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quantum theory to extract rotational constants
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ABSTRACT
We report the isotope shifts of the rotational constants and vibrational band progressions of the sul-
fur dioxide molecule (SO2), for all four stable sulfur isotopes32S,33S,34S, and36S. These are extracted
from exact quantum theoretical calculations of the SO2 rovibrational energy levels, as reported in
Chem. Phys. 450–451, 59 (2015) and Chem. Phys. 461, 34 (2015) and by fitting these levels to a
J-shifting (JS)-type scheme, applied to a representative set of total angular momentum (J) values.
The approach used to obtain the rotational constants is unusual in that it is derived directly from
the quantum theoretical framework used for the earlier calculation, which gives rise to a flexible
(i.e., vibrational- and rotational-state-dependent) but symmetric rotor description. The usual (Ka, Kc)
rotational quantum numbers are thus replaced with a single body-fixed azimuthal rotation quan-
tum number, K, with various strategies introduced a posteriori to address rotor asymmetry. The
new model fits the numerically computed rovibrational levels well, over a fairly broad range of
vibrational (v) and rotational (J) excitations. The computed rotational constants agreewellwithprevi-
ously reported experimental values [J. Chem. Phys. 58, 265 (1973)]. The explicitly v- and J-dependent
approach used here should thus prove valuable in broader contexts—e.g., for an analysis of self-
shielding in sulfurmass-independent fractionation, even though the rovibrational levels themselves
exhibit mass-dependent fractionation.
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1. Introduction

The rovibrational spectroscopy of the sulfur dioxide
(SO2) molecule is of great interest in a variety of disci-
plines. In addition to geochemistry, these include allied
fields such as astrobiology, astrophysics, atmospheric
science, and planetary science [1–37] as well as more
distant fields. Among other current challenges, highly
accurate knowledge of the rovibrational energy levels of
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SO2—across all stable sulfur isotopologues, andwith reli-
able quantum number label assignments—may be very
useful for resolving one of the most important unsolved
mysteries currently facing the geochemistry commu-
nity: the origin of the sulfur mass-independent frac-
tionation (S-MIF) observed in the Archean rock record
[10,22,27,31,38–52]. More specifically, the dramatic and
sudden disappearance of the Archean S-MIF signal about
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2.4 Gya—coinciding with the ‘Oxygen Revolution’—has
sparked great interest in understanding both the signal’s
origin and its dissolution.

The exact origin of S-MIF signal—as it is observed
in the geological record—is likely complicated, and still
under debate. A detailed discussion is beyond the scope
of this article, although the interested reader is referred
to a recent review article [53]. Briefly, it has been sug-
gested that the production and transfer of the S-MIF
signal to Archean samples stemmed from an atmo-
spheric photochemistry source that is quenched in an
oxygen-rich atmosphere. In Ref. [6], Farquhar et al.
proposed the ultraviolet (UV) photodissociation of gas-
phase SO2—which is still considered to be themost likely
source. UV absorption leads to SO2 photodissociation in
the range

SO2 + hν(165–220 nm) → SO + O, (1)

which also corresponds to the Schumann-Runge absorp-
tion bands in O2. Moreover, S-MIF has been observed
to arise from SO2 photodissociation in photocell and
other broadband light experiments [43,48,54], although
the nature of the S- MIF observed in photocells is of
a qualitatively different character than that in the rock
record.

In any event, the observed S-MIF signal provides a
wealth of potentially extremely revealing information
beyond simply the presence or absence of S-MIF. In par-
ticular, the observed correlation between δ34S and �33S
[the so-called ‘Archean Array’ [26], and the (occasional)
inverse correlation between �33S and �36S [7,8,19,25]
demand a more precise explanation [40,53]. With regard
to SO2 photodissociation, several specific mechanisms
have been proposed and/or investigated. At least three
involve—as the first step—photoexcitation to the third
excited singlet electronic state (C̃1B2 ← X̃1A1) induced
by UV photon absorption in the 190 to 220 nm range
[3,9,55–59]. Despite some recent suggestions to the con-
trary [53,55], S-MIF could still arise from any or all of the
following:

(1) Predissociation, involving an avoided crossing with
the D̃1A1 singlet electronic state [60–62].

(2) Intersystem crossing, with the d̃3A1 repulsive triplet
electronic state [52,54,60–64].

(3) Self shielding, which depends on the availability of
UV light of very specificwavelengths near the Earth’s
surface [29,46,47,55,63,65–67].

The self-shielding argument (3. above) suggests that
because32S is 95% abundant, an SO2-containing atmo-
sphere might absorb all photons at wavelengths that
lead to32SO2 photolysis (i.e., be optically thick) yet not

be optically thick at wavelengths that cause photolysis
of33SO2,34SO2, and36SO2.

Whether to validate—or to completely rule out—the
mechanisms above (especially self shielding), as candi-
dates for geological S-MIF, requires a detailed elucidation
of the SO2 rovibrational energy levels on the ground
and excited electronic states, at a level of precision that
unambiguously resolves rotational splittings and isotope
shifts. This is because the C̃1B2 ← X̃1A1 photoabsorp-
tion spectrum exhibits sharp ‘fine structure’ features,
the placement of which is shifted slightly (by several
cm−1) via isotopic substitution. In principle, the requisite
high-resolution spectra may be obtained either experi-
mentally or theoretically. Indeed, an extensive body of
rovibrational experimental data already exists for SO2,
e.g. as deposited in the HITRAN (HI-resolution TRANs-
missionmolecular absorption) database [1,20,23,68–97].
That said, HITRAN and other high-resolution data
is still very limited for the rare isotopologues,33SO2
and36SO2—although, since the time of this writing,
new33SO2 data has just become available [71,76], and
new high-resolution UV photoabsorption spectra for all
four isotopologues are currently being obtained [55].

In any event, for the present project, we use only
theoretical ab initio data, because: (a) it is equally avail-
able for all four sulfur isotopologues; (b) there are no
‘gaps’ in the rovibrational spectral data; (c) the data is
uniformly ‘clean,’ as it all comes from a single source.
Recently, we published comprehensive rovibrational level
data for all four sulfur isotopologues of SO2 in Refs. [65]
or ‘Paper I’ and [66] or ‘Paper II’—with higher accuracy
than previous calculations, and providing symmetry and
rovibrational labels for every computed state. The rovi-
brational energy levels were computed using the ScalIT
suite of parallel codes [98–101]. All rovibrational lev-
els were computed on the ground electronic state, X̃1A1,
using the empirical, full variational potential energy sur-
face (PES) of Kauppi and Halonen [102]. At the time,
this PES provided the best agreement with experiment
[14,36,65,66,103,104], although several improved PESs
have since become available [14,61,105]. All rovibrational
energy levels were obtained using spectroscopically accu-
rate (10−5 cm−1) quantum theory—i.e., no approxima-
tions beyond Born-Oppenheimer were employed, and
in particular, all rotation-vibration coupling was treated
exactly.

