Nanosensors for Water Quality Monitoring

2 Peter J. Vikesland^{1,2}

1

- 3 ¹Via Department of Civil and Environmental Engineering and the Institute for Critical
- 4 Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA
- 5 ²Center for the Environmental Implications of Nanotechnology (CEINT), Duke University,
- 6 Durham, NC, USA

7 **ABSTRACT**

- 8 Nanomaterial enabled sensors are being designed for high efficiency, multiplex functionality,
- 9 and high flexibility sensing applications. Many existing nanosensors have the inherent capacity
- 10 to achieve such goals, however, they require further development into consumer and operator
- 11 friendly tools with the ability to detect analytes in previously inaccessible locations, as well as at
- 12 greater scale than heretofore possible. Here I discuss how nanotechnology enabled sensors
- 13 have great, as yet unmet, promise to provide widespread and potentially low-cost monitoring
- of chemicals, microbes, and other analytes in drinking water.

MAIN TEXT

- 16 Throughout history the quality of water for consumption has been monitored to minimize
- 17 exposure to disease causing agents. The ancient Romans, for example, recognized the need for
- 18 high quality water with the architect and civil engineer Vitruvius noting in his *de Architectura*
- that water composition depends on 'the quality of the earth' through which it flows or is
- 20 collected and that water quality can be ascertained either by assessing the physical attributes
- of the people who consume the water or by visually measuring its corrosivity towards brass¹.
- 22 Over the intervening centuries, we have progressively improved our capacity to detect water

contamination. Across much of the world, the water that comes out of the tap is clean and fit for consumption. This story, however, is not universal. Shockingly, there are more than 844 million people without access to safe drinking water², and nearly 2 million, primarily children below age 5, who die every year due to a lack of access to safe drinking water. Under the aegis of the UN Sustainable Development Goals (and the Millennium Development Goals that preceded them) these numbers are declining, but climate change, increasing local and global population pressures, rural to urban human migration, under-investment in infrastructure, and the concomitant declines in water availability make further improvements increasingly daunting.

Water quality monitoring, both at large and small scale, is challenging due to the variability and complexity of the matrix and the low concentrations of pollutants that need to be detected. In recognition of these issues, nanomaterial-enabled sensor platforms have received increasing levels of attention from the research community ever since the first promising reports of nanowire³ and quantum dot⁴ enabled sensing. Owing to their novel properties, nanomaterial-enabled sensor platforms for water quality promise ultralow multiplex detection and rapid analysis times⁵⁻⁷. While there continues to be great excitement in the laboratory and in the literature about nano-enabled sensors, to date only a few such sensor devices (e.g., RapidChek*, Watersafe*) have made it to market, and the societal impacts of this line of research have fallen short of its initial promise. The question this Perspective seeks to address is what should the next directions be for the nanosensor field – particularly with respect to water quality monitoring. Herein, I summarize the current state of nanotechnology enabled sensors

for water quality monitoring, discuss potential focus areas for nanosensor application within the water monitoring arena, and then conclude with some final considerations.

Nanotechnology-enabled sensors

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The word sensor stems from the Latin word sentio, which means to perceive or observe. In the context of water-quality monitoring, sensors respond to the presence of a contaminant or analyte and provide output that can be interpreted by an end-user. Over the centuries, humankind has moved beyond its five basic senses and developed a suite of water quality sensors to detect pathogens, organic and inorganic chemicals, and other water quality parameters (e.g., pH, hardness [the amount of dissolved calcium and magnesium in the water], turbidity [the cloudiness of the water]) with the ultimate purpose to protect users of a particular water. Such sensors may be centrally located within a water treatment plant, found within a distribution system, or even located at the point of use (POU). They can be on-line, evaluating the quality of the water as it flows past, or off-line and used to evaluate grab or composite samples. At the present time, most methods for the detection of regulated contaminants (Table 1) involve collection of periodic samples that are evaluated off-line using chromatographic and spectroscopic methods for organic and inorganic chemicals and a range of approaches for coliforms, fecal coliforms, Giardia, Cryptosporidium, Legionella, and viruses⁸. Nanotechnology enabled sensors have the capacity to replace many existing water quality sensors. Others have explicitly differentiated the terms nanoprobe and nanosensor, noting that a nanosensor measures an analyte and requires rapid and reversible binding, while a nanoprobe selectively detects microbes or chemicals with high sensitivity, but does not require reversibility nor is it quantitiative⁹. For simplicity, herein, I utilize a holistic definition and use

the general term nanosensor to reflect any sensor platform that utilizes the unique optical, electrical, or magnetic properties of a nanomaterial to enhance analyte detection. To date a broad range of nanosensors have been proposed for the sensitive detection of pH, pathogens, and toxins in water⁹⁻¹².

At the most basic level a nanosensor consists of 1) a nanomaterial, 2) a recognition element, and 3) a mechanism for signal transduction¹³. Analytes of interest interact with the recognition element and induce a detectable signal that can be acquired¹². Nanosensor specificity is achieved either by detecting an intrinsic signal from the analyte or by employing highly specific recognition elements that ideally bind only to a given target. The sensitivity of a nanosensor arises as a function of the novel optical, electrical, or magnetic properties of the nanomaterial itself as well as the signal transduction method used to generate a signal following association with an analyte. **Figure 1** illustrates representative nanosensor architectures for environmental analyte detection.

The literature contains numerous reports of extremely low detection limits for many nanosensors; however, such detection limits are often not verified under realistic conditions that reflect water quality in the field. Furthermore, because of the small scale of a typical nanosensor platform, ensuring the association of an analyte with the sensor interface is a non-trivial consideration. Such is particularly true for biological particulates such as bacterial cells, viruses, and protozoa that may be dangerous at concentrations as low as a single organism or virus particle and that have similar or larger dimensions than the sensor. For these types of analytes, sample pretreatment (i.e., purification or concentration) may be required for optimal nanosensor deployment. Potential approaches to pretreatment include rapidly developing

methods such as microfluidic separation^{14,15} and nanoparticle based isolation¹⁶ as well as more standardized filtration¹⁷ and centrifugation based methodologies. Sample pretreatment is a focus area for many sensor research laboratories and is not discussed in detail here.

Nanosensors can be classified based upon the types of nanomaterials they contain, the analytes they detect, and the signal transduction method employed to monitor analyte recognition. For simplicity, I utilize the latter and explicitly only discuss nanosensors that rely upon the most broadly applied signal transduction methods: optical, electrical, and magnetic.

Table 2 summarizes the variety of nanomaterials employed in water quality nanosensors.

Detailed descriptions of the many types of nanomaterials employed within nanosensors can be found elsewhere 10,18-21.

Optical signal transduction. In an optical sensor, a signal is produced when the target analyte interacts with a nanomaterial. This approach is highly popular due to its general simplicity of operation, rapid readout, and practical sensitivity. Fluorescence and surface plasmon-enabled spectroscopies are the dominant optical signal transduction approaches.

Fluorescence is based on the measurement of the emission of a fluorophore when it returns to its ground state following light excitation²². Fluorescent nanoparticles such as quantum dots, metal nanoparticles, and upconversion nanoparticles are being investigated for their sensing applications. Many of the interesting developments in the use of fluorescent nanoparticles for sensing applications were recently summarized by Ng et al.²¹.

