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ABSTRACT

In general, conventional computer vision techniques suffer from
an inability to detect hidden surface contacts due to line-of-sight
visibility problems. Rather than fitting models to scene objects
and estimating inter-object gaps, our approach is to leverage the
fact that light passing between and reflecting off the surfaces can
offer valuable information as it alters the appearance of nearby
surfaces. For a proof of concept demonstration, we employed a
machine learning approach to classifying adjacent surface imagery
to estimate hidden surface distances and contact locations in a
controlled setting under ambient lighting conditions. Our proof-
of-concept results demonstrate relatively high accuracy for the
estimation of gap size and the detection of contact between hidden
surfaces. We envision such measures could someday provide
complementary information to be combined with traditional
visible-surface methods, to obtain more precise and robust
estimates of hidden surface relationships.

CSS Concept

*Computing methodologies— Scene understanding

Keywords
Contact detection; Gap estimation; Occlusion, Depth sensing;
Indirect observation; SVM

1. INTRODUCTION

We define contact detection as the process of determination that
distance between two surfaces has effectively become zero. In
many applications including user interface, safety and security
systems it is crucial to detect physical contact between objects. In
some applications it is feasible to instrument objects with
electrical signals, to directly detect when the object comes in
contact with the sensing area. Such interactive displays typically
utilize capacitive, resistance, and surface wave sensors for touch
sensing. Examples of applications include human-machine
interfaces such as touch tablets, smart phones, and even car door
lock systems [1]-[7]. Robotics and industrial automation are
another application area where contact detection is a fundamental
aspect of physical manipulations [8]-[11].
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However, in some applications it is not possible nor desirable to
instrument the surfaces. In such cases contact detection can be
thought of as a special case of gap estimation, where gap is
defined as the distance between two surfaces of interest. One can
continually sense and estimate the size of the gap between
surfaces, e.g., using RGB or RGB-D (depth) sensors, and declare
contact when the gap falls below a threshold. An accurate and
robust method for the real time characterization of un-
instrumented surface relationships could someday enable a range
of applications such as human-computer interaction in future
workspaces, human-machine safety in industrial settings (e.g
contact avoidance between moving robotic components or
manufactured objects), and the detection of hidden breaches of
sterile fields in medical procedures. In particular, undetected
contact with a contaminated object during a sterile medical
procedure can introduce a healthcare-associated infection (HAI).

From consumer-level human-computer interaction to medical care,
there exist a large number of circumstances where make robust,
reliable, precise, and accurate assessments of the distances
between the objects impractical or impossible.

Gap estimation is difficult when the gap is not directly observable.
Such conditions arise for example when there is no direct view of
the object surfaces or the gap, or the views are occluded by
objects in the scene, including the objects of interest themselves
(self-occlusion). In situations where the relationship between the
sensors and the gap of interest remains relatively constant, the
sensors can likely be positioned to directly observe the gaps
formed between surfaces. In such circumstances, an instantaneous
discontinuity in color or depth in a gap region could indicate a
new contact between the surfaces.

Here we present the idea and some preliminary proof-of-concept
results for a novel vision-based approach for relatively direct
(non-inference based) measures of inter-surface distances and
contact for surfaces that are hidden (e.g., occluded) with respect to
conventional line-of-sight optical sensing. As opposed to directly
observing or sensing the dynamic objects themselves, our idea is
to look for evidence of the hidden surface relationships by
observing the environmental effects of signals (e.g., ambient light)
that propagate between and reflect off the hidden surfaces, spilling
into observable areas of the environment. In some sense this is
similar to the transit approach astronomers use to find planets
because distant planets are not directly visible they look for
evidence of the planet in the illumination patterns of nearby stars.
We remark that recently Bouman et. al[12] leveraged the subtle
spatio-temporal radiance variations that arise on the ground at the
base of a wall’s edge to construct a one-dimensional video of the
hidden scene behind the wall. More specifically they could
identify the number and location of people in a hidden scene.
They assume the observation plane(ground) is planar and
Lambertian, the visible and hidden scene are modelled as light



emitted from a large celestial sphere, and the people in the hidden
scene are modelled as cylinder.