The goal of this paper is to extract rovibrational-state-
dependent SO2 rotational constants from the theoret-
ical rovibrational data obtained in Paper I and Paper
II—in a way that may be meaningful across the full range
of rotational and vibrational excitation that is relevant
for the S-MIF mechanisms discussed above. Rotational
constants are helpful for making sense of spectra; in
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particular, they can be used to assign individual rota-
tional (JKa,Kc) and vibrational [v = (v1v2v3)] quantum
number labels, which neither experiment nor quantum
theory can provide directly on its own. They can also
be used to predict unobserved (or uncomputed) rovi-
brational levels—although only to a lower level of accu-
racy. For the present purpose, fine-structure resolution is
required—i.e., on the order of 1 cm−1. It should be noted
that this level of accuracy is consistent with that of the
PES used.

In general terms, the assignment of separate rota-
tional and vibrational quantum numbers can be achieved
using some approximate model of the rovibrational spec-
trum that assumes additively separable contributions for
the rotational and vibrational energy. For our purposes,
we refer to any such model as a ‘J-shifting (JS) model’
[106–108], even though traditionally, this language has
been reserved for the reaction scattering context. Gen-
erally speaking, the rotational energy contribution is
determined from three rotational constant parameters.
In the traditional approach, the rotational constants for
a molecule are obtained classically, from its equilib-
rium geometry. The assumption is that of the ‘classical
rigid rotor’—i.e., that the molecule spends none of its
time exploring other geometries. The classical rigid rotor
model tends to work best when there is little rotational
and vibrational excitation, so that J ≈ 0 and v ≈ 0. For a
broader range of J and v however, this choice is generally
not the best.

For bent triatomic molecules such as SO2, the classi-
cal rigid rotor is necessarily asymmetric (all three rota-
tional constants are different). In reality, however, the
true quantum molecule can exhibit far less asymmetry
than predicted classically. The reason is that in the quan-
tum context of ‘semirigid’ molecules, the geometry is not
fixed but ‘vibrationally averaged’ [109] (i.e., averaged over
the range of geometries available to a given vibrational
state). Indeed, the quantum theoretical framework used
to compute the rovibrational levels in Papers I and II,
itself suggests a JS model for which the rotational con-
tribution always corresponds to a symmetric rotor. More-
over, this choice has been shown to lead to substantially
improved performance over other JS models, when con-
sidering a range of J and v values [107]. Accordingly, in
this paper, we apply the symmetric JS model to the rovi-
brational energy levels of Papers I and II, and systemati-
cally evaluate whether the resultant fits and assignments
are of sufficient quality to address the various mecha-
nisms proposed for S-MIF, such as self shielding. We
also improve upon the existing symmetric JS model by
developing a a posteriori schemes for addressing rotor
asymmetry—which in the present context, manifests as
‘K-doublet’ [109] (or ‘lambda-doublet,’ [66]) splitting

of the doubly-degenerate symmetric-rotor energy levels.
Some of these schemes are implemented here, while one
is reserved for future work.

2. Theory and computational details

According to experiment [84,110], the equilibrium
geometry for SO2, in its X̃1A1 ground electronic state,
is a bent structure belonging to the C2v point group,
as indicated in Figure 1. Specifically, the O-S-O bond
angle is 119.3 ◦, and each S-O bond length is 1.43Å. The
corresponding classical rigid rotor exhibits fairly little
asymmetry, and is otherwise a highly prolate, nearly
symmetric rotor. The three principal axes of rotation,
(a, b, c), are also indicated in Figure 1. These are asso-
ciated, respectively, with the three rotational constants
(A,B,C), with A>B>C. Additionally, the fact that the
rotor is highly prolate and nearly symmetric implies that

Figure 1. Three-body SO2 system, as represented in both valence
bond and Jacobi coordinates. Valence bond coordinates (r1, r2,
θ ): r1 and r2 are the two SO bond distances, and θ is the angle
between the two chemical bonds. Jacobi coordinates (r, R, φ): r is
the distance between the two O atoms, R is the distance between
S atom and the O–O centre of mass, and φ is the angle between
the two vectors associated with r and R. The three principal axes
associated with rotational motion, a, b, and c, are also indicated.
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Table 1. Various data for the SO2 molecular system.

Mass Geometry 32SO2 RC 33SO2 RC 34SO2 RC 36SO2 RC 32SO2 RC (Ref. [73])
16O = 15.99491462 r1 = 1.4308 Å 2.018782 1.988178 1.959459 1.906634 A= 2.027355
32S = 31.97207100 r2 = 1.4308 Å 0.345547 0.345547 0.345547 0.345547 B= 0.344172
33S = 32.97145876 θ = 119.33 deg 0.295045 0.294383 0.293745 0.292530 C = 0.293530
34S = 33.96786690
36S = 35.96708076

Column I: masses for16O, and for the four stable isotopes of S, as used throughout this paper (atomic mass units). Column II: equilibrium geometry in valence
bond coordinates (units listed), for SO2 in the ground electronic state X̃1A1, as determined by experiment (Ref. [110] see also Figure 1). Columns III–VI: classical
rigid rotor rotational constants (RC), for the geometry and masses from the first two columns, for all four stable sulfur isotopologues of SO2 (cm−1). Column VII:
experimental32SO2 RC values (cm−1).

A � B ≈ C; the actual numerical values are given in
Table 1.

The quantum Hamiltonian for the asymmetric rigid
rotor,

Ĥrot ∝ AĴ2a + BĴ2b + CĴ2c , (2)

provides a useful description of the rotational contribu-
tion to the rovibrational energy levels. In Equation (2)
above, (A,B,C) are the rotational constants, whereas
(Ĵa, Ĵb, Ĵc) are the associated body-fixed components
of the angular momentum vector. The eigenvalues of
Ĥrot—i.e., the rotational energies,ErotJKaKc

—are then added
to the pure vibrational energy eigenvalues, Ev , to obtain
approximate rovibrational energies:

EvJKaKc ≈ Ev + ErotJKaKc . (3)

In Equation (3) above, the quantum numbers Ka and Kc
correspond roughly to rotational excitations about the a
and c principal axes, respectively. In general, however,
these are not rigorously good quantum numbers.

The asymmetric rigid rotor energy levels, ErotJKaKc
, are

known as functions of (A,B,C), but are generally rather
complicated. In particular, it can be difficult to extract a
quantitative understanding of the nearly-degenerate dou-
blets that arise. A substantial simplification results if pro-
late symmetric rotational constants are used—i.e., B=C.
In this case, we find

EJSvJK = Ev + ErotJK

= Ev + BJ(J + 1) + (A − B)K2, (4)

where EJSvJK is the symmetric JS approximation to the
rovibrational energy, EvJKaKc . Here, J is the total angu-
lar momentum quantum number, and K = Kz ≈ Ka is
rigorously the rotational excitation about the body-fixed
z axis (defined by the Jacobi vector r)—which, in the
symmetric prolate context, is also the principal axis a
(Figure 1).

