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Abstract. A common challenge for studying wildlife populations occurs when different
survey methods provide inconsistent or incomplete inference on the trend, dynamics, or viabil-
ity of a population. A potential solution to the challenge of conflicting or piecemeal data relies
on the integration of multiple data types into a unified modeling framework, such as integrated
population models (IPMs). IPMs are a powerful approach for species that inhabit spatially
and seasonally complex environments. We provide guidance on exploiting the capabilities of
IPMs to address inferential discrepancies that stem from spatiotemporal data mismatches. We
illustrate this issue with analysis of a migratory species, the American Woodcock (Scolopax
minor), in which individual monitoring programs suggest differing population trends. To
address this discrepancy, we synthesized several long-term data sets (1963–2015) within an
IPM to estimate continental-scale population trends, and link dynamic drivers across the full
annual cycle and complete extent of the woodcock’s geographic range in eastern North Amer-
ica. Our analysis reveals the limiting portions of the life cycle by identifying time periods and
regions where vital rates are lowest and most variable, as well as which demographic parame-
ters constitute the main drivers of population change. We conclude by providing recommenda-
tions for resolving conflicting population estimates within an integrated modeling approach,
and discuss how strategies (e.g., data thinning, expert opinion elicitation) from other disci-
plines could be incorporated into ecological analyses when attempting to combine multiple,
incongruent data types.

Key words: American Woodcock; annual cycle; band-recovery; data integration; data integration for
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INTRODUCTION

Accurate estimation of population parameters is
essential to evaluate ecological theories, determine
extinction risks, manage threats, adjust monitoring
schemes, and predict responses to future environmental
or management scenarios (Barlow 1995, Link and Sauer
2002, Hostetler and Chandler 2015). Yet, information
on population dynamics and trends is fragmentary for
many species, and can therefore be biased because of
limited data across species’ ranges and annual life cycles.

Few survey methods provide the geographic and tempo-
ral coverage needed for range-wide monitoring of vital
rates. Studies that are conducted at broad spatial scales
may lack consistent sampling effort and/or be minimally
informative of demographic parameters (Davis et al.
2014, Zipkin and Saunders 2018). As a result, incom-
plete data are often used for estimation, prediction, and
decision-making because they represent the best avail-
able information (Walsh et al. 2004, Grose 2014). Devel-
opment of sound ecological theory and conservation
strategies can be undermined if inferences stem from
inaccurate parameter estimates resulting from the analy-
sis of biased or incomplete data.
Integrated population models (IPMs) provide a flexi-

ble framework that can accommodate spatially or
temporally incomplete data on abundance and popula-
tion vital rates. IPMs incorporate disparate data types
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(e.g., census, mark–recapture, and productivity) into a
single, unified, dynamic model of the target population
that can be used to simultaneously estimate population
trajectories and the demographic processes that produce
them (Besbeas et al. 2002, Schaub et al. 2007, 2015). By
incorporating all available data on a population, IPMs
overcome several limitations of independent analyses
and account for multiple sources of uncertainty due to
data limitations or environmental variation. IPMs are
regularly used to compensate for data deficiencies, such
as integrating locally sparse data from multiple study
sites or sub-populations, enabling estimation of regional
or metapopulation trajectories (Schaub et al. 2007,
2015, Brown and Collopy 2013, Davis et al. 2014).
Simultaneously analyzing multiple data sets within an
IPM can also address or reveal discrepancies among
data sources (Maunder et al. 2006, Carvalho et al.
2017), in which two or more data sets provide differing
inferences about a model state or process (Maunder and
Piner 2017). Although inconsistencies in estimated pop-
ulation trajectories between survey methods are fairly
common in natural populations, the use of IPMs to
accommodate data discrepancies, as compared to defi-
ciencies, has received much less attention (Maunder
et al. 2017). The typical solution to data conflict is the
elimination or statistical down weighting of the conflict-
ing data sources (Maunder and Piner 2017). However,
this approach does not resolve the underlying cause(s) of
data discrepancies and may lead to incomplete or mis-
leading population inferences (Wang et al. 2015), partic-
ularly when there is feedback among demographic
processes. Synthesizing data sets that may describe sepa-
rate population processes across space and time offers a
powerful approach for resolving data inconsistencies by
directly sharing information between conflicting data
sets, rather than conducting post hoc comparisons of
results from analyses using individual data sources. In
this way, parameter estimates represent a weighted com-
promise between all available data sources.
Data discrepancies in population inferences can arise

for several reasons. Inconsistencies could be introduced
within the data collection process, such as non-random
sampling in space or among ages/stages within a popula-
tion. For example, due to the unstructured nature of
some volunteer-based sampling programs (i.e., surveys
can be conducted wherever and whenever the individual
wants), biases can arise from variable survey effort or
survey inconsistencies over time (Tulloch et al. 2013).
Integrated modeling approaches can only partly resolve
such biases; combining multiple data sets can dilute, but
not eliminate, the inherent bias of a single data set
(Nilsen and Strand 2018). Other discrepancies are the
result of spatial or temporal variability in demographic
processes across geographic and/or temporal extents.
For example, census data from the North American
Breeding Bird Survey (BBS), the Audubon Christmas
Bird Count (CBC), and migration watch sites suggest a
recent decline in abundance of American kestrels (Falco

