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Abstract
In this paper, an implicit time steppingmeshless scheme is proposed to find the numer-
ical solution of high-dimensional sine-Gordon equations (SGEs) by combining the
high dimensional model representation (HDMR) and the Fourier hyperbolic cross
(HC) approximation. To ensure the sparseness of the relevant coefficient matrices of
the implicit time stepping scheme, the whole domain is first divided into a set of
subdomains, and the relevant derivatives in high-dimension can be separately approx-
imated by the Fourier HDMR-HC approximation in each subdomain. The proposed
method allows for stable large time-steps and a relatively small number of nodes with
satisfactory accuracy. The numerical examples show that the proposed method is very
attractive for simulating the high-dimensional SGEs.

Keywords Sine-Gordon equations ·Meshless methods · High dimensional model
representation

1 Introduction

The sine-Gordon equation (SGE) is a nonlinear hyperbolic partial differential equation
(PDE) involving the d’Alembert operator and the sine of the unknown function, and
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the SGE plays an important role in many mathematical physics applications. It was
originally introduced by Bour [6] and rediscovered by Frenkel and Kontorova [24].
Further details about the background and applications of the SGE can be found in
[1,20,57,62]. In this paper,we focus on developing an effectivemeans for the numerical
solution of the SGE in an arbitrary number of dimensions. A (n+1)-dimensional SGE
generally takes the form:

utt (x, t)+ βut (x, t) = ∆u(x, t) − ψ(x) sin(u(x, t)),
x = (x1, x2, . . . , xn) ∈ Ω, t > 0,

(1)

where n is a positive integer, ∆ is the Laplacian operator in n spatial dimensions,
Ω = [a1, b1]× [a2, b2]× · · ·× [an, bn] ⊆ Rn . The initial conditions associated with
Eq. (1) are given by

u(x, 0) = v1(x), x ∈ Ω (2)

ut (x, 0) = v2(x), x ∈ Ω, (3)

and the Neumann boundary conditions are

∂u
∂ l

(x, t) = w(x, t), x ∈ Γ , t > 0 (4)

where l denotes the (typically exterior) normal to the boundary of the domain, and Γ

is the boundary of Ω , i.e Γ = ∂Ω . The real parameter β ! 0 weights the dissipative
term. When β = 0, Eq. (1) reduces to an undamped SGE in n spatial variables, while
when β > 0, the damped SGE is obtained. The function ψ(x) can be interpreted as a
Josephson current density, while v1 and v2 in Eqs. (2) and (3) represent wave modes
or the kink and velocity, respectively.

The (1 + 1)-dimensional SGE first appeared in a strictly mathematical context
in differential geometry regarding the theory of surfaces of constant curvature [38].
Moreover, it is well known that the (1+1)-dimensional SGE arises in many important
systems, such as the Thirring model, the Coulomb gas system and the ferromagnetic
XY model, etc. [45,46,51]. Because of its wide applications, the (1+ 1)-dimensional
SGE has been studied with a variety of numerical methods, including finite difference
methods (FDM) and finite element methods (FEM), etc. [2]. Recently, additional
solution methods have been proposed including collocation [16,37], the boundary
integral approach [12,14], and a combination of the finite difference with the the
diagonally implicit Runge–Kutta–Nyström (DIRKN) method [49], etc.

There is recent interest in the SGE in higher dimensions. AsBarone et al. [5] pointed
out, Eq. (1) also has been applied in many branches of physics for the n = 2 and 3
cases. The exact solutions for the undamped SGE in higher dimensions have been
obtained by Hirota’s method [30], Lamb’s method [66], the Bäcklund transformation
[10] and Painlevé transcendents [34], etc. Moreover, numerical solutions for the (2+
1)-dimensional undamped SGE have been proposed by Christiansen and Lomdahl
[9] using a generalized leapfrog method, Guo et al. [29] using two finite difference
schemes, Argyris et al. [3] using finite elements. Xin [64] studied the SGE as an
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asymptotic reduction of the two level dissipationlessMaxwell–Bloch system, Sheng et
al. [59] presented a numerical method with a split cosine scheme, and Bratsos [7] used
a three-time level fourth-order explicit finite difference scheme to solve the undamped
SGE. Following a similar approach, Bratsos [8] transformed the SGE to a second-order
initial value problem with the help of the method of lines. Numerical approaches for
the damped SGEwere proposed byNakajima et al. [50] who considered dimensionless
loss factors and unitless normalized bias, and Gorria et al. [25] investigated nonlinear
wave propagation in a planar wave guide consisting of two rectangular regions joined
by a bent domain of constant curvature using as a model of the kink solution to the
SGE.Additionally,Dehghan andMirzaei [15] developed the dual reciprocity boundary
element method for both the undamped and damped (2 + 1)-dimensional SGE, and
Jiwari et al. [33] obtained a numerical scheme based on a polynomial differential
quadrature method.

