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Abstract—Achieving accurate remaining useful life (RUL)
prediction for prognostic and health management (PHM) depends
upon sufficient prior degradation apprehension of critical com-
ponents within the system. However, such prior knowledge is not
always readily available in practice. We alleviate this shortcoming
by proposing a novel data-driven framework that is capable of
providing accurate RUL prediction without the need for any
prior failure threshold knowledge. Correlative and monotonic
metrics are utilized to identify critical features throughout the
degradation progress. Subsequently, we append one-hot health
state indicators to extracted degrading features, which are uti-
lized together as adversarial training data for a Long Short-Term
Memory (LSTM) network-based model. Finally, we utilize a fully-
connected layer to project the LSTM outputs into the parameters
of a Gaussian mixture model (GMM) in conjunction with a
categorical distribution, from which the long-term degradation
progress is sampled. We verify the performance of the proposed
framework using aeroengine health data simulated by Modular
Aero-Propulsion System Simulation (MAPSS), and the results
demonstrate that significant performance improvement can be
achieved for long-term degradation progress and RUL prediction
tasks.
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I. INTRODUCTION

Machine condition monitoring and intelligent maintenance
is a vital part in many industries including energy, automotive,
aerospace and heavy industries [1]. Conventional schemes,
akin to corrective maintenance and scheduled preventive main-
tenance, are inadequate for meeting the increasing industrial
demand for efficiency and reliability. Recent developments in
prognostics and health management (PHM) enable real-time
system health condition assessment along with the prediction
of its subsequent status utilizing up-to-the-minute information,
making it a promising technology [2].

To extract practical information and make suitable main-
tenance decisions from historical and online statistics, data-
driven approaches are regarded as powerful solutions for
PHM [3]. Machine learning, in which a model is trained to
yield a desired output, such as the status of degradation or
life cycle, is capable of harnessing industrial big data for
maintenance applications. For example, neural network-based
approaches have been proposed that map monitored feature
data to machine health conditions [4], [5]. The combination
of neural networks and fuzzy systems have been successfully

employed by several researchers to apprehend more knowl-
edge for prognostics [6]. To account for time dependency
between sequential data, a moving time-window based feature
extraction method along with a k-means filter was proposed
in [7] to enhance the performance of a multi-layer perceptron
model. Recently, a vanilla long short-term memory (LSTM)
network and feature extraction method was utilized in [8] for
the efficient RUL prediction of intricate industrial system.

In the approaches discussed above, each sampled data is
required to associate with a corresponding RUL label as the
objective, and the piece-wise linear method [9] is routinely
adopted for labeling. If the available label information is rela-
tively small, the advantage of the data-driven approach using
machine learning could be highly limited. To overcome this
shortcoming, a generative prognostic model with sparse health
status information has been built in [10] for the prediction
of future asset reliability. Further, a generative adversarial
networks based model was established in [11] to cope with
the insufficiency of meaningful data for vehicle transmission
gear health monitoring. For data-driven methods, remaining
useful life (RUL) is attained when a health indicator exceeds
a pre-defined failure threshold, which usually needs to be
defined in advance. In addition, when support vector machine
(SVM) technology is combined, domain knowledge is required
to define an appropriate threshold to separate the hyperplane
of the high dimensional fault-related features.

Inspired by previous work, this paper proposes a novel data-
driven framework based on generative adversarial networks
(GAN) [12], aims to enhance the predictions of long-term
degradation and remaining useful life without defining any
prior failure threshold. Apart from many other applications
and developments such as network embedding [13] and image
processing [14], this paper is the first work that attempts to use
GAN exclusively for machine health prognostics. The main
contributions of this research are three-fold: 1) We propose a
data-driven framework based on adversarial learning for long-
term degradation and remaining useful life prediction. 2) We
use a LSTM-based generator network fed with time-series
data combined with a one-hot health state indicator to bypass
the low accuracy prediction yields produced by imprecise
knowledge of predefined failure threshold. 3) We quantify
the effectiveness of the proposed framework using aeroengine
health data generated by the Modular Aero-Propulsion System
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Simulation (MAPSS) [15].
The remainder of this paper is arranged as follows: Section

II gives a brief introduction of the preliminaries of this work.
Section III explicitly formulates the problem and presents the
adversarial learning framework in detail. Section IV presents
the experimental results of the proposed approach as applied
to aircraft turbofan engine data. Finally, Section V contains
concluding remarks and future research directions.

