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Abstract. An emerging discovery in phylogenomics is that interspecific
gene flow has played a major role in the evolution of many different organ-
isms. To what extent is the Tree of Life not truly a tree reflecting strict
“vertical” divergence, but rather a more general graph structure known as
a phylogenetic network which also captures “horizontal” gene flow? The
answer to this fundamental question not only depends upon densely sam-
pled and divergent genomic sequence data, but also computational meth-
ods which are capable of accurately and efficiently inferring phylogenetic
networks from large-scale genomic sequence datasets. Recent methodolog-
ical advances have attempted to address this gap. However, in the 2016
performance study of Hejase and Liu, state-of-the-art methods fell well
short of the scalability requirements of existing phylogenomic studies.

The methodological gap remains: how can phylogenetic networks be
accurately and efficiently inferred using genomic sequence data involv-
ing many dozens or hundreds of taxa? In this study, we address this
gap by proposing a new phylogenetic divide-and-conquer method which
we call FastNet. We conduct a performance study involving a range of
evolutionary scenarios, and we demonstrate that FastNet outperforms
state-of-the-art methods in terms of computational efficiency and topo-
logical accuracy.

1 Introduction

Recent advances in biomolecular sequencing [30] and evolutionary modeling and
inference [10,34] set the stage for a new era of phylogenomics. One major out-
come is the discovery that interspecific gene flow has played a major role in the
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evolution of many different organisms across the Tree of Life [1,23,29], including
humans and ancient hominins [15,39], butterflies [44], mice [28], and fungi [14].
These findings point to new directions for phylogenetics and phylogenomics: to
what extent is the Tree of Life not truly a tree reflecting strict vertical diver-
gence, but rather a more general graph structure known as a phylogenetic net-
work where reticulation edges and nodes capture gene flow? And what is the
evolutionary role of gene flow? In addition to densely sampled and divergent
genomic sequence data, one additional ingredient is needed to make progress on
these questions: computational methods which are capable of accurately and effi-
ciently inferring phylogenetic networks on large-scale genomic sequence datasets.

Recent methodological advances have attempted to address this gap. Solis-
Lemus and Ané proposed SNaQ [42], a new statistical method which seeks to
address the computational efficiency of species network inference using a pseudo-
likelihood approximation. The method of Yu and Nakhleh [45] (referred to
here as MPL, which stands for maximum pseudo-likelihood) substitutes pseudo-
likelihoods in place of the full model likelihoods used by the methods of Yu et
al. [48] (referred to here as MLE, which stands for maximum likelihood esti-
mation, and MLE-length, which differ based upon whether or not gene tree
branch lengths contribute to model likelihood). Two of us recently conducted
a performance study which demonstrated the scalability limits of SNaQ, MPL,
MLE, MLE-length, and other state-of-the-art phylogenetic methods in the con-
text of phylogenetic network inference [17]. The scalability of the state of the
art falls well short of that required by current phylogenetic studies, where many
dozens or hundreds of divergent genomic sequences are common [34]. The most
accurate phylogenetic network inference methods performed statistical inference
under phylogenomic models [42,47,48] that extended the multi-species coales-
cent model [16,24]. MPL and SNaQ were among the fastest of these methods
while MLE and MLE-length were the most accurate. None of the statistical
phylogenomic inference methods completed analyses of datasets with 30 taxa or
more after many weeks of CPU runtime — not even the pseudo-likelihood-based
methods which were devised to address the scalability limitations of other sta-
tistical approaches. The remaining methods fell into two categories: split-based
methods [4,7] and the parsimony-based inference method of Yu et al. [46] (which
we refer to as MP in this study). Both categories of methods were faster than
the statistical phylogenomic inference methods but less accurate.

