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Abstract

In this paper, a meshless Hermite-HDMR finite difference method is proposed to solve
high-dimensional Dirichlet problems. The approach is based on the local Hermite-
HDMR expansion with an additional smoothing technique. First, we introduce the
HDMR decomposition combined with the multiple Hermite series to construct a class
of Hermite-HDMR approximations, and the relevant error estimate is theoretically
built in a class of Hermite spaces. It can not only provide high order convergence
but also retain good scaling with increasing dimensions. Then the Hermite-HDMR
based finite difference method is particularly proposed for solving high-dimensional
Dirichlet problems. By applying a smoothing process to the Hermite-HDMR approx-
imations, numerical stability can be guaranteed even with a small number of nodes.
Numerical experiments in dimensions up to 30 show that resulting approximations are
of very high quality.
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1 Introduction

In this work we propose an approach to numerically solve high-dimensional Dirichlet
problems. Specifically, we consider the following boundary value problem for u :
2 cRY - R:

%Au(x) — @) =0 for x € £,
(1)

u)| = v

where both ¢ and v are RY — R; and assume that there exists a unique and sufficiently
smooth solution for the problem. When d is large, these problems face a serious
computational challenge because of the so-called curse of dimensionality [1,2,5]. By
this, we mean the computational cost required to approximate or to recover a d-
dimensional function with a desired accuracy scales exponentially with d. There were
two main attempts to overcome this difficulty. One approach is to impose very strong
regularity assumptions on the target function, and another way is to assume that the
target function has an expected structure, such as sparsity [7,12], or low-rank [9], or a
low order truncated high-dimensional model representation (HDMR) form [8,10,11].
There can be a very close connection between the regularity condition and certain
structures, for example, the dominance of low order terms of an HDMR expansion
can be guaranteed by imposing the mixed regularity conditions on the target function
[8]. Although it is not clear that such strong assumptions are actually satisfied for
practical problems, imposing an extra regularity condition remains a common way to
reduce the computational cost for high-dimensional problems.

Finite difference (FD) methods are one of the simplest and the most important
approaches to numerical solutions of PDEs. The traditional FD method, however, is
strongly dependent on a structured grid (Fig. 1a), which severely limits flexibility and
scalability [13]. The FD method has been extended to a more general form (Fig. 1b)
for scattered nodes to remove dependency on structured grids [4,13]. Generally, the
meshless FD method consists of approximating the derivatives of a sufficiently smooth
function f at a reference node (red dot in Fig. 1b) based on a linear combination of
the values of f at some surrounding grid nodes (blue dots in Fig. 1b), and the relevant
FD weights are usually computed using polynomial interpolation on scattered nodes
[4]. In high dimensions, a very important issue is how to link a local interpolating
polynomial to an imposed regularity condition.

The starting point of this work is to connect the multiple Hermite series with the
HDMR decomposition and the mixed regularity condition. This approach is an exten-
sion of the work of Ref. [8] for Hermite polynomials. First, the mixed Hermite space
Hix (R9) is defined on the basis of the mixed regularity condition, and the Hermite
decomposition of Ng is introduced to form an order relation for the multiple Hermite
series. According to the order relation, one can truncate it to a certain order K and
attain a Hermite-HDMR series up to order K. It is mathematically proven that this
truncated approximation converges very fast for functions from the mixed Hermite
space H* . (R%) and only has the degrees of freedom O (K log"~! K), where u < d.

mix
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(a) Classical FD for structured grid  (b) LS or RBF based FD for scattered node

Fig. 1 Existing FD methods

Then, the FD operator is generated with the help of the local weighted Hermite-HDMR
expansion including an additional smoothing process.

The remainder of the paper is organized as follows. the local Hermite-HDMR
approximation and the relevant error estimates are established in Sect. 2, and the
meshless Hermite-HDMR FD method is built in Sect. 3. Numerical experiments for
dimensions up to 30 are given in Sect. 4, and finally, conclusions are presented in
Sect. 5.