In the symmetric JSmodel, individual rotational states
are thus labelled (J,K). For a given J, the quantum num-
ber K can take on all (2J + 1) integer values from −J to

J. Note, however, that the (J,±K) states have the same
energy, according to Equation (4). Thus, there are only
(J + 1) distinct energy levels, all but one of which (i.e.,
theK=0 level) are doubly degenerate. It is therefore con-
venient to redefineK = |K|, with 0 ≤ K ≤ J (Paper I and
Paper II). Apart from the simplification that it provides,
the above symmetric rotor form is significant because it
arises naturally from the quantum theoretical framework
used to compute the exact rovibrational levels, which uses
the Jacobi coordinate system indicated in Figure 1. In
this context, J is still a rigorous quantum number, and
so rotation-vibration coupling manifests as a coupling
across different values of K. By removing this coupling
from the exact rovibrational Hamiltonian, one obtains
independent diagonal (J,K) blocks that adhere to a sym-
metric rotor form. For each such block, the rotational
constants depend on geometry, as expected; however,
these turn out not to be the classical rigid rotor constants,
which always correspond to an asymmetric rotor form.
Further details are provided elsewhere [65,66,107].

The symmetric rotor rotational constants that appear
in the diagonal-block approximation depend on (J,K),
as well as on geometry. By averaging over geometry,
using the probability density for a given vibrational state,
we obtain a set of symmetric rotor rotational constants
that depend explicitly on v, as well as (J,K). These con-
stants are thus rotational-state-dependent (RSD) as well
as vibrational-state-dependent (VSD), and it is the added
RSD flexibility that enables this approach to (partially)
incorporate higher-order coupling effects such as cen-
trifugal distortion. Note, however, that even this fully
general ab initio approach is always limited by sym-
metry to predicting doubly-degenerate levels for K>0,
and singly degenerate levels for K=0. In reality, the
true rovibrational energy levels are all singly degen-
erate—although they often occur in nearly-degenerate
doublets. The K-doublet splitting that does arise is thus
a manifestation of inherent quantum asymmetry, which
can be characterised in terms of the discarded K-block
coupling contribution [65,66,107].

In practice, rather than applying vibrational averaging,
it is simpler to apply a least-squares fit of Equation (4)
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directly to the exact rovibrational levels themselves, if
one has access to these (as is the case here). There
are various ways in which this can be implemented,
leading to different symmetric JS models. For instance,
one can always identify isolated singlet levels from the
exact rovibrational spectrum as corresponding to K=0.
By restricting consideration to just these levels, one can
obtain rotational constants B that are VSD and partially
RSD (i.e., J-dependent) by dropping the last term from
Equation (4):

EvJ0 = Ev + BJ(J + 1). (5)

Alternatively, VSD B constants can be obtained by fitting
Equation (5) across a range of J values. More generally,
VSDA andB constants across all the data can be obtained
by fitting Equation (4) across a range of J values.

The above VSD approaches were both adopted in
Paper II. Specifically, Equation (4) was fit to all SO2 rovi-
brational energy levels in the range J=1–15, for each
vibrational state v = (0, v2, 0), with v2 = 0 − 2. (As will
be the case in this paper, to get the best fits all computed
levels were considered, including those that are physically
forbidden due to nuclear spin symmetry). Second, a fit
of all of the v = (0, 0, 0) K=0 rovibrational levels in the
range J=1−20 to the form of Equation (5) was also per-
formed, to compute the rotational constant B. The rather
stark difference in the resultant computed values for the
v = (0, 0, 0) B constant underscores the important role
of K-doublet splitting for this system. As predicted in
Paper II, the magnitude of K-doublet splitting decreases
exponentially with K and increases monotonically with
J—meaning that it is most pronounced for K=0 at large
J, reaching ≈ 10 cm−1 by J ≈ 20. Physically, this can be
explained as follows: for large J and small K, the rotor
behaves more like an oblate top, and so the ground and
first excited states for a given (v, J) are nearly degenerate,
rather than the first and second excited states (see Papers
I and II for more details). In any event, this behaviour
underscores the need to single out the K=0 levels for
special treatment, and/or otherwise deal explicitly with
the K-doublet splitting.

In this paper, we generalise previous efforts in several
important ways, in order to ensure sub-cm−1 accuracy in
the predicted rovibrational energy levels, across the entire
v and J range of interest. To begin with, we introduce J
dependence (partial RSD) into the Equation (4) fits of
A and B, as discussed above. The added flexibility of an
RSD fit has been demonstrated to yield more accurate JS
predictions than a pure VSD approach [107,111]. Next,
we explore several different strategies, including a poste-
riori fits, for dealing explicitly with the inherent quantum
asymmetry—which manifests in the present context in
the form of K-doublet splitting.

3. Results and discussion

In this work we focus on SO2 containing only16O, but all
four stable sulfur isotopes,32S,33S,34S, and36S, are consid-
ered explicitly. The masses used for all atomic species are
indicated in Table 1. For each isotopologue, and each v
and J value up to J=20, all (2J + 1) computed rovibra-
tional energy levels from Paper I and Paper II (including
unphysical states) are fit to the symmetric JS functional
form of Equation (4). The energetically ordered set of
(2J + 1) levels is presumed to correspond to K = Ka =
0, 1, 1, 2, 2, . . . , J, J and Kc = J, J, . . . , 1, 1, 0, as per the
standard for a prolate symmetric rotor.We call this fitting
procedure, which ignores K-doublet splitting, the ‘basic
procedure.’

3.1. J-shifting and rotational constants

In caseswhereK-doublet splitting ismost significant (i.e.,
high J and low K), the deviations of the actual rovibra-
tional energy levels from the symmetric JS predictions are
largest. They also exhibit an alternating pattern, wherein
theKa + Kc = J + 1 levels show negative deviations, and
the Ka + Kc = J levels show positive deviations. As dis-
cussed in Section 2, in the most extreme cases, the lowest
two levels are nearly degenerate—exhibiting nearly oblate
behaviour, i.e. Kc = J. Thus, the maximum deviations
can be on the order of theK-level spacing itself (i.e., up to
around 10 cm−1), which is too large for the present pur-
pose. Moreover, because K-doublet splitting decreases
exponentially withK (Paper II), themaximumdeviations
come to dominate the entire root-mean-square (RMS)
error, either directly or indirectly. These trends may be
observed in Figure 2.

There is therefore a need for dealing with the K-
doublet splitting explicitly, at least in cases where this is
pronounced. Based on the alternating pattern discussed
above, two simple strategies emerge:

(1) Fit the Ka + Kc = J levels to Equation (4) separately
from the Ka + Kc = J + 1 levels.

(2) Average the two energy levels in each K-doublet
pair, prior to fitting to Equation (4); then model the
K-doublet splitting separately.

