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ABSTRACT 
In general, conventional computer vision techniques suffer from 
an inability to detect hidden surface contacts due to line-of-sight 
visibility problems. Rather than fitting models to scene objects 
and estimating inter-object gaps, our approach is to leverage the 
fact that light passing between and reflecting off the surfaces can 
offer valuable information as it alters the appearance of nearby 
surfaces. For a proof of concept demonstration, we employed a 
machine learning approach to classifying adjacent surface imagery 
to estimate hidden surface distances and contact locations in a 
controlled setting under ambient lighting conditions. Our proof-
of-concept results demonstrate relatively high accuracy for the 
estimation of gap size and the detection of contact between hidden 
surfaces. We envision such measures could someday provide 
complementary information to be combined with traditional 
visible-surface methods, to obtain more precise and robust 
estimates of hidden surface relationships.  
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1. INTRODUCTION 
We define contact detection as the process of determination that 
distance between two surfaces has effectively become zero. In 
many applications including user interface, safety and security 
systems it is crucial to detect physical contact between objects. In 
some applications it is feasible to instrument objects with 
electrical signals, to directly detect when the object comes in 
contact with the sensing area. Such interactive displays typically 
utilize capacitive, resistance, and surface wave sensors for touch 
sensing. Examples of applications include human-machine 
interfaces such as touch tablets, smart phones, and even car door 
lock systems [1]-[7]. Robotics and industrial automation are 
another application area where contact detection is a fundamental 
aspect of physical manipulations [8]-[11].  

However, in some applications it is not possible nor desirable to 
instrument the surfaces. In such cases contact detection can be 
thought of as a special case of gap estimation, where gap is 
defined as the distance between two surfaces of interest. One can 
continually sense and estimate the size of the gap between 
surfaces, e.g., using RGB or RGB-D (depth) sensors, and declare 
contact when the gap falls below a threshold. An accurate and 
robust method for the real time characterization of un-
instrumented surface relationships could someday enable a range 
of applications such as human-computer interaction in future 
workspaces, human-machine safety in industrial settings (e.g 
contact avoidance between moving robotic components or 
manufactured objects), and the detection of hidden breaches of 
sterile fields in medical procedures. In particular, undetected 
contact with a contaminated object during a sterile medical 
procedure can introduce a healthcare-associated infection (HAI).  
From consumer-level human-computer interaction to medical care, 
there exist a large number of circumstances where make robust, 
reliable, precise, and accurate assessments of the distances 
between the objects impractical or impossible.  
Gap estimation is difficult when the gap is not directly observable. 
Such conditions arise for example when there is no direct view of 
the object surfaces or the gap, or the views are occluded by 
objects in the scene, including the objects of interest themselves 
(self-occlusion). In situations where the relationship between the 
sensors and the gap of interest remains relatively constant, the 
sensors can likely be positioned to directly observe the gaps 
formed between surfaces. In such circumstances, an instantaneous 
discontinuity in color or depth in a gap region could indicate a 
new contact between the surfaces.  
Here we present the idea and some preliminary proof-of-concept 
results for a novel vision-based approach for relatively direct 
(non-inference based) measures of inter-surface distances and 
contact for surfaces that are hidden (e.g., occluded) with respect to 
conventional line-of-sight optical sensing. As opposed to directly 
observing or sensing the dynamic objects themselves, our idea is 
to look for evidence of the hidden surface relationships by 
observing the environmental effects of signals (e.g., ambient light) 
that propagate between and reflect off the hidden surfaces, spilling 
into observable areas of the environment. In some sense this is 
similar to the transit approach astronomers use to find planets 
because distant planets are not directly visible they look for 
evidence of the planet in the illumination patterns of nearby stars. 
We remark that recently Bouman et. al[12] leveraged the subtle 
spatio-temporal radiance variations that arise on the ground at the 
base of a wall’s edge to construct a one-dimensional video of the 
hidden scene behind the wall. More specifically they could 
identify the number and location of people in a hidden scene. 
They assume the observation plane(ground) is planar and 
Lambertian, the visible and hidden scene are modelled as light 
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emitted from a large celestial sphere, and the people in the hidden 
scene are modelled as cylinder.  
In our proof-of-concept experiments we use machine learning 
(SVM) to classify the visible environmental effects of these 
observable emerging light signals as a function of the physical gap 
size, one could estimate the gap size from such observations. Here 
we present the basic idea, specific methods, and results from 
controlled experiments. In the future we expect adjacent surface 
observations will offer complementary information that can be 
combined with other conventional methods to obtain more precise 
contact detection and gap estimation, in particular under 
conditions where gaps are not directly observable.  
The remainder of this article is organized as follows. We present 
an overview of the model representation in Section II. Our 
experimental results are described in Section III. Finally, we 
present some conclusions and future work in Section IV.  