The methodological gap remains: how can species networks be accurately and
efficiently inferred using large-scale genomic sequence datasets? In this study, we
address this question and propose a new method for this problem. We investigate
this question in the context of two constraints. We focus on dataset size in
terms of the number of taxa and the number of reticulations in the species
phylogeny. We note that scalability issues arise due to other dataset features as
well, including population-scale allele sampling for each taxon in a study.
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2 Methods

One path forward is through the use of divide-and-conquer. The general idea
behind divide-and-conquer is to split the full problem into smaller and more
closely related subproblems, analyze the subproblems using state-of-the-art phy-
logenetic network inference methods, and then merge solutions on the subprob-
lems into a solution on the full problem. Viewed this way, divide-and-conquer can
be seen as a computational framework that “boosts” the scalability of existing
methods (and which is distinct from boosting in the context of machine learn-
ing). The advantages of analyzing smaller and more closely related subproblems
are two-fold. First, smaller subproblems present more reasonable computational
requirements compared to the full problem. Second, the evolutionary divergence
of taxa in a subproblem is reduced compared to the full set of taxa, which has
been shown to improve accuracy for phylogenetic tree inference [11,19,26]. We
and others have successfully applied divide-and-conquer approaches to enable
scalable inference in the context of species tree estimation [26,27,33].

Here, we consider the more general problem of inferring species phylogenies
that are directed phylogenetic networks. A directed phylogenetic network N =
(V,E) consists of a set of nodes V and a set of directed edges E. The set of
nodes V consists of a root node r(N) with in-degree 0 and out-degree 2, leaves
L(N) with in-degree 1 and out-degree 0, tree nodes with in-degree 1 and out-
degree 2, and reticulation nodes with in-degree 2 and out-degree 1. A directed
edge (u,v) € E is a tree edge if and only if v is a tree node, and is otherwise a
reticulation edge. Following the instantaneous admixture model used by Durand
et al. [9], each reticulation node contributes a parameter -y, where one incoming
edge has admixture frequency v and the other has admixture frequency 1—-. The
edges in a network N can be labeled by a set of branch lengths ¢. A directed
phylogenetic tree is a special case of a directed phylogenetic network which
contains no reticulation nodes (and edges). An unrooted tree can be obtained
from a directed tree by ignoring edge directionality.

The phylogenetic network inference problem consists of the following. One
input is a partitioned multiple sequence alignment A containing data partitions
a; for 1 < i < k, where each partition corresponds to the sequence data for
one of k genomic loci. Each of the n rows in the alignment A is a sample
representing taxon x € X, and each taxon is represented by one or more samples.
Similar to other approaches [42,48], we also require an input parameter C, which
specifies a hypothesized number of reticulations. We note that increasing C,
for a given input alignment A results in a solution with either better or equal
likelihood under the evolutionary models used in our study and others [42,48].
As is common practice for this and many other statistical inference/learning
problems, inference can be coupled with standard model selection techniques
(e.g., information criteria [2,3,20,41], cross-validation, etc.) to balance model fit
to the observed data against model complexity, thereby determining a suitable
choice for parameter C,. in an automated manner. The output consists of a
directed phylogenetic network N where each leaf in £(N) corresponds to a taxon
rzeX.



FastNet 245

2.1 The FastNet Algorithm

We now describe our new divide-and-conquer algorithm, which we refer to as
FastNet. A flowchart of the algorithm is shown in Fig. 1. (Detailed pseudocode
can be found in the Appendix’s Supplementary Methods section.)
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Fig.1. A high-level illustration of the FastNet algorithm. First, a guide phy-
logeny N (©) is inferred on the full set of taxa X. Next, the guide phylogeny N ) s
used to decompose X into subproblems {Dg, D1, Da,...,Dq_1,D,} = D. Then, the
subproblem decomposition D is used to construct a bipartite graph Gp = (Vp, Ep),
which is referred to as the subproblem decomposition graph. The set of vertices
Vp consist of two partitions: source vertices Vp¢ = {C§,C*°,...,C5™} where
each subproblem D; has a corresponding source vertex C;°, and destination ver-
tices V5t = {C§*t, O, .. .,C’S“} similarly. The subproblem decomposition graph
G p is optimized to infer subproblem phylogenies and reticulations, where the latter
are inferred based on the placement of weighted edges e € Ep. Finally, the subproblem

phylogenies are merged using the phylogeny inferred on Dy as the “top-level” structure.