Both of these strategies are applied and evaluated for
SO2 in this paper, as is the basic strategy that ignores
K-doublet splitting altogether. In addition, it turns out
that the behaviour of the K=0 singlet level is rather dif-
ferent from the doublets. In order to obtain improved
fits, therefore, we also consider variations of the above
strategies, for which the K=0 level is isolated from the
doublets, and treated separately (for Strategy 2., this is the
only variant considered).
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Figure 2. Deviations (�E), in cm−1, of the actual rovibrational energy levels as reported in Papers I and II, from the symmetric JS
predictions obtained using the ‘basic’ symmetric JS strategy (i.e., by fitting to EJshift(0,0,0)JK = E(000) + BJ(J + 1) + (A − B)K2) for all32SO2

v = (0, 0, 0) rovibrational levels, as a function of |K| (red squares, solid line) for J= 5, 10, 15 and 20.

In Table 2, we present the root mean square (RMS)
deviations obtained when the exact32SO2 v = (0, 0, 0)
rovibrational levels of Paper I and Paper II are fit
to Equation (4), using the various strategies described
above. All J values from J =1–20 are considered explic-
itly. The basic strategy, i.e. fitting to all (2J + 1) levels
together, is represented by Column 2. Likewise, Strat-
egy 1. is considered in Columns 3–6, and Strategy 2 in
Column 7 in which reported RMS errors are relative to
the centre of each doublet. The primary trend is that
RMS deviations increase considerably with increasing J,
as expected. We also observe that both strategies above
are effective at improving the quality of fits, as evidenced
by substantial reductions in RMS deviations. In particu-
lar, Strategy 2 is the most effective up to J=15, by far. For
the larger J values, Strategy 1 becomes slightlymore effec-
tive—at least for the Ka + Kc = J levels with the K=0
state removed. The latter modification can alone reduce
RMS deviations by up to a factor of two, which again con-
firms the special role of the K=0 state. As a rule, much
greater improvement is observed at the smaller J values
(up to 40-fold RMS reduction) than at the higher J values

(only 2-fold RMS reduction). In any event, the goal of
sub-cm−1 accuracy is achieved—e.g., for the Ka + Kc =
J fits without K=0. The above trends all hold for the
excited vibrational state fits, as well.

In Table 3, we present all rotational constants obtained
using Strategy 2 above—for all four sulfur isotopologues
of SO2, for all (0, v2, 0) vibrational states up to v2 = 2,
and for all J =2–20. These relatively low-lying rovibra-
tional states are the most relevant for self shielding. The
rotational constant A is about six times larger than B,
reflecting the highly prolate nature of the SO2 molecule.
Various trends in the rotational constant values are evi-
dent from the table, with respect to varying the isotopo-
logue, v, or J. In particular, the values of both A and
B decrease monotonically with increasing mass of the S
atom, in a manner that corresponds to a mass-dependent
fractionation (MDF) pattern in the SO2 rovibrational
energy levels. Note, however, that the value of A is much
more strongly dependent on isotopologue than is B, even
in a relative sense (≈6% vs. ≈0.4%). The effect on A
andB of increasing the bend vibrational excitation is sim-
ilar to that of varying the sulfur isotope; however, this
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Table 2. RMS deviations, in cm−1, obtained by fitting the exact 32SO2 v = (0, 0, 0) rovibrational energy levels (Paper I and Paper II) to
the symmetric JS form of Equation (4), for each J value in the range 1 ≤ J ≤ 20.

Basic Strategy 1 Strategy 2

All K Ka + Kc = J + 1 Ka + Kc = J K-doublet-averaged

J With K = 0 With K = 0 Without K = 0 With K = 0 Without K = 0 Without K = 0

1 2.07E−02
2 4.80E−02 3.39E−02 3.34E−02
3 0.081287 5.86E−02 4.49E−02 6.05E−02 4.09E−02 2.01E−03
4 0.119705 9.00E−02 8.48E−02 9.19E−02 7.41E−02 5.38E−03
5 0.163007 0.128187 0.130343 0.128283 0.135997 1.11E−02
6 0.211285 0.173378 0.182016 0.169027 0.143106 2.00E−02
7 0.264922 0.226464 0.240445 0.214460 0.177795 3.29E−02
8 0.324562 0.288743 0.306237 0.265270 0.211883 5.10E−02
9 0.391172 0.361790 0.380083 0.322722 0.247918 7.53E−02
10 0.465862 0.447322 0.462784 0.388213 0.277535 0.107228
11 0.549964 0.547220 0.555414 0.463427 0.309498 0.148112
12 0.644654 0.663023 0.686157 0.549624 0.341671 0.199491
13 0.751252 0.796275 0.774693 0.648116 0.375401 0.263046
14 0.871013 0.948306 0.903970 0.759931 0.412640 0.340541
15 1.005330 1.120420 1.048340 0.886196 0.456152 0.433934
16 1.155690 1.313840 1.209480 1.028060 0.509660 0.545269
17 1.323720 1.529810 1.389170 1.186950 0.577527 0.676647
18 1.511280 1.769670 1.589290 1.364630 0.664572 0.830237
19 1.720450 2.034860 1.811910 1.563150 0.775462 1.008240
20 1.953460 2.326970 2.059150 1.784800 0.914314 1.212870

Various fitting strategies are employed, in an attempt to deal with K-doublet splitting (Section 3.1).

causes an increase rather than a decrease in A, due pre-
sumably to the fact that the molecule can now better
explore geometries closer to a linear shape. Finally, vary-
ing J has the smallest effect on the A constant, causing
a reduction by only 1% or so as J increases from J=2
to J=20. On the other hand, this has the largest impact
on B, increasing this value by 1% over the same J range.
The J trends reflect centrifugal distortion effects: rota-
tion distorts the molecule’s geometry, in a way that may
vary its shape with K, but generally increases its size as J
increases.

Rotational constants for32S16O2 have been reported
previously on many occasions [14,36,65,66,73,84,105,
110]. The simplest theoretical rotational constants, based
on the classical rigid rotor, have already been pre-
sented here in Table 1. The table also lists a set of
values obtained by fitting a model with explicit cen-
trifugual distortion contributions directly to experi-
mental (microwave and infrared) data [73]. Of course,
these estimates are based on the asymmetric rotor; in
order to enable comparisons with the present results,
we average the two small rotational constants, B and
C. In the case of the experimental data, the results are
remarkably close to those presented here for the low-
est v=0 and J=2 states—i.e., A=2.027355 cm−1 from
experiment vs. A=2.028710 cm−1 (Table 3 Column 3
Row 1), and B=0.318851 cm−1 from experiment vs.
B=0.318947 cm−1 (Table 3 Column 7 Row 1). Note that
J=2 is the smallest value for which nontrivial data can
be obtained, using the present model.

3.2. Isotope shifts and vibrational band
progressions

In this section, we present isotope shifts of the (ro)
vibrational levels of the SO2 isotopologues in terms of
the rotational constants and band progressions. Such
knowledgemay be useful for characterising self shielding,
and otherwise provides a detailed understanding of the
effect of isotopic substitution on the spectroscopic fine
structure.

