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Abstract
In this paper, a meshless Hermite-HDMRfinite difference method is proposed to solve
high-dimensional Dirichlet problems. The approach is based on the local Hermite-
HDMR expansion with an additional smoothing technique. First, we introduce the
HDMR decomposition combined with the multiple Hermite series to construct a class
of Hermite-HDMR approximations, and the relevant error estimate is theoretically
built in a class of Hermite spaces. It can not only provide high order convergence
but also retain good scaling with increasing dimensions. Then the Hermite-HDMR
based finite difference method is particularly proposed for solving high-dimensional
Dirichlet problems. By applying a smoothing process to the Hermite-HDMR approx-
imations, numerical stability can be guaranteed even with a small number of nodes.
Numerical experiments in dimensions up to 30 show that resulting approximations are
of very high quality.
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1 Introduction

In this work we propose an approach to numerically solve high-dimensional Dirichlet
problems. Specifically, we consider the following boundary value problem for u :
Ω ⊂ Rd → R:

{ 1
2△u(x) − ϕ(x) = 0 for x ∈ Ω,

u(x)
∣∣∣
∂Ω

= v(x); (1)

where both ϕ and v areRd → R; and assume that there exists a unique and sufficiently
smooth solution for the problem. When d is large, these problems face a serious
computational challenge because of the so-called curse of dimensionality [1,2,5]. By
this, we mean the computational cost required to approximate or to recover a d-
dimensional function with a desired accuracy scales exponentially with d. There were
two main attempts to overcome this difficulty. One approach is to impose very strong
regularity assumptions on the target function, and another way is to assume that the
target function has an expected structure, such as sparsity [7,12], or low-rank [9], or a
low order truncated high-dimensional model representation (HDMR) form [8,10,11].
There can be a very close connection between the regularity condition and certain
structures, for example, the dominance of low order terms of an HDMR expansion
can be guaranteed by imposing the mixed regularity conditions on the target function
[8]. Although it is not clear that such strong assumptions are actually satisfied for
practical problems, imposing an extra regularity condition remains a common way to
reduce the computational cost for high-dimensional problems.

Finite difference (FD) methods are one of the simplest and the most important
approaches to numerical solutions of PDEs. The traditional FD method, however, is
strongly dependent on a structured grid (Fig. 1a), which severely limits flexibility and
scalability [13]. The FD method has been extended to a more general form (Fig. 1b)
for scattered nodes to remove dependency on structured grids [4,13]. Generally, the
meshless FDmethod consists of approximating the derivatives of a sufficiently smooth
function f at a reference node (red dot in Fig. 1b) based on a linear combination of
the values of f at some surrounding grid nodes (blue dots in Fig. 1b), and the relevant
FD weights are usually computed using polynomial interpolation on scattered nodes
[4]. In high dimensions, a very important issue is how to link a local interpolating
polynomial to an imposed regularity condition.

The starting point of this work is to connect the multiple Hermite series with the
HDMR decomposition and the mixed regularity condition. This approach is an exten-
sion of the work of Ref. [8] for Hermite polynomials. First, the mixed Hermite space
Hs

mix (Rd) is defined on the basis of the mixed regularity condition, and the Hermite
decomposition of Nd

0 is introduced to form an order relation for the multiple Hermite
series. According to the order relation, one can truncate it to a certain order K and
attain a Hermite-HDMR series up to order K . It is mathematically proven that this
truncated approximation converges very fast for functions from the mixed Hermite
spaceHs

mix (Rd) and only has the degrees of freedom O(K logu−1 K ), where u ≪ d.
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(a) Classical FD for structured grid (b) LS or RBF based FD for scattered node

Fig. 1 Existing FD methods

Then, the FD operator is generatedwith the help of the local weightedHermite-HDMR
expansion including an additional smoothing process.

The remainder of the paper is organized as follows. the local Hermite-HDMR
approximation and the relevant error estimates are established in Sect. 2, and the
meshless Hermite-HDMR FD method is built in Sect. 3. Numerical experiments for
dimensions up to 30 are given in Sect. 4, and finally, conclusions are presented in
Sect. 5.