Noble metal nanoparticles, such as gold and silver, when excited by light can support surface plasmons (e.g., coherently oscillating surface electrons) that generate strong electromagnetic fields within the vicinity (i.e., within several nanometers) of the nanoparticle

surface²³. The frequency at which the surface electrons resonate results in an absorption band that is referred to as the localized surface plasmon resonance (LSPR) that is a function of the size, shape, identity, and local environment that surrounds the nanoparticle. Two categories of signal transduction utilize LSPR: surface-enhanced Raman spectroscopy (SERS) and colorimetric (absorption) methods.

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

LSPR generates an enhanced electromagnetic field in the vicinity of the noble metal surface. When target analytes are within this enhanced electromagnetic field, their Raman cross sections are increased by several orders of magnitude – this enhancement is known as SERS. Because SERS is a vibrational spectroscopic method, a SERS spectrum reflects the characteristic covalent bonds of the analyte. If the signal from this 'fingerprint' spectrum is sufficiently intense it can be directly evaluated to indicate the presence of an analyte in a complex matrix. In this intrinsic detection mode, SERS has shown the capacity for single molecule detection²⁴, albeit typically for non-environmentally relevant analytes under demanding instrumental operating conditions. The application of SERS for water contaminant quantitation is complicated by the requirement that the 'hot spots' primarily responsible for the SERS enhancement are typically < 5 nm in size and thus large analytes are size excluded²⁰. This fact coupled with the requirement that the analyte must associate with the noble metal nanoparticle surface can hinder the use of SERS for intrinsic analyte sensing. The alternative, and more widely applied approach, is to functionalize the nanoparticle surface with affinity ligands such as antibodies and aptamers²⁵. Highly sensitive, hand-held Raman spectrometers are increasingly affordable and thus it is likely that SERS will progressively come to occupy a

larger portion of the nanosensor armamentarium due to the high sensitivity of the method and its multiplex capacity²⁶.

Colorimetric sensing is a simpler manifestation of LSPR and typically involves the monitoring of nanoparticle aggregation state. Destabilization of nanoparticles results in color changes (generally red→blue for spherical gold nanoparticles; yellow→brown for spherical silver nanoparticles) that reflect the coupling of surface plasmons on adjacent particles. These color changes can be monitored either visually or by using a spectrophotometer. A number of aggregation based assays for water borne chemicals and microbes have been reported (**Table 2**)¹⁹. Such assays can be made field deployable by their incorporation into low-cost paper-based colorimetric assays¹⁵.

Electrical signal transduction. Electrical signal transduction takes advantage of the high conductivity and electrochemical stability of silicon, noble metal nanoparticles (Pt, Ag, Au), carbonaceous nanomaterials (graphene, carbon nanotubes), and inorganic 2D nanosheets.

Nanosensors relying upon electrical transduction fall into three categories: chemiresistors, field-effect transistors, and electrochemical sensors¹⁰. Chemiresistors consist of an electrical circuit whose resistance is altered when an analyte interacts with the sensor surface. Field-effect transistors (FETs) measure the mobility of a charge carrier (i.e., analyte) moving through a channel subjected to an applied electric field controlled by a conductive gate electrode. When an analyte enters the channel, a change in signal is detected. FET based nanosensor platforms have been in development ever since the pioneering studies of Cui and Lieber in 2001³.

Electrochemical sensors measure voltage or current changes that arise following an electron transfer reaction between the sensor surface and a target analyte or intermediate. The

modification of chemiresistors, FETs, or electrochemical sensors with recognition elements (antibodies, aptamers) has enabled sensitive detection of waterborne contaminants such as $Escherichia\ coli^{27}$, $Escherichia\ coli^{27}$, $Escherichia\ coli^{27}$, $Escherichia\ coli^{28}$, and many others.

Magnetic signal transduction. Magnetic nanomaterials exhibit the capacity to respond to an external magnetic field, and the functionalization of such nanomaterials with analyte specific biomolecules provides the ability to magnetically isolate analytes that can then be detected²⁹. Nanoparticle design is dependent upon the ultimate application, with nanoparticle size and chemical identity dictating particle magnetism. A range of materials are used to produce magnetic particles and include metallic iron, oxides of iron, cobalt, nickel, and a variety of multielement materials. Iron-based nanoparticles (e.g., Fe⁰, Fe₃O₄, γ-Fe₂O₃) are of particular interest due to their perceived biocompatability and lower cost synthesis.

Magnetic signal detection strategies fall into three general categories: 1)

magnetoresistance, 2) hydrodynamic property measurements, and 3) T₂ relaxation nuclear magnetic resonance. Magnetoresistance sensors exhibit changes in electrical resistance following the binding of magnetic nanoparticle labeled analytes and have recently been used for the detection of *Mycobacterium bovis*³⁰ and Influenza A³¹. Changes in hydrodynamic properties that result from analyte induced nanoparticle clustering can be detected by monitoring nanoparticle relaxation dynamics in a time-dependent magnetic field. A field-deployable application of this approach has been used for *Bacillus globigii* spore detection³². Magnetic resonance imaging can be used to monitor the change in the T₂ (e.g., spin-spin) relaxation time of water protons that occurs when magnetic nanoparticles aggregate in the

presence of an analyte. Such an approach has been taken to sensitively detect both *Salmonella* enterica and Newcastle disease virus (as a representative virus)³³.

When do nanosensors make sense for water quality monitoring?

A key issue that is too often forgotten in the rush to develop new and novel nanosensors is the *a priori* consideration that they will address either a current unmet need or that they will outperform established approaches. Prior experience has shown that the ultimate utility of any new technology is dependent upon its ability to either provide improved capacity or to address current gaps in device function^{34,35}. Given the historically conservative nature of the water treatment community^{36,37} these concerns must be considered in the earliest stages of nanosensor design. Continued advancement of the applied nanosensor field requires focus on applications where nanosensors truly provide novel capacity or added utility. In the context of water quality monitoring, I suggest three potential focal themes:

1) Improved monitoring of water distribution networks.