Although the SGE is nonintegrable except for n = 1, some properties and exact
solutions for the (n + 1)-dimensional SGE have been obtained by various methods.
Kobayashi and Izutsu [36] extensively studied the exact traveling wave solutions of
the SGE in the field of theoretical physics. Many additional mathematical methods
have been proposed for finding traveling wave solutions of the SGE. Feng [22] applied
the Painlevé analysis to the study of an approximate SGE and its traveling solitary
wave solution in (n + 1)-dimensional space. With the help of exact solutions to the
cubic nonlinear Klein–Gordon fields, Lou et al. [41] studied the exact solutions for
the (n + 1)-dimensional SGE. Adopting β = 0 and ψ(x) = 1, de la Hoz and Vadillo
[11] generalized the exact soliton solution for the (n + 1)-dimensional SGE:

u(x, t) = 4 arctan

[

C exp

( n∑

i=1

ai xi − bt

)]

(5)

where
∑n

i=1 a
2
i = 1 + b2. By adopting the proper ansatz, more general solutions

can be obtained for the multi-dimensional SGE, including the three-dimensional case
allowing for non-constant C [1]. Obtaining the exact solution for the general SGE
would be ideal, but unfortunately it is very difficult for practical engineering problems
that are usually complex in nature. Despite numerical methods commonly used in
many types of linear and nonlinear PDEs, de la Hoz and Vadillo [11] remarked that
there were no references to the numerical treatment of the SGE for dimensions larger
than three, whichmotivated them to propose a numericalmethod for the n-dimensional
SGE based on using operational matrices.

Many standard numericalmethods for solving PDEs arewidely used in engineering,
but they usually require the construction and update of a mesh, which is an inherent
disadvantage. In order to overcome these difficulties, recently the meshless numeri-
cal method has attracted attention. This method can establish a system of algebraic
equations over the entire problem domain without using a predefined mesh. Rather,
a set of scattered nodes, called field nodes, are used within the problem domain as
well as on the boundaries of the domain [40]. The meshless method does not require
a priori information about the relationship between the nodes for the interpolation or
approximation of unknown functions over the field of variables [40]. Employing the
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meshless method, Dehghan and Shokri [16] studied the one-dimensional nonlinear
SGE and used Thin Plate Spline Radial Basis Functions (TPS-RBF) to approximate
the solution, and they also applied the TPS-RBF method to both the Klein–Gordon
equation [18] and the two-dimensional SGE [17]. A series of meshless approaches
have been presented [4,13,31,32,35,47,48,52,58,62]. Moreover, since the nodal dis-
tribution for most existing meshless methods is preassigned, Xu et al. [65] proposed a
numerical two-step meshless method for soliton-like structures based on the optimal
sampling density of kernel interpolation.

In dealing with high-dimensional PDEs, obtaining good quality approximate solu-
tions is a difficult problem because of the so-called ‘curse of dimensionality’. High
dimensional model representation (HDMR) [39,54–56,60] provides a viable approach
based on the fact that high-dimensional functions often can be efficiently expressed
as sums of low-dimensional functions. The HDMR decomposition is also well known
in statistics as the ANOVA (analysis of variance) decomposition [21,23,26,61]. In
recent years, the HDMR decomposition has been under rapid development becoming
an important tool for understanding high-dimensional functions [26–28,39,42,43,54–
56,60]. In this paper, we will use a HDMR decomposition in conjunction with the
Fourier hyperbolic cross (HC) approximation [44].