2 Local Hermite-HDMR approximation inHs
mix(R

d)

The space L2(Rd) consists of all real-valued measurable functions on Rd that satisfy

∥ f ∥L2(Rd ) :=
∫

Rd
| f (x)|2dx < ∞, (2)

and then, for s ∈ N0, we define the mixed Hermite space

Hs
mix (R

d) =
{
f ∈ L2(Rd) : xs−r1

1 · · · xs−rd
d ∂r f (x) ∈ L2(Rd), |r |∞ ! s

}
(3)

with the norm

∥ f ∥Hs
mix (Rd ) =

∑

0!|r |∞!s

∥∥∥xs−r1
1 · · · xs−rd

d ∂r f (x)
∥∥∥
L2(Rd )

, (4)

where r = (r1, . . . , rd) ∈ Nd
0 is a multi-index with

|r |∞ = max
1! j!d

r j
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and

∂r =
(

∂

∂x1

)r1
· · ·

(
∂

∂xd

)rd
.

HereHs
mix (Rd) is a Banach space with respect to the norm ∥ · ∥Hs

mix (Rd ). Further, for

any λ ∈ R and a ∈ Rd , let the space

L2(Rd , e−λ2∥x−a∥2) :=
{
f ∈ L2(Rd) :

∫

Rd
| f (x)|2e−λ2∥x−a∥2dx < ∞

}
, (5)

then

L2(Rd , e−λ2∥x−a∥2) ⊂ L2(Rd),

and themultiplyHermite function sequence {Hm,λ(x−a)}m∈Nd
0
constitutes a complete

orthonormal set in L2(Rd , e−λ2∥x−a∥2), where

Hm,λ(x − a) =
√

λd

πd
∏d

i=1(2mi )!!
φm1(λ(x1 − a1)) · · ·φmd (λ(xd − ad)) (6)

and

φ j (t) = et
2 d j

dt j
e−t2 , j ∈ N0 (7)

are the ordinary Hermite polynomials, where (2n)!! = 2 · 4 · · · · · 2n; it follows that

Hm,λ(x − a)dx = 1
√
(2λ2)d

∏d
i=1(mi + 1)

dHm+1,λ(x − a), (8)

where m + 1 = (m1 + 1, . . . ,md + 1).
Hence, for any f ∈ L2(Rd , e−λ2∥x−a∥2), we have the following convergent (in the

sense of the norm ∥ · ∥L2(Rd ,e−λ2∥x−a∥2 )) multiple Hermite series

f (x) =
∑

m∈Nd
0

αm( f )Hm,λ(x − a), x ∈ Rd , (9)

where

αm( f ) =
∫

Rd
Hm,λ(x − a) f (x)e−λ2∥x−a∥2dx .

As a preliminary, we have the following Lemma:
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Lemma 1 For any λ ∈ R, a ∈ Rd and f ∈ Hs
mix (Rd), it follows that

∥∥∥eλ2∥x−a∥2∂rs
(
f (x)e−λ2∥x−a∥2

)∥∥∥
2

L2(Rd )
! C(s, λ, d)∥ f ∥2Hs

mix (Rd )
,

where rs = (s, . . . , s) is a d-dimensional vector and the constant C(s, λ, d) depends
on s, λ and d.

Proof By noting that

eλ2∥x−a∥2∂rs
(
f (x)e−λ2∥x−a∥2

)

is a linear combination of

{
xs−r1
1 · · · xs−rd

d ∂r f (x)
}

0!|r |∞!s
,

then the desired result holds. ⊓*

2.1 Hermite decomposition ofNd
0

In order to further discuss the multiple Hermite series (9), we first consider the fol-
lowing Hermite decomposition of Nd

0 .

Definition 1 Suppose d, k ∈ N, λ > 0 and c " 1. Let

Γ k(d, c, λ) :=

⎧
⎨

⎩m ∈ Nd
0 : k ! (2λ2)d

d∏

j=1

(m j + c) < k + 1

⎫
⎬

⎭

and

Γ K (d, c, λ) :=
K∑

k=1

Γ k(d, c, λ),

then we have the following Hermite decomposition

Nd
0 =

∞∑

k=1

Γ k(d, c, λ), (10)

and k is referred to as the Hermite order number of m ∈ Γ k(d, c, λ).