The current approach to water supply in much of the world relies upon centralized treatment and distribution³⁸. Under this paradigm, water is treated at a centralized plant using a number of physical and chemical processes (with the exact combination a function of the initial quality of the water being treated) prior to distribution. In many countries, a residual disinfectant is added immediately prior to water leaving the plant to minimize pathogen concentrations. Within the distribution system, treated water can be subject to intrusion by waste-, surface-, or ground-water and its quality can be degraded due to the leaching of contaminants (e.g., lead, copper, polymers) from plumbing materials or by bacterial regrowth³⁹. Water treatment plants, water towers, and water taps are readily visible

components of centralized treatment systems; however, their relative importance as sampling locations can be dwarfed by the large volume and spatial diversity of the drinking water distribution system and the pipe networks within buildings (Figure 2). This hidden infrastructure comprises a highly complex engineered ecosystem whose characteristics are affected and defined by operational and environmental parameters in ways we currently do not fully understand. In centralized treatment systems, discrete numbers of water quality samples are routinely collected either at the treatment plant, at selected points within the distribution system, or occasionally within buildings (i.e., 'premise plumbing')⁴⁰. This sampling approach potentially misses regions of concern that arise due to differences in geography, water age, or other factors that may not have been considered in the design of the sampling scheme. Furthermore, such approaches can lead to biases, either inadvertent or purposeful, that misrepresent overall water quality. For example, in the Flint, Michigan lead crisis it was documented that the water treatment staff did not sample enough homes with known lead service lines, even though it was legally required as those homes represent the greatest risk⁴¹. The development of the Internet of Things (IoT)⁴² promises deployment of sensor networks that acquire real-time data from sensor nodes across widely distributed areas. This concept is particularly appealing for water supply and management^{36,43,44} as these sensor networks would potentially enable a more detailed understanding of the chemistry and biology of distributed water all the way from the water treatment plant to the tap. One intriguing possible future for the IoT is the incorporation of networks of nanosensors into an Internet of Nano-Things (IoNT) that interconnects nanoscale devices and connects to the IoT⁴⁵⁻⁴⁷. In the context of water distribution, such a network would consist of an integrated array of nanosensors that would

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

provide real time monitoring of water quantity and quality both at fine-grained temporal and geographic scales and at locations throughout the distribution system that are inaccessible to existing approaches (e.g., dead-end pipes; connections between service mains, service lines, and premise plumbing; within biofilms; in showerheads, etc...; Figure 2).

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

The IoT is rapidly evolving and it is broadly recognized that there remain many challenges that must be overcome with respect to data collection, data communication, data storage, and device power to make this vision a reality. Integration of embedded nanosensors into water infrastructure will clearly require considerable nanosensor optimization. Many of the nanosensors that have been developed to date (Table 2) will need to be reconfigured and redesigned to 1) enable device operation under highly variable environmental conditions, 2) simplify in-field sensor replacement, 3) facilitate data communication, and 4) minimize the potential for sensor fouling. This latter issue should be a particular focus for embedded sensors for which fouling by salts, organic matter, and biological growth must be accounted for in the earliest stages of development. In addition to addressing these and other technical issues, it is equally imperative that the development of distributed water quality monitoring networks be done with utmost consideration for data security and data privacy⁴⁸. If an IoT connected system of nanosensors is to be deployed within a distribution system then the pertinent regulatory requirements must be considered as early as possible in the design process⁴⁹. A key aspect of the final assessment will be to show that the nanosensors are stable and do not degrade. In particular, the potential for nanomaterial release⁵⁰ from the integrated nanosensors during their use should be considered along with the potential health implications of any subsequent exposures.

Assuming that all of the technical and social issues facing the development of the IoT platform can be met, the data collected from suites of integrated nanosensors would revolutionize our understanding of the intricate ecosystems present within drinking water distribution systems. Recent advances in offline microbial and chemical sensing have already revealed highly complex multifaceted relationships between the physical components of the drinking water distribution system, the chemistry of the water flowing through it, and the microorganisms that reside both within the water as well as adhered to pipe walls. Coupling the knowledge potentially gained through the application of artificial intelligence and machine learning with data collected in real-time at scale would only help to further crystalize this understanding.

2) Detection of non-target, unregulated analytes.

The reuse, or recycling, of wastewater as a potable water supply source is becoming increasingly common in many parts of the world as a result of climate change, increasing local and global population pressures, and human migration⁵¹. With increased reuse, there is a concomitant increase in the likelihood that wastewater derived biotic and abiotic contaminants may end up in treated drinking water. For example, studies have found increased levels of *Cryptosporidium*, *Giardia*, and *Legionella* in water distribution systems fed recycled water⁵², and there are many concerns about the potential for increased dissemination of antibiotic resistance by reused water⁵³. Finally, with amplified water reuse there are growing concerns about the possibility that many currently unregulated and challenging to detect 'emerging' organic and inorganic chemicals will be present in treated water. Currently, there are an estimated 85,000 chemicals used in commerce in the US and approximately 140,000 in the

EU⁵⁴. These chemicals include broad classes of compounds with known or suspected toxicity such as chlorinated paraffins⁵⁵, fluorinated compounds⁵⁶, nanomaterials⁵⁷, micro- and nanoplastics⁵⁸, and flame retardants⁵⁹. While it is unlikely that all of these chemicals will be present in treated water, it is unclear *Which* compounds are most likely to be present. This lack of knowledge reflects the sheer numbers and quantities of chemicals being used as well as a lack of knowledge of *How* they are being used⁶⁰.

Current approaches for water quality monitoring are generally reliant upon protocols that are necessarily skewed towards regulated contaminants (**Table 1**). Separate protocols are required for different chemical contaminant classes (e.g., metals, volatile organics, semi- and non-volatile organics) as well as microbial contaminants (e.g., viruses, bacteria, protozoa)⁸. In the case of bacteria, these protocols focus on detection of indicator bacteria such as *Escherichia coli* and fecal coliforms⁶¹. So long as these indicators are present at levels below the regulatory limit it is assumed that pathogenic bacteria are also below levels of concern. Unfortunately, these indicators are completely unrepresentative of disease causing strains and thus their absence does not necessarily ensure pathogen-free water.

Many analytes are difficult to detect by existing approaches (i.e., unculturable organisms, small-highly soluble organics, antibiotic resistance genes). While the development of highly specific nanosensors to detect each and every potential contaminant would be cost and time prohibitive it is nonetheless reasonable to advocate for the development of nanosensors targeting emerging pathogens (*Legionella* spp., *Naegleria fowleri*, enterovirus) and chemicals with known toxicity. The decision as to which analytes to target should be a primary consideration in the earliest stages of device development. Simply designing another

nanosensor for *E. coli* or Pb²⁺ ion, while potentially intellectually stimulating, may not ultimately be useful if sensors are not simultaneously being developed for higher-priority targets.

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

One promising nano-enabled approach going forward would be to develop semiselective methods that rely upon pattern recognition⁶²⁻⁶⁴. Recent efforts have focused on the development of array based 'chemical nose' or 'chemical tongue' sensors that employ selective analyte recognition. The interaction of any given analyte with the array is used to develop a selectivity-based pattern. In this way, the combined response across the sensor array is then assessed using multivariate statistics. While such an approach with nanosensors has yet to be applied for water quality monitoring, it has found success in disease detection. Recently a nanoarray was able to determine disease from exhaled breath⁶⁴. Determination of disease occurrence for 17 different disease types in a patient population of over 1400 people was achieved using an 'artificially intelligent' nanoarray composed of molecularly modified gold nanoparticles and a random network of SWCNTs. Given the ever-expanding number of identified contaminants in drinking water such an approach could have great value as it could be trained to potentially detect species that are currently not regulated (i.e., nitrosamines) and thus are infrequently quantified. Furthermore, such an approach could be particularly useful for detection of volatile and semi-volatile contaminants through the development of gas sampling systems that monitor the head-space above water samples either on- or off-line. Such a design would help to minimize sensor fouling.