In Table 4, we present the isotope shifts of the rota-
tional constants A and B for all (0,v2,0) vibrational states
up to v2 = 2, and J values up to J=20. The isotope shifts
for33SO2,34SO2, and36SO2 relative to the32SO2—i.e.,
�A = (A32 − A33,34,36) and �B = (B32 − B33,34,36),
increase monotonically and nearly linearly with the S
isotope mass. The isotope shifts thus exhibit a very uni-
form MDF, which at low J, also increases (≈5% for �A,
and ≈10% for �B) nearly linearly with v2. That said,
the magnitude of the isotope shifts is much larger for
A than for B, by about a factor of 100×. For �A, the J
dependence is almost negligible, but for �B, it is quite
pronounced, at least in a relative sense. The J dependence
of �B is also not monotonic, starting at 3.80 10−4 cm−1

for v = (0, 0, 0) J=2, decreasing to 3.30 10−4 cm−1 by
J=7, and then increasing again up to 4.00 10−4 cm−1

by J=20.
In Figure 3 plots (a) and (b), the isotope shifts of the

rotational constants for v = (0, 0, 0) SO2 are presented
in graphical form, as a function of J. For completeness,
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Table 3. Rotational constants A and B= C, in cm−1, obtained by fitting the exact SO2 rovibrational energy levels (Paper I and Paper II)
to the symmetric JS form of Equation (4), using Strategy 2 of Section 3.1 (K-doublet averaging), for all four stable sulfur isotopologues
(indicated via superscript), for v = (0, v2 ≤ 2, 0), and for 2 ≤ J ≤ 20.

J v1, v2, v3 A32 A33 A34 A36 B32 B33 B34 B36

2 0,0,0 2.028710 1.997870 1.969020 1.915880 0.318947 0.318567 0.318306 0.317714
0,1,0 2.071410 2.039870 2.010410 1.956060 0.318589 0.318186 0.317939 0.317347
0,2,0 2.115560 2.083300 2.053210 1.997630 0.318228 0.317800 0.317589 0.316964

3 0,0,0 2.028320 1.997520 1.968660 1.915540 0.319062 0.318715 0.318427 0.317838
0,1,0 2.070870 2.039380 2.009900 1.955590 0.318847 0.318487 0.318205 0.317603
0,2,0 2.114880 2.082680 2.052550 1.997000 0.318623 0.318259 0.317990 0.317371

4 0,0,0 2.027790 1.997020 1.968160 1.915060 0.319189 0.318851 0.318557 0.317965
0,1,0 2.070300 2.038840 2.009350 1.955070 0.318979 0.318632 0.318335 0.317733
0,2,0 2.114250 2.082080 2.051950 1.996440 0.318771 0.318412 0.318122 0.317508

5 0,0,0 2.027140 1.996380 1.967540 1.914460 0.319326 0.318994 0.318693 0.318102
0,1,0 2.069550 2.038120 2.008650 1.954400 0.319142 0.318801 0.318498 0.317897
0,2,0 2.113420 2.081280 2.051150 1.995690 0.318963 0.318611 0.318312 0.317696

6 0,0,0 2.026350 1.995620 1.966790 1.913760 0.319474 0.319143 0.318840 0.318247
0,1,0 2.068680 2.037280 2.007820 1.953620 0.319300 0.318961 0.318653 0.318051
0,2,0 2.112450 2.080350 2.050240 1.994820 0.319132 0.318784 0.318476 0.317862

7 0,0,0 2.025440 1.994730 1.965930 1.912940 0.319633 0.319303 0.318996 0.318403
0,1,0 2.067670 2.036300 2.006860 1.952710 0.319477 0.319139 0.318828 0.318223
0,2,0 2.111320 2.079250 2.049170 1.993810 0.319329 0.318981 0.318668 0.318051

8 0,0,0 2.024410 1.993730 1.964950 1.912010 0.319803 0.319471 0.319162 0.318565
0,1,0 2.066520 2.035180 2.005780 1.951680 0.319660 0.319321 0.319006 0.318398
0,2,0 2.110040 2.078010 2.047970 1.992670 0.319528 0.319179 0.318861 0.318240

9 0,0,0 2.023260 1.992620 1.963870 1.910980 0.319982 0.319649 0.319336 0.318735
0,1,0 2.065240 2.033940 2.004570 1.950530 0.319858 0.319516 0.319197 0.318584
0,2,0 2.108610 2.076630 2.046620 1.991390 0.319745 0.319394 0.319071 0.318443

10 0,0,0 2.021990 1.991390 1.962670 1.909840 0.320170 0.319834 0.319517 0.318911
0,1,0 2.063830 2.032570 2.003240 1.949270 0.320063 0.319718 0.319395 0.318775
0,2,0 2.100420 2.075100 2.045140 1.989990 0.321567 0.319615 0.319285 0.318651

11 0,0,0 2.020610 1.990050 1.961370 1.908610 0.320367 0.320028 0.319707 0.319093
0,1,0 2.062290 2.031080 2.001790 1.947900 0.320282 0.319934 0.319606 0.318978
0,2,0 2.105330 2.073450 2.043530 1.988460 0.320213 0.319856 0.319520 0.318877

12 0,0,0 2.019120 1.988600 1.959960 1.907270 0.320570 0.320227 0.319900 0.319278
0,1,0 2.060630 2.029470 2.000220 1.946410 0.320505 0.320152 0.319818 0.319181
0,2,0 2.103470 2.071650 2.041780 1.986810 0.320458 0.320095 0.319753 0.319099

13 0,0,0 2.017510 1.987040 1.958450 1.905840 0.320780 0.320431 0.320099 0.319468
0,1,0 2.058840 2.027730 1.998540 1.944820 0.320737 0.320378 0.320037 0.319389
0,2,0 2.101490 2.069720 2.039910 1.985040 0.320713 0.320343 0.319994 0.319328

14 0,0,0 2.015800 1.985380 1.956830 1.904310 0.320997 0.320642 0.320304 0.319662
0,1,0 2.056930 2.025890 1.996740 1.943120 0.320976 0.320611 0.320263 0.319603
0,2,0 2.101300 2.069540 2.039740 1.984870 0.320504 0.320141 0.319798 0.319144

15 0,0,0 2.013980 1.983620 1.955120 1.902690 0.321221 0.320859 0.320515 0.319860
0,1,0 2.054910 2.023920 1.994840 1.941310 0.321223 0.320850 0.320496 0.319823
0,2,0 2.101170 2.069410 2.039610 1.984750 0.320333 0.319976 0.319637 0.318990

16 0,0,0 2.012060 1.981750 1.953310 1.900890 0.321451 0.321083 0.320731 0.320192
0,1,0 2.052770 2.021850 1.992820 1.939400 0.321479 0.321098 0.320736 0.320049
0,2,0 2.101080 2.069330 2.039530 1.984680 0.320190 0.319836 0.319501 0.318860