II. PRELIMINARIES

A. Long Short-Term Memory Networks

PHM research predominantly engage in degradation
progress modeling and remaining useful life prediction. In
these prognostics cases, available information is usually pre-
sented in the form of sequential data, for example time-series
sensor records. Therefore, prognosis is commonly formulated
as a sequence learning problem that can be solved by con-
structing related predictive models.

The long short-term memory (LSTM) neural network is a
symbolic branch of recurrent neural networks (RNN) which
is often used to model sequences of data. The fundamental
concept of the LSTM architecture lies in a memory block
used to sustain its inherent state over time, and non-linear
gate modules that govern dataflow through the block. The
LSTM block gives prominence to three gates (i.e., input,
output and forget), the constant error carousel (CEC), the
tanh activation function, and peephole connections (from cell
to gates) [16], [17]. The output of the block is recurrently
transferred backward to block input and the three gates, which
makes LSTM capable of learning long-term dependencies and
therefore is regard as a sophisticated and promising prognostic
algorithm.

B. Generative Adversarial Networks

Generative adversarial networks (GANs) [12], devised with
the aspiration of originating realistic data, consist of two
adversarial models: a generator G that apprehends data dis-
tribution, and a discriminator D that appraises the probability
of a sample being derived from the training data or G. Both
G and D customarily use a non-linear mapping function,
for instance, multilayer perceptron (MLP). To grasp a gen-
erative distribution pg that is analogous to training data x,
the generator formulates a mapping function that projects a
prior noise distribution pz(z) to the data space G(z;θg). To
differentiate the G(z;θg) from D(x;θd), the discriminator
uses an individual scalar depicting the probability that x is
derived from the training data pdata instead of pg .

The D is trained to maximize the probability of distinguish
real samples from generated samples, while G is simultane-
ously trained to minimize the log loss log(1−D(G(z))). The
optimization of GAN can be formulated as a minmax problem
with a global optimum for pg = pdata as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

Ez∼pz(z) [log(1−D(G(z)))]
(1)

Inspired by this paradigm, the feasibility of using adversarial
training for LSTM networks with continual time-series sensor
data will be investigated in this paper.

III. METHODOLOGY

A. Problem Statement

In our problem, we have multivariate run-to-failure data
from sensor measurements. Let x(i;j) denote the measurement
value of sensor j at time index i. Furthermore, let x(i)

denote a vector of multivariate sensor measurement such
that x(i) = [x(i;1), · · · , x(i;m)], where m is the number of
sensors. Formally, we describe a sensor measurement matrix
by denoting X = {x(1), · · · ,x(n)}, where x(i) ⊆ Rm and
n is the total time steps of observation. We also denote the
corresponding RUL by Y = {y(1), · · · ,y(n)}. In general, the
data-driven prognostics approach is to learn the best predictor
of run-to-failure degradation from previously observed data,
i.e., training data set DT sampled from X . Then, based on
the predictor model, we can calculate the RUL or equivalent
health indicators.

This problem can be formulated as achieving a non-linear
mapping function F : x′ → z, with a latent variable z ⊆ Rk

and m < k. Then, the optimal predictor can be defined by a
function of z as:

fγ (z) = argmax
y

p (y |z,γ ) (2)

where γ is the parameter of the nonlinear mapping function
that needs to be optimized through training fγ (z). The
primary goal of this paper is to develop a deep-learning
based approach to learn the non-linear mapping function fγ
for degradation progress modeling and stable RUL prediction
given an available training dataset DT .

B. Proposed Approach

Feature Extraction & Reconfiguration: As shown in Fig. 1,
feature extraction and selection is an essential part of prog-
nostics. In this process, we seek to identify critical features
that contain sufficient degradation signatures from the original
data, in order to increase the efficiency and reliability of
prognostics by reducing the cost of feature measurement (i.e.,
less measurement) and minimizing the dimensions of data
(i.e., lower dimension) required to describe the degradation
progress. In this work, in consideration of the reality that
during the degradation process some critical features either
increase or decrease monotonically, correlative and monotonic
metrics [18] are first employed to extract the most sensitive
features from the entire initially sampled data. Then, instead
of using these selected features directly, we utilize a novel data
arrangement to represent the machinery degradation progress
as follows:

St = (ft,HI) (3)

where ft ⊆ Rk, k is the number of features that have been
selected, and HI = (h1, h2) is the health state indicator
generated by one-hot encoding from which the model learns
the end of life cycle. Specifically, (1, 0) signifies the system is
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Fig. 1. The proposed generative adversarial learning framework LSTM-GAN for remaining useful life prediction. The Generator G produces sequences of
continual degradation prediction. The Discriminator D is trained to differentiate the degradation benchmark from the prediction.

in good condition and is presently functioning, whereas (0, 1)
signifies that the system is broken down and stands in need
of maintenance. The initial feature is set as S0 = (0, 1, 0). In
addition, the min-max normalization along with mean filtering
have been employed in advance to lessen the impact of noise.