The remainder of the paper is organized as follows: Sect. 2 presents a function
approximation method using HDMR-HC. Then a new meshless numerical scheme is
proposed in Sect. 3 for solving the (n + 1)-dimensional SGE using the HDMR-HC
approximation. In Sect. 4, we provide several examples with a comparative numerical
error analysis. Section 5 summarizes the relevant results.

2 Function approximation using HDMR-HC and the partition of unity

2.1 HDMR-HC approximation

Let n ! 2, λ ∈ R+ and f (x) ∈ Ws
1(Tn

λ), s ∈ N0 be a n-variate function which is
1
λ -periodic in each variable, where Tn

λ is the n-torus given by [44]

Tn
λ :=

[
− 1
2λ

,
1
2λ

)n

and the function space Ws
1(Tn

λ) is defined by

Ws
1(Tn

λ) = { f ∈ L(Tn
λ) : ∂r f ∈ L(Tn

λ), |r |∞ " s} (6)

with the norm

∥ f ∥Ws
1 (Tn

λ)
=

∑

0!|r |∞!s

∥∂r f ∥L(Tn
λ)
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where r ∈ Nn
0 denotes a n-dimensional multi-index with the norm

|r |∞ := max
1! j!n

r j (7)

and the r -th order mixed derivative is given by

∂r f := ∂ |r |1 f
∂xr11 · · · ∂xrnn

(8)

We consider the multivariate Fourier series of f (x)

f (x) ∼
∑

m∈Zn

cme2π iλm·x, x ∈ Tn
λ (9)

where the Fourier coefficients cm are defined by

cm = cm( f ) = λn
∫

Tn
λ

f (x)e−2π iλm·xdx, m ∈ Zn .

For a nonempty set { j1, . . . , jv} ⊂ {1, . . . , n}, let

Λ j1,..., jv :=
{
m ∈ Zn : ml ̸= 0 ∀ l ∈ { j1, . . . , jv}
and ml = 0 ∀ l /∈ { j1, . . . , jv}, l ∈ {1, . . . , n}}

and

Λ
kλ
j1,..., jv

:= {m ∈ Λ j1,..., jv : kλ " (2π)vλ j1 · · · λ jv |m j1 · · ·m jv | < kλ + 1, kλ ∈ N}.

Note that Λ0 is the set consisting of the n-dimensional zero vector. Then Zn can be
decomposed into the following form

Zn = Λ0 +
∑

j

Λ j +
∑

j1< j2

Λ j1, j2 + · · · + Λ j1,..., jn (10)

and we refer to this as a HDMR decomposition of Zn ; then a multiple Fourier series
can be decomposed with an HDMR structure

∑

m∈Zn

cme2π iλm·x = c0 +
∞∑

kλ=1

⎛

⎜⎜⎝
∑

j

∑

m∈Λ
kλ
j

cme2π iλm·x

+
∑

j1< j2

∑

m∈Λ
kλ
j1, j2

cme2π iλm·x + · · · +
∑

m∈Λ
kλ
j1,..., jn

cme2π iλm·x

⎞

⎟⎟⎠

(11)
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If let

ΛKλ = Λ0 +
Kλ∑

kλ=1

⎛

⎝
∑

j

Λ
kλ
j +

∑

j1< j2

Λ
kλ
j1, j2

+ · · · + Λ
kλ
j1,..., jd

⎞

⎠ , (12)

that is,

ΛKλ :=

⎧
⎨

⎩m ∈ Zn :
n∏

j=1

max{2πλ|m j |, 1} " Kλ

⎫
⎬

⎭ , (13)

then we define the Fourier HDMR-HC partial sum up to Kλ-th order [44]

SKλ(x, f ) =
∑

m∈ΛKλ

cme2π iλm·x, x ∈ Tn
λ. (14)

Suppose M is the number of points x ∈ Tn
λ, which depends on both λ and n, and

Fλ,m(x) = e2π iλm·x

then Eq. (14) can be rewritten as

SKλ(x, f ) =
M∑

m=1

cmFλ,m(x), x ∈ Tn
λ (15)

Moreover, it follows that, for any f ∈ Ws
1(Tn

λ), s > γ + p+1 and Kλ ! δ, the bound

|∂r SKλ(x, f ) − ∂r f (x)| " Cn,λ,s,p,γ ,δ∥ f ∥Ws
1 (Tn

λ)
K−(s−γ−p−1)

λ , |r |∞ = p

holds pointwise almost everywhere, where the constant Cn,λ,s,p,γ ,δ depends on
n, λ, s, p and δ.