2 Local Hermite-HDMR approximation in 75_. (R9)

mix

The space L5 (RRY) consists of all real-valued measurable functions on R? that satisfy
sy = [ | 1F P < o, @
and then, for s € Ny, we define the mixed Hermite space

mix

Ho (R = {f € LoRY) xS f(x) € Lo@RY), [l < s} 3)

with the norm

”f”Hfm(Rd) = Z ‘xi‘*rl "'x;_rdarf(X)Hz & 4)
0<Irloo<s :
where r = (r1, ..., r4) € N¢ is a multi-index with
[Floo = max r;

1</ <d
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yo (Y (D)
“\oxy oxg)

(R?) is a Banach space with respect to the norm || - [|34s = (ga). Further, for

and

Here H*

mix

any 4 € Rand a € R?, let the space

Lo(RY, M l—al?y . {f € Ly@RY) : / |f ()PP I al gy < oo}, )
]Rd
then
LoyRY, e Ie=al’y £ (R,

and the multiply Hermite function sequence { ;. (x —a)},, . N constitutes a complete

. A2 e l12
orthonormal set in £ (R?, e=* 1¥=4l%) where

A4
Hy . (x —a) = ‘/ mfﬁml A(xr —a1) - Gy (A(xg —aq))  (6)

and
T
9j() =" e jeNy (M)
are the ordinary Hermite polynomials, where 2n)!! =2 -4 ... 2n; it follows that
1
Hpp.(x —a)dx = dHy11,0.(x — a), ®)

J@2 T omi 4+ 1)
wherem +1=(m;+1,...,mqg+1).

Hence, for any f € L, (Rd, e”\z”x’“nz), we have the following convergent (in the

sense of the norm || - || L5 (Rd’e,)@”){,a“z)) multiple Hermite series

f0) =) an(fHHp(x —a), x eR?, ©)

d
meNj

where
an(f) = [ Hnas = a) f e 1 g
R4
As a preliminary, we have the following Lemma:
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Lemmal Forany» € R, a € R and f € HS,, (RY), it follows that

mix

A2 x—all? g ( —ﬂux—auz) 2 2
e 1= (e ey S COR DIy g,
where ry = (s, ..., s) is a d-dimensional vector and the constant C(s, A, d) depends

ons, andd.

Proof By noting that
2 2 2 2
e)» lx—all a7s (f(x)ef)‘ [lx—all )
is a linear combination of

§—=ry S—=rd ar
X S X 0 f(x)} ,
H ! d 0<Irloo<s

then the desired result holds. O

2.1 Hermite decomposition of Ng

In order to further discuss the multiple Hermite series (9), we first consider the fol-
lowing Hermite decomposition of Ng.

Definition 1 Suppose d,k € N, A > O and ¢ > 1. Let

d
rfd,c.)={meNj: k<@ [[mj+0c) <k+1
j=1

and
K
rfd,c.n =% "rkd.c.».
k=1
then we have the following Hermite decomposition
o0
N§ =Y . c.n. (10)
k=1

and k is referred to as the Hermite order number of m € I'* d,c, \).

Remark 1 We will further discuss the constant ¢ later.
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Now consider an upper bound for the cardinality of I"X . First, by noting

K 1 K
Z— / —dr =logK,
= 5] 1

it follows that

Lemma?2 Given K € N, we have

hg <1+logk,

where hx = Zle j~Vis the K th harmonic number.

Remark 2 The asymptotic limit of hg is yg +1log K as K — oo, where yg &~ 0.57722
is the Euler constant.

Let |S| be the Lebesgue measure of any given set S, then we have:

Theorem 1 Given K € Nand ¢ > 1, then

‘FK(d, ol < K1 +1log k)41,

where I'K(d, c) = (m € N§ : T]I_,(m; + ) < K}.