Remark 1 We will further discuss the constant c later.
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Now consider an upper bound for the cardinality of Γ K . First, by noting

K∑

j=2

1
j
<

∫ K

1

1
t
dt = log K ,

it follows that

Lemma 2 Given K ∈ N, we have

hK < 1+ log K ,

where hK = ∑K
j=1 j−1 is the K th harmonic number.

Remark 2 The asymptotic limit of hK is γE+ log K as K → ∞, where γE ≈ 0.57722
is the Euler constant.

Let |S| be the Lebesgue measure of any given set S, then we have:

Theorem 1 Given K ∈ N and c " 1, then
∣∣∣Γ K (d, c)

∣∣∣ < K (1+ log K )d−1,

where Γ K (d, c) = {m ∈ Nd
0 : ∏d

j=1(m j + c) ! K }.

Proof Let ΛK (u) = {m ∈ Nu : m1 · · ·mu ! K }, then it follows from c " 1 that∣∣Γ K (d, c)
∣∣ <

∣∣ΛK (d)
∣∣, and it holds that |ΛK (d)| ! K hd−1

K = K (1 + log K )d−1

from

∣∣∣ΛK (1)
∣∣∣ = K = K h0K and

∣∣∣ΛK (2)
∣∣∣ =

K∑

j=1

⌊
K
j

⌋
! K

K∑

j=1

1
j
= K hK

and

∣∣∣ΛK (u + 1)
∣∣∣ !

K∑

j=1

∣∣ΛK (u)
∣∣

j
! K hu−1

K

K∑

j=1

1
j
= K huK , ∀u ∈ N,

where ⌊t⌋ is the unique integer satisfying the inequalities ⌊t⌋ ! t ! ⌊t⌋ + 1 for any
t ∈ R. ⊓*

Furthermore, we can get an upper bound for both |Γ K (d, c, λ)| and |Γ k(d, c, λ)|.
Corollary 1 Given K ∈ N and λ > 0, then for any k ! K,

∣∣∣Γ k(d, c, λ)
∣∣∣ !

∣∣∣Γ K (d, c, λ)
∣∣∣ ! Kλ + 1

(2λ2)d

(
1+ log

(
1+ Kλ + 1

(2λ2)d

))d−1

.
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2.2 Multiple Hermite series inHs
mix(Rd)

According to the Hermite decomposition of Nd
0 , in the neighborhood U (a) of a given

point a ∈ Rd , the Hermite series of f ∈ Hs
mix (Rd) ⊂ L2(Rd) can be rewritten as

f (x) =
∞∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a), x ∈ U (a) ⊂ Rd . (11)

This form is very useful for analyzing a function in themixedHermite spaceHs
mix (Rd).

First, we have the following lemma.

Lemma 3 Suppose s ∈ N and f ∈ Hs
mix (Rd). For any λ ∈ R, a ∈ Rd and m ∈

Γ k(d, c, λ),

∑

m∈Γ k (d,c,λ)

α2
m( f ) !

C(s, λ, d)∥ f ∥2Hs
mix (Rd )

ks
,

where k ! (2λ2)d
∏d

j=1(m j + c) < k + 1 and the constant c " 1 depends only on s.

Proof According to integration by parts and (8), there exist c " 1 such that

∑

m∈Γ k (d,c,λ)

α2
m( f )

=
∑

m∈Γ k (d,c,λ)

∣∣∣∣

∫

Rd
Hm,λ(x − a) f (x)e−λ2∥x−a∥2dx

∣∣∣∣
2

=
∑

m∈Γ k (d,c,λ)

1
(2λ2)ds(m)(s)

∣∣∣∣

∫

Rd
Hm+rs ,λ(x − a)

[
eλ2∥x−a∥2∂rs

(
f (x)e−λ2∥x−a∥2

)]
e−λ2∥x−a∥2dx

∣∣∣∣
2

! 1
ks

∑

m∈Γ k (d,c,λ)

α2
m+rs

(
eλ2∥x−a∥2∂rs

(
f (x)e−λ2∥x−a∥2

))

!