The complexity in the types and concentrations of potential contaminants suggests an alternative approach that is less focused on individual contaminants and more on groups of contaminants. Recent developments in nontarget screening (NTS) using high resolution mass

spectroscopy illustrate the sheer number of analytes present within aquatic matrices⁵⁴. In the face of this complexity and the sheer volume of data being collected by NTS approaches, the NTS community, similar to the proteomics and metagenomics communities before it, has begun sharing data analysis methods, spectral databases, and is actively discussing the future of NTS. The nanosensor field should learn from these prior success stories and work in as collaborative a manner as possible to ensure cross-platform compatibility that will rapidly advance the field.

3) The democratization of water quality sensing.

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

Centralized, large-scale water treatment is economically viable in areas with high population densities and with the capacity to build and maintain the necessary infrastructure for treated water distribution. However, in rural areas and in countries and regions with insufficient resources for construction and maintenance such centralized facilities are impractical^{37,65}. Furthermore, efforts to increase local resiliency against droughts and other disasters have led to a growing emphasis on decentralization. For these reasons, de-centralized or POU based water treatment is increasingly being considered a viable treatment approach. POUs range in design from simple low-cost filters to more complex and costly engineered designs employing nanoparticles or engineered filters. Current estimates suggest that the POU marketplace exceeds \$20 million annually, a fact supported by the observation that across both China and India millions of households are currently using POU devices to treat tap water of questionable quality⁶⁶. While the actual health benefits of each type of POU have yet to be definitively established⁶⁷, it is nonetheless clear that their efficacy in the field must be assured⁶⁸. In this context, the development of POU devices with integrated nanosensors that quantify performance should be encouraged.

Numerous low-cost (e.g., paper-based tests, lateral flow devices) and high-cost (e.g., electronic, cartridge based) sensor platforms have been described in the literature for water quality analyses^{11,15}. However, the transfer of such novel technologies from the laboratory to the marketplace is highly challenging with many pitfalls along the way³⁴. A key issue that must be considered at the outset is how to cover the costs associated with transitioning a laboratory device to the field. While the size and the competitiveness of the high-end POU market is arguably large enough to support the development, testing, deployment and marketing of new technologies³⁷, this is unlikely to be true at the lower-end of the POU market. As has been found for many promising low-cost point of care (POC) medical sensors, the challenges associated with transitioning novel diagnostic devices into either established markets or into new markets that target individuals at the 'bottom of the pyramid' (i.e., the poor) are particularly vexing due to the lack of financial incentives critical for product development, testing, and marketing. In general, if new methods and new technologies are to gain a foothold then the potential profits associated with the new method must be high and the risks of adoption must be low.

Whether at the high-end or the low-end of the spectrum, the incorporation of nanosensors into POU devices or the development of stand-alone nanosensors will make it possible for consumers to test the quality of the water that they consume and to make conscious decisions as to whether it is of better quality than water from a bottle or other sources. In such a manner, water quality sensing will become increasingly democratized⁷⁰ and as such consumers will gain knowledge that should spur improvements in water treatment and water potability.

The Forward Path

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

As noted previously, the water treatment field is conservative and novel analytical methods must either provide new capacity or be economically competitive relative to existing approaches if they are going to be ultimately useful. It is clear that great progress has been made in the development of nanomaterial-enabled sensors for medical and industrial application. The knowledge gained from these studies suggests the utility of such sensors within the water treatment arena. It must be recognized, however, that drinking water is a highly variable matrix that differs from the matrices (i.e., blood, plasma) in which many nanosensors have been developed and it is imperative that their utility in drinking water be fully established. Across the world, water quality can vary substantially due to differences in hardness, alkalinity (the capacity of a water to resist changes in pH), background macromolecular organic chemical content (e.g., natural organic matter), as well as inorganic and organic contaminants whose concentrations are highly dependent on the quality and type of source water used for drinking water production. Viable nano-enabled sensor platforms must have the capacity to detect analytes across this broad range of water quality conditions and in the possible presence of an oxidizing disinfectant. A wide variety of approaches are currently used to monitor water quality and detect contaminants. These approaches have been extensively tested and optimized over the course of many years. Given this fact, and the aforementioned conservative nature of the water treatment community, it is imperative that the sensitivity and specificity (i.e., method detection limits) of any nanosensor be evaluated across a range of water quality conditions and then explicitly compared to those obtained using the approaches the nanosensor is intended to replace.

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

When developing nanosensors the importance of material safety cannot be considered at the end of the design cycle, but instead should be a key part of the initial design. A great body of literature has evaluated the health and environmental implications of nanomaterials and that literature should be drawn upon to evaluate appropriate materials for nanosensor design^{71,72}. The Principles of Green Chemistry as applied to nanotechnology provide a useful framework that ideally can be used to develop appropriate, sustainable, and nontoxic designs that still elicit the desired functionality⁷³.

The potential for nanosensors to address water contamination both in the more-highly and the less-highly developed parts of the world can only be reached through continual improvements in sensor design and the rigorous testing of different designs under realistic conditions. Nanosensors promise device miniaturization and the capacity for multiplex detection across contaminant classes. Achievement of these goals will help our global society collectively address the issue of equitable access to knowledge about the safety of the water that each of us consumes. The potential for nanotechnology enabled sensors for water quality monitoring is great, but for now remains just a hopeful promise.

References

- Witruvius. de Architectura, Translated by M.H. Morgan, Harvard University Press, Cambridge, MA, 1914.
- World Health Organization. Progress on Drinking Water, Sanitation, and Hygiene: 2017 Update and SDG Baselines. (World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), Geneva, Switzerland, 2017).
- 393 Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. *Science* **293**, 1289-1292 (2001).
- Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot tagged microbeads for multiplexed optical coding of biomlecules. *Nature Biotechnology* **19**, 631-635 (2001).
- 397 5 Qu, X. L., Brame, J., Li, Q. L. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable 398 water supply: Enabling integrated water treatment and reuse. *Accounts of Chemical Research* **46**, 834-843 (2013).