17 0,0,0 2.010030 1.979790 1.951400 1.899160 0.321689 0.321312 0.320954 0.320274
0,1,0 2.050520 2.019670 1.990700 1.937400 0.321742 0.321352 0.320982 0.320281
0,2,0 2.101030 2.069290 2.039490 1.984650 0.320065 0.319715 0.319381 0.318744

18 0,0,0 2.007910 1.977730 1.949390 1.897270 0.321934 0.321549 0.321183 0.320490
0,1,0 2.048160 2.017380 1.988480 1.935290 0.322013 0.321615 0.321236 0.320520
0,2,0 2.105130 2.073300 2.043420 1.988450 0.319515 0.319176 0.318853 0.318234

19 0,0,0 2.005690 1.975570 1.947300 1.895280 0.322186 0.321793 0.321419 0.320712
0,1,0 2.045700 2.014980 1.986150 1.933090 0.322292 0.321885 0.321498 0.320767
0,2,0 2.105340 2.073530 2.043670 1.988740 0.319447 0.319107 0.318783 0.318161

20 0,0,0 2.003370 1.973320 1.945110 1.893210 0.322445 0.322045 0.321663 0.320941
0,1,0 2.043120 2.012490 1.983730 1.930790 0.322579 0.322163 0.321767 0.321020
0,2,0 2.110890 2.079140 2.049360 1.994600 0.319068 0.318725 0.318396 0.317763

the Figure 3 plots (c) and (d) also present data for the
v = (0, v2, 0) rovibrational states (for J=5), for v2 ≤ 2.
From the plots, the nearly linear scaling with respect to
S isotope mass is very clear—as is the near J- and v2-
independence (although odd dips such as that seen inB32
−B36 at J=16 are sometimes also observed in the other,
vibrationally excited states as well). These trends are

quite relevant, vis-à-vis strategies that have been adopted
in the past to address self shielding. Historically, high
resolution data for the C̃1B2 ← X̃1A1 photoabsorption
spectrum was available only for the32SO2 isotopologue.
For the other isotopologues, fine-structure features from
the32SO2 spectrum were simply ‘translated’ by known
vibrational band origin isotope shifts [46,47,55,57]. The
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Table 4. Rotational constant isotope shifts,�A = (A32 − A33,34,36) and�B = (B32 − B33,34,36), in cm−1, obtained from the K-doublet-
averaged rotational constants of Table 3, for v = (0, v2 ≤ 2, 0), and for 2 ≤ J ≤ 20.

J v1, v2, v3 A32 − A33 A32 − A34 A32 − A36 B32 − B33 B32 − B34 B32 − B36

2 0,0,0 3.08E−02 5.97E−02 1.13E−01 3.80E−04 6.41E−04 1.23E−03
0,1,0 3.15E−02 6.10E−02 1.15E−01 4.03E−04 6.50E−04 1.24E−03
0,2,0 3.23E−02 6.23E−02 1.18E−01 4.28E−04 6.39E−04 1.26E−03

3 0,0,0 3.08E−02 5.97E−02 1.13E−01 3.47E−04 6.35E−04 1.22E−03
0,1,0 3.15E−02 6.10E−02 1.15E−01 3.60E−04 6.42E−04 1.24E−03
0,2,0 3.22E−02 6.23E−02 1.18E−01 3.64E−04 6.33E−04 1.25E−03

4 0,0,0 3.08E−02 5.96E−02 1.13E−01 3.38E−04 6.32E−04 1.22E−03
0,1,0 3.15E−02 6.10E−02 1.15E−01 3.47E−04 6.44E−04 1.25E−03
0,2,0 3.22E−02 6.23E−02 1.18E−01 3.59E−04 6.49E−04 1.26E−03

5 0,0,0 3.08E−02 5.96E−02 1.13E−01 3.32E−04 6.33E−04 1.22E−03
0,1,0 3.14E−02 6.09E−02 1.15E−01 3.41E−04 6.44E−04 1.24E−03
0,2,0 3.21E−02 6.23E−02 1.18E−01 3.52E−04 6.51E−04 1.27E−03

6 0,0,0 3.07E−02 5.96E−02 1.13E−01 3.31E−04 6.34E−04 1.23E−03
0,1,0 3.14E−02 6.09E−02 1.15E−01 3.39E−04 6.47E−04 1.25E−03
0,2,0 3.21E−02 6.22E−02 1.18E−01 3.48E−04 6.56E−04 1.27E−03

7 0,0,0 3.07E−02 5.95E−02 1.13E−01 3.30E−04 6.37E−04 1.23E−03
0,1,0 3.14E−02 6.08E−02 1.15E−01 3.38E−04 6.49E−04 1.25E−03
0,2,0 3.21E−02 6.21E−02 1.18E−01 3.48E−04 6.61E−04 1.28E−03

8 0,0,0 3.07E−02 5.95E−02 1.12E−01 3.32E−04 6.41E−04 1.24E−03
0,1,0 3.13E−02 6.07E−02 1.15E−01 3.39E−04 6.54E−04 1.26E−03
0,2,0 3.20E−02 6.21E−02 1.17E−01 3.49E−04 6.67E−04 1.29E−03

9 0,0,0 3.06E−02 5.94E−02 1.12E−01 3.33E−04 6.46E−04 1.25E−03
0,1,0 3.13E−02 6.07E−02 1.15E−01 3.42E−04 6.61E−04 1.27E−03
0,2,0 3.20E−02 6.20E−02 1.17E−01 3.51E−04 6.74E−04 1.30E−03

10 0,0,0 3.06E−02 5.93E−02 1.12E−01 3.36E−04 6.53E−04 1.26E−03
0,1,0 3.13E−02 6.06E−02 1.15E−01 3.45E−04 6.68E−04 1.29E−03
0,2,0 2.53E−02 5.53E−02 1.10E−01 3.55E−03 2.28E−03 2.92E−03

11 0,0,0 3.06E−02 5.92E−02 1.12E−01 3.39E−04 6.60E−04 1.27E−03
0,1,0 3.12E−02 6.05E−02 1.14E−01 3.48E−04 6.76E−04 1.30E−03
0,2,0 3.19E−02 6.18E−02 1.17E−01 3.57E−04 6.93E−04 1.34E−03

12 0,0,0 3.05E−02 5.92E−02 1.12E−01 3.43E−04 6.70E−04 1.29E−03
0,1,0 3.12E−02 6.04E−02 1.14E−01 3.53E−04 6.87E−04 1.32E−03
0,2,0 3.18E−02 6.17E−02 1.17E−01 3.63E−04 7.05E−04 1.36E−03

13 0,0,0 3.05E−02 5.91E−02 1.12E−01 3.49E−04 6.81E−04 1.31E−03
0,1,0 3.11E−02 6.03E−02 1.14E−01 3.59E−04 7.00E−04 1.35E−03
0,2,0 3.18E−02 6.16E−02 1.16E−01 3.70E−04 7.19E−04 1.39E−03