∥∥∥eλ2∥x−a∥2∂rs
(
f (x)e−λ2∥x−a∥2

)∥∥∥
2

L2(Rd ,e−λ2∥x−a∥2 )

ks
,

where rs = (s, . . . , s) is a d-dimensional vector and

(m)(s) =
d∏

j=1

[
(m j + 1) · · · (m j + s)

]
.
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From Lemma 1,

∥∥∥eλ2∥x−a∥2∂rs
(
f (x)e−λ2∥x−a∥2

)∥∥∥
2

L2(Rd ,e−λ2∥x−a∥2 )

!
∥∥∥eλ2∥x−a∥2∂rs

(
f (x)e−λ2∥x−a∥2

)∥∥∥
2

L2(Rd )
! C(s, λ, d)∥ f ∥2Hs

mix (Rd )
,

then we have

∑

m∈Γ k (d,c,λ)

α2
m( f ) !

C(s, λ, d)∥ f ∥2Hs
mix (Rd )

ks
,

as claimed. ⊓*

Theorem 2 Suppose f ∈ Hs
mix (Rd). If s " 1, then for any λ ∈ R and a ∈ Rd ,

∥∥∥∥∥∥
f (x) −

K∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a)

∥∥∥∥∥∥

2

L2(Rd ,e−λ2∥x−a∥2 )

! C(s, λ, d)
s − 1

∥ f ∥2Hs
mix (Rd )

· K−(s−1).

Proof In the sense of the norm ∥ · ∥L2(Rd ,e−λ2∥x−a∥2 ), the multiple Hermite series is
convergent, so it follow that

∥∥∥∥∥∥
f (x) −

K∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a)

∥∥∥∥∥∥

2

L2(Rd ,e−λ2∥x−a∥2 )

=
∞∑

k=K+1

∑

m∈Γ k (d,c,λ)

α2
m( f )∥Hm,λ(x − a)∥2

L2(Rd ,e−λ2∥x−a∥2 )

! C(s, λ, d)∥ f ∥2Hs
mix (Rd )

∞∑

k=K+1

1
ks

! C(s, λ, d)∥ f ∥2Hs
mix (Rd )

∞∑

k=K+1

∫ k

k−1

1
t s
dt

= C(s, λ, d)∥ f ∥2Hs
mix (Rd )

∫ ∞

K

1
t s
dt

= C(s, λ, d)
s − 1

∥ f ∥2Hs
mix (Rd )

· K−(s−1),

and the proof is complete. ⊓*

123



Journal of Mathematical Chemistry

Corollary 2 Suppose f ∈ Hs
mix (Rd) and r ∈ Nd

0 . If s " |r |∞ + 1, then for any λ ∈ R
and a ∈ Rd ,

∥∥∥∥∥∥
∂r f (x) −

K∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )∂r Hm,λ(x − a)

∥∥∥∥∥∥

2

L2(Rd ,e−λ2∥x−a∥2 )

! C(s, λ, d)
s − |r |∞ − 1

∥ f ∥2Hs
mix (Rd )

· K−(s−|r |∞−1).

Proof According to (8), there exist c " 1 such that

∥∂r Hm,λ(x − a)∥2
L2(Rd ,e−λ2∥x−a∥2 )

=(2λ2)d|r |(m)(r) ! k|r |∞ ,

where

(m)(r) =
d∏

j=1

m j (m j − 1) · · · (m j − r j );

then

∥∥∥∥∥∥

∑

m∈Γ k (d,c,λ)

αm( f )∂r Hm,λ(x − a)

∥∥∥∥∥∥

2

L2(Rd ,e−λ2∥x−a∥2 )

!
C(s, λ, d)∥ f ∥2Hs

mix (Rd )

ks−|r |∞ .