2.  EXPERIMENTAL METHOD 
The purpose of this section is to demonstrate the effect of 
presence of and object on the adjacent surfaces. We use a regular 
camera to capture images from the scene, however, depth or touch 
information can not be obtained using a single camera. The key 
idea is that rather than relying on direct observations of an object, 
surface, or gap, we observe the visible surfaces adjacent to the 
object. In particular, as one object approaches another object, and 
the hidden gap shrinks or grows, the light scatter on the adjacent 
surfaces also changes. This change in the adjacent surface lighting 
can provide additional information about the geometric 
relationship between the two objects. By visualizing the 
information in the surroundings of the surfaces adjacent to the 
object of interest we illustrate how presence of the object in the 
scene can affect its surroundings. Figure 1 presents a conceptual 
illustration of the idea. 

 
Figure 1. Seeing around the object. 

2.1 Light Scatter Visualization 
To illustrate the effects of gap-induced illumination on the 
adjacent surfaces and provide some intuition for how 
measurement of the effect can contribute to the sensing of the gap, 
we set up a simple experiment. We illuminated a simple 
environment with a regular incandescent light bulb placed above a 
table and imaged the scene with a flat hand positioned at three 
different heights. As shown in Figure 2, light scattering off the 
underside of the hand is visible on the table and glass surfaces. 
Note that we subtracted a static background image from each 
dynamic image, according to the following equation:  

|I(x, y, h) − I(x, y)|, h = 0, 4, 8 

where I(x, y, h) and I(x, y) represent scene including hand at 
height h inches and scene without presence of hand, respectively. 
To offer a better sense of the hand’s position, we made sure the 
finger tips were visible in the images. We remark that for the 
purpose of a better visualization we applied a threshold to pixel 
values to remove noise, but we did not used thresholding to train 
the model. As shown in the images, as the gap shrinks the 
adjacent scattered light changes accordingly.  

 
(a) 

 

(b)   (c)  (d) 

Figure 2. (a) the environment without presence of hand. (b, c 
and d) The palm of the hand is placed at the height of 6, 3, and 

0 inches. 

2.2 Contact Detection and Gap Estimation 
Classification 
To exploit the adjacent light scatter phenomena, we form vision-
based measurements of the surrounding scene and train a support 
vector machine (SVM) using manually labelled images, to classify 
the conditions as corresponding to different gap sizes or contact 
conditions. SVM performs classification by finding the 
hyperplane that maximizes the margin between the two classes. 
The vectors that define the hyperplane are called support vectors. 
In other words, given labelled d-dimensional training data 
*          +  and     *    +  be the class label of   , The 
decision boundary should classify all points correctly s.t 
  ( 

     )         , and it can be found by solving the 
following constrained optimization problem:  

         
 

 
   

overall      and     subject to    (      )         .  
The data preprocessing step consists of converting each image to 
grayscale, background subtraction, eliminating the fixed 
rectilinear region that contains the hand, then down sampling and 
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normalizing the imagery. We do not extract any sort of features 
from the images. We use the preprocessed images as direct input 
data to the SVM.  

3. PROOF-OF-CONCEPT EXPERIMENTS 
In this section we present quantitative results from three different 
experiments including (a) hidden contact detection, (b) estimation 
of the hidden gap between an object and a table, and (c) and 
hidden contact detection and localization. The experimental set up 
consists of a single ordinary camera placed next to a table, 
viewing a surface from a height of one meter above the table, and 
a regular incandescent light bulb placed near the table. To avoid 
utilizing the information about the object itself, in every image we 
mask out (remove) a fixed-dimension rectilinear region that would 
otherwise include the object. The result is a set of masked images 
that appear virtually identical—they contain the scattered adjacent 
lighting, but it is imperceptible. We use machine learning to 
extract the imperceptible adjacent light patterns from these 
masked images, and to classify the gap size and contact state of 
the hidden surfaces.  