14 0,0,0 3.04E−02 5.90E−02 1.11E−01 3.55E−04 6.93E−04 1.33E−03
0,1,0 3.10E−02 6.02E−02 1.14E−01 3.65E−04 7.13E−04 1.37E−03
0,2,0 3.18E−02 6.16E−02 1.16E−01 3.63E−04 7.06E−04 1.36E−03

15 0,0,0 3.04E−02 5.89E−02 1.11E−01 3.62E−04 7.06E−04 1.36E−03
0,1,0 3.10E−02 6.01E−02 1.14E−01 3.73E−04 7.27E−04 1.40E−03
0,2,0 3.18E−02 6.16E−02 1.16E−01 3.57E−04 6.96E−04 1.34E−03

16 0,0,0 3.03E−02 5.87E−02 1.11E−01 3.68E−04 7.20E−04 1.26E−03
0,1,0 3.09E−02 6.00E−02 1.13E−01 3.81E−04 7.43E−04 1.43E−03
0,2,0 3.18E−02 6.15E−02 1.16E−01 3.54E−04 6.89E−04 1.33E−03

17 0,0,0 3.02E−02 5.86E−02 1.11E−01 3.77E−04 7.35E−04 1.41E−03
0,1,0 3.09E−02 5.98E−02 1.13E−01 3.90E−04 7.60E−04 1.46E−03
0,2,0 3.17E−02 6.15E−02 1.16E−01 3.50E−04 6.84E−04 1.32E−03

18 0,0,0 3.02E−02 5.85E−02 1.11E−01 3.85E−04 7.51E−04 1.44E−03
0,1,0 3.08E−02 5.97E−02 1.13E−01 3.98E−04 7.77E−04 1.49E−03
0,2,0 3.18E−02 6.17E−02 1.17E−01 3.39E−04 6.62E−04 1.28E−03

19 0,0,0 3.01E−02 5.84E−02 1.10E−01 3.93E−04 7.67E−04 1.47E−03
0,1,0 3.07E−02 5.95E−02 1.13E−01 4.07E−04 7.94E−04 1.52E−03
0,2,0 3.18E−02 6.17E−02 1.17E−01 3.40E−04 6.64E−04 1.29E−03

20 0,0,0 3.00E−02 5.83E−02 1.10E−01 4.00E−04 7.82E−04 1.50E−03
0,1,0 3.06E−02 5.94E−02 1.12E−01 4.16E−04 8.12E−04 1.56E−03
0,2,0 3.17E−02 6.15E−02 1.16E−01 3.43E−04 6.72E−04 1.31E−03

results of the present study suggest that this strategy may
not be appropriate. In particular, the observed rotational
isotope shift of �A ≈ 0.1 cm−1 translates to a rovibra-
tional energy level isotope shift relative to the vibrational
band origin, of up to ≈40 cm−1 for J=20. This is much
larger than the allowable tolerance for a self shielding
analysis, which is probably closer to 1 cm−1.

In the above analysis, we explicitly considered SO2
rovibrational states for vibrational excitations of the
bending mode, v = (0, v2, 0), but only up to v2 = 2.
As discussed, these lowest-lying vibrational excita-
tions are the most relevant for self shielding, and
also the other S-MIF-pertinent dynamical processes
discussed in Section 1. Nevertheless, for other dynamical



10 P. KUMAR AND B. POIRIER

Figure 3. Rotational constant isotope shifts,�A = (A32 − A33,34,36) [(a), (c)] and�B = (B32 − B33,34,36) [(b), (d)], obtained from the K-
doublet-averaged rotational constants of Table 3: for v = (0, 0, 0) SO2, as a function of J (top two panels); for J= 5 and v = (0, v2, 0), as
a function of v2. Isotope shifts for all three rare isotopologues are presented, i.e.: (A32 − A33) (red squares, solid line); (A32 − A34) (blue
empty squares, solid line); (A32 − A36) (black triangles, solid line); (B32 − B33) (red squares, solid line); (B32 − B34) (blue empty squares,
solid line); (B32 − B36) (black triangles, solid line).

pathways, such as fluorescence or collisional stabilisa-
tion, the higher-lying vibrational states are also impor-
tant. Accordingly, we have also analyzed the pure vibra-
tional band progression for the bending mode up
to v2 = 8, as well as the symmetric stretch (v1, 0, 0)
and antisymmetric stretch (0, 0, v3) progressions up to
v1 = v3 = 3. Isotope shifts for the three vibrational band
progressions (with band origin shifts obtained from
Paper I) are presented in Table 5, for all three rare
isotopologues, relative to32SO2. The magnitude of the
vibrational progression isotope shifts is largest, by far,
for the antisymmetric stretch mode; this is hardly sur-
prising, considering that this mode involves the greatest
motion of the S atom. Next is the symmetric stretch
mode, followed by the bend. In all cases, isotope shifts
are on the order of cm−1’s. They also clearly follow
a nearly perfectly linear MDF pattern—meaning that
within each row, the numbers in columns 3 and 4
are roughly 2× and 4×, respectively, larger than in
column 2.

From Table 5, the isotope shifts within a given
vibrational progression are also seen to increase nearly
perfectly linearly with vibrational excitation. For each
progression and isotopologue but one, the isotope shift
is well described by a linear fit of the form ν32 − ν ≈
αvi cm−1 to anRMSdeviation noworse thanhalf a cm−1,
across the full energetically relevant vi range considered
(i.e., encompassing vibrationally excited states up to ≈
4000 cm−1). Again, this is relevant for a self-shielding
analysis, although one does not necessarily expect the
same pattern to hold on the C̃1B2 electronic state. Indeed,
the spectral structure of the C̃1B2 vibrational states is
known to be highly anomalous, owing primarily to a
double well that arises from the asymmetric equilib-
rium geometry [56,57,63,66]. Furthermore, the most
relevant progression for the (C̃1B2 ← X̃1A1) photoab-
sorption spectra—which for many years was attributed
to (1, v′

2, 2)—is now known to have a more compli-
cated origin [56,63]. That said, previous work [46,47] has
found that this progression exhibits isotope shifts for the
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Table 5. Vibrational band progression isotope shifts,
�ν = (v32 − v33,34,36), in cm−1, for the symmetric stretch
(v1, 0, 0), bend (0, v2, 0), and antisymmetric stretch (0, 0, v3)
modes of SO2.