Step Zero: Obtaining Local Gene Trees. FastNet is a summary-based
method for inferring phylogenetic networks. Subsequent steps of the FastNet
algorithm (i.e., steps one and three) therefore utilize a list of gene trees G as
input, where the ith gene tree g; in list G represents the evolutionary history of
data partition a;. The experiments in our study utilized either true or inferred
gene trees as input to summary-based inference methods, including FastNet (see
below for details). We used FastTree [37] to perform maximum likelihood esti-
mation of local gene trees. Our study made use of an outgroup, and the unrooted
gene trees inferred by FastTree were rooted on the leaf edge corresponding to
the outgroup.

Step One: Obtaining a Guide Phylogeny. The subsequent subproblem
decomposition step requires a rooted guide phylogeny N(©). The phylogenetic
relationships need not be completely accurate. Rather, the guide phylogeny
needs to be sufficiently accurate to inform subsequent divide-and-conquer steps.
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Another requirement is that the method used for inferring the guide phylogeny
must have reasonable computational requirements.

A range of different methods for obtaining guide phylogenies can satisfy these
criteria. One option is the parsimony-based algorithm proposed by Yu et al. [46]
to infer a rooted species network. The algorithm is implemented in the PhyloNet
software package [43]. We refer to this method as MP. In a previous simulation
study [17], we found that MP offers a significant runtime advantage relative
to other state-of-the-art species network inference methods, but had relatively
lower topological accuracy. Another option is using ASTRAL [31,32], a state-of-
the-art phylogenomic inference method that infers species trees, to infer a guide
phylogeny that is a tree rather than a network. A primary reason for the use of
species tree inference methods is their computational efficiency relative to state-
of-the-art phylogenetic network inference methods. ASTRAL effectively infers an
unrooted and undirected species tree. We rooted the species tree using outgroup
rooting. Another consideration is that, while ASTRAL accurately infers species
trees for evolutionary scenarios lacking gene flow, the assumption of tree-like
evolution is generally invalid for the computational problem that we consider.
As we show in our performance study, our divide-and-conquer approach can still
be applied despite this limitation, suggesting that FastNet is robust to guide phy-
logeny error. For this reason, the FastNet experiments in our study exclusively
use ASTRAL to infer guide phylogenies.

Step Two: Subproblem Decomposition. The rooted and directed guide phy-
logeny N is then used to produce a subproblem decomposition D. The decom-
position D consists of a “bottom-level” component and a “top-level” component,
which refers to the subproblem decomposition technique. The bottom-level com-
ponent is comprised of disjoint subsets D; for 1 < ¢ < ¢ which partition the set
of taxa X such that |J D; = X. We refer to each subset D; as a bottom-
1<i<q

level subproblem. The top-level component consists of a top-level subproblem
Dy which overlaps each bottom-level subproblem D; where 1 < i < q.

The bottom-level component of the subproblem decomposition is obtained
using the following steps. First, for each reticulation node in N9, we delete the
incoming edge with lower admixture frequency. Let T be the resulting phy-
logeny, which contains no reticulation edges and is therefore a tree. Removal of
any single edge in T(® disconnects the tree into two subtrees; the leaves of the
two subtrees will form two subproblems. We extend this observation to obtain
decompositions with two or more subproblems. The decomposition is defined by
S, a set of nodes in 79, Each node s € S induces a corresponding subproblem
D; for 1 < i < g which consists of the taxa corresponding to the leaves that are
reachable from s in 7). Of course, not all decompositions are created equal. In
this study, decompositions are constrained by the maximum subproblem size ¢,,;
we also required a minimum of two subproblems in a decomposition. We obtained
a decomposition using a greedy algorithm which is similar to the Center-Tree-i
decomposition used by Liu et al. [26] in the context of species tree inference.
The two methods differ primarily due to their decomposition criteria. Initially
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the set S consists of the root node r(T). The set S is iteratively updated as
follows: each iteration greedily selects a node s € S with maximal correspond-
ing subproblem size, the node s is removed from the set S and replaced by its
children. Iteration terminates when both decomposition criteria (the maximum
subproblem size criterion and the minimum number of subproblems) are satis-
fied. If no decomposition satisfies the criteria, then the search is restarted using
a maximum subproblem size of ¢,,, — 1. In practice, the parameter c,, is set to
an empirically determined value which is based upon the largest datasets that
state-of-the-art methods can analyze accurately within a reasonable timeframe