Proof Let AX(u) = {m e N* :my---m, < K}, then it follows from ¢ > 1 that
|IK(d, c)| < |4¥ ()|, and it holds that [AK (@)] < Kh% ' = K(1 + logK)*~!
from

A% ()| = K = Ky and |4K@)] = XK: Lﬂ < KXK:} = Khg
j=1 =1

and
K A% )| - )
‘A (u—i—l)‘ Zf Kh" Z — KR, YueN,
Jj=1 j= 1

where 7] is the unique integer satisfying the inequalities [7] < ¢ < [f] + 1 for any
teR. O

Furthermore, we can get an upper bound for both |I” K (d, c, )| and |Fk(d ,C, M)
Corollary 1 Given K € Nand » > O, then for any k < K

K, +1 K; +1
de,,k‘g‘FKd,,A‘g 1 +1og (1
. e, 2) @e 0| < G (110 (14 527
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2.2 Multiple Hermite series in 5, (R9)

According to the Hermite decomposition of N¢, in the neighborhood U (a) of a given
point a € R?, the Hermite series of f € H* . (RY) C L,(R?) can be rewritten as

mix

fO =YY an(HHpi(x—a), x €U CR". (11)

k=1 merk,c,n)

This formis very useful for analyzing a function in the mixed Hermite space ) . (RY).
First, we have the following lemma.

Lemma3 Suppose s € Nand f € Hfm.x(Rd). Forany » € R, a € R and m €

rkd,c,»),

C(s,hs DI,
kS

ix (Rd)

’

DA RS

mel*(d,c,))

where k < (2A22)4 ]_[';Z] (mj +c) < k+1and the constant ¢ > 1 depends only on s.

Proof According to integration by parts and (8), there exist ¢ > 1 such that

Yo and)

melk(d,c,))

= 2

melk(d,c,)\)

2
/ Hip . (x — a)f(x)e“'”'zdx‘
]Rd

1
= X o

melk(d,c,))

2
‘/ Hipsr, . (x — a) [exznx—anzan (f(x)e—xznx—av)] o2l g
R4
1
< Yoa, (exznx—anzars (f(x)e—xzux—auz))
mel'k(d,c,))

Heﬂux—anzan (f(x)e—xznx—anz) ?

Ez(Rd,eszl\xfaHz)

<

kS ’
where ry = (s, ..., s) is a d-dimensional vector and
d
m =TT [ +1)--(mj +9)].
j=1
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From Lemma 1,

2

Heﬁux—awﬁars (f(x)e—xznx—anz) ‘

< ”eﬂux—awﬁam <f(x)e—xznx—an2)’

L5(Rd e=2*x—all?y

2
SCe A DIy oy

Lo(RY)

then we have

Cl DI gy
ks ’

Y D <

melk(d,c,)\)
as claimed. |

Theorem 2 Suppose f € HS . (RY). If s > 1, then for any » € R and a € R,

mix
% 2
fO=> Y an(HHnilx —a)
k=1 mer*d,c,x) Lo (RA e—2lx—al?y
C(s, A, d) 2 —(s—1)
< ——1 ||f||aniX(Rd) -K .

Proof In the sense of the norm | -
convergent, so it follow that

I Lo (R, e~ lx—al)> the multiple Hermite series is

2

K
fO =YY an(HHnilx —a)

k=lmerkd,c») Lo (R 2 lx—all?y

o
=2 2 wDH G =Dl e
k=K+1merkd,c.n) ’
o
SCE DIy gy D
mix k=K+1

o0 k
1
< C(s,)»,d)||f||%1s, (RY) Z / th
mix k:K+l k71
o0

1
= C(s,)»,d)||f||%-[;”.x(ﬂ£“)/ t_sdt

K
C(s,h,d), . 5
= _ 1 ”f”'H’YnM(Rd)

1
ks

KD,
and the proof is complete. O
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Corollary 2 Suppose f € HS . (RY) andr € Ng. Ifs 2 |rleo + 1, then for any A € R

mix

and a € RY,

X 2

V=Y Y am(f)I Hup(x —a)
k=1'merkd,c,») Lo(RA e—22lx—all?)
C(s, A, d) 5 s — P e
< , K6 [7oo 1)_
S — |r|oo — 1 ||f||H;71ix(Rd)
Proof According to (8), there exist ¢ > 1 such that
r _ 2 _ 2n\d|r| 17]oo
10" H O = @), e, =@ )y <K,
where
d
(m)gy = Hmf(mf —1--(mj —rj);
j=1
then
2 2
C 2 DIf I3y gy
Y (NI Huplx —a) < T,
melk(d,c,i) Lo(Rd e=4*lIx—all?y
Hence, from the proof of Theorem 2, the desired result holds. m]
2.3 The fundamental conjecture of HDMR in 7£5,,, (R%)
Definition 2 Given a nonempty set {ji, ..., j,} C {1,...,d}, then
k
rf e
={m € r“d,c,n):m >0Vl e {j1,..., jutandm; =0Vl ¢ {j1,..., ju}},

wherel € {1, ...,d}.