In our proof-of-concept experiments we use machine learning
(SVM) to classify the visible environmental effects of these
observable emerging light signals as a function of the physical gap
size, one could estimate the gap size from such observations. Here
we present the basic idea, specific methods, and results from
controlled experiments. In the future we expect adjacent surface
observations will offer complementary information that can be
combined with other conventional methods to obtain more precise
contact detection and gap estimation, in particular under
conditions where gaps are not directly observable.

The remainder of this article is organized as follows. We present
an overview of the model representation in Section II. Our
experimental results are described in Section III. Finally, we
present some conclusions and future work in Section I'V.

2. EXPERIMENTAL METHOD

The purpose of this section is to demonstrate the effect of
presence of and object on the adjacent surfaces. We use a regular
camera to capture images from the scene, however, depth or touch
information can not be obtained using a single camera. The key
idea is that rather than relying on direct observations of an object,
surface, or gap, we observe the visible surfaces adjacent to the
object. In particular, as one object approaches another object, and
the hidden gap shrinks or grows, the light scatter on the adjacent
surfaces also changes. This change in the adjacent surface lighting
can provide additional information about the geometric
relationship between the two objects. By visualizing the
information in the surroundings of the surfaces adjacent to the
object of interest we illustrate how presence of the object in the
scene can affect its surroundings. Figure 1 presents a conceptual

illustration of the idea.
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Figure 1. Seeing around the object.

2.1 Light Scatter Visualization

To illustrate the effects of gap-induced illumination on the
adjacent surfaces and provide some intuition for how
measurement of the effect can contribute to the sensing of the gap,
we set up a simple experiment. We illuminated a simple
environment with a regular incandescent light bulb placed above a
table and imaged the scene with a flat hand positioned at three
different heights. As shown in Figure 2, light scattering off the
underside of the hand is visible on the table and glass surfaces.
Note that we subtracted a static background image from each
dynamic image, according to the following equation:

U, y, h) —I(x, )|, h=0,48
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where I(x, y, h) and I(x, y) represent scene including hand at
height h inches and scene without presence of hand, respectively.
To offer a better sense of the hand’s position, we made sure the
finger tips were visible in the images. We remark that for the
purpose of a better visualization we applied a threshold to pixel
values to remove noise, but we did not used thresholding to train
the model. As shown in the images, as the gap shrinks the
adjacent scattered light changes accordingly.

(b) ©
Figure 2. (a) the environment without presence of hand. (b, ¢
and d) The palm of the hand is placed at the height of 6, 3, and
0 inches.

(d)

2.2 Contact Detection and Gap Estimation

Classification

To exploit the adjacent light scatter phenomena, we form vision-
based measurements of the surrounding scene and train a support
vector machine (SVM) using manually labelled images, to classify
the conditions as corresponding to different gap sizes or contact
conditions. SVM performs classification by finding the
hyperplane that maximizes the margin between the two classes.
The vectors that define the hyperplane are called support vectors.
In other words, given labelled d-dimensional training data
{x1, %3, ..., xp} and y; € {—1,1} be the class label of x;, The
decision boundary should classify all points correctly s.t
yiwTx; +b) = 1,Vi<n, and it can be found by solving the
following constrained optimization problem:

1
Minimize W

overallw € R% and b € R subjectto y;(wTx; + b) = 1,Vi < n.
The data preprocessing step consists of converting each image to
grayscale, background subtraction, eliminating the fixed
rectilinear region that contains the hand, then down sampling and



normalizing the imagery. We do not extract any sort of features
from the images. We use the preprocessed images as direct input
data to the SVM.