v1,v2,v3 ν32 − ν33 ν32 − ν34 ν32 − ν36

1,0,0 3.7248 7.2181 13.6348
2,0,0 7.3681 14.2793 26.9775
3,0,0 10.9315 21.1870 40.0343
α 3.6611 7.0955 13.4066
RMS deviation 0.0543 0.1044 0.1945
0,1,0 2.2257 4.3578 8.3920
0,2,0 4.4416 8.6960 16.7454
0,3,0 6.6469 13.0134 25.0582
0,4,0 8.8413 17.3090 33.3284
0,5,0 11.0241 21.5818 41.5540
0,6,0 13.1950 25.8308 49.7327
0,7,0 15.3532 30.0547 57.8623
0,8,0 17.4983 34.2526 65.9406
α 2.1968 4.3006 8.2799
RMS deviation 0.0467 0.0926 0.1815
0,0,1 8.7169 16.9513 32.2353
0,0,2 17.2476 33.5416 55.2345
0,0,3 25.5935 49.7740 90.1675
α 8.5709 16.6683 29.5147
RMS deviation 0.1248 0.2418 2.8541

For each progression and isotopologue, the best linear fit parameter α in
�ν ≈ αvi is also reported, together with the corresponding RMS deviation.

lower transitions that adhere roughly to the linear form
δν′ = (ν′32 − ν′36) ≈ (20.5 + 7.4v′

2) cm
−1, with the other

isotopologues following a nearly linear MDF pattern.
Interestingly, the isotope shifts for (0, v2, 0) are sim-

ilar to those above, which may be significant. From
a straight energetic perspective (i.e., ignoring Franck-
Condon overlaps), the (0, v2, 0) vibrational states are
most important insofar as hot bands are concerned. On
the other hand, when vibrational states of roughly com-
parable energies are compared—e.g., (1, 0, 0) to (0, 2, 0)
and (0, 0, 1) to (0, 3, 0)—the v1 isotope shifts are found
to be smaller than the v2 shifts, whereas the v3 shifts (and
especially RMSdeviations) are significantly larger. As dis-
cussed in Paper I, this is due to the comparatively greater
motion of the S atom in the asymmetric stretch mode vs.
the bendingmode, or in either of these twomodes vs. the
symmetric stretch.

4. Summary and conclusions

For a variety of reasons—and across a range of disci-
plines—it is useful to have an accurate characterisation
of the rovibrational states of SO2, both with respect
to the energy levels themselves, and also the rotational
(JKa,Kc) and vibrational [v = (v1v2v3)] state labels. In the
geochemical context, one arena where the SO2 rovibra-
tional states may be of vital importance is for under-
standing the S-MIF signal observed in the Archean
rock record—assuming that this originates from SO2
photodissociation. For each of the specific mechanisms
described in Section 1, the first step is the C̃1B2 ←

X̃1A1 photoabsorption, whose main features (as revealed
by experimental spectra) align around vibronic bands
spaced roughly 350 cm−1 apart. However, in between
successive band origins, a very rich fine structure is
observed (i.e., at a resolution of ≈ 10 cm−1 or smaller),
of the sort believed to play an important role in geologi-
cal S-MIF [53]. Note that the spectroscopic isotope shifts
are themselves also on the order of 10 cm−1 (Section 3.2).

Many competing factors all play a significant role in
determining the fine structure features, including:

• rotational level structure (including J, K, and
K-doublet splitting).

• hot bands (i.e. vibrationally excited initial states).
• anomalous vibrational structure of the C̃1B2 state.
• less prominent vibronic transitions.
• pressure/third-body effects [48,55].

Disentangling these factors—and assessing the sepa-
rate impact of isotopic substitution on each—is no small
challenge. Building on previous work, in this paper,
we make direct contributions to the first two areas
above—even though only the ground X̃1A1 electronic
state is considered, and even though the PES is only
accurate to ≈ 1 cm−1.

A novel approach is followed, for which the JS (rotor)
approximation is suggested by the form of the theoretical
Hamiltonian matrix itself, as used in the actual rovibra-
tional state calculation. This choice of JS approximation
is unusual in that the resultant rotational constants: (a) do
not match the classical rotor geometry; (b) correspond to
a symmetric rigid rotor; (c) incorporate centrifugal dis-
tortion flexibility through VSD and (partial) RSD, rather
than via higher-order terms added to Equation (2). Nev-
ertheless, the resultant symmetric rotor JS approximation
better captures the actual quantum behaviour when there
are significant rotational and vibrational excitations.

For the present SO2 application, the ‘basic’ symmet-
ric JS strategy described above performs admirably well
throughout the relevant v and J range. However, it is not
good enough to achieve the sub-cm−1 accuracy desired.
This has necessitated the development of the K-doublet
(asymmetric level splitting) refinements introduced here,
which do indeed achieve the desired accuracy goal. Using
the new technique, together with the data from Papers I
and II, accurate VSD and RSD rotational constants have
been obtained for all of the relevant rovibrational states
of X̃1A1 SO2, across all four stable sulfur isotopologues.
In each case, isotope shifts were computed, analyzed and
then modelled. For the most part, these exhibit stan-
dard MDF trends, and are remarkably independent of
J. For modelling purposes, however, it is important to
keep in mind the following: (a) there are some notable
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exceptions, that are both J- and isotopologue-specific;
(b) even though rotational constants may be largely J-
independent, the levels themselves depend quadratically
on J.

These findings have a direct bearing on how the
C̃1B2 ← X̃1A1 photoabsorption fine structure ought to
be modelled—not only as this pertains to self shielding,
but also other aspects related to S-MIF. In the past, com-
prehensive, reliably accurate high-resolution spectra have
been avaliable only for 32,34SO2 [9]. Consequently, for
modelling the fine-structure features of the rare isotopo-
logues, it has been common practice [46,47,67] to sim-
ply red-shift the experimental32SO2 spectrum, based on
known isotope shifts for the vibrational bands [57]. The
present results suggest that this is a poor strategy—since
the rotational contribution to the energy level shifts can
be at least as large as the pure vibrational contribution.
Nevertheless, these results do suggest that reasonably
accurate fine structure for the rare isotopologues may
indeed be amenable to simple modelling (assuming that
other effects such as the last two listed above are not
so important). The idea would be to replace the above
strategy with one that adopts J-independent shifts of the
rotational constants, rather than the levels themselves.
Alternatlvely, for greater accuracy, one could simplywork
directly with the individual rotor constants presented
here. Note that a complete description would also require
fits for the K-doublet splitting itself, as well as the K=0
states; however, as described previously (Paper II) these
are both very predictable and well behaved, and will be
considered in future work.

It is noteworthy that the viability of themodelling pro-
cedure proposed above could only be confirmed here
because of the RSD nature of the approach used; tradi-
tional rotational constant fitting procedures do not pro-
vide results for individual J values, and can therefore not
be used to confirm that isotope shifts are indeed largely J-
independent (or conversely, to demonstrate pronounced
J dependence, in situations where that is the case). It is
also worth mentioning, once again, that high resolution
spectra for the rare isotopologues are recently becom-
ing available [55,71,76]. Here too, the techniques used
in this paper could be useful, e.g., for identifying indi-
vidual spectral transitions. In any event, it is anticipated
that other researchers may use our comprehensive data,
as provided here and in Papers I and II, as a tool for eval-
uating their own JS schemes, or for modelling various
aspects of SO2 self-shielding and S-MIF.
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