From the definition of Tn
λ, we find that Tn

λ is smaller as λ becomes larger. The
convergence rate of the Fourier HDMR-HC partial sums SKλ is closely related to the
value of λ. In particular, for a given accuracy, when λ is large, SKλ generally is well
approximated by a low order truncated HDMR, and this is the basic starting point of
the Fourier HDMR-HC approximation. For example, if there is a function of n = 5
variables, and suppose λ = 1/π and the desired accuracy is ε = O(K−(s−p−γ−1)

λ ),
then a Kλ-th order Fourier HDMR-HC partial sum SKλ is just a 2nd order truncated
HDMRof the functionwhen Kλ " 31. Therefore, we expect that a low order truncated
HDMR-HC can be used to effectively capture the behavior of a high-dimensional
function and its derivatives.
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2.2 Partition of unity

In this subsection, we will discuss how to approximate a function via HDMR-HC.
Suppose u(x) is a function defined on R, where x ∈ Ω ⊆ Rn . First, we divide
the domain Ω into D ∈ N subdomains, denoted as Ω j , ( j = 1, 2, . . . , D), thus
Ω = ⋃D

j=1 Ω j . In each subdomain Ω j , let x j be the centre of the region, and let χ j

denote all Mj nodes in Ω j , i.e.,
∑D

j=1 Mj = N . Further, suppose u(x), x ∈ Ω j can
be represented as u j , then we have

u j (x) = Jλ(x − x j )u(x) = J j u(x), x ∈ Ω j (16)

where

Ω j ⊂ supp Jλ(x − x j ) and supp Jλ(x) ⊂ Tn
λ (17)

is the characteristic function of u j satisfying

D∑

j=1

J j = 1, ∀x ∈ Ω ⊆ Rn (18)

From Eq. (15), u j at any point x ∈ Ω j can be approximated as

û j (x) =
Mj∑

m j=1

cm j Fλ,m j (x − x j ) = Fλ
T
j (x)c j (19)

where Fλ
T
j (x) = [Fλ,1, Fλ,2, · · · , Fλ,Mj ] with the same λ for all nodes and cm j is

the m j -th unknown coefficient. Utilizing the values of these Mj nodes, there are Mj
equations with one for each node, then we have following matrix form

U j = F j c j (20)

where

U j = [u1, u2, . . . , uMj ]T

is the vector of function values at the Mj nodes, and

c j = [c1, c2, . . . , cMj ]T
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is the vector of undetermined coefficients with

F j =

⎡

⎢⎢⎢⎣

Fλ,11 Fλ,12 · · · Fλ,1Mj

Fλ,21 Fλ,22 · · · Fλ,2Mj
...

...
...

Fλ,Mj1 Fλ,Mj2 · · · Fλ,Mj Mj

⎤

⎥⎥⎥⎦

where Fλ,im j = Fλ,m j (χ i ). Suppose F−1
j exists (i.e., this condition can always be

satisfied [53,63]), then c j can be obtained by solving Eq. (20), i.e.

c j = F−1
j U j (21)

From Eq. (16), we have

U j = J jU (22)

where U = ⋃D
j=1 U j . Then

c j = F−1
j J jU (23)

Substitute both Eqs. (21) and (22) back into Eq. (19), we have an approximation of
function u j :

û j (x) = Fλ
T
j (x)F

−1
j J jU (24)

Furthermore, from Eqs. (16) and (18) we have

u(x) =
D∑

j=1

J j u(x) =
D∑

j=1

u j (x), x ∈ Ω (25)