[17]. The output of the search algorithm is effectively a search tree Tt(oog with a
root, corresponding to T(T(O)), leaves corresponding to s € S, and the subset of
edges in T(®) which connect the root 7(T7®) to the nodes s € S in T(®. The
decomposition is obtained by deleting Tt(gg’s corresponding structure in 7%,
resulting in ¢ sub-trees which induce bottom-level subproblems as before.

The top-level component augments the subproblem decomposition with a
single top-level subproblem Dy which overlaps each bottom-level subproblem.
Phylogenetic structure inferred on Dy represents ancestral evolutionary rela-
tionships among bottom-level subproblems. Furthermore, overlap between the
top-level subproblem Dy and bottom-level subproblems is necessary for the sub-
sequent merge procedure (see “Step four” below). The top-level subproblem D
contains representative taxa taken from each bottom-level subproblem D; for
1 < i < q: for each bottom-level subproblem D;, we choose the leaf in T©O) that
is closest to the corresponding node s € S to represent D;, and the corresponding
taxon is included in the top-level subproblem Dy.

Step Three: Subproblem Decomposition Graph Optimization. Tree-
based divide-and-conquer approaches reduce evolutionary divergence within sub-
problems by effectively partitioning the inference problem based on phylogenetic
relationships. Within each part of the true phylogeny corresponding to a sub-
problem, the space of possible unrooted sub-tree topologies contributes a smaller
set of distinct bipartitions (each corresponding to a possible tree edge) that need
to be evaluated during search as compared to the full inference problem. The
same insight can be applied to reticulation edges as well, except that a given
reticulation is not necessarily restricted to a single subproblem.

We address the issue of “inter-subproblem” reticulations through the use
of an abstraction which we refer to as a subproblem decomposition graph. A
subproblem decomposition graph Gp = (Vp, Ep) is a bipartite graph where the
vertices Vp can be partitioned into two sets: a set of source vertices V3 and a set
of destination vertices V3. There is a source vertex C5™ € V& for each distinct
subproblem D; € D where 0 < i < ¢, and similarly for destination vertices
Cdst € Vast. An undirected edge eij € Ep connects a source vertex C;™ to a
destination vertex C’}?lSt where i < j and has a weight w(e;;) € N7 If an edge e;;
connects nodes C3* and C’f“ that correspond to the same subproblem D; € D,
then the edge weight w(e;;) > 0 specifies the number of reticulations in the
phylogenetic network to be inferred on subproblem D;; otherwise, a phylogenetic
tree is to be inferred on subproblem D;. If an edge e;; connects nodes C§™ and
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C’]‘-iSt where ¢ < j, then the edge weight w(e;;) > 0 specifies the number of “inter-
subproblem” reticulations between the subproblems D; and D, (where an inter-
subproblem reticulation is a reticulation with one incoming edge which is incident
from the phylogeny to be inferred on subproblem D; and the other incoming
edge which is incident from the phylogeny to be inferred on D;); otherwise, no
reticulations are to be inferred between the two subproblems. A subproblem
decomposition graph is constrained to have a total number of reticulations such
that > w(e) = C,.
ecEp
Given a subproblem decomposition D, FastNet’s search routines make use

of the correspondence between a subproblem decomposition graph Gp and a
multiset with cardinality C). that is chosen from (qgl) + (¢+1) elements, where
q is the number of bottom-level subproblems and there are (¢ 4+ 1) subproblems
in D. Enumeration over corresponding multisets is feasible when the number of
subproblems and C,. are sufficiently small; otherwise, perturbations of a corre-
sponding multiset can be used as part of a local search heuristic. See Algorithm
1 in the Appendix’s Supplementary Methods section for detailed pseudocode.