sparverius sparverius), but population growth rates
derived from these censuses vary across the subspecies’
range (Wommack et al. 2015). In other systems, cross-
scale interactions of both spatial and temporal variabil-
ity may contribute to inconsistent population trends, as
exemplified by the eastern North American monarch
butterfly (Danaus plexippus) population. Census data on
monarchs at their overwintering grounds in Mexico indi-
cate a 19-yr downward trend (Ries et al. 2015). How-
ever, trend estimates from count data at summer
Midwestern U.S. breeding sites have been inconsistent;
some studies suggest declines in the northern extent of
their breeding range (Stenoien et al. 2015, Saunders
et al. 2017) while others have failed to detect any signifi-
cant decreases in adult counts (Ries et al. 2015, Inamine
et al. 2016). Issues of spatial scale mismatches may also
lead to data set discrepancies, given that fine-scale
indices may show contrasting trends compared to large-
scale indices. Bobolinks (Dolichonyx oryzivorus), a grass-
land bird of conservation concern in North America,
experienced significant provincial-level declines across
much of their breeding range in Canada, according to
data from the BBS and the Committee on the Status of
Endangered Wildlife in Canada. However, recent work
demonstrated that a majority of local bobolink popula-
tions have not strongly declined at finer scales over the
same temporal interval (Ethier and Nudds 2015), sug-
gesting a more optimistic trend than that obtained from
analyses at broader spatial scales.
Here, we illustrate issues of data discrepancies with a

case study of American Woodcock (Scolopax minor), a
migratory game species of conservation concern in the
United States. Continental-scale surveys of displaying
male American Woodcocks indicate declines of approxi-
mately 0.6–1.1% per year in the central and eastern pop-
ulations (Seamans and Rau 2017). However, estimates of
annual population change based on fecundity and sur-
vival rates, as measured from harvest and banding data
(Krementz and Bruggink 2000, Zimmerman et al. 2010),
suggest that woodcock populations should be declining
by ~17% per year (see Appendix S1 for more details).
This discrepancy has yet to be addressed, precluding
understanding of range-wide dynamics and development
of robust management strategies. Although there have
been analyses of American Woodcock population
dynamics based on breeding surveys (Thogmartin et al.
2007, Sauer et al. 2008), localized nesting studies
(Roboski and Causey 1981, McAuley et al. 1990), sea-
sonal survival from radio telemetry (Longcore et al.
2000), harvest surveys (Padding et al. 2010), and band-
recovery analyses (Krementz et al. 2003, Mayhew and
Luukkonen 2010), there have been few attempts to com-
bine these data (e.g., Zimmerman et al. 2010, Sullins
et al. 2016) and no attempts to use an IPM for a popula-
tion-level analysis.
Our primary objective is to illustrate how integrated

population models can be used to account for discrepan-
cies in ecological data through analysis of four
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independent American Woodcock data sets. We synthesize
long-term (1963–2015), continental-scale band-recovery,
harvest, Parts-collection Survey, and Singing-ground
Survey data (Fig. 1A and Appendix S1: Fig. S1 illustrate
spatial distributions of data sets) into an IPM to identify
(1) long-term population trajectories for both the east-
ern and central population units; (2) which periods of

the annual cycle and stage-sex classes exhibit the lowest
and/or most variable survival rates; and (3) which demo-
graphic rates (fecundity, juvenile survival, adult survival)
constitute the main drivers of population change. Given
our findings, we then highlight how IPMs can accommo-
date data set inconsistencies resulting from scale mis-
match and spatiotemporal variability, two common

FIG. 1. (A) Delineation of American Woodcock central (left of yellow line) and eastern (right of yellow line) population units.
Singing-ground Survey coverage is represented by right hatching, whereas harvest (DSS and HIP) and Parts-collection Survey
(PCS) data are represented by left hatching; areas of overlap are represented by cross-hatching. The band-recovery data collection
area (U.S. and Canada) is outlined in red. American Woodcock breeding (orange), wintering (blue), and year-round (purple) ranges
are also shown. (B) Annual life cycle diagram of the American Woodcock. Using data collected during two separate banding peri-
ods, we estimate seasonal abundances (N) during each year t for each population p (eastern, central) of each stage-sex class c (juve-
nile, adult male, adult female) during spring (SP; left gray box) and late summer (SU; top gray box) using total annual harvest
estimates (Ht,p,c; bottom dashed box). Estimated demographic parameters include annual survival during the breeding (st,p,B,c; yel-
low arrow) and non-breeding (st,p,NB,c; blue arrow) seasons, per-capita fecundity (Ft,p; purple arrow), and harvest rates (ht,p,c; pink
arrow). Harvest occurs throughout the breeding, fall migration, and wintering areas. Juveniles that survive the non-breeding season
in year t transition to adults in the spring of year t + 1. (C) Directed acyclic graph of the IPM for American Woodcock illustrating
the connection between each data source and estimated parameters in the model. Demographic parameters are indicated by orange
squares, observation parameters are indicated by green squares, and blue diamonds indicate data. Black lines specify dependencies
between parameters and data. Submodels are represented with dashed gray boxes and titled with the corresponding data source
and model structure. Notation: SGS, Singing-ground Survey index; HIP, Harvest Information Program; DSS, Duck Stamp Survey;
PCS, Parts-collection Survey; d, band reporting rate; BBL, band-recovery data; rSGS, Singing-ground Survey process and observa-
tion error; p, juvenile sex ratio; f 0c , direct recovery probability for each stage-sex class; hc, harvest rate for each stage-sex class;
Hc, number harvested in each stage-sex class; lSGS, population-level index of displaying males in spring; sc, survival probability for
each stage-sex class; F, per-capita fecundity; Nc, population abundance for each stage-sex class.
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challenges in data integration (Pacifici et al. 2019). We
conclude by providing recommendations for alternative
methodological approaches in cases when the develop-
ment of an integrated model alone does not resolve data
set discrepancies (i.e., results in unrealistic or unidentifi-
able parameter estimates).

METHODS

Focal species and study region

American Woodcock are migratory, upland game
birds, widespread east of the Great Plains and south of
the open Boreal Region in North America (McAuley
et al. 2013). Management of American Woodcock
throughout the continental United States is divided into
two distinct units: eastern and central breeding and win-
tering populations (Fig. 1A; Cooper and Rau 2014).
Our data suggest minimal movement between these two
regions (Appendix S1; but see Moore and Krementz
2017). We estimate sizes of both populations separately
and at two distinct periods during the annual cycle when
the majority of bandings occur (Fig. 1B): spring (April–
June) and late summer (July–September). We define two
seasonal survival periods between the two midpoints of
15 May and 15 August (Fig. 1B): breeding season (15
May–15 August) and non-breeding season (15 August–
15 May). Woodcock are harvested throughout their
range from September through February (i.e., early por-
tion of the non-breeding season), with 92% of all harvest
occurring during September through November.