Then u(x) at any point x ∈ Ω can be formally approximated as

û(x) =
D∑

j=1

Fλ
T
j (x)F

−1
j J jU

=
D∑

j=1

J j Fλ
T
j (x)F

−1
j U

= ΦT(x)U

(26)
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3 Solution for (n+ 1)-dimensional SGEs

Now, we present the numerical scheme for solving the (n+1)-dimensional SGE based
on using the Fourier HDMR-HC approximation. Suppose the approximated function
of the field function u(x), (x = {x1, x2, . . . , xn}) is formally denoted as

û(x) =
Mj∑

m=1

cm j Fλ,m j (x − x j ) = Fλ
T
j (x)F

−1
j U j (27)

where Mj is the number of field nodes used in the selected domain, and U j is the
vector that collects the true nodal function values for these Mj field nodes, and x j is
the centre of this selected region. Further, the derivatives of u(x) at any point x can
be approximated as

∂ p

∂x p
l
û(x) =

∂ pFλ
T
j (x)

∂x p
l

F−1
j U j (28)

where xl denotes one element of x = {x1, x2, . . . , xn}.
In this paper, the time derivatives are approximated by the time-stepping method

and we have the following approximation:

∂2u
∂t2

≈ 1
τ 2

[
u(k+1) − 2u(k) + u(k−1)

]
(29)

∂u
∂t

≈ 1
2τ

[
u(k+1) − u(k−1)

]
(30)

where τ is the time step, and u(k) is the approximate value of u(x, t) at (x, tk), tk = kτ .
Moreover the Crank-Nicolson scheme is used to approximate u at three respective
times as

u(x, t) ≈ 1
3

[
u(k+1) + u(k) + u(k−1)

]
(31)

Tomanage the nonlinearity, a QuasilinearizationMethod (QLM) is adopted. TheQLM
is very effective for dealing with the nonlinear aspects of the SGE and other PDEs. In
this fashion the nonlinear term in Eq. (1) can be represented as

sin(u) = sin(u(k))+ (u(k+1) − u(k)) cos(u(k)) (32)

Thus, Eq. (1) can be discretized as

1
3
∆u(k+1) − (η + µ+ ϕ(k))u(k+1)

= −1
3
∆u(k) − (2µ+ ϕ(k))u(k) + ψ(x) sin(u(k))

− 1
3
∆u(k−1) − (η − µ)u(k−1)

(33)
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where µ = τ−2, η = β
2τ and ϕ(k) = ψ(x) cos(u(k)).

Suppose N field nodes are denoted as χ = {χ}N1 , where N is determined by both
D and Mj . Then from Eq. (26) we have an approximation of the field variable u
according to the HDMR-HC approximation

û(x) = ΦT(x)U =
N∑

j=1

φ j (x)u j (34)

where φ j (x) depends on J j , Fλ
T
j (x) and F−1

j . The derivatives of û can be approxi-
mated as

∆û(x) = ∆ΦT(x)U (35)

Therefore, for any point xi , the approximation in Eq. (33) can be written as

N∑

j=1

[
1
3
∆φ j (xi ) − (η + µ+ ϕ(k))φ j (xi )

]
u(k+1)
j

=
N∑

j=1

[
−1
3
∆φ j (xi ) − (2µ+ ϕ(k))φ j (xi )

]
u(k)j

+
N∑

j=1

[
−1
3
∆φ j (xi ) − (η − µ)φ j (xi )

]
u(k−1)
j

+ ψ(xi ) sin(u(k))

(36)

Let Ai j = 1
3∆φ j (xi ), Bi j = φ j (xi ), and E (k)

i j = Ai j − (η + µ + ϕ(k))Bi j ,

G(k)
i j = −Ai j − (2µ + ϕ(k))Bi j , Hi j = Ai j − (η − µ)Bi j , C

(k)
i = ψ(xi ) sin(u(k)),

then Eq. (36) can be re-written as

N∑

j=1

E (k)
i j u(k+1)

j =
N∑

j=1

G(k)
i j u

(k)
j +

N∑

j=1

Hi ju
(k−1)
j + C (k)

i (37)