A subproblem decomposition graph Gp facilitates phylogenetic inference
given a subproblem decomposition D. The resulting inference is evaluated
with respect to a pseudo-likelihood-based criterion. Pseudocode for the pseudo-
likelihood calculation is shown in Algorithm 2 in the Appendix’s Supplementary
Methods section.

The first step is to analyze each individual subproblem D; € D where 0 <
1 < ¢. If an edge e;; exists, then a phylogenetic network with w(e;;) reticulations
is inferred on the corresponding subproblem D;; otherwise, a phylogenetic tree
is inferred. We used one of three different summary-based methods to perform
phylogenetic inference on subproblems, which we refer to as a base method: two
likelihood-based methods — MLE and MLE-length — as well as MPL, a pseudo-
likelihood-based method. Due to the modular design of FastNet’s divide-and-
conquer algorithm, topological constraints on a base method’s inference will
also apply to FastNet. To simplify discussion, the remainder of the algorithm
description will assume the use of MLE as a base method.

Next, reticulations are inferred “between” pairs of subproblems as follows.
Let N; and N; where ¢ # j be the networks inferred on subproblems D; and
Dj, respectively, using the above procedure. Construct the cherry given by the
Newick-formatted [12] string “(N;: b;, N;: b;)ANC;”, which consists of a new
root node ANC with children r(N;) and r(N;) where N; and N; are respectively
retained as sub-phylogenies. Then, infer branch lengths b; and b; and add w(e;;)
reticulations under the maximum likelihood criterion used by the base method.
For pairs of subproblems not involving the top-level subproblem Dg, we used
the base method to perform constrained optimization. For pairs of subproblems
involving the top-level subproblem Dy, we used a greedy heuristic: initial place-
ments were chosen arbitrarily for each reticulation, the source node for each
reticulation edge was exhaustively optimized, and then the destination node for
each reticulation edge was exhaustively optimized.
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Inferred phylogenies and likelihoods were cached to ensure consistency among
individual and pairwise subproblem analyses, which is necessary for the subse-
quent merge procedure. Caching also aids computational efficiency.

Finally, the subproblem decomposition graph and associated phylogenetic
inferences are evaluated using a pseudo-likelihood criterion:

H 5[15 w(GDa i, Z)] H w[ivj’ w(GDa i, .7)’ U}(GD, i, 7:)’ w(GDa .77])] (1)

0<i<q 0<i<q

1<j<q
where w(Gp,1,J) is the weight of edge e;; if it exists in E(Gp) or 0 otherwise,
0[i,w(Gp,1,1)] is the cached likelihood for an individual subproblem D;, and
Vi, 3, w(Gp,i,7),w(Gp,i,1),w(Gp,J,7)] is the cached likelihood for a pair of
subproblems D; and D; where i < j. The pseudo-likelihood calculation effec-
tively assumes that subproblems are independent, although they are correlated
through connecting edges in the model phylogeny. The choice of optimization cri-
terion in this context represents a tradeoff between efficiency and accuracy, and
several other state-of-the-art phylogenetic inference methods also use pseudo-
likelihoods to analyze subsets of taxa (e.g., MPL and SNaQ). Other choices are
possible. For example, an alternative would be to merge subproblem inferences
into a single network hypothesis and calculate its likelihood under the multi-

species network coalescent (MSNC) model.

We optimize subproblem decomposition graphs under the pseudo-likelihood
criterion. Exhaustive enumeration of subproblem decomposition graphs is pos-
sible for the datasets in our study. Pseudocode to obtain a global optimum is
shown in Algorithm 3 in the Appendix’s Supplementary Methods section. For
larger datasets with more reticulations, heuristic search techniques can be used
to obtain local optima as a more efficient alternative.