LSTM with Adversarial Training: The core of the proposed
model is a LSTM neural network with adversarial training
(LSTM-GAN). Specifically, the generator G and discriminator
D are two distinct recurrent neural networks as shown in Fig.
1. At each time step t, the generator takes in the previous
point St−1 and the latent vector z as a concatenated input
xt−1. The computation of the generator G can be interpreted
as follows:

ht = LSTM (xt−1,ht−1) (4)

where the model input are xt−1 and ht−1, and the output at
each time step is the hidden state ht, which are parameters
for a probability distribution of the consequent data St.

A fully-connected layer is adopted to map the hidden state
ht to the yield vector yt that could be divided into M
mixed Gaussian distributions to describe ft and one categorical
(p1, p2) distribution to describe health state indicator HI as
follows:

yt = Wyht + by

= [(π̂1, µ1, σ̂1), · · · , (π̂M , µM , σ̂M ), (p̂1, p̂2)]
(5)

At each time step, the feature ft in St described by the
GMM with M normal distributions is given by:

p(ft) =
M∑
i=1

πiN (ft|µi, σi) (6)

where µi is the mean of the ith normal distribution with a
standard deviation of σi. We should notice that

∑M
i=1 πi = 1.

The exp and softmax operations are adopted since the
probability properties and the non-negative of the standard
deviations. The probabilities for the categorical distributions
are calculated using the outputs as logit values as:

σi = exp(σ̂i) (7)

πk =
exp(π̂k)∑M
i=1 exp(π̂i)

, k = 1, 2, · · · ,M (8)

pk =
exp(p̂k)∑M
i=1 exp(p̂i)

, k = 1, 2 (9)

The discriminator consists of a bidirectional LSTM neural
network, allowing it to take the time-series in both directions
into account for its decisions [19]. The output from each
LSTM block in D is fed into a fully-connected layer with
sharing weights through time, and the averaged sigmoid output
of all the LSTM blocks represents the final decision for the
sequence.

The training process is to optimize the loss function which
will be given below. First, given generator G, we describe the
optimization of the discriminator D. Specifically, the training
process of the discriminator involves minimizing the cross
entropy, which is similar to the training of sigmoid function-
based classifiers. The loss function LD is formulated as below:

LD(θd,θg) =
1

m

m∑
i=1

[logD(Si) + log(1−D(G(xi)))]

(10)
where x is sampled from real degradation data and G(xi) =
Ŝi is the corresponding generated samples.

Then, given discriminator D, we optimize G to minimize
the discrimination accuracy of D. The reconstructed loss
function is formulated as LG = LG

g + LG
f + LG

h with:

LG
g =

1

m

m∑
i=1

[log(1−D(G(xi)))] (11)

LG
f = − 1

m

m∑
i=1

log

(
M∑
k=1

πi,kN (f |µi,k, σi,k)

)
(12)

LG
h =

1

m

m∑
i=1

[
hi1log(p

i
1) + hi2log(p

i
2)
]

(13)

where LG
g is the adversarial loss, LG

f corresponds to the
features and LG

h corresponds to the health state indicator.
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Algorithm 1: Generative adversarial nets training
by Minibatch stochastic gradient descent (SGD).
Initialization: k, θd, θg and m
for the total iteration steps do

for k iteration steps do
Randomly shuffle minibatch of m degradation

samples S(1), · · · ,S(m) from real data
distribution pdata(S);

Randomly shuffle minibatch of m degradation
prediction samples Ŝ(1), · · · , Ŝ(m) from prior
noise distribution pg(Ŝ);

Update the parameters of discriminator via
ascending stochastic gradient:
5θdLD(θd,θg);

end
Randomly shuffle minibatch of m degradation
prediction samples Ŝ(1), · · · , Ŝ(m) from prior
noise distribution pg(Ŝ);

Update the parameters of generator via descending
its stochastic gradient: 5θgLG(θd,θg);

end

As shown in Algorithm 1, the generative adversarial net-
works are simultaneously trained by updating the discrimi-
native distribution in order that it differentiates data sampled
from the real data distribution pdata(S) from those sampled
from the generative distribution pg(Ŝ).