For all N field nodes χ we have following matrix form:

E
′(k)û

′(k+1) = G
′(k)û

′(k) + H ′û
′(k−1) + C

′(k) (38)

where C
′(k) = [C (k)

1 ,C (k)
2 , . . . ,C (k)

N ]T.
In using a meshless strong method to solve the PDE, the solution can be unstable

if there is a derivative boundary condition, so the fictitious points method is used
to impose derivative boundary conditions [40]. Suppose there are Nb nodes on the
boundary, then along the derivative boundaries, another Nb fictitious points are added
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outside of the domain. Two sets of equations are established at each derivative bound-
ary node: one for the derivative boundary condition, and the other for the governing
equation. With the Nb additional degrees of freedom, {u(N+1), u(N+2), . . . , u(N+Nb)},
added into the system, then Eq. (36) can be re-written as

N+Nb∑

j=1

E (k)
i j u(k+1)

j =
N+Nb∑

j=1

G(k)
i j u

(k)
j +

N+Nb∑

j=1

Hi ju
(k−1)
j + C (k)

i (39)

and for a node at xib , that is, on the derivative boundary, the derivative boundary
conditions have the form

N+Nb∑

j=1

∂

∂l
φ j (xib )u

(k+1)
j = −

N+Nb∑

j=1

∂

∂l
φ j (xib )u

(k)
j −

N+Nb∑

j=1

∂

∂l
φ j (xib )

(k−1) + 3w(xib , t)

(40)

Assembling Eqs. (39) and (40) for the corresponding nodes, the discretized global
system equation becomes

E(k)û(k+1) = G(k)û(k) + Hû(k−1) + C(k) (41)

where E, G, B and H are (N + Nb) × (N + Nb) matrices, û = [û1, û2, · · · ,
û(N+Nb)]T, C(k) = [C (k)

1 ,C (k)
2 , . . . ,C (k)

N , 3w(xN+1, t), 3w(xN+2, t), . . . ,
3w(xN+Nb , t)]T. At the first time level, i.e. k = 0, we adopt the following:

û(0) = v1 (42)

and

û(−1) = û(1) − 2τv2 (43)

where v1 and v2 are the initial conditions for all nodes χ introduced in Eqs. (2) and
(3).

4 Numerical experiments

In this section, the proposedmeshless numerical scheme is applied to several examples
to show the efficiency and accuracy for the (n + 1)-dimensional SGE. As mentioned
in the previous section, to approximate the time derivatives we use a finite difference
method, so an iterative scheme is employed to reach the final time t . In order to test
the performance of the numerical solution, we use the L∞ error and root-mean-square
(RMS) error norms defined as

L∞ =
∥∥∥ f (xi ) − f̂ (xi )

∥∥∥
∞

= max
1!i!N

∣∣∣ f (xi ) − f̂ (xi )
∣∣∣ (44)
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and

RMS =
√

1
N

∑N

i=1

∣∣∣ f (xi ) − f̂ (xi )
∣∣∣
2

(45)

where N is the number of nodes, f (xi ) is the exact solution, and f̂ (xi ) is the numer-
ical solution. To assess both the stability and the solution accuracy, we compute the
condition number of the system matrix, which is defined as

κ(F) = ∥F∥∥F−1∥ (46)

where κ(F) depends on the parameter λ and the number of nodes N .

4.1 Test problem for a (2+ 1)-dimensional SGE

The test problem for a (2+ 1)-dimensional SGE has the following form [17,19,33]

utt = ∆u − sin(u),

(x, y) ∈ Ω, t > 0,
(47)

where Ω = [−7, 7] × [−7, 7], and the initial conditions are

v1(x, y) = 4 tan−1 [
exp(x + y)

]
, (x, y) ∈ Ω

v2(x, y) = − 4 exp(x + y)
1+ exp(2x + 2y)

, (x, y) ∈ Ω.
(48)

and the Neumann boundary condition is

w(x, y, t) = 4 exp(x + y − t)
1+ exp(2x + 2y − 2t)

, (x, y) ∈ ∂Ω, t > 0 (49)