3. PROOF-OF-CONCEPT EXPERIMENTS

In this section we present quantitative results from three different
experiments including (a) hidden contact detection, (b) estimation
of the hidden gap between an object and a table, and (c) and
hidden contact detection and localization. The experimental set up
consists of a single ordinary camera placed next to a table,
viewing a surface from a height of one meter above the table, and
a regular incandescent light bulb placed near the table. To avoid
utilizing the information about the object itself, in every image we
mask out (remove) a fixed-dimension rectilinear region that would
otherwise include the object. The result is a set of masked images
that appear virtually identical—they contain the scattered adjacent
lighting, but it is imperceptible. We use machine learning to
extract the imperceptible adjacent light patterns from these
masked images, and to classify the gap size and contact state of
the hidden surfaces.

3.1 Contact Detection

The goal of this experiment is to develop a model to classify
contact and none contact conditions. For this purpose, we set up a
binary classification problem. We place an object at the height of
6 inches from the table surface and while the object is moving up,
down, left and right with different orientation we collect 60
images by capturing one per second. The object is continuously
approaching the surface until the distance between the object and
surface reaches 2 inches. These are labelled as non-contact
situations. For the contact conditions, while the object is moving
around at the distance of less than 2 inches including touching the
surface, 30 images are captured. The procedure is repeated for
different hand shapes including, palm, fist, vertical palm, and
vertical fist. As a result, the data set contains 360 images which
240 images represent none contact and the remaining denote
contact conditions. Figure 3 shows the fist and palm of the hand
for both contact and none contact conditions. The translucent
white region on the right in each image is intended to show the
fixed-dimension region that was removed from the camera image
before processing by the SVM, while also showing what was in
that region before removal. In other word we Aid the hand by
completely omitting the right half of the training and test images.

After training the model, 10-fold cross validation and fl-score
were used to evaluate the model performance. The results are
shown in table I where Label 0 and 1 represent contact and non-
contact events, respectively. Table I reveals that although the
objects were completely removed from the images and different
hand shapes were used in the experiment, the model could
effectively classify contact versus non-contact conditions with the
accuracy of almost 98 percent for each class. The obtained result
is compelling and the accuracy as high as 98 percent demonstrates
that our method provides precise information for the purpose of
contact detection.

Table I. The Mean and Standard Deviation(STD) of the
classification accuracy for contact(0) and non-contact(1)

situations.
Contact/Non-Contact Mean STD
0 97.99 0.02
1 98.93 0.01

Area remaved flom ha image

awo %0 0

(® (h)

Figure3: (a), (b), (¢), and (d) represent non-contact situations,

and (e), (f), (g), and (h) indicate contact situations for palm of

the hand, fist, vertical palm, and vertical fist, respectively. The

translucent white area indicates the portion removed from the
images given to the SVM.

3.2 Gap Estimation

In this experiment we measure the distance between two surfaces
of interest. We place an object at the height of 6 inches from the
surface and capture 30 images while the object is moving to the
left and right with different orientations. We repeat this procedure
with two-inch reductions in the gap until the object reaches the
surface. We also repeat this for different objects, including four
different hand shapes. Our final data set contains 480 images,
each labelled with the object distance to the surface.

The results are shown in Table II. It turns out that the changes in
the light scattering on the table surface accounts for the shrinking
gap. This means that the light is dispersed on the adjacent surfaces
to the object as it hits the object which causes subtle variations
that can not be detected with the human eyes. However, SVM
could successfully extract the subtle patterns in the scattered light
and estimate the gap accordingly with the accuracy ranging from



95 to 98 percent. This high accuracy indicates our method
performs well on the task of gap estimation.

Table II. The Mean and Standard Deviation(STD) of the
classification accuracy at different gap sizes. Labels 0, 1, 2, 3
indicates gap sizes 0, 2, 4, and 6 inches, respectively.