Data sets

Four primary data sets are used to monitor woodcock
populations (Fig. 1): (1) the banding and recovery pro-
gram coordinated by the U.S. Geological Survey Bird
Banding Laboratory (BBL) provides information on
harvest and survival rates; (2) harvest surveys (Duck
Stamp Survey [DSS] and Harvest Information Program
[HIP]) measure hunter effort and the total woodcock
harvest in each state; (3) Parts-collection Surveys (PCS)
measure stage- and sex-specific composition of the
harvest (Seamans and Rau 2017); and (4) the Singing-
ground Survey (SGS) provides an index of relative abun-
dance of displaying males throughout most of their
northern breeding range (see Appendix S1 for additional
details on each data source).
These four monitoring data sets provide inconsistent

inference on woodcock population trends. Previous anal-
yses of band-recovery data from 1967 to 1982 yielded esti-
mates of annual survival rates ranging from 0.31 to 0.39
for juvenile females and 0.52 to 0.58 for adult females
(Krementz and Bruggink 2000, Longcore et al. 2000,
McAuley et al. 2013). Fecundity estimates based on har-
vest data collected over a longer time period (1963–2006)
indicate a fecundity rate of 0.79 fledged females per adult
female (Zimmerman et al. 2010). Combining these

demographic estimates in a population projection matrix
indicates that woodcock populations should be declining
by ~17% annually (Appendix S1). This is in stark contrast
to the Singing-ground Survey data, which suggest more
modest long-term declines of ≤ 1% per year in both pop-
ulation units since 1968 (�1.05%/yr in eastern, �0.56%/
yr in central; Seamans and Rau 2017). This discrepancy
among woodcock data sources could stem from either
scale mismatch, spatiotemporal variability, or both. For
example, comparisons of population inference from prior
woodcock studies (Derleth and Sepik 1990, McAuley
et al. 1990, Krementz et al. 2003, Zimmerman et al.
2010, Seamans and Rau 2017) are based on data collected
over different temporal (1963–2006 vs. 1967–1982 vs.
1982–1984, 1968–2016) and spatial scales (Michigan-only
vs. Maine-only vs. eastern and central population units
vs. continent-wide). Demographic processes presumably
vary across seasons and throughout the woodcock’s
range, as is typical of many migratory species (Sillett and
Holmes 2002, Hostetler and Chandler 2015). As a result,
independent analyses of the various data sets, collected
during a single period of the annual cycle or within a lim-
ited geographical area, are unlikely to be representative of
broad-scale, population-level trends and vital rates.

Banding and recovery data (BBL).—The USGS Bird
Banding Laboratory has compiled banding and recov-
ery data for woodcocks over the complete timeframe of
our study period (1963–2015). These data inform sea-
sonal survival and harvest probabilities for juveniles
and adults in both population units. Woodcock band-
ings occur during all seasons, with most individuals
banded during the spring (April–May, ~40%) or late
summer (July–August, ~25%). We excluded bandings
during October–March, which includes the hunting and
migratory periods. The recovery period was defined as
1 September–28 February, and only birds that were
shot by hunters (86% of all recoveries) were included in
our analysis.

Harvest (DSS and HIP).—There have been two moni-
toring programs that collect information on the number
of hunters and the number of woodcock harvested annu-
ally, which we use to estimate the total woodcock popu-
lation sizes. From 1963 to 2001, the US Fish & Wildlife
Service (USFWS) estimated the annual number of
woodcocks that were harvested using samples of water-
fowl hunters who had purchased a federal duck stamp
(DSS; Padding et al. 2010). However, because woodcock
hunters are not necessarily waterfowl hunters, the sam-
pling frame for the federal DSS was incomplete with
respect to woodcock harvest. In 1999, the USFWS
implemented the Harvest Information Program (HIP),
which directly sampled woodcock hunters (Raftovich
et al. 2015). We combined early harvest estimates from
the DSS with more recent harvest estimates from the
HIP using a hierarchical model (Arnold, 2019) that cor-
rects for the different data collection approaches to
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estimate total annual U.S. harvest of woodcock during
the full length of our study period (1963–2015).

Parts-collection Survey (PCS) data.—The Parts-collec-
tion Survey (PCS) provides information on the stage-sex
class (adult vs. juvenile, male vs. female) of harvested
individuals using wing data submitted by hunters (Sea-
mans and Rau 2017). A sample of hunters submits one
wing from each woodcock harvested. At the end of the
hunting season, USFWS biologists identify the stage
(juveniles are < 1 yr, adults are ≥ 1 yr) and sex associ-
ated with each wing (Martin 1964; Appendix S1). The
PCS is conducted annually across both eastern and cen-
tral population units. We used data from 1963 to 2015 to
estimate both the proportions of each stage-sex class
(e.g., juveniles, adult males, adult females) out of the
total population (Zimmerman et al. 2010), as well as the
adult sex ratio. We used these estimates in conjunction
with the harvest and band-recovery data to estimate
stage-sex class abundances.

Singing-ground Survey (SGS) data.—The Singing-
ground Survey was developed to estimate changes in
woodcock abundance by exploiting the conspicuous
courtship display of male woodcocks. Surveys are con-
ducted along fixed routes across the breeding range,
where observers record the number of male woodcocks
heard vocalizing. Population trends for both eastern and
central population units have been regularly estimated
from SGS index data (Sauer et al. 2008, Seamans and
Rau 2017). We incorporate annual SGS indices from
1968 to 2015 into our analysis and summarize routes by
state/province and population (17 states/provinces within
the eastern population unit; 8 states/provinces within the
central population unit) to inform the population size of
adult males in spring, and to calculate a derived annual
population growth rate of males. This allowed for direct
comparison with estimates obtained from prior analyses
of SGS data alone over the same time period (Sauer
et al. 2008, Seamans and Rau 2017).