Hence, from the proof of Theorem 2, the desired result holds. ⊓*

2.3 The fundamental conjecture of HDMR inHs
mix(Rd)

Definition 2 Given a nonempty set { j1, . . . , ju} ⊂ {1, . . . , d}, then

Γ k
j1,..., ju (d, c, λ)

:= {m ∈ Γ k(d, c, λ) : ml > 0 ∀l ∈ { j1, . . . , ju} and ml = 0 ∀l /∈ { j1, . . . , ju}},

where l ∈ {1, . . . , d}.

Using these sets, Γ k(d, c, λ) can be decomposed into the following form

Γ k(d, c, λ) =Γ k
0 (d, c, λ)+

∑

j

Γ k
j (d, c, λ)

+
∑

j1< j2

Γ k
j1, j2(d, c, λ)+ · · · + Γ k

j1,..., jd (d, c, λ) (12)
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and we refer to this as a HDMR decomposition of Γ k(d, c, λ); then for any f ∈
L2(Rd , e−λ2∥x−a∥2), the multiple Hermite series (11) can be rewritten as

f (x) =
∞∑

k=1

⎛

⎜⎝
∑

m∈Γ k
0 (d,c,λ)

αm( f )Hm,λ(x − a)+
∑

j

∑

m∈Γ k
j (d,c,λ)

αm( f )Hm,λ(x − a)

+
∑

j1< j2

∑

m∈Γ k
j1, j2

(d,c,λ)

αm( f )Hm,λ(x − a)+ · · ·

+
∑

m∈Γ k
j1,··· , jd (d,c,λ)

αm( f )Hm,λ(x − a)

⎞

⎟⎠ ,

(13)

which is referred to this as a Hermite-HDMR decomposition of f from L2(Rd ,

e−λ2∥x−a∥2).

Theorem 3 Suppose f ∈ Hs
mix (Rd), r ∈ Nd

0 and s " |r |∞ + 1. For a fixed K ∈ N, if
u = u∗ is the smallest integer that satisfies

(1+ c)u+1 >
K + 1
(2λ2)d

, 1 ! u ! d,

then

∥∂r f (x) − ∂rSu∗ f (x)∥2
L2(Rd ,e−λ2∥x−a∥2 )

! C(s, λ, d)
s − |r |∞ − 1

∥ f ∥2Hs
mix (Rd ,λ)

· K−(s−|r |∞−1). (14)

Proof Denote

〈
p, q

〉
=

∫

Rd
p(x)q(x)e−λ2∥x−a∥2dx,

where p, q ∈ L2(Rd , e−λ2∥x−a∥2); let

A(x) =
K∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a),

B(x) =
∞∑

k=K+1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a),

that is,

f (x) = A(x)+ B(x)
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and

〈
f , A

〉
=

〈
A, A

〉
,

〈
f , B

〉
=

〈
B, B

〉
.

Noting that

〈
Su∗ f , f − Su∗ f

〉
= 0

and

〈
A, f − Su∗ f

〉
= 0 when (1+ c)u

∗
>

k + 1
(2λ2)d

,

we have

〈
f − Su∗ f , f − Su∗ f

〉
=

〈
A + B, f − Su∗ f

〉
=

〈
B, f

〉
−

〈
B,Su∗ f

〉

=
〈
B, B

〉
−

〈
B,Su∗ f

〉
,

since
〈
B,Su∗ f

〉
" 0,

∥ f − Su∗ f ∥L2(Rd ,e−λ2∥x−a∥2 ) ! ∥B∥L2(Rd ,e−λ2∥x−a∥2 ),

and then (14) holds. ⊓*

This proof also reveals that the Hermite-HDMR approximation up to order K , that
is,

K∑

k=1

∑

m∈Γ k (d,c,λ)

αm( f )Hm,λ(x − a) (15)

is a truncated HDMR expansion of not more than order u if

(1+ c)u+1 >
K + 1
(2λ2)d

, 1 ! u ! d.