3.1 Contact Detection 
The goal of this experiment is to develop a model to classify 
contact and none contact conditions. For this purpose, we set up a 
binary classification problem. We place an object at the height of 
6 inches from the table surface and while the object is moving up, 
down, left and right with different orientation we collect 60 
images by capturing one per second. The object is continuously 
approaching the surface until the distance between the object and 
surface reaches 2 inches. These are labelled as non-contact 
situations. For the contact conditions, while the object is moving 
around at the distance of less than 2 inches including touching the 
surface, 30 images are captured. The procedure is repeated for 
different hand shapes including, palm, fist, vertical palm, and 
vertical fist. As a result, the data set contains 360 images which 
240 images represent none contact and the remaining denote 
contact conditions. Figure 3 shows the fist and palm of the hand 
for both contact and none contact conditions. The translucent 
white region on the right in each image is intended to show the 
fixed-dimension region that was removed from the camera image 
before processing by the SVM, while also showing what was in 
that region before removal. In other word we hid the hand by 
completely omitting the right half of the training and test images.  
After training the model, 10-fold cross validation and f1-score 
were used to evaluate the model performance. The results are 
shown in table I where Label 0 and 1 represent contact and non-
contact events, respectively. Table I reveals that although the 
objects were completely removed from the images and different 
hand shapes were used in the experiment, the model could 
effectively classify contact versus non-contact conditions with the 
accuracy of almost 98 percent for each class. The obtained result 
is compelling and the accuracy as high as 98 percent demonstrates 
that our method provides precise information for the purpose of 
contact detection.  

Table I. The Mean and Standard Deviation(STD) of the 
classification accuracy for contact(0) and non-contact(1) 

situations. 
Contact/Non-Contact  Mean  STD  

0  97.99  0.02  

1 98.93 0.01 

 
(a)          (b) 

   
(c)         (d) 

 
(e)         (f) 

 
(g)         (h) 

Figure3: (a), (b), (c), and (d) represent non-contact situations, 
and (e), (f), (g), and (h) indicate contact situations for palm of 

the hand, fist, vertical palm, and vertical fist, respectively. The 
translucent white area indicates the portion removed from the 

images given to the SVM. 

3.2 Gap Estimation 
In this experiment we measure the distance between two surfaces 
of interest. We place an object at the height of 6 inches from the 
surface and capture 30 images while the object is moving to the 
left and right with different orientations. We repeat this procedure 
with two-inch reductions in the gap until the object reaches the 
surface. We also repeat this for different objects, including four 
different hand shapes. Our final data set contains 480 images, 
each labelled with the object distance to the surface.  
The results are shown in Table II. It turns out that the changes in 
the light scattering on the table surface accounts for the shrinking 
gap. This means that the light is dispersed on the adjacent surfaces 
to the object as it hits the object which causes subtle variations 
that can not be detected with the human eyes. However, SVM 
could successfully extract the subtle patterns in the scattered light 
and estimate the gap accordingly with the accuracy ranging from 
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95 to 98 percent. This high accuracy indicates our method 
performs well on the task of gap estimation.  

Table II. The Mean and Standard Deviation(STD) of the 
classification accuracy at different gap sizes. Labels 0, 1, 2, 3 

indicates gap sizes 0, 2, 4, and 6 inches, respectively. 