- Bhattacharyya, S. *et al.* Nanotechnology in the water industry, part 1: Occurrence and risks. *Journal American Water Works Association* **109**, 30-37 (2017).
- Farahi, R. H., Passian, A., Tetard, L. & Thundat, T. Critical issues in sensor science to aid food and water safety. *ACS Nano* **6**, 4548-4556 (2012).
- Standard Methods for the Examination of Water and Wastewater. 22nd Edition, (American Public Health Association, American Water Works Association, Water Environment Federation, 2012).
- 407 9 Rodrigues, S. M. *et al.* Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. *Environmental Science-Nano* **4**, 767-781 (2017).
- 409 10 Chandran, G. T., Li, X. W., Ogata, A. & Penner, R. M. Electrically transduced sensors 410 based on nanomaterials (2012-2016). *Analytical Chemistry* **89**, 249-275 (2017).
- 411 11 Farka, Z., Juriik, T., Kovaar, D., Trnkova, L. & Sklaadal, P. Nanoparticle-based 412 immunochemical biosensors and assays: Recent advances and challenges. *Chemical* 413 *Reviews* 117, 9973-10042 (2017).
- Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo-Escobar, D. & McLamore, E. S.
 Emerging biorecognition and transduction schemes for rapid detection of pathogenic
 bacteria in food. *Comprehensive Reviews in Food Science and Food Safety* **16**, 1188-1205
 (2017).
- Vikesland, P. J. & Wigginton, K. R. Nanomaterial enabled biosensors for pathogen monitoring-a review. *Environ. Sci. Technol.* **44**, 3656-3669 (2010).
- 420 14 Pol, R., Céspedes, F., Gabriel, D. & Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. *TrAC Trends in Analytical Chemistry* **95**, 62-68 (2017).
- 422 15 Sriram, G. *et al.* Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. *TrAC Trends in Analytical Chemistry* **93**, 212-227 (2017).
- Shelby, T., Sulthana, S., McAfee, J., Banerjee, T. & Santra, S. Foodborne pathogen screening using magneto-fluorescent nanosensor: Rapid detection of *E. Coli* O157:H7. *Jove-Journal of Visualized Experiments*, (2017).
- van den Hurk, R. & Evoy, S. A review of membrane-based biosensors for pathogen detection. *Sensors (Basel)* **15**, 14045-14078 (2015).
- 429 18 Fadel, T. R. *et al.* Toward the responsible development and commercialization of sensor nanotechnologies. *ACS Sensors* **1**, 207-216 (2016).
- Wang, C. & Yu, C. X. Detection of chemical pollutants in water using gold nanoparticles as sensors: A review. *Reviews in Analytical Chemistry* **32**, 1-14 (2013).
- 433 20 Banholzer, M. J., Millstone, J. E., Qin, L. D. & Mirkin, C. A. Rationally designed 434 nanostructures for surface-enhanced Raman spectroscopy. *Chemical Society Reviews* **37**, 435 885-897 (2008).
- 436 21 Chen, J. *et al.* Removal of antibiotics and antibiotic resistance genes from domestic 437 sewage by constructed wetlands: Optimization of wetland substrates and hydraulic 438 loading. *The Science of the Total Environment* **565**, 240-248 (2016).
- Comparelli, R., Curri, M. L., Cozzoli, P. D. & Striccoli, M. in *Nanotechnologies for the life* sciences: *Nanomaterials for biosensors* Vol. 8 (ed Challa S. S. R. Kumar) 123-174 (Wiley-VCH, 2007).
- Wei, H., Abtahi, S. M. H. & Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. *Environmental Science: Nano* **2**, 120-135 (2015).

- 444 24 Kneipp, K., Wang, Y., Dasari, R. R. & Feld, M. S. Approach to single-molecule detection 445 using surface-enhanced resonance Raman-scattering (SERRS) - a study using Rhodamine 446 6G on colloidal silver. *Applied Spectroscopy* **49**, 780-784 (1995).
- 447 25 Alvarez-Puebla, R. A. & Liz-Marzan, L. M. Traps and cages for universal SERS detection.
 448 *Chemical Society Reviews* **41**, 43-51 (2012).
- Giannoukos, S., Brkic, B., Taylor, S., Marshall, A. & Verbeck, G. F. Chemical sniffing instrumentation for security applications. *Chemical Reviews* **116**, 8146-8172 (2016).
- So, H. M. *et al.* Detection and titer estimation of *Escherichia coli* using aptamerfunctionalized single-walled carbon-nanotube field-effect transistors. *Small* **4**, 197-201 (2008).
- Peterson, J. *et al.* Detection of hepatitis C core antigen in the antibody negative 'window' phase of hepatitis C infection. *Vox Sanguinis* **78**, 80-85 (2000).
- Kudr, J. *et al.* Magnetic nanoparticles: From design and synthesis to real world applications. *Nanomaterials* **7** (2017).
- 458 30 Barroso, T. G. *et al.* Detection of BCG bacteria using a magnetoresistive biosensor: A 459 step towards a fully electronic platform for tuberculosis point-of-care detection. 460 *Biosensors & Bioelectronics* **100**, 259-265 (2018).
- Krishna, V. D., Wu, K., Perez, A. M. & Wang, J. P. Giant magnetoresistance-based biosensor for detection of influenza A virus. *Frontiers in Microbiology* **7** (2016).
- de la Torre, T. Z. G. *et al.* Sensitive detection of spores using volume-amplified magnetic nanobeads. *Small* **8**, 2174-2177 (2012).
- 465 33 Chen, Y. *et al.* One-step detection of pathogens and viruses: Combining magnetic relaxation switching and magnetic separation. *ACS Nano* **9**, 3184-3191 (2015).
- Kumar, A. A. *et al.* From the bench to the field in low-cost diagnostics: Two case studies.

 Angewandte Chemie-International Edition **54**, 5835-5852 (2015).
- 469 35 Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313-2381 (2017).
- 470 36 Huck, P. M. in *Conflict resolution in water resources and environmental management* 471 Chapter 8, 145-158 (2015).
- Westerhoff, P., Alvarez, P., Li, Q. L., Gardea-Torresdey, J. & Zimmerman, J. Overcoming implementation barriers for nanotechnology in drinking water treatment. *Environmental Science-Nano* **3**, 1241-1253 (2016).
- 475 38 Crittenden, J., Trussell, R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. Water 476 Treatment: Principles and Design. 3rd Edition (2012).
- 477 39 Dai, D. *et al.* Factors shaping the human exposome in the built environment:
 478 Opportunities for engineering control. *Environmental Science & Technology* **51**, 7759 479 7774 (2017).
- 480 40 National Research Council, Drinking Water Distribution Systems. (The National Academies Press, 2006).
- 482 41 Flint Water Advisory Task Force, Final Report: Flint Water Advisory Task Force. (2016).
- 483 42 Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of things (IoT): A vision,
- architectural elements, and future directions. *Future Generation Computer Systems* **20**, 1645-1660 (2013).
- Wong, B. P. & Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. *Environmental Modelling & Software* **84**, 505-517 (2016).

- 488 44 Li, T., Xia, M., Chen, J. H., Zhao, Y. J. & de Silva, C. Automated water quality survey and evaluation using an iot platform with mobile sensor nodes. *Sensors* **17** (2017).
- 490 45 Akyildiz, i. F. & Jornet, J. M. The internet of nano-things. *IEEE Wireless Communications* 491 **17**, 58-63 (2010).
- 492 46 Balasubramaniam, S. & Kangasharju, J. Realizing the internet of nano things: Challenges, solutions, and applications. *Computer* **46**, 62-68 (2014).
- 494 47 Nayyar, A., Puri, V. & Le, D.-N. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. *Nanoscience and Nanotechnology* (2017).
- 48 Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: Present challenges 497 and future prospects. *ACS Sensors* **1**, 464-482 (2016).
- 498 49 Mazzocchi, R. A. Medical sensors defining a pathway to commercialization. *ACS* 499 *Sensors* **1**, 1167-1170 (2016).
- 500 Koivisto, A. J. *et al.* Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library. *NanoImpact* **5**, 119-132 (2017).
- National Academies Press, Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal Wastewater. (2012).
- 52 Ryu, H., Alum, A., Mena, K. D. & Abbaszadegan, M. Assessment of the risk of infection by
 505 Cryptosporidium and Giardia in non-potable reclaimed water. Water Science &
 506 Technology 55, (2007).
- 507 53 Pruden, A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. *Environmental Science & Technology* **48**, 5-14 (2014).
- Hollender, J., Schymanski, E. L., Singer, H. P. & Ferguson, P. L. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? *Environ Sci Technol* **51**, 11505-11512 (2017).
- 513 55 Gluge, J., Wang, Z. Y., Bogdal, C., Scheringer, M. & Hungerbuhler, K. Global production, use, and emission volumes of short-chain chlorinated paraffins a minimum scenario.