The analytic solution of this problem is:

u(x, y, t) = 4 tan−1 [
exp(x + y − t)

]
, (x, y) ∈ Ω (50)

In this example, both the proposed HDMR-HC meshless method and the radial
basis function (RBF) method in [17] are used to numerically solve the equation. Since
the field nodes of the RBF method in [17] is the Sobol sequence with N = 3249, then
we adopt the same total number of field nodes for the HDMR-HC meshless method
(D = 49). The time step τ is set to 0.001. The results of the two different measures
of error are presented in Table 1. We see that with the same number of field nodes,
the errors of the proposed HDMR-HC meshless method are smaller than those of the
RBF method. The condition numbers at particular times are also listed in Table 1.
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Table 1 Errors and condition number κ for (2+ 1)-D SGE

Time(s) L∞-error RMS-error κ

RBF HDMR-HC RBF HDMR-HC

1.0 0.0670 0.0326 0.0050 0.0043 3.4 × 105

3.0 0.0834 0.0343 0.0103 0.0045 5.0 × 105

5.0 0.1015 0.0355 0.0145 0.0045 4.2 × 105

7.0 0.1516 0.0368 0.0187 0.0047 6.3 × 105

The results of RBF method come from Ref. [17]

4.2 Test problem for a (5+ 1)-dimensional SGE

To further test the proposed HDMR-HC scheme, we choose a (5 + 1)-dimensional
example, which involves all the implementation issues explained in the previous sub-
section. The exact solution has the form of Eq. (5)

u(x, t) = 4 arctan

[

C exp

( 5∑

i=1

ai xi − bt

)]

, x = (x1, x2, . . . , x5) ∈ Ω, t > 0

where C = 1, b = 1, Ω = [−6, 6] × [−6, 6] × · · · × [−6, 6] ⊆ R5 and

ai =
{√

2/2, i = 1, 2, 3

1/2, i = 4, 5
(51)

The initial conditions are

v1(x) = 4 arctan

[

C exp

( 5∑

i=1

ai xi

)]

, x ∈ Ω,

v2(x) = − 4bC exp
(∑n

i=1 ai xi
)

1+ C2 exp
(∑n

i=1 2ai xi
) , x ∈ Ω,

(52)

and the Neumann boundary conditions are

w j (x, t) =
4a jC exp

(∑5
i=1 ai xi − bt

)

1+ C2 exp
(∑5

i=1 2ai xi − 2bt
) , j = 1, 2, . . . , 5, x ∈ ∂Ω, t > 0

(53)

Both the proposed HDMR-HC method and the RBF method are used to solve the
equation. The Sobol sequence is chosen as the field nodes with a total number of
N = 216 for the HDMR-HCmethod (D = 243 and we use the HDMR approximation
up to order 3) and N ′ = 218 for the RBF method. In this case the time step is chosen
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Table 2 Errors and condition number κ for (5+ 1)-D SGE

Time(s) L∞-error RMS-error κ

RBF HDMR-HC RBF HDMR-HC

1.0 0.2071 0.1083 0.0130 0.0076 4.4 × 106

3.0 0.1956 0.0910 0.0143 0.0079 3.7 × 106

5.0 0.2132 0.1205 0.0165 0.0080 4.5 × 106

7.0 0.2203 0.1124 0.0187 0.0081 4.9 × 106

as τ = 0.2. Table 2 presents L∞, RMS errors and the condition number κ at some
selected times t .

5 Conclusions

In this paper, we propose a new meshless solution method for high-dimensional sine-
Gordon equations. First, we present a function approximation using the HDMR-HC
decomposition. Then we divided the whole domain into several subdomains with the
help of the partition of unity, and obtain a function approximation at any random
point in each subdomain. Hence, we develop a numerical procedure for the high-
dimensional SGEs by a meshless strong solution method. The time-stepping method
is used to approximate the time derivatives of SGEs, and a quasilinearization scheme is
performed to treat the nonlinearity of the equation. Finally, to demonstrate the accuracy
of the proposed method with two numerical experiments. The examples suggest that
the proposed procedure is attractive for solving high-dimensional SGEs.
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