Integrated population model

We estimated annual and seasonal survival probabili-
ties and fecundity, as well as population sizes, growth
rates, and adult sex ratios for American Woodcock in
eastern and central U.S. population units by developing
an integrated population model (Besbeas et al. 2002,
Schaub et al. 2007). Our IPM uses a two-sex, stage-struc-
tured formulation with both biological (state) and obser-
vational processes. The biological process of the model is
informed by seasonal population sizes via population
projection matrices. The parameters of interest are esti-
mated using the available data in three submodels (i.e.,
observational processes): (1) a Brownie band-recovery
model to estimate stage-sex-specific survival and recovery
probabilities using the BBL data; (2) a Lincoln estimation
model for stage-sex-specific abundances using recovery

probabilities and harvest data (DSS, HIP, and PCS; Ali-
sauskas et al. 2014); and (3) a state-space model inform-
ing adult male abundance in spring using SGS data.

Biological process model

Projection matrices.—We assumed that breeding begins
at age 1 and used two population projection matrices
(Appendix S1) to decompose population dynamics into
seasonal processes of adult (male, female) and juvenile
survival and fecundity (Fig. 1B). These parameters were
assumed to be the same for all individuals within a stage
class (i.e., no individual heterogeneity; see Plard et al.
[2019] for an IPM that incorporates individual-level pro-
cesses), but were allowed to differ by population unit
(central, eastern), season (spring, late summer), and year
(1963–2015). Because woodcocks are polygynous and
males provide no parental care, we did not specify a for-
mal “marriage function” within our model, as in some
two-sex population models (Veran and Beissinger 2009,
Miller and Inouye 2011).
Our annual life cycle model of the American Wood-

cock describes seasonal abundances of adult males (Nt,p,

k,MA), adult females (Nt,p,k,FE), and juveniles (Nt,p,k,JV)
of both sexes at two time periods annually (Fig. 1B):
spring and late summer. The t index represents year
(1963–2015), p represents population unit (eastern, cen-
tral), k represents season (spring, SP; late summer, SU),
and c represents stage-sex class (juvenile, JV; male, MA;
female, FE). For the season index k, we use spring (SP,
April–June) and summer (SU, July–September) in refer-
ence to state variables (e.g., Nt,p,k,c) because population
abundances are estimated at the midpoints of the two
banding periods (i.e., 15 May and 15 August; Fig. 1B),
whereas we indicate survival (st,p,k,c) during the two tran-
sitional periods of breeding (B; 15 May–15 August) and
non-breeding (NB; 15 August–15 May).
Seasonal population sizes of adult males were esti-

mated via the following processes:

Nt;p;SP;MA ¼ Nt�1;p;SU;MA � st;p;NB;MA

þ pt;p �Nt�1;p;SU;JV � st;p;NB;JV (1)

Nt;p;SU;MA ¼ Nt;p;SP;MA � st;p;B;MA (2)

where st,p,k,c is the survival probability during year t of
individuals in population p during season k (breeding B,
non-breeding NB) in stage-sex class c, pt,p is the esti-
mated proportion of juveniles that are male (i.e., sex
ratio), and Nt�1,p,SU,JV is the estimated population size
of juveniles in each population during summer. Thus,
spring abundance (Nt,p,SP,MA) includes adult males from
the previous summer that survived the non-breeding sea-
son (which includes hunting and winter) as well as
fledged juveniles that survived the previous non-breed-
ing season and matured to adult males. Abundance in
late summer (Nt,p,SU,MA) is the number of males in
spring that survived through the breeding season. Eqs. 1
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and 2 are structurally identical for seasonal populations
of adult females, except pt,p is replaced by 1 � pt,p, which
is the estimated proportion of juveniles that are female.
Juvenile abundance is similarly described in two sea-

sons (Fig. 1B): pre-fledged young in spring (Nt,p,SP,JV)
and young in late summer that successfully fledged dur-
ing the breeding season (Nt,p,SU,JV):

Nt;p;SP;JV ¼ Nt;p;SP;FE � Ft;p (3)

Nt;p;SU;JV ¼ Nt;p;SP;JV � st;p;B;JV: (4)

The total population size of juveniles in spring (Nt,p,SP,JV)
is the product of the number of adult females in spring
and per-capita fecundity (Ft,p). The total population size
of juveniles in summer (Nt,p,SU,JV) is the number of juve-
niles in spring that survive through the breeding season
(st,p,B,JV).

Estimation of life cycle parameters

Brownie recovery submodel.—We used the banding and
recovery data (BBL) to estimate season-specific adult
male, adult female, and juvenile survival probabilities
within a Brownie recovery model (Brownie et al. 1985;
Fig. 1C). To do this, we created a multidimensional
band-recovery array (referred to as an m-array; K�ery and
Schaub 2012) consisting of 12 subcomponent arrays, con-
ditioned on (1) banding period, spring or late summer;
(2) stage-sex class, juveniles (birds aged as either pre-
fledged juvenile or < 1 yr old at banding), adult males
(male birds aged as at least 1 yr old at banding), or adult
females (female birds aged at least 1 yr old at banding);
and (3) population unit, eastern or central. The last col-
umn of the m-array tallies the total number of individuals
that were not recovered for a given banding period, class,
and population unit. We also compiled a separate array
of total birds banded during each year, banding period,
stage-sex class, and population unit, which was provided
as data to parameterize the multinomial likelihood for
the observational component of the IPM (see Data Avail-
ability for model code available on Zenodo).
The direct recovery rate of banded birds f 0t;p;c in each

year t and population unit p for each stage-sex class c is
defined as

f 0t;p;c ¼ rt;p;c=bt;p;c (5)

where bt,p,c is the number of newly banded birds and rt,p,c
is the number of bt,p,c that were harvested and reported
during the first hunting season following banding
(Brownie et al. 1985; Model 0). Because we included
woodcock banded during two different seasons
(Fig. 1B), we were able to estimate seasonal (breeding
and non-breeding) and annual survival probabilities (st,p,
AN,c; season k = AN for annual). We estimated breeding
season (15 Mayt–15 Augt) survival using data from
spring-banded birds and annual survival (15 Augt–15