 515 Science of the Total Environment **573**, 1132-1146 (2016).
- 516 56 Wang, Z. Y., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? *Environmental Science & Technology* **51**, 2508-2518 518 (2017).
- 519 57 Bernhardt, E. S. *et al.* An ecological perspective on nanomaterial impacts in the environment. *J. Environ. Qual.* **39**, 1954-1965 (2010).
- 521 58 da Costa, J. P., Santos, P. S. M., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the 522 environment - sources, fates and effects. *Science of the Total Environment* **566**, 15-26 523 (2016).
- 524 59 Stapleton, H. M. *et al.* Detection of organophosphate flame retardants in furniture foam and US house dust. *Environmental Science & Technology* **43**, 7490-7495 (2009).
- 526 60 Scheringer, M. Environmental chemistry and ecotoxicology: In greater demand than ever. *Environ Sci Eur* **29**, 3 (2017).
- 528 61 Deshmukh, R. A., Joshi, K., Bhand, S. & Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. *Microbiologyopen* **5**, 901-922 (2016).

- Guerrini, L., Garcia-Rico, E., Pazos-Perez, N. & Alvarez-Puebla, R. A. Smelling, seeing, tasting-old senses for new sensing. *ACS Nano* **11**, 5217-5222 (2017).
- Kim, S. J., Choi, S. J., Jang, J. S., Cho, H. J. & Kima, I. D. Innovative nanosensor for disease diagnosis. *Accounts of Chemical Research* **50**, 1587-1596 (2017).
- Nakhleh, M. K. *et al.* Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. *ACS Nano* **11**, 112-125 (2017).
- Zodrow, K. R. *et al.* Advanced materials, technologies, and complex systems analyses:
 Emerging opportunities to enhance urban water security. *Environmental Science & Technology* 51, 10274-10281 (2017).
- 540 66 Giles, B. Finding growth and differentiation in small-scale water treatment markets. (Lux Research, 2013).
- 542 67 Schmidt, W. P. & Cairncross, S. Household water treatment in poor populations: Is there 543 enough evidence for scaling up now? *Environmental Science & Technology* **43**, 986-992 544 (2009).
- Fewtrell, L. *et al.* Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. *Lancet Infectious Diseases* **5**, 42-52 (2005).
- 548 69 Pitta, D. A., Pitta, D., Guesalaga, R. & Marshall, P. The quest for the fortune at the 549 bottom of the pyramid: Potential and challenges. *Journal of Consumer Marketing* **25**, 550 393-401 (2008).
- McLeod, E., Wei, Q. & Ozcan, A. Democratization of nanoscale imaging and sensing tools using photonics. *Analytical Chemistry* **87**, 6434-6445 (2015).
- Nel, A. *et al.* Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. *Accounts of Chemical Research* 46, 607-621 (2013).
- Garner, K. L. & Keller, A. A. Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. *J. Nanopart. Res.* **16** (2014).
- Falinski, M. M. *et al.* A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. *Nat Nanotechnol* (2018).
- 560 74 Daniel, W. L., Han, M. S., Lee, J.-S. & Mirkin, C. A. Colorimetric nitrite and nitrate 561 detection with gold nanoparticle probes and kinetic end points. *J. Am. Chem. Soc.* **131**, 562 6362-6363 (2009).
- 563 75 Liu, J. & Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general 564 sensor design involving aptamers and nanoparticles. *Angewandte Chemie-International* 565 *Edition* **118**, 96-100 (2006).
- Beqa, L. *et al.* Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. *ACS Applied Materials & Interfaces* **3**, 668-673 (2011).
- Zhang, Z., Chen, Z., Qu, C. & Chen, L. Highly sensitive visual detection of copper ions
 based on the shape-dependent lspr spectroscopy of gold nanorods. *Langmuir* 30, 3625-3630 (2014).
- Vilela, D., González, M. C. & Escarpa, A. Sensing colorimetric approaches based on gold
 and silver nanoparticles aggregation: Chemical creativity behind the assay. A review.
 Analytica Chimica Acta 751, 24-43 (2012).

- Algarra, M. *et al.* Thiolated DAB dendrimers and CdSe quantum dot nanocomposites for Cd(II) or Pb(II) sensing. *Talanta* **88**, 403-407 (2012).
- 577 80 Li, M., Zhou, X., Guo, S. & Wu, N. Detection of lead (II) with a "turn-on" fluorescent 578 biosensor based on energy transfer from CdS/ZnS quantum dots to graphene oxide. 579 *Biosensors & Bioelectronics* **43**, 69-74 (2013).
- 580 81 Luan, W. *et al.* Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence 581 probe for lead(II). *J Nanopart Res* **14**, 1-8 (2012).
- Sung, T.-W. & Lo, Y.-L. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu²⁺ ion detection. *Sensors and Actuators B: Chemical* **165**, 119-125 (2012).
- 585 83 Chao, M. R., Chang, Y. Z. & Chen, J. L. Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. *Biosensors & bioelectronics* **42**, 397-402 (2013).
- 587 84 Gan, T. T. *et al.* Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum 588 dots as fluorescent probes for detection of Ag(+). *Spectrochimica acta. Part A, Molecular* 589 *and Biomolecular Spectroscopy* **99**, 62-68 (2012).
- 590 85 Gui, R. *et al.* A near-infrared-emitting CdTe/CdS core/shell quantum dots-based off-on 591 fluorescence sensor for highly selective and sensitive detection of Cd²⁺. *Talanta* **94**, 257-592 262 (2012).
- 593 86 Liu, X.-Q. *et al.* Directional surface plasmon-coupled emission of CdTe quantum dots and its application in Hg(II) sensing. *Analytical Methods* **4**, 3956 (2012).
- Wu, H., Liang, J. & Han, H. A novel method for the determination of Pb²⁺ based on the quenching of the fluorescence of CdTe quantum dots. *Microchimica Acta* **161**, 81-86 (2007).
- Wang, Y. Q., Liu, Y., He, X. W., Li, W. Y. & Zhang, Y. K. Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. *Talanta* **99**, 69-74 (2012).
- Koneswaran, M. & Narayanaswamy, R. L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu²⁺ ion. *Sensors and Actuators B: Chemical* **139**, 104-109 (2009).
- 604 90 Ke, J., Li, X., Shi, Y., Zhao, Q. & Jiang, X. A facile and highly sensitive probe for Hg(II) 605 based on metal-induced aggregation of ZnSe/ZnS quantum dots. *Nanoscale* **4**, 4996-606 5001 (2012).
- 507 91 Zhang, C. et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosensors and
 609 Bioelectronics 55, 216-219 (2014).
- Ackermann, K. R., Henkel, T. & Popp, J. Quantitative online detection of lowconcentrated drugs via a SERS microfluidic system. *ChemPhysChem : A European journal* of chemical physics and physical chemistry **8**, 2665-2670 (2007).
- Hadjigeorgiou, K., Kastanos, E. & Pitris, C. Multi-bacteria multi-antibiotic testing using surface enhanced raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis.