Using these sets, rk (d, ¢, 1) can be decomposed into the following form

r*d.e.) =Iy(d.c,2) + ) Tf(d.ch)
i

.....

J1<j2

12)
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and we refer to this as a HDMR decomposition of F"(d ,c, A); then for any f €
Lo (RY, e ||x—a||2)’ the multiple Hermite series (11) can be rewritten as

o0

fO=>"1 > anNHuG—a)+Y D> an(f)Hpalx —a)

k=1 \ merfd,cn J mer]!f(d,c,x)

+ Z Z am () Hp(x —a)+---

— .
h<imerf , (d.ch

13)

+ > o (f)Hpo(x —a) |,

k .
mGFjl’mde(d,L,)u)

which is referred to this as a Hermite-HDMR decomposition of f from £, (RY,
=32 x—al)?
e ).

Theorem 3 Suppose f € HS. (RY), r € Ng and s = |r|eo + 1. For afixed K € N, if

mix
u = u* is the smallest integer that satisfies

K +1

+1
(1+C)u > W’

<u <d,

then

18" f (x) — 8" Sux f ()12

Cz(Rd,e’)‘z Hx—a\lz)
C s X, d
< (S )

< 1 ||f||%_[3 R4 K6 lrle=1) (14)

s —|rloo —

Proof Denote
(p.q) =f p()g(x)e el dy,
Rd

where p, g € Lo(RY, e * 17 =al); let
K
AW =30 3 an(DHnak - a),
k=1 merkd,c,x)

Bx)= Y. Y an(NHuilx —a),

k=K+1merkd,c,»)

that is,
f(x) =Ax) + B(x)
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and

(£.4)=(a.4). (r.B)=(B. B)

Noting that

(Swf. f=Suf)=0
and

k+1

(A, f —Susf) =0 when (1+c)" > G

we have

(f=Suf, f—=8uf)=(A+B, f—Suwf)=(B, f) = (B, Sur )
=(B, B) — (B, Su= f),

since (B, Su*f> >0,

”f - Su*f||£2(Rd,e—)L2Hx—a\|2) g ”B”‘cz(Rd’e—Azl\x—aHz)v

and then (14) holds. |
This proof also reveals that the Hermite-HDMR approximation up to order K, that
is,
K
Yo Y awn(HHualx —a) (15)
k=1 merk,c,n)

is a truncated HDMR expansion of not more than order u if

K+1

+1
(1 + C)u > (2)\2)d ’

1 <u<d.
Hence, the degrees of freedom of (15) is

K+1 K4+ 1\\""!
o <—(2A2)d <1 + log (1 + —(2A2)d>> ) ,

which is the main reason that the Hermite-HDMR approximation can be used for high
dimensional problems.
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3 The meshless Hermite-HDMR FD method

3.1 Hermite-HDMR FD method

Let x = {)(,-}[N:1 C £2 be the interior node set with the size N and x’ = {x/ N R

ili=1
be the total node set with size N’ (including the boundary nodes). According to

d
rfd,cy={meNg:[[on;+0) <K3. (16)
j=1

for functions from H; . . (R?), we redefine the Hermite-HDMR smoothing up to order
K at a neighborhood of x;, i.e.,

Am
SkCe xi B = ) g Hualx —x),

melK(d,c) "™

where B8 > 0 is the smoothing factor and

d
k= [ Jmj + o).
j=1
Let {H(/‘)(x)}?"':1 denote the bases {Hp (%)}, crkq, and {k(j)}ﬁ’lzl denote
{km} K ,ie.,, M = |I'K(d, ¢)|, then for a given reference node x; € x, the
mel'*X(d,c)

solution u(x) of the problem (1) can be approximately represented as

M

Sm(x, xi B) =)

j=1

HWD (x — y; )
(x Xz)a(/)’ (17)
K’