Augt+1) using data from both banding seasons, and then
calculated non-breeding season (15 Augt–15 Mayt+1)
survival as

sNB ¼ sAN=sB: (6)

If spring-banded individuals survive the breeding sea-
son (with probability st,p,B,c), they are available to be har-
vested and reported with probability f 0t;p;c during the first
hunting season after banding (i.e., probability of
encounter is the product st,p,B,c 9f 0t;p;c). However, for
birds banded in late summer, the encounter probability
is simply f 0t;p;c, which presumes no mortality between
banding and start of harvest. We assume that surviving
spring-banded birds have the same probability of being
harvested as summer-banded birds; thus, seasonal sur-
vival can be directly estimated (Brownie et al. 1985;
model H8). The recovery probabilities of banded indi-
viduals during subsequent harvest periods (i.e., indirect
recoveries) are the product of cumulative survival
probabilities (to the current harvest period) and indirect
recovery rates.

Lincoln estimation submodel.—We estimated seasonal
population abundances at time of banding (spring or
late summer) for all three stage-sex classes (juveniles,
adult males, or adult females) in each population
unit using Lincoln estimators (Alisauskas et al. 2014),
which represent two-sample mark–recapture models:
N̂ ¼ m1m2=r2, where m1 is the number banded (bt,p,c),
m2 is the number harvested (Ht,p,c), and r2 is the number
of harvested birds that were originally banded in m1

(rt,p,c). We estimated Ht,p,c by apportioning total harvest
(Ht,p) from annual harvest surveys (DSS and HIP) into
stage and sex components: Ht,p,c = qt,p,c 9 Ht,p, using
wing data from the Parts-collection Survey (PCS) to
estimate proportional harvestqt,p,c (Zimmerman et al.
2017). Although m1 and m2 can be biased by differential
vulnerability to banding or harvest, respectively, use of
recaptures in the denominator controls for differential
encounter probabilities and can provide unbiased esti-
mates of population size and composition (Alisauskas
et al. 2009). We added stochasticity to the Lincoln esti-
mators by assuming that the number of harvested indi-
viduals Ht,p,c was a binomial random variable

Ht;p;c � binomial Nt;p;c; ht;p;c
� �

(7)

where ht,p,c is per-capita harvest probability (Alisauskas
et al. 2009). We estimated ht,p,c = f 0

t,p,c/dt, where f 0
t,p,c is

the direct recovery rate from our Brownie submodel and
dt is the annual probability of band reporting, provided
as data in our model (Appendix S1; also see Zimmerman
et al. 2017).

Singing-ground Survey (SGS) state-space submodel.—
To further inform population size of adult males in
spring (Nt,p,SP,MA), we incorporated annual Singing-
ground Survey data via a state-space framework
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(Fig. 1C). We estimated lt,p, a population-level index of
displaying males in spring, from 1963 to 2015 using
annual SGS index data (sgst,j) collected in state/province
j (within both population units; Fig. 1A; also see Sea-
mans and Rau 2017:Table 2), such that

sgst;j � Norm lt;p;r
2
p

� �
(8)

where r2
p is the variance of the SGS index across states/

provinces and years within each population unit p. We
link lt,p to the annual population growth rate of male
woodcocks (kt,p,MA) estimated in spring by assuming
that both estimators follow similar annual trajectories:

lt;p=lt�1;p ¼ Nt;p;SP;MA=Nt�1;p;SP;MA ¼ kt;p;MA: (9)

Integration of submodels and estimation of fecundity

The three submodels are linked to the biological
(state) process model through shared parameters of
population abundances (N; Fig. 1C), and Brownie and
Lincoln submodels are additionally linked through
direct recovery rates (f0). We multiplied the likelihoods
from our three IPM submodels (Brownie recovery, Lin-
coln estimator, and SGS state-space) to obtain the joint
likelihood. Although we did not include explicit nest
monitoring data in our model, as is typical in many
avian IPMs (Schaub et al. 2015, Saunders et al. 2018),
we were able to estimate annual per-capita fecundity
(Ft,p) by combining the data sets and exploiting our
model structure (i.e., Eq. 3). We additionally constrain
fecundity by assuming that mean clutch size per female
is uniformly distributed between zero and four, based
on known woodcock breeding ecology (McAuley et al.
2013). Our fecundity estimates represent age ratios
during spring banding (i.e., pre-fledged brood sizes)
and hence do not incorporate summer mortality of
juveniles.

Estimating population growth and correlations with
demographic rates

We assessed the relative contributions of demo-
graphic processes (i.e., annual survival of juveniles,
adult males and females, as well as fecundity) to varia-
tion in annual total population growth (kt,p), defined
as the adult population size (male + female) during
spring in year t + 1 divided by the adult population
size in the previous year t:

kt;p¼ Ntþ1;p;SP;MAþNtþ1;p;SP;FE
� �

= Nt;p;SP;MAþNt;p;SP;FE
� �

:

(10)

To do this, we calculated the correlation coefficient (r)
and associated 95% credible interval between the annual
demographic parameters and the population growth
rates, using estimates from each model iteration (i.e., full
posterior sample), as well as the probability that the

correlations were positive P(r > 0) (Schaub et al. 2015,
Saunders et al. 2018).