Hence, the degrees of freedom of (15) is

O

(
K + 1
(2λ2)d

(
1+ log

(
1+ K + 1

(2λ2)d

))u−1
)

,

which is the main reason that the Hermite-HDMR approximation can be used for high
dimensional problems.
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3 Themeshless Hermite-HDMR FDmethod

3.1 Hermite-HDMR FDmethod

Let χ = {χi }Ni=1 ⊂ Ω be the interior node set with the size N and χ ′ = {χ ′
i }N

′
i=1 ⊂ Ω

be the total node set with size N ′ (including the boundary nodes). According to

Γ K (d, c) :=

⎧
⎨

⎩m ∈ Nd
0 :

d∏

j=1

(m j + c) < K

⎫
⎬

⎭ , (16)

for functions fromHs
mix (Rd), we redefine the Hermite-HDMR smoothing up to order

K at a neighborhood of χi , i.e.,

SK (x,χi ,β) =
∑

m∈Γ K (d,c)

αm

kβ
m
Hm,λ(x − χi ),

where β " 0 is the smoothing factor and

km =
d∏

j=1

(m j + c).

Let {H ( j)(x)}Mj=1 denote the bases {Hm,λ(x)}m∈Γ K (d,c) and {k( j)}Mj=1 denote
{km}m∈Γ K (d,c), i.e., M = |Γ K (d, c)|, then for a given reference node χi ∈ χ , the
solution u(x) of the problem (1) can be approximately represented as

SM (x,χi ,β) =
M∑

j=1

H ( j)(x − χi )

kβ
( j)

α( j), (17)

then the interpolation equations at the reference node χi can be written as

⎛

⎜⎜⎜⎜⎝

H (1)(χ1−χi )

kβ
(1)

· · · H (M)(χ1−χi )

kβ
(M)

... · · · ...
H (1)(χN ′−χi )

kβ
(1)

· · · H (M)(χN ′−χi )

kβ
(M)

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎝
α1
...

αM

⎞

⎟⎠ =

⎛

⎜⎝
u(χ1)

...

u(χN ′)

⎞

⎟⎠ ,

which in matrix notation becomes

H iαi = U ′. (18)

Suppose α̂i = C iU ′ is the least square solution of (18) under the weighted 2-norm

∥α∥2,w = αTWα,
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where W is the diagonal matrix constructed from the constant weights, i.e.,

W = diag
(
e−λ2∥χ1∥22 , . . . , e−λ2∥χN ′ ∥22

)
.

Thus, at the reference node χi , the Laplace operator △u(χi ) can be approximated by

M∑

j=1

△H ( j)(0)

kβ
( j)

· α( j)
i = DT

i αi = DT
i C iU ′

and on the basis of the interior node set χ = {χi }Ni=1 ⊂ Ω , the equation 1
2△u(x) =

ϕ(x) is discretized as

⎛

⎜⎝
DT
1C1
...

DT
NCN

⎞

⎟⎠U ′ =

⎛

⎜⎝
ϕ(χ1)

...

ϕ(χN )

⎞

⎟⎠ ,

or in matrix notation,

A′U ′ = Φ.

By imposing the boundary conditions (u(χs) = v(χs) is known if χs ∈ χ ′ − χ), we
have the final difference system

AU = Φ ′. (19)

Due to the fast decay of the Gaussian weighted function, the difference matrix A is
very sparse, so this difference system can be solved efficiently by iteration methods,
such as the biconjugate gradient stabilized method (BCGS) [3,6] or the successive
over-relaxation (SOR) method.

3.2 The behavior of the Hermite-HDMR FD approximation

Since the fast decay of the weighted function e−λ2∥x−χi∥2 , those nodes located outside
the d-ball B(χi , ρ) = {x ∈ Rd : ∥x −χi∥2 ! ρ} contribute very little to the reference
node χi , where the radius ρ is inversely related to λ, i.e.,

ρ = κ

λ
,

and throughout this paper, we use κ = 2.628. According to (17), the number of the
nodes located in the d-ball B(χi , ρ) should be at least equal to M , hence let

π
d
2

Γ ( d2 + 1)