)

then the interpolation equations at the reference node x; can be written as

H“)O/grx,') H(M)%xrxz-)
k(l) k(M) o] u(Xl)
HY O —x)  HY G —xi) am u(xnr)
B B
k@ ki

which in matrix notation becomes
Hia;=U'. (18)
Suppose &; = C;U’ is the least square solution of (18) under the weighted 2-norm
lleell,w = o' We,
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where W is the diagonal matrix constructed from the constant weights, i.e.,
W = diag (e—ﬂnmn%, e M ||§> _

Thus, at the reference node y;, the Laplace operator Au(y;) can be approximated by
M AHD©0) O

7 =D]a; =D/ C;U’
0y

1
j=1

and on the basis of the interior node set y = { Xi}fV: | C $2, the equation %Au(x) =
@(x) is discretized as

DIC, o(x1)
: U = :
D\ Cy ®(XN)

or in matrix notation,
A'U = .

By imposing the boundary conditions (u(xs) = v(x,) is known if x5 € x' — x), we
have the final difference system

AU = @', (19)

Due to the fast decay of the Gaussian weighted function, the difference matrix A is
very sparse, so this difference system can be solved efficiently by iteration methods,
such as the biconjugate gradient stabilized method (BCGS) [3,6] or the successive
over-relaxation (SOR) method.

3.2 The behavior of the Hermite-HDMR FD approximation

Since the fast decay of the weighted function eIk =xi ”2, those nodes located outside
the d-ball B(x;, p) = {x € R? : ||x — xi|l» < p} contribute very little to the reference
node x;, where the radius p is inversely related to A, i.e.,

P=X,

and throughout this paper, we use ¥ = 2.628. According to (17), the number of the
nodes located in the d-ball B(y;, p) should be at least equal to M, hence let

d
2

T Kk\Nd OM
——(5) =712l
rG+n A N
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where the constant 6 > 1, I"(n) is the gamma function (i.e., I'(n) = (n — 1)! whenn
is a positive integer), |§2| is the Lebesgue measure of §2, and N is the size of x; then

1\? 1 \YoMIr & + 1|82
() =Gm)

and together with Corollary 2 we have the following result:

Theorem 4 Under the conditions of (17), if u(x) € H’.. (R?) and s > 3, then

mix

1311_1)1}) ||Al/l(_x) - ASM(X, Xi» ﬁ)”,Cz(Rd,ei)‘z“xixi Hz)

C(s, A, d) [ .M ]‘—3
<) Nl ey | C——= ,
s—3 Il @ NVK

where Sy (x, xi, B) is defined by (17) and

M=%, o) and C" =0 <L>dr <f + 1) 2
’ K27 2

4 Numerical examples

For the given interior node set x = { Xi},N: 1» let’s define the average relative error
percentage (AREP) as follows

N

1
AREP(U) = 5 ;

Ui —u(xi)

-100%, where u(y;) # 0. Q1)
u(xi)

In the following, we use boxplots to express all the AREPs; and every boxplot will be
generated by independently repeating the computation 10 times with different random
node sets.

4.1 Case 1: Constant inhomogeneity, linear boundary condition

We consider
30
p(x) =—1 and v(x) = Y xi, (22)
i=1
where x € 2 = {x € R3 : |x|| < 1} and the explicit solution is
1 30
u() = 550 = Il + Y.
i=1
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d=30, unsmoothing Hermite-HDMR FD

50 = d=30, smoothing Hermite-HDMR FD

80

70+ 70+
[N
60f

50 - l\:__*?
==

30t AN
201 E=

60|

50
—

4r [

30,  In— |

20+

average Relative Error (%)
/
average Relative Error (%)

1000 5000 1074 5*10%4 105 1000 5000 1074 5*10%4 1075
N N

Fig.2 Results for test problem (22)
This problem is defined in a 30-dimensional unit sphere, the inhomogeneity ¢ is a
constant and the boundary condition does not vary significantly and is linear.

We show the AREPs obtained versus node size N in Fig. 2. Employing smoothing
clearly improves the accuracy of the results.