Labels  0  1 2 3 

Mean 96.93 98.32 96.96 95.18 

STD 0.02 0.01 0.02 0.02 

3.3 Contact Detection and Localization 
In this experiment we detect and localize contact. For this purpose, 
we drew a 6 × 6-inch square on the table surface and divide the 
square into nine equally-sized sub-squares containing the numbers 
1 through 9. For each sub square while the pointing finger is 
touching the surface and moving around, we capture 30 images. 
We repeat the same procedure for all the sub squares and label the 
images accordingly. Moreover, 60 images are captured as the 
fingertip is moving above the entire square at the height of 1 inch. 
As a consequence, we have a multi-class classification. The 
results shown in Table III demonstrate the effectiveness of our 
method in terms of both contact detection and localization. The 
experiment was performed on a laptop equipped with Intel 2.66 
GHz Core 2 Duo CPU and 4G of RAM, and took only 0.014 
seconds to classify an image, lending support for real-time on-line 
applications. Our method achieved a low standard deviation, and a 
high classification accuracy of roughly 98 percent for almost all 
classes.  
problem where labels 1–9 represent the contact zones and label 10 
indicates no-contact situations. Figure 4 shows two contact and 
one no-contact situations.  

 
(a)     (b)     (c) 

Figure 4: (a), (b) represent fingertip touching sub squares 
number 1 and 8, respectively. (c) denotes a non-contact 

situation. The translucent white area indicates the portion 
removed from the images given to the SVM. 

TABLE III: The mean and standard deviation (STD) 
classification accuracy for different contact zones (labels 1-9) 

and no-contact conditions (label 10). 
lab
els  1  2  3  4  5  6  7  8  9  10  

Me
an  

98.
67  

98.
95  

98.
18  

98.
46  

98.
67  

98.
67  

92.
73  

98.
82  

87.
62  

99.
20  

ST
D  

0.0
3  

0.0
2  

0.0
3  

0.0
3  

0.0
3  

0.0
2  0.1  0.0

2  0.1  0.0
1  

4. Discussion and Future Work 
We have presented proof-of-concept experiments for a novel 
vision-based method for contact detection and gap estimation. 
Common approaches such as camera-based computer vision and 

acoustic ranging are thwarted by line-of-sight issues including 
partial and full occlusions of the surfaces of interest, often by the 
objects themselves (self-occlusion). Unlike the existing 
approaches we do not rely on models for the objects of interest. 
Instead we observe the surfaces adjacent to the object for evidence 
of the hidden surface relationships. Our proof-of-concept 
experiment employed a single commercial off-the-shelf web 
camera and machine learning methods to detect subtle patterns in 
the light scattering on the adjacent surfaces. The results 
demonstrate the potential of our approach, encouraging further 
investigation and consideration of possible uses in a variety of 
applications.  
One of the primary challenges in our method is that while the light 
signals could provide useful information about a gap, they will 
also be affected by other scene geometry and objects—any 
changes in lightning or other geometry could affect the SNR. In 
the future we aim to overcome the limitations and further explore 
solutions for conditions where the camera view and light source 
are not static. For example, a similar approach to [13] can be used 
to make the method robust in dynamic scenes. They used a 
standard 2D camera, and a laser pointer to detect motion and track 
a moving object hidden around a corner or behind a wall even in 
unknown rooms. Indeed, to obtain a measured image containing 
only light from the laser, they took the difference of images 
captured with and without laser illumination. Additionally, they 
subtracted a measurement image containing light reflected by the 
background that was smooth and well approximated by a linear 
function.  
Furthermore, we aim to identify methods for possibly increasing 
the signal-to-noise ratio (SNR) and create additive or destructive 
patterns by combining two or more sources of propagating signals 
including time division, color/spectral multiplexing, and pseudo-
random spread spectrum approaches.  
In addition, the other approach we will take is to train the system 
with massive amount of data to facilitate more advanced methods 
(e.g., deep learning). To generate desired amount of data we will 
leverage the precise continuous measurement systems including 
magnetic or optical sensors on the objects with models of the 
objects and configures the space with precision imagery of the 
gaps. Similar to the light signals, it is possible the spectral 
properties of audio passing through hidden gaps will depend on 
the surface and other nearby materials. Therefore, as an alternative 
to light signals it is promising to leverage pseudo-random signals 
with relatively wide band spectral characteristics [14] and to learn 
the spectral profiles that correspond to various gap sizes, in effect 
measuring the dynamic acoustic impulse response function 
associated with the surfaces. However, in this case, another 
challenge arises from poor source and sensor choices and/or 
positions that should be taken into consideration.  
In general, we consider our approach as a complement to visible 
surface approaches to provide more precise and robust estimates 
of hidden geometric relationships  
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