(κ

λ

)d
= θM

N
|Ω|,
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where the constant θ > 1, Γ (n) is the gamma function (i.e., Γ (n) = (n − 1)! when n
is a positive integer), |Ω| is the Lebesgue measure of Ω , and N is the size of χ ; then

(
1
λ

)d

=
(

1
κ
√

π

)d θMΓ ( d2 + 1)|Ω|
N

, (20)

and together with Corollary 2 we have the following result:

Theorem 4 Under the conditions of (17), if u(x) ∈ Hs
mix (Rd) and s " 3, then

lim
β→0

∥△u(x) − △SM (x,χi ,β)∥L2(Rd ,e−λ2∥x−χi ∥2 )

!
√
C(s, λ, d)
s − 3

∥u∥Hs
mix (Rd )

[
C ′′ M

N
√
K

]s−3

,

where SM (x,χi ,β) is defined by (17) and

M = |Γ K (d, c)| and C ′′ = θ

(
1

κ
√
2π

)d

Γ

(
d
2
+ 1

)
|Ω|.

4 Numerical examples

For the given interior node set χ = {χi }Ni=1, let’s define the average relative error
percentage (AREP) as follows

AREP(U ) = 1
N

N∑

i=1

∣∣∣∣
Ui − u(χi )

u(χi )

∣∣∣∣ · 100%, where u(χi ) ̸= 0. (21)

In the following, we use boxplots to express all the AREPs; and every boxplot will be
generated by independently repeating the computation 10 times with different random
node sets.

4.1 Case 1: Constant inhomogeneity, linear boundary condition

We consider

ϕ(x) = −1 and v(x) =
30∑

i=1

xi , (22)

where x ∈ Ω = {x ∈ R30 : ∥x∥ ! 1} and the explicit solution is

u(x) = 1
30

(1 − ∥x∥2)+
30∑

i=1

xi .
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Fig. 2 Results for test problem (22)

This problem is defined in a 30-dimensional unit sphere, the inhomogeneity ϕ is a
constant and the boundary condition does not vary significantly and is linear.

We show the AREPs obtained versus node size N in Fig. 2. Employing smoothing
clearly improves the accuracy of the results.

4.2 Case 2: Quadratic inhomogeneity, quartic boundary condition

We consider

ϕ(x) = −
20∑

i=1

x2i and v(x) = 1
6

20∑

i=1

x4i , (23)

where Ω = [−1, 1]20 and the explicit solution u(x) = v(x). Here we make the
inhomogeneity ϕ more complex and choose a nonlinear boundary condition, but this
problem still has an intrinsic symmetry: ϕ is constant on the sphere ∥x∥ = r = const,
and v is constant when

∑20
i=1 x

4
i = R = const , respectively.
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Fig. 3 Results for test problem (22)
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Fig. 4 Results for test problem (24)

We show the AREPs obtained versus node size N in Fig. 3.

4.3 Case 3: Transcendental inhomogeneity and boundary condition

We consider
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ϕ(x) =(2∥x∥2 − d) exp(−∥x∥2) − d(x1 + · · · + xd)
4(4+ (x1 + · · · + xd)2)2

v(x) = arctan
(
x1 + · · · + xd

2

)
+ exp(−∥x∥2),

(24)

where Ω = [−3, 3]d , then the explicit solution u(x) = v(x).
We show the AREPs obtained versus node size N in Fig. 4.

5 Conclusions

In this work, we proposed a meshless Hermite-HDMR FD method to solve high-
dimensional Dirichlet problems. The approach is based on the local Hermite-HDMR
expansion with an additional smoothing technique. The multiple Hermite series is
connected with the HDMR decomposition and the mixed regularity condition for
obtaining a class of Hermite-HDMR approximations; the relevant error estimate is
theoretically built in a class of Hermite spaces. The method can not only provide
high order convergence but also effectively control the degrees of freedom in high-
dimensions. Numerical experiments in dimensions up to 30 show that the resulting
approximations are of very high quality, and we propose that the Hermite-HDMR
finite difference method is attractive for solving high-dimensional Dirichlet problems.
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