 Clinical and Biomedical Spectroscopy and Imaging III 8798 (2013).
- Halvorson, R. A. & Vikesland, P. J. Surface-enhanced raman spectroscopy (SERS) for environmental analyses. *Environmental Science & Technology* **44**, 7749-7755 (2010).

- Jarvis, R. M. & Goodacre, R. Characterisation and identification of bacteria using SERS.
 Chemical Society Reviews 37, 931-936 (2008).
- 520 96 Zhou, H. *et al.* SERS detection of bacteria in water by in situ coating with Ag nanoparticles. *Analytical Chemistry* **86**, 1525-1533 (2014).
- 622 97 Muratova, I. S., Mikhelson, K. N., Ermolenko, Y. E., Offenhausser, A. & Mourzina, Y. Chemiresistors based on ultrathin gold nanowires for sensing halides, pyridine and dopamine. *Sensors and Actuators B-Chemical* **232**, 420-427 (2016).
- 625 98 Cho, S. Y. *et al.* High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. *Nano Letters* **16**, 4508-4515 627 (2016).
- 628 99 Kim, J. H., Katoch, A., Kim, S. H. & Kim, S. S. Chemiresistive sensing behavior of SnO₂ (n)-629 Cu₂O (p) core-shell nanowires. *ACS Applied Materials & Interfaces* **7**, 15351-15358 630 (2015).
- Fennell, J. F. *et al.* Nanowire chemical/biological sensors: Status and a roadmap for the future. *Angewandte Chemie-International Edition* **55**, 1266-1281 (2016).
- 633 101 Kindra, L. R. *et al.* Lithographically patterned pedot nanowires for the detection of iron(III) with nanomolar sensitivity. *Analytical Chemistry* **87**, 11492-11500 (2015).
- Kwon, O. S., Park, S. J., Yoon, H. & Jang, J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. *Chemical Communications* **48**, 10526-10528 (2012).
- Chen, S. & Sun, G. High sensitivity ammonia sensor using a hierarchical
 polyaniline/poly(ethylene-co-glycidyl methacrylate) nanofibrous composite membrane.
 ACS applied materials & interfaces 5, 6473-6477 (2013).
- Gao, A. R. *et al.* Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. *Nano Letters* **12**, 5262-5268 (2012).
- Shen, F. X. *et al.* Rapid flu diagnosis using silicon nanowire sensor. *Nano Letters* **12**, 3722-3730 (2012).
- Jiang, S., Cheng, R., Ng, R., Huang, Y. & Duan, X. F. Highly sensitive detection of mercury(ii) ions with few-layer molybdenum disulfide. *Nano Research* **8**, 257-262 (2015).
- Sarkar, D. *et al.* MoS₂ field-effect transistor for next-generation label-free biosensors. *ACS Nano* **8**, 3992-4003 (2014).
- Knopfmacher, O. *et al.* Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. *Nature Communications* **5**, (2014).
- 651 109 Mannoor, M. S. *et al.* Graphene-based wireless bacteria detection on tooth enamel. *Nat Commun* **3**, 763 (2012).
- Bandodkar, A. J., Jeerapan, I., You, J. M., Nunez-Flores, R. & Wang, J. Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability. *Nano Letters* **16**, 721-727 (2016).
- 656 111 Gou, P. P., Kraut, N. D., Feigel, I. M. & Star, A. Rigid versus flexible ligands on carbon 657 nanotubes for the enhanced sensitivity of cobalt ions. *Macromolecules* **46**, 1376-1383 658 (2013).
- Yu, G., Wu, W., Zhao, Q., Wei, X. & Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of

661 high sensitive organophosphorus pesticides biosensors. Biosensors and Bioelectronics 662 68, 288-294 (2015). 663 113 Stortini, A. M., Moretto, L. M., Mardegan, A., Ongaro, M. & Ugo, P. Arrays of copper 664 nanowire electrodes: Preparation, characterization and application as nitrate sensor. 665 Sensors and Actuators B-Chemical 207, 186-192 (2015). 666 114 Li, X. G., Zhang, J. L. & Huang, M. R. Chemical response of nanocomposite membranes of 667 electroactive polydiaminonaphthalene nanoparticles to heavy metal ions. Journal of Physical Chemistry C 118, 11990-11999 (2014). 668 Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold 669 115 670 nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode 671 for the amperometric detection of organophosphorus pesticides. The Analyst 139, 3055-672 3060 (2014). 673 Wu, K. et al. Portable GMR handheld platform for the detection of influenza A virus. ACS 116 674 Sensors 2, 1594-1601 (2017). 675 117 Banerjee, T. et al. Multiparametric magneto-fluorescent nanosensors for the 676 ultrasensitive detection of Escherichia coli O157:H7. ACS Infect Dis 2, 667-673 (2016). 677 118 Wang, J. et al. Facile synthesis of au-coated magnetic nanoparticles and their application 678 in bacteria detection via a sers method. ACS Applied Materials & Interfaces 8, 19958-679 19967 (2016). 680 119 Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold 681 nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode 682 for the amperometric detection of organophosphorus pesticides. The Analyst 139, 3055-683 3060 (2014). 684 685 Acknowledgments. The author thanks his Virginia Tech colleagues Linsey Marr, Marc Edwards, 686 and Haoran Wei for providing useful feedback on the manuscript and thanks the US National Science Foundation (CBET-1705653, OISE-1545756, and CBET-1133746) and the Virginia Tech 687 688 ICTAS Exposome Center for financial support. In addition, he thanks the McNeill laboratory at 689 ETH-Zurich for providing a sabbatical home during which this Review was produced. 690 **Competing Interests.** The author declares no competing financial interests. 691

Figure 1. Representative optical, electrical, magnetic, and mechanical nanosensor platforms. A) Surface enhanced Raman (SERS) based detection of magnetically separated bacteria. In this assay, a sample containing bacteria of interest is treated with gold coated magnetic core nanoparticles functionalized with bacterium specific antibodies (MnFe₃O₄@Au-antibody). The nanoprobe/bacteria aggregate is magnetically isolated, amended with antibody functionalized gold nanorods (AuNR-antibody) and then probed by SERS. Reproduced from Ref. 118 with permission from The American Chemical Society; B) Preparation and use of a gold-reduced graphene oxide (rGO) nanocomposite based biosensor and its application for the electrochemical detection of organophosphorus pesticides (OP). A glassy carbon electrode (GCE) was functionalized via treatment with rGO, electropolymerization of pyrrole, electrodeposition of gold, and the co-deposition of silica and acetylcholinesterase (AChE). In the presence of an OP the electrical current is reduced relative to its absence. Reproduced from Ref. 119 with permission from The Royal Society of Chemistry; C) Combined magnetofluorescence approach for detection of bacteria using fluorophore labeled magnetic nanoparticles. Magneto-fluorescent nanosensors (MFnS) functionalized with E. coli specific antibodies provide the capacity for fluorescence and magnetic bacterial detection. Reproduced from Ref. 117 with permission from The American Chemical Society.