Model fitting

We estimated the demographic parameters using the
joint likelihood with a Bayesian approach (Schaub et al.
2007, K�ery and Schaub 2012). To calculate posterior dis-
tributions for parameters, we used Markov chain Monte
Carlo (MCMC) in the program JAGS (Plummer 2003),
implemented using R (package jagsUI; Kellner 2016, R
Core Team 2017). We ran three independent chains of
400,000 iterations with a burn-in period of 350,000 itera-
tions and an adaptation phase of 10,000 iterations;
chains were thinned by 10, giving us 15,000 samples
from the posterior distribution. We used vague priors for
all parameters, with the exception of initial population
sizes (constrained by independent Lincoln estimates;
Arnold 2019) and mean recovery rates (constrained to a
maximum of 0.1, given mean values of 0.03; Krementz
et al. 2003). Model convergence was assessed using the
R̂ statistic (Gelman and Hill 2006) and visual inspection
of chains; convergence (R̂≤1.06) was obtained for all
parameter estimates. Posterior distributions are summa-
rized by their mean and 95% credible interval (CI). We
also generated full posterior distributions for the derived
parameters (population growth rates and correlations
between demographic parameters and growth rates).
The data and JAGS/R code for fitting the IPM are avail-
able on Zenodo (see Data Availability).

RESULTS

Population abundances and trajectories

Our integrated population model estimated that both
the central (Fig. 2A) and eastern (Fig. 2B) woodcock
populations declined over the time period of our study
(1963–2015). Mean annual population growth rates over
the study period ranged from 0.81 (CI 0.61–1.07) to 1.18
(CI 0.92–1.50) in the central population unit, with highly
variable annual growth rates over the study period
(Fig. 2C). In the eastern population unit, mean annual
growth rates ranged from 0.89 (CI 0.72–1.07) to 1.08 (CI
0.91–1.26) and were highly variable during the first
30 yr, but stabilized (i.e., averages near 1.0) in the last
20 yr of the study (Fig. 2D). The central population
exhibited less precise estimates of annual growth rates
than the eastern population (Appendix S1: Fig. S2). The
geometric mean of annual growth rates for both the cen-
tral (0.99, CI 0.74–1.31) and eastern (0.99, CI 0.81–1.20)
populations suggest a decline of about 1% annually over
the 53-yr study period with minimal annual process vari-
ation (SD of the 52 annual estimates, 0.08 and 0.03,
respectively).
We derived annual population growth rates for adult

males within our IPM during spring to compare with
annual SGS trend estimates reported by USFWS since
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1968 (Appendix S1: Table S1). Our mean annual growth
rates during 1968–2015 for central (0.99, CI 0.72–1.36)
and eastern (0.99, CI 0.76–1.28) males in the spring were
virtually identical to those estimated from SGS indices
alone (0.99 and 0.99). Our IPM results are in agreement
with the reported long-term SGS trends (Seamans and
Rau 2017), even though SGS data were only a small
component of our IPM (Appendix S1). Thus, our find-
ings suggest that spatiotemporal variabilities in the
banding and/or harvest data sets are leading to overesti-
mation of population declines with those data sets (i.e.,
~17% vs. 1% decline per year).
Annual SGS estimates were only moderately corre-

lated with the spring male population growth rates
obtained from our IPM in both the central (r = 0.35)
and eastern management units (r = 0.38). Additionally,
estimated annual sex ratios show a long-term decline in

the proportion of males within both the eastern and cen-
tral populations (Appendix S1: Fig. S3), a result that has
not been shown in prior analyses of individual data
sources and could be contributing to the apparent dis-
crepancy among data sets. Failure to account for tempo-
ral variation in adult sex ratios within woodcock
population models could lead to overly confident infer-
ences on population-level trends.

Population demographic rates

To address data set discrepancies stemming from spa-
tial variability, we compared stage-sex-specific vital rates
between the two population units. For both central and
eastern populations, annual female survival was consid-
erably higher than male survival, both of which were
higher than juvenile survival (Fig. 3A; see Appendix S1:

FIG. 2. Spring (April–June) estimates of adult male (blue) and female (red) population sizes (top row) and annual population
growth rates (kt; bottom row) of American Woodcock during 1963–2015 in (A and C) central and (B and D) eastern population
units. Population size estimates are shown in the millions. Shading represents 95% credible intervals.
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Fig. S4 for season-specific survival rates of each stage-
sex class). Annual survival estimates in the eastern popu-
lation were lower than those of the central population
for all three classes (Fig. 3A), which is consistent with
lower mean breeding season survival for juveniles (0.40
vs. 0.57; Fig. 3B) and males (0.79 vs. 0.97; Fig. 3B) in
the eastern population compared to the central popula-
tion. Non-breeding seasonal survival estimates were
comparable for adult males and females across the two
populations (Fig. 3C). However, mean non-breeding
season survival of juveniles was lower in the central pop-
ulation than in the eastern population (0.64 vs. 0.76;
Fig. 3C). The eastern population exhibited higher aver-
age spring fecundity (3.03 juveniles per adult female, CI
2.62–3.50) compared to the central population (2.33, CI
2.05–2.64). To compare our fecundity estimates with
those based on age ratios measured during summer
banding (Zimmerman et al. 2010, Seamans and Rau
2017), we also derived mean estimates of late sum-
mer fecundity [Ft,p*st,p,B,JV] for the eastern and central
population units as 1.20 (CI 0.98–1.44) and 1.33 (CI
1.13–1.57), respectively.
Survival of adult males was fairly stable over the dura-

tion of the study period, whereas juvenile and female
survival were more variable in both populations
(Fig. 4A–C). Specifically, juvenile and female non-
breeding survival rates demonstrated the greatest tempo-
ral variability in both population units (Appendix S1:
Fig. S4). Annual fecundity was stable in the eastern pop-
ulation, but estimates in the central region were consid-
erably more variable (Fig. 4D; Appendix S1: Table S2).
See Appendix S1: Table S3 for a complete list of mean
parameter estimates and associated credible intervals of
woodcock population sizes and vital rates for each pop-
ulation, season, and stage-sex class, along with measures
of annual process variation.