Labels 0 1 2 3
Mean 96.93 98.32 96.96 95.18
STD 0.02 0.01 0.02 0.02

3.3 Contact Detection and Localization

In this experiment we detect and localize contact. For this purpose,
we drew a 6 x 6-inch square on the table surface and divide the
square into nine equally-sized sub-squares containing the numbers
1 through 9. For each sub square while the pointing finger is
touching the surface and moving around, we capture 30 images.
We repeat the same procedure for all the sub squares and label the
images accordingly. Moreover, 60 images are captured as the
fingertip is moving above the entire square at the height of 1 inch.
As a consequence, we have a multi-class classification. The
results shown in Table III demonstrate the effectiveness of our
method in terms of both contact detection and localization. The
experiment was performed on a laptop equipped with Intel 2.66
GHz Core 2 Duo CPU and 4G of RAM, and took only 0.014
seconds to classify an image, lending support for real-time on-line
applications. Our method achieved a low standard deviation, and a
high classification accuracy of roughly 98 percent for almost all
classes.

problem where labels 1-9 represent the contact zones and label 10
indicates no-contact situations. Figure 4 shows two contact and
one no-contact situations.

(@)

(b) (c)

Figure 4: (a), (b) represent fingertip touching sub squares
number 1 and 8, respectively. (c) denotes a non-contact
situation. The translucent white area indicates the portion
removed from the images given to the SVM.

TABLE III: The mean and standard deviation (STD)
classification accuracy for different contact zones (labels 1-9)
and no-contact conditions (label 10).

fab iy s 13 14 |5 |6 [7 |8 |9 |10
els

Me | 98. | 98. | 98. | 98. | 98. | 98. | 92. | 98. | 87. | 99.
an | 67 |95 |18 |46 |67 |67 |73 |82 |62 |20
ST [00 [00 [00[00[00 00|, 00, [00
D |3 |2 |3 |3 |3 |2 [% ]2 [0 ],

4. Discussion and Future Work

We have presented proof-of-concept experiments for a novel
vision-based method for contact detection and gap estimation.
Common approaches such as camera-based computer vision and
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acoustic ranging are thwarted by line-of-sight issues including
partial and full occlusions of the surfaces of interest, often by the
objects themselves (self-occlusion). Unlike the existing
approaches we do not rely on models for the objects of interest.
Instead we observe the surfaces adjacent to the object for evidence
of the hidden surface relationships. Our proof-of-concept
experiment employed a single commercial off-the-shelf web
camera and machine learning methods to detect subtle patterns in
the light scattering on the adjacent surfaces. The results
demonstrate the potential of our approach, encouraging further
investigation and consideration of possible uses in a variety of
applications.

One of the primary challenges in our method is that while the light
signals could provide useful information about a gap, they will
also be affected by other scene geometry and objects—any
changes in lightning or other geometry could affect the SNR. In
the future we aim to overcome the limitations and further explore
solutions for conditions where the camera view and light source
are not static. For example, a similar approach to [13] can be used
to make the method robust in dynamic scenes. They used a
standard 2D camera, and a laser pointer to detect motion and track
a moving object hidden around a corner or behind a wall even in
unknown rooms. Indeed, to obtain a measured image containing
only light from the laser, they took the difference of images
captured with and without laser illumination. Additionally, they
subtracted a measurement image containing light reflected by the
background that was smooth and well approximated by a linear
function.

Furthermore, we aim to identify methods for possibly increasing
the signal-to-noise ratio (SNR) and create additive or destructive
patterns by combining two or more sources of propagating signals
including time division, color/spectral multiplexing, and pseudo-
random spread spectrum approaches.

In addition, the other approach we will take is to train the system
with massive amount of data to facilitate more advanced methods
(e.g., deep learning). To generate desired amount of data we will
leverage the precise continuous measurement systems including
magnetic or optical sensors on the objects with models of the
objects and configures the space with precision imagery of the
gaps. Similar to the light signals, it is possible the spectral
properties of audio passing through hidden gaps will depend on
the surface and other nearby materials. Therefore, as an alternative
to light signals it is promising to leverage pseudo-random signals
with relatively wide band spectral characteristics [14] and to learn
the spectral profiles that correspond to various gap sizes, in effect
measuring the dynamic acoustic impulse response function
associated with the surfaces. However, in this case, another
challenge arises from poor source and sensor choices and/or
positions that should be taken into consideration.

In general, we consider our approach as a complement to visible
surface approaches to provide more precise and robust estimates
of hidden geometric relationships
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