693

694

695

696

697

698

699 700

701

702

703704

705

706

707

708

709710711

712

713

714

Figure 2. Internet of Things (IoT) enabled water sensing both within the distribution system as well as at selected points within premise plumbing. At each sensor node a suite of nanosensors can be deployed for water quality monitoring.

Table 1. Regulated drinking water contaminants – U.S. and E.U.

Contaminant	U.S. EPA Maximum	E.U. Drinking	Nanosensor
Adv	Contaminant Level (MCL)	Water Directive	Available? ⁶
Microorganisms			
Cryptosporidium	Treatment technique (TT) ⁵	N.A.	Υ
Giardia lamblia	TT⁵	N.A.	Y
Legionella	TT⁵	N.A.	Y
Total coliforms	<5% of samples positive	0/100 mL	Y (for <i>E. coli</i>)
+fecal coliforms or <i>E. coli</i> ¹	_		
Enteric viruses ²	TT⁵	N.A.	Y (specific viruses)
Inorganic Chemicals			
Antimony (Sb)	6 μg/L	5.0 μg/L	Υ
Arsenic (As)	10 μg/L	10 μg/L	Υ
Asbestos	7 × 10 ⁶ fibers/L	N.A.	N
Barium (Ba)	2 mg/L	N.A.	N
Beryllium (Be)	4 μg/L	N.A.	N
Boron (B)		1.0 mg/L	N
Cadmium (Cd)	5 μg/L	5 μg/L	Υ
Chromium (Cr)	100 μg/L	50 μg/L	Y
Copper (Cu)	T.T.	2000 μg/L	Y
Cyanide (CN-)	200 μg/L	50 μg/L	Υ
Fluoride (F)	4000 μg/L	1500 μg/L	Υ
Lead (Pb)	TT ⁵ ;	10 μg/L	Y
2000 (1.0)	Action level = 15.0 μg/L	10 MB/ 1	•
Mercury (Hg)	2 μg/L	1 μg/L	Υ
Nickel (Ni)	- PO/ -	20 μg/L	Y
Nitrate (NO₃-)	10,000 μg/L (as N)	50,000 μg NO ₃ -/L	Y
Nitrite (NO ₂ -)	1,000 μg/L (as N)	500 μg NO ₂ -/L	Ү
Selenium (Se)	1,000 μg/L (as N) 50 μg/L	10 μg/L	
Thallium (Th)		· -	<u>'</u> Ү
	2 μg/L	N.A.	Y
Organic Chemicals			
Acrylamide, Alachlor, Atrazine, Benzene, Benzo(a)pyrene, Carbofuran, Carbon tetrachloride, Chlordane, Chlorobenzene, 2,4-D, Dalapon, 1,2-dibromo-3-chloropropane, o-dichlorobenzene, p-dichlorobenzene, 1,2-dichloroethane, 2,2-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, dichloromethane, 1,2-dichloropropane, Di(2-ethylhexyl) adipate, Di(2-ethylhexyl) phthalate, Dinoseb, Dioxin (2,3,7,8-TCDD), Diquat, Endothall, Endrin, Epichlorohydrin, Ethylbenzene, Ethylene dibromide, Glyphosate, Heptachlor, Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl (Vydate), Polychlorinated biphenyls (PCBs), Pentachlorophenol, Picloram, Simazine, Styrene, Tetrachloroethylene, Toluene, Toxaphene, 2,4,5-TP (Silvex), 1,2,4-Trichloroethylene, Vinyl chloride, Xylenes (total)	Varies depending on the contaminant	Varies depending on the contaminant	Y or N (contaminar specific)
Disinfection By-Products			
Bromate (BrO ₃ -)	10 μg/L	10 ug/L	Υ
Chlorite (CIO ₂ -)	1000 μg/L	N.A.	N
Haloacetic acids (HAAs) ³	60 μg/L	N.A.	Some HAAs
Trihalomethanes (THMs) ⁴	80 μg/L	100 μg/L	Some THM:

¹Total coliforms are bacteria that are naturally present in the environment. Fecal coliforms are a subset that only come from human and animal fecal waste. Fecal coliforms are used as indicator organisms to indicate that water may be contaminated by fecal waste.

²Enteric viruses (enteroviruses) inhabit the intestines of infected humans and animals. The group includes poliviruses, coxsackieviruses, echoviruses, and others.

³Five regulated haloacetic acids: dichloroacetic acid, trichloroacetic acid, chloroacetic acid, bromoacetic acid, and dibromoacetic acid. The total mass concentration is regulated.

⁴Four regulated trihalomethanes: bromodichloromethane, bromoform, dibromochloromethane, and chloroform. The total mass concentration is regulated.

⁵Treatment technique (TT). These contaminants are regulated based upon a minimum required set of treatment techniques that are expected to result in sufficient contaminant removal to protect public health.

 $^6\text{Evaluated}$ using a Google Search of the terms ['nanosensor' and 'contaminant_name']

Table 2. Representative water quality nanomaterial sensor platforms

Sensing Strategy	Nanomaterial types	Analytes	
Optical			
Colorimetric	Gold nanoparticles, Silver nanoparticles	NO ₂ -, NO ₃ -, cocaine, Pb", Cu", Hg"	
Fluorescence	Quantum dots	Heavy metals (Cd", Pb", Hg", Cu")	
Surface-enhanced	Gold nanoparticles	Pesticides, bacteria, viruses, protozoa	
Raman (SERS)			
Electrical			
Chemiresistors	Gold nanowires	halides	97
	Metal oxide semiconductor nanowires	Volatile organic compounds (VOCs), NO ₂	98-100
	Polymer nanowires	Fe ^{III} , VOCs, Ammonia	101-103
Field-effect transistors (FETs)	Silicon Nanowires (SiNWs)	Nucleic acids, influenza	104,105
	2D transition metal dichalcogenides	Glucose, H ₂ O ₂ , proteins, Hg ^{II} , pH	106,107
	(MoS ₂ , WS ₂ , MoTe ₂ , etc)		
	Gold nanoparticle functionalized	Hg ^{II}	108
	polymeric FETs		
	Phosphorene (black phosphorous)	IgG protein	
Electrochemical	Graphene	Bacteria	109
	Carbon nanotubes	Ammonium, Co ^{II} , organo-phosphate pesticides	110-112
	Copper nanowire electrodes	Nitrate	113
	Polymeric nanocomposite membranes	Ag ^I , Hg ^{II} , Cu ^{II}	114
	Reduced graphene oxide/gold	Organo-phosphate pesticides	115
	nanoparticle nanocomposite		
Magnetic			
Magnetoresistance	Magnetite (Fe ₃ O ₄); maghemite (γ-Fe ₂ O ₃)	Mycobacterium bovis; Influenza A	30,31,116
Hydrodynamic	Magnetite (Fe₃O₄)	Spore detection	
property changes			
T ₂ relaxation	Magnetic beads	Salmonella enterica and Newcastle disease virus (as 33,117	
magnetic resonance		a representative virus); E coli 0157:H7	