During adversarial training, the weight updating processes
between G and D alternates. Empirically, after the parameters
of D have been updated k times we update the parameters of
G once. The performance of D and G improves progressively
by this adversarial optimization procedure and the global
optimal solution can be achieved if pdata = pg . Ultimately,
if the differentiation competence of D has been upgraded to
a high level while unable to differentiate the pg from pdata
accurately, it is of the opinion that the generator G has learnt
the distribution of the training data and we say the training
converge.

C. RUL Prediction

After training, a present-to-end prediction could be made
when given on-line measurements. Specifically, the generator
takes the transformed feature data St as input at time t, and
outputs yt as the mixed parameters of the probability distri-
butions of St+1. By sampling from these generated Gaussian
mixture model parameters and a categorical distribution we
obtain the prediction of Ŝt+1. Different from the training
process, the yielded prediction Ŝt+1 at time step t is reused
as the input at time step t+1. When the health state indicator
HI changes to (0, 1), the prediction process is stopped and
maintenance actions are required. The whole process of the
on-line present-to-end prediction is presented in Algorithm 2,
where tp is the present time step and Ts is the prediction
horizon.

The procedure of RUL prediction is based on the present-
to-end prediction. Starting from the prediction time tp, the

Algorithm 2: Present-to-end degradation predic-
tion.
Input: feature series S = St, t = 1, 2, · · · , tp
initialize h0 = 0, f0 = 0, HI = (1, 0);
initialize S0 = (f0,HI), t = 0;
while HI ! = (0, 1) do

Generate ht+1 and yt+1 by ht and St;
Sample Ŝt+1 using yt+1;
t = t+ 1;
if t > tp then

St = Ŝt;
end

end
Output: return S = Ŝt, t = tp, · · · , Ts

algorithm calculates the prediction until the pair of health
state indicators HI = (0, 1) is obtained at time step T̂s.
Consequently, the predicted remaining useful life is defined
as:

RUL = T̂s − tp (14)

where t = 1, 2, · · · , T̂s.

IV. EXPERIMENTS

A. Experimental Setup
Model Layout Details: The LSTM network in generator con-
sists of 256 internal (hidden) units. We used M = 10 compo-
nents for the Gaussian mixture model. D has a bidirectional
layout, whereas G is unidirectional.

Dataset Description: Datasets were created from the Modular
Aero-Propulsion System Simulation (MAPSS), composed of
multiple multi-variate time-series (24 sensors including 3
operational settings) from a fleet of aeroengines with dissimilar
levels of initial wear and unspecified manufacturing disparity.
The data contain 100 such engines and their associated run-
to-failure time-series trajectories. However, part of the sensor
observations have constant values across the engine’s life cycle
and do not contribute useful information for RUL prediction.
For the sake of extracting the optimal feature sub-set, criteria
coefficients of selected features are assessed by correlative
and monotonic metrics [18]. Specifically, we observed that the
11th, 12th and 13th sensor features have similar performance,
thus we choose the 11th sensor feature as the input, and down
sample all the 11th feature series to make the length of the
each sequences (Ts) within 100 (Tmax). At each time step
t < Ts, we concatenated the health state indicatorHI = (1, 0)
to ft and HI = (0, 1) to Ts ≤ t ≤ Tmax.

Baseline Model: The baseline is a LSTM network similar to
standalone G, trained entirely to predict the next status at each
time step in the recurrence.

Implementation: Back propagation through time (BPTT) was
employed, and the iteration steps fragment k of mini-batch
stochastic gradient descent (SGD) was set to 4, with the batch
size set to 10. The G was pre-trained for 10 epochs with loss

63



(a) Baseline Model (b) LSTM-GAN Model

Fig. 2. Visualization of the present-to-end prediction result conducted at different time steps and the PDF estimation for the last feature generated by the GMM
layer for both the baseline model and GAN model. The baseline model’s prediction is quite random, while the GAN model shows the similar distribution of
real degradation. In these figures, the prediction time steps are chosen at 20, 30, 40, 50, 60, and 70.

function LG = LG
f + LG

h . Layer normalization and recurrent
dropout with a keep probability of 90% were applied. The
learning rate was set to 0.01 and a gradient clipping of 1.0
was used. The implementation is built based on the publicly
available Tensorflow platform. The whole framework is trained
on NVIDIA Geforce GTX 1080 Ti and Titan Xp GPU with
32 GB memory.