Drivers of population change

For both populations, all demographic rates were pos-
itively correlated with population growth rates (Fig. 5).
Among the four demographic rates, fecundity (r = 0.76)

had the highest correlation with growth rates of the cen-
tral population, followed by juvenile and female survival
(r = 0.37 for both parameters); adult male survival had
only a weak correlation (r = 0.07) with population
growth. In the eastern unit, population growth was most
strongly correlated with adult female survival (r = 0.65)
and juvenile survival (r = 0.54), followed by fecundity
and adult male survival (r = 0.18). In all cases, the 95%
credible intervals excluded zero and the probabilities of
a positive correlation were nearly 1.0, except for adult
male survival in both populations and fecundity in the
eastern population unit (Fig. 5). Prior studies have
hypothesized that long-term declines in both woodcock
populations may be related to declines in fecundity, yet
our results indicate that fecundity is a primary demo-
graphic driver only within the central population.

DISCUSSION

Integrated population models are regularly used to
accommodate data deficiencies (e.g., missing demo-
graphic information, lapses in time series), but here we
use IPMs to evaluate data set inconsistencies without
omitting any of the seemingly contradictory data
sources. This approach allowed us to identify sources of
spatiotemporal discrepancy in independent analyses and
to quantify long-term woodcock population trends
across their continental range. Previous studies using
data from only a single monitoring program were unable
to characterize woodcock population dynamics across
their full annual cycle and geographic range, resulting in
inconsistent inferences on population trends (Roboski
and Causey 1981, Derleth and Sepik 1990, McAuley
et al. 1990, Krementz et al. 2003, Zimmerman et al.
2010, Seamans and Rau 2017). For example, survival
and fecundity values were estimated from harvest and
band-recovery data over a period of considerable vari-
ability in demographic rates during the 1960s–1980s
(Figs. 2 and 4; Krementz and Bruggink 2000, Kelley
2001, Zimmerman et al. 2010), leading to potential
issues of temporal scale mismatch in estimates of popu-
lation growth rates. Used alone, these data likely

FIG. 3. Violin plots of the posterior distributions of (A) annual survival, (B) breeding season survival, and (C) non-breeding
season survival for adult female (Ad F), adult male (Ad M), and juvenile (Juv) American Woodcock in the central (yellow) and
eastern (brown) population units during 1963–2015. Circles represent mean estimates.
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overestimate the rate of population decline, providing a
discrepancy with trend estimates from other data sources
collected across different spatial locations and time peri-
ods. Combining all woodcock data into an IPM allowed
us to resolve this discrepancy and determine that both
the central and eastern populations have declined at an
average rate of approximately 1% annually since 1963
(Fig. 2), consistent with long-term monitoring data from
the Singing-ground Surveys (Seamans and Rau 2017).
We were able to attribute these declines to juvenile and

female survival (in both populations) and fecundity
(particularly in the central population).
Our model suggests that the eastern population has

stabilized in the last several decades while the central
population has continued to decline (Fig. 2), results that
have not been documented with analyses of any of the
individual data sets and that demonstrate the impor-
tance of accounting for spatial variability. Estimates of
mean adult annual survival from our IPM (Fig. 3) were
similar to values obtained when analyzing band-recovery

FIG. 4. Estimates of annual survival probabilities of (A) juvenile, (B) male, and (C) female American Woodcock, as well as
(D) annual fecundity in central (light colors) and eastern (dark colors) population units from 1963 to 2015. Shading represents 95%
credible intervals.

FIG. 5. Annual posterior means of the central (top row) and eastern (bottom row) population growth rates (spring) plotted
against the annual posterior means of the estimates for (A and E) juvenile annual survival, (B and F) adult male annual survival,
(C and G) adult female annual survival, and (D and H) fecundity from an IPM of American Woodcock during 1963–2015. Poste-
rior means of the correlation coefficients (r), associated 95% credible intervals and probabilities that estimates are positive P(r > 0)
are given. Horizontal and vertical lines show the limits of the 95% credible intervals for each annual estimate.
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data separately (Krementz and Bruggink 2000, Krementz
et al. 2003), as were our fecundity estimates (adjusted to
account for summer mortality; Zimmerman et al. 2010,
Seamans and Rau 2017); however, estimates of juvenile
annual survival were underestimated using band-recov-
ery data alone (Krementz and Bruggink 2000, Krementz
et al. 2003). Temporal and spatial variability in wood-
cock monitoring methods and effort likely also con-
tributed to discrepancies in trend estimates. For
example, although band-recovery data are available for
the duration of the study period, recovery rates are low
for several decades of the time series (Appendix S1:
Fig. S5); also, half of all banding effort in the eastern
population occurred during a 7-yr window (1968–1974)
and 70% of all banding data for the central population
came from Michigan. Hence, long-term survival esti-
mates based on analysis of band-recovery data alone
(Krementz and Bruggink 2000, Krementz et al. 2003)
may be informed by data that are not spatially or tempo-
rally representative of the entire population and time ser-
ies. Thus, data availability issues may be causing
discrepancies in population inferences, especially regard-
ing juvenile survival.
The Singing-ground Survey data, which tracks breed-

ing males, is the primary monitoring program used to
estimate population trends for American Woodcock
(Seamans and Rau 2017). Although the average popula-
tion growth rates estimated from SGS indices alone
matched those from our IPM, annual sex ratios show a
long-term decline in the proportion of males in both the
eastern and central populations (Appendix S1: Fig. S3),
indicating that the use of SGS indices alone for wood-
cock population monitoring may become problematic if
male abundance is no longer representative of the total
population. Continuing to synthesize data sets and
update integrated modeling results can provide compre-
hensive monitoring of population stage-sex composition,
vital rates, and ultimately long-term trends.