4.2 Case 2: Quadraticinhomogeneity, quartic boundary condition

We consider

20 20
1
2 4

p(0) == a7 and v(0) = 2>, (23)

i=1 i=1
where 2 = [—1, 11?° and the explicit solution u(x) = v(x). Here we make the
inhomogeneity ¢ more complex and choose a nonlinear boundary condition, but this
problem still has an intrinsic symmetry: ¢ is constant on the sphere ||x|| = r = const,

and v is constant when 2122 1 xf‘ = R = const, respectively.

d=20, unsmoothing Hermite-HDMR FD d=20, smoothing Hermite-HDMR FD

100——— 100
§ 80r L \\\ § 80 -
W 70f e o 70f
o )
= 60 - AN 2 60 [
®© N © _
© 50F = © 50r ——
x N o
g 401 N e 40 —— ST
S 3ol AN S 39l
: = g -
> g >
& 20} ~ & 20} ==
= K
10 10} = R
1000 5000 10"4 5107 105 1000 5000 1074 5107 1075
N N

Fig.3 Results for test problem (22)
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d=3, unsmoothing Hermite-HDMR FD d=3, smoothing Hermite-HDMR FD
50 —— : ‘ : : 50 —— ‘ : : :
Q. 1 3450
=§ 40 ] § 40
W 35 ] 0 35
230t 12
S 5 {1 g 25¢
4 4
o 20f {1 o 20} <
jo2} jo)] N
© 15 ] © 15¢ N
7] + [) o
> 10+t ~ > 10+ t
® o ® p==N
0 . . . ) = 0 . . . ) =
100 500 1000 2000 5000 100 500 1000 2000 5000
N N
d=5, unsmoothing Hermite-HDMR FD d=5, smoothing Hermite-HDMR FD
90 T T T T T 90 T T T T T
Seol | 1 g so}
5 L[] ] 5 L
o g 70
Weol 1 1 Woeot
[ 1 \ (]
> N 2
® 50 - N 1 ® 50r
& 40t ANp 1 & 40}
) ! RS [0) —_—
> 30| -+ - .
o i T o -——_ =+
Q20+ [ 1 Q 20} é‘"*%, -
® e ® ==
10 1 10+
0 0
100 500 1000 5000 10000 100 500 1000 5000 10000
N N
d=10, unsmoothing Hermite-HDMR FD d=10, smoothing Hermite-HDMR FD
100 100
< o * 1 % 90r
§ 80 | . - ] § 80+
o 70 =3 { o 70
4
2 60t N 1 2 eof
5 5 o | %
£ 4 = LE
8 30} S 18 s ¢
5 == 5 =4
3 20 S~ 1 3 20t =
= ==
10 ] 10k —
0olb— ‘ ‘ ‘ ‘ 0b— ‘ ‘ ‘ ‘
107 2*10M4  5*10M4 105 3*1015 1074 2*10°M4  5*10°4 1075 3*10°5
N N

Fig.4 Results for test problem (24)

We show the AREPs obtained versus node size N in Fig. 3.

4.3 Case 3: Transcendental inhomogeneity and boundary condition

We consider
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dxi+ -+ xq)
44+ (x1 4+ +x0)%)?

9(x) =Q2l|x||1* — d) exp(—x||*) —
X1+ +Xxg 9

= 1
v(x) =arctan ( >

) + exp(—x[*),

where 2 = [-3, 3]d, then the explicit solution u(x) = v(x).
We show the AREPs obtained versus node size N in Fig. 4.

5 Conclusions

In this work, we proposed a meshless Hermite-HDMR FD method to solve high-
dimensional Dirichlet problems. The approach is based on the local Hermite-HDMR
expansion with an additional smoothing technique. The multiple Hermite series is
connected with the HDMR decomposition and the mixed regularity condition for
obtaining a class of Hermite-HDMR approximations; the relevant error estimate is
theoretically built in a class of Hermite spaces. The method can not only provide
high order convergence but also effectively control the degrees of freedom in high-
dimensions. Numerical experiments in dimensions up to 30 show that the resulting
approximations are of very high quality, and we propose that the Hermite-HDMR
finite difference method is attractive for solving high-dimensional Dirichlet problems.
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