Evaluation: Evaluation of the proposed model was done using
the mean absolute error (MAE) of generated output as:

MAEdegradation =
1

N

N∑
i=1

(
1

Ts

Ts∑
t=tp

∣∣∣Ŝt − St

∣∣∣) (15)

MAERUL =
1

N

N∑
i=1

∣∣∣ ˆRULt −RULt

∣∣∣ (16)

where Ts is the length of the selected test degradation series,
Ŝt is the predicted value, St is the true degradation value for
comparison and N is the number of selected series.

B. Results and Discussion

The present-to-end prediction results generated by the base-
line and proposed LSTM-GAN models are shown in Fig. 2.
The MAEdegradation for all test series are listed in TABLE I.
We visualized the prediction results of one randomly picked
test series at every 10 time steps as an example. As shown
in Fig. 2(a), the predicted degradation curves generated by
the baseline model roughly represent the real trend, and the
prediction becomes more accurate in the latter half of lifetime
than the first half. As more observations are available, the
result can be more accurate. As shown in Fig. 2(b), the LSTM-
GAN is able to generate more accurate degradation curves,
which indicates the adversarial training could help LSTM learn
the distribution of real data better. Compared to the baseline

model, according to MAEdegradation in TABLE I, the LSTM-
GAN makes accurate degradation progress prediction even at
the early stage.

Fig. 3 presents the RUL prediction from four randomly
picked test series when compared with corresponding real
RUL value. The RUL prediction is visualized at every 5 time
steps. Compared to the baseline model, the RUL prediction
estimated by LSTM-GAN model is more accurate. Besides
predicting RUL, we also evaluate the standard deviation of
each prediction using a histogram. For both models, earlier
prediction leads to larger standard deviations. This is because
the predicted Ŝt is sampled from GMM and categorical
distribution rather than generated directly. Another reason is
that RUL is estimated based on longer observed sequence
information in latter part of the lifetime and it is easier to
predict the adjoining forthcoming than the long-horizon. To
quantify the observations, the MAERUL over all the test series
are listed in TABLE I, which again verified the effectiveness
of our proposed approach compared with the baseline model
in both degradation progress and RUL prediction tasks.

V. CONCLUSIONS

In this paper, we proposed an adversarial learning approach
for prediction of the long-term degradation progress and
remaining useful life without the need of any prior failure
threshold knowledge. We used correlative and monotonic
metrics to identify critical features in the degradation progress,
which were then concatenated with health state indicator to
construct the training dataset. The proposed approach em-
ployed LSTM as generative model by fully exploiting its
potentiality of learning long-term dependencies in time-series
data. Through a fully-connected layer, the output of the LSTM
was projected into the parameters of a Gaussian mixture model
and a categorical distribution for sampling consequent predic-
tions. Experiments on MAPSS data of aeroengines verified
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(a) Baseline Model (b) LSTM-GAN Model

Fig. 3. Visualization of the RUL prediction result conducted at different time step (i.e., at every 5 time steps from 20 to 70) for both the baseline model and
the LSTM-GAN model. The histogram at the bottom shows the standard deviation of 50 times repeated RUL prediction at each compared time step.

TABLE I
PERFORMANCE COMPARISON.

Time
Steps

Baseline Adversarial Training

MAEdegradation MAERUL MAEdegradation MAERUL

20 0.0466 5.07 0.0476 2.74
25 0.1034 4.57 0.0446 1.44
30 0.0872 4.13 0.0229 2.60
35 0.0872 4.52 0.0219 2.59
40 0.0457 3.96 0.0342 1.93
45 0.0815 3.79 0.0241 1.31
50 0.0329 4.13 0.0266 1.56
55 0.0346 3.82 0.0148 1.67
60 0.0305 3.51 0.0183 1.15
65 0.0248 2.98 0.0115 0.84
70 0.0132 1.70 0.0177 0.86

the effectiveness of the proposed framework. The adversarial
training enables the LSTM to better capturing the distribution
of real degradation progress, thus leading to a more accurate
RUL prediction.

In the future, more cost-effective sensitive feature extraction
method, such as Graph convolution networks (GCN) based
technique, will be studied. Follow-up experiments on multi-
faults situations and more intricate data, such as the non-
stationary wind turbine data [20], will be carried out to verify
the robustness of the proposed approach.
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