Guidance for resolving data discrepancies with IPMs

The involvement of multiple monitoring programs can
lead to a relative wealth of communal data, yet the chal-
lenge remains that multiple data sets are rarely going to
converge upon identical parameter estimates due to
heterogeneity in population processes across space and
time, as well as different assumptions and sampling
biases inherent in each data set. When combining multi-
ple data types, beginning with a conceptual model of the
target population’s life cycle and a diagram describing
how each data source can be used to inform demo-
graphic parameters (Fig. 1B, C) can provide a clear
understanding of how to maximize use of all data
(Schaub and Abadi 2011). Identifying pertinent biologi-
cal processes can highlight potential discrepancies that
may arise given collection protocols, such as issues
of spatial scale mismatch (i.e., local vs. continental
data sets) and temporal variability (i.e., disparate

observation/monitoring methods over time). In our case
study, the Singing-ground Survey data (measured as
singing males/route during the spring) and harvest data
(measured as all stage-sex classes harvested during the
fall) are not collected on a scale that can be easily trans-
lated to population abundance. Yet, we were able to
include both these data sets in our IPM by linking
annual trend estimates of spring males across submodel
components. Although SGS indices only contributed a
small piece of information (male abundance in spring),
inclusion of these data within our IPM enabled us to
tackle the root of the apparent discrepancy by directly
sharing information between conflicting data sets, rather
than conducting a post-hoc comparison of results from
individual analyses.
Continued development of integrated modeling

approaches to include data types that are limited (e.g.,
indices) or uninformative on their own can be useful to
compensate for data discrepancies. For example, the
PCS data in our woodcock example provide information
on population size and structure, fecundity, survival,
and vulnerability to harvest (see Koons et al. 2017).
However, without the integration of band-recovery and
harvest survey data (Zimmerman et al. 2010, Alisauskas
et al. 2014), none of these parameters are identifiable
from PCS data alone. Intensive data types, such as stage-
structured counts or spatially explicit capture–recapture
data, may be expensive to collect, and therefore only
available over limited spatial or temporal extents. How-
ever, such data can be information rich. Incorporation
of partial data types into integrated modeling frame-
works can help describe state processes that are other-
wise difficult to infer with typical observational data
(Zipkin and Saunders 2018).
In many instances, such as our woodcock case study,

simply combining all available data sources into an inte-
grated modeling framework will be enough to resolve
discrepancies that may rise from analyses of individual
data sets. In situations where synthesis of conflicting
data sources results in model failure (e.g., unrealistic
and/or unidentifiable parameter estimates, lack of model
convergence, estimates biased towards the most data-
rich source), ecologists may consider borrowing methods
from other fields to resolve discrepancies. Such methods
include (1) data weighting (done in fisheries stock assess-
ments; Francis 2011); (2) data subsetting and thinning (a
geospatial technique, Freschi et al. 2014); (3) data sup-
plementing (done in the social sciences; Foster et al.
2016); or (4) expert opinion elicitation (employed in psy-
chology; Taylor et al. 2017), which can be used to for-
mulate priors in Bayesian analyses (Murray et al. 2009).
In data weighting, estimates from data or methods

that offer more reliable information receive higher
weights in a model and thus contribute to inferences dis-
proportionately (Srivathsa et al. 2018). Although data
weighting can be misused (Francis 2011), it can also be a
valuable approach in instances where there are known
variations in quality among different data types. Data
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thinning is another useful method for addressing issues
related to high-volume data types that may introduce
bias through sheer availability (Freschi et al. 2014). This
approach could be applied to integrated ecological mod-
els where the volume of a given data source renders anal-
ysis prohibitive, or where additional data points from a
given data type provide only a marginal improvement on
inferences. Utilizing publically available data, such as
“scraping” web-based data, can provide data to supple-
ment deficiencies by capitalizing on data mining tech-
niques (Bharanipriya and Prasad 2011). Such methods
have only recently been introduced in ecology and pre-
sent computational and analytical challenges (e.g.,
accounting for sampling biases from volunteer-collected
data; Sullivan et al. 2014), but offer potentially powerful
avenues for incorporating “big data”, such as oppor-
tunistic species sightings by the public (e.g., eBird), into
integrated modeling frameworks (Robinson et al., in
press). Similarly, eliciting expert opinion can be a useful
approach in cases where deficient data prohibit the abil-
ity to build reliable statistical models. When formulated
as informed priors in a Bayesian analysis, for example,
expert opinion can modify or strengthen patterns exhib-
ited by empirical data sets that are limited in size and
scope (Murray et al. 2009). Informed priors may also
originate from comparative studies, such as reviews of
vital rates in closely related taxa (e.g., global reviews of
survival rates in shorebirds; M�endez et al. 2018) or lar-
ger-scale studies that use allometric scaling (e.g., survival
vs. body mass relationships in birds and mammals;
McCarthy et al. 2008).
Characterizing population dynamics and trends can

be challenging, as it is difficult to measure all relevant
parameters across a population’s range. Available data
may be representative of only a subset of a population
through space and time. The spatiotemporal scope of
ecological research has expanded greatly over the last
few decades, necessitating more efficient data collection
and advanced analytical methods. Integrated population
modeling offers a useful approach for taking advantage
of all available data on a target population. Yet, with the
synthesis of disparate data types comes difficulties bridg-
ing discrepancies that arise from issues of scale mis-
match, as well as spatial and temporal variability. We
provide a foundation for resolving conflicting data
streams in population modeling by (1) mapping out a
target population’s life cycle coupled with a diagram of
the parameters shared among data sets (Schaub et al.
2007) to identify spatial and/or temporal discrepancies;
(2) integrating partial, limited, conflicting, and/or appar-
ently “uninformative” data types (Maunder and Piner
2017); and (3) adopting analytical approaches outside
the field of ecology (e.g., data thinning and data weight-
ing) when the aforementioned tactics prove ineffective.
IPMs can also be used within an adaptive monitoring
framework such that future data collection efforts can
be guided in a way that reduces sources of uncertainty.
Vital rates that are estimated with low precision, for

example, can be the focus of spatially and temporally
targeted studies (e.g., telemetry) that can test the validity
of IPM-based predictions and allow for model updates
going forward. Through these techniques and further
method development, ecologists can improve demo-
graphic parameter estimation, enabling accurate assess-
ment of population trends at broad spatial scales, as well
as identification of drivers of long-term population
dynamics.
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