role in the difference in fake aborts
between WF and LF. We believe that aborts-on-helper oc-
cur so frequently because when the helper thread #; helps
another thread, its own transaction T; takes more time to
complete and therefore increases the likelihood that another
transaction T; will conflict with it, causing a spurious abort.

350k
5 300k
-g- 250k
2 /)
£ 150k | d
100k 0k &
20k S
B <
10 100 1k 10k100k 1m
Key Range

Figure 6. Wait-free Progress Assurance Scheme Overhead

PMAM’19 , February 17, 2019, Washington, DC, USA

6 Conclusion

While LFTT outperforms the transactional boosting, TDSL,
and STM approaches, its lack of support for dynamic trans-
actions makes it less applicable to general applications. With
DTT, we remove this disadvantage while maintaining the
competitive speed of LFTT, and add support for wait-free
transactions on multiple data structures.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1717515 and Grant
No. 1740095. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Greg Barnes. 1993. A Method for Implementing Lock-free Shared-
data Structures. In Proceedings of the Fifth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA *93). ACM, New York, NY,
USA, 261-270. https://doi.org/10.1145/165231.165265

[2] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. Transactional predication: high-performance concurrent sets
and maps for stm. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. ACM, 6-15.

[3] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng
Wau, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software trans-
actional memory: Why is it only a research toy? Queue 6, 5 (2008),
40.

[4] Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich, Robert T
Morris, and Eddie Kohler. 2015. The scalable commutativity rule: De-
signing scalable software for multicore processors. ACM Transactions
on Computer Systems (TOCS) 32, 4 (2015), 10.

[5] Luke Dalessandro, Michael F Spear, and Michael L Scott. 2010. NOrec:
streamlining STM by abolishing ownership records. In ACM Sigplan
Notices, Vol. 45. ACM, 67-78.

[6] Dave Dice, Yossi Lev, Mark Moir, Dan Nussbaum, and Marek Olszewski.
2009. Early experience with a commercial hardware transactional
memory implementation. (2009).

[7] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on Principles of distributed computing.
ACM,, 131-140.

[8] Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. PhD thesis,
Cambridge University Computer Laboratory, 2003. Also available as
Technical Report UCAM-CL-TR-579.

[9] Guy Golan-Gueta, G Ramalingam, Mooly Sagiv, and Eran Yahav. 2015.
Automatic scalable atomicity via semantic locking. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 31-41.

[10] Vincent Gramoli, Rachid Guerraoui, and Mihai Letia. 2013. Composing
relaxed transactions. In Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. IEEE, 1171-1182.

[11] Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of

transactional memory. In Proceedings of the 13th ACM SIGPLAN Sympo-

sium on Principles and practice of parallel programming. ACM, 175-184.

Timothy L Harris. 2001. A pragmatic implementation of non-blocking

linked-lists. In Distributed Computing. Springer, 300-314.

[13] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. 2014. On
developing optimistic transactional lazy set. In Principles of Distributed

[12

—

LaBorde, et al.

Systems. Springer, 437-452.

[14] Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: a
methodology for highly-concurrent transactional objects. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming. ACM, 207-216.

[15] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture
(ISCA 93). ACM, New York, NY, USA, 289-300. https://doi.org/10.
1145/165123.165164

[16] Shane V. Howley and Jeremy Jones. 2012. A non-blocking internal
binary search tree. Spaa (2012), 161. https://doi.org/10.1145/2312005.
2312036

[17] Alex Kogan and Erez Petrank. 2012. A Methodology for Creating
Fast Wait-free Data Structures. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). ACM, New York, NY, USA, 141-150. https://doi.org/10.
1145/2145816.2145835

[18] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. 2010. Coarse-
grained transactions. ACM Sigplan Notices 45, 1 (2010), 19-30.

[19] Pierre LaBorde, Steven Feldman, and Damian Dechev. 2015. A Wait-
Free Hash Map. International Journal of Parallel Programming (2015),
1-28. https://doi.org/10.1007/510766-015-0376-3

[20] Jonatan Lindén and Bengt Jonsson. 2013. A Skiplist-Based Concurrent
Priority Queue with Minimal Memory Contention. In Principles of
Distributed Systems. Springer, 206—220.

[21] Virendra] Marathe, Michael F Spear, Christopher Heriot, Athul
Acharya, David Eisenstat, William N Scherer III, and Michael L Scott.
2006. Lowering the overhead of nonblocking software transactional
memory. In Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (TRANSACT).

[22] Maged M Michael. 2002. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures. ACM, 73-82.

[23] Christos H Papadimitriou. 1979. The serializability of concurrent
database updates. Journal of the ACM (JACM) 26, 4 (1979), 631-653.

[24] Christina Peterson and Damian Dechev. 2017. A Transactional Correct-
ness Tool for Abstract Data Types. ACM Transactions on Architecture
and Code Optimization (TACO) 14, 4 (2017), 37.

[25] Michel Raynal, Gérard Thia-Kime, and Mustaque Ahamad. 1997. From
serializable to causal transactions for collaborative applications. In
EUROMICRO 97. New Frontiers of Information Technology., Proceedings
of the 23rd EUROMICRO Conference. IEEE, 314-321.

[26] Nir Shavit and Dan Touitou. 1997. Software transactional memory.
Distributed Computing 10, 2 (1997), 99-116.

[27] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-
actional data structure libraries. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. ACM, 682-696.

[28] D. Zhang and D. Dechev. 2015. A Lock-free Priority Queue Design
Based on Multi-dimensional Linked Lists. IEEE Transactions on Parallel
and Distributed Systems PP, 99 (2015), 1-1. https://doi.org/10.1109/
TPDS.2015.2419651

[29] D. Zhang and D. Dechev. 2016. An Efficient Lock-Free Logarith-
mic Search Data Structure Based on Multi-dimensional List. In 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). 281-292. https://doi.org/10.1109/ICDCS.2016.19

[30] Deli Zhang and Damian Dechev. 2016. Lock-free Transactions Without
Rollbacks for Linked Data Structures. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’16).
ACM, New York, NY, USA, 325-336. https://doi.org/10.1145/2935764.
2935780

https://doi.org/10.1145/165231.165265
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1007/s10766-015-0376-3
https://doi.org/10.1109/TPDS.2015.2419651
https://doi.org/10.1109/TPDS.2015.2419651
https://doi.org/10.1109/ICDCS.2016.19
https://doi.org/10.1145/2935764.2935780
https://doi.org/10.1145/2935764.2935780

	Abstract
	1 Introduction
	2 Related Work
	2.1 Transactional Memory
	2.2 Transactional Boosting
	2.3 LFTT

	3 Dynamic Transactional Transformation
	3.1 Overview
	3.2 Using DTT
	3.3 Implementation Details
	3.4 Transactions Among Multiple Data Structures
	3.5 Wait-free Transactions

	4 Correctness
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Overall Results
	5.3 Transactional List
	5.4 Transactional Skip List
	5.5 Transactional MDList
	5.6 Transactional Dictionary
	5.7 Transactional Binary Search Tree
	5.8 Wait-free Transactions

	6 Conclusion
	Acknowledgments
	References