Step Four: Merge Subproblem Phylogenies into a Phylogeny on the
Full Set of Taxa. Given an optimal subproblem decomposition graph G,
returned by the previous step, the final step of the FastNet algorithm merges the
“top-level” phylogenetic structure inferred on Dy and “bottom-level” subprob-
lem phylogenies D; for 1 <i < g (Algorithm 4 in the Appendix’s Supplementary
Methods section). First, the phylogeny inferred on the top-level subproblem Dy
serves as the top-level of the output phylogeny N’. Next, the ith taxon in N’ is
replaced with the phylogeny inferred on bottom-level subproblem D;, which was
cached during the evaluation of G’,. Finally, each “inter-subproblem” reticula-
tion that was inferred for a pair of subproblems D; and D; where ¢ < j is added
to the output phylogeny N’, which is compatible by construction of the decom-
position D and the optimal subproblem decomposition graph G’,. The result of
the merge procedure is an output phylogeny N’ on the full set of taxa X.

2.2 Performance Study

We conducted a simulation study to evaluate the performance of FastNet and
existing state-of-the-art methods for phylogenetic network inference. The perfor-
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mance study utilized the following procedures. Detailed commands and software
options are given in the Supplementary Material.

We also conducted an empirical study to evaluate FastNet’s performance.
Details about the empirical study are provided in the Appendix.

Simulation of Model Networks. For each model condition, random model
networks were generated using the following procedure. First, r8s version 1.7
[40] was used to simulate random birth-death trees with n taxa where n €
{15, 20, 25,30}, which served as in-group taxa during subsequent analysis. The
height of each tree was scaled to 5.0 coalescent units. Next, a time-consistent
level-r rooted tree-based network [13,21,49] was obtained by adding r reticu-
lations to each tree, where r € [1,4]. The procedure for adding a reticulation
consists of the following steps: based on a consistent timing of events in the tree,

(1) choose a time t; uniformly at random between 0 and the tree height, (2)
randomly select two tree edges for which corresponding ancestral populations
existed during time interval [t4,tp] such that tp; € [ta,tp], and (3) add a
reticulation to connect the pair of tree edges. Finally, an outgroup was added to
the resulting network at time 15.0.

Reticulations in our study have the same interpretation as in the study of
Leaché et al. [25]. Gene flow is modeled using an isolation-with-migration model,
where each reticulation is modeled as a unidirectional migration event with rate
5.0 during the time interval [t4,tp]. We focus on paraphyletic gene flow as
described by Leaché et al.; their study also investigated two other classes of gene
flow — both of which involve gene flow between two sister species after divergence.
Our simulation study omits these two classes since several existing methods (i.e.,
MLE and MPL) have issues with identifiability in this context; thus, the model
networks in our study are a proper subset of the class of level-r rooted tree-based
networks. We note that FastNet makes no assumptions about the type of gene
flow to be inferred, and identifiability depends on the model used for inference
by FastNet’s base method.

As in the study of Leaché et al., we further classify simulation conditions
based on whether gene flow is “non-deep” or “deep” based on topological con-
straints. Non-deep reticulations involve leaf edges only, and all other reticulations
are considered to be deep. Similarly, model conditions with non-deep gene flow
have model networks with non-deep reticulations only; all other model conditions
include deep reticulations and are referred to as deep.

Simulation of Local Genealogies and DNA Sequences. We used ms [18]
to simulate local gene trees for independent and identically distributed (i.i.d.)
loci under an extended multi-species coalescent model, where reticulations corre-
spond to migration events as described above. Each coalescent simulation sam-
pled one allele per taxon. The primary experiments in our study simulated 1000
gene trees for each random model network. Our study also investigated data
requirements of different methods by including additional datasets where either
200 or 100 gene trees were simulated for each random model network.
Sequence evolution was simulated using seg-gen [38], which takes the local
genealogies generated by ms as input and simulates sequence evolution along
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each genealogy under a finite-sites substitution model. Our simulations utilized
the Jukes-Cantor substitution model [22]. We simulated 1000 bp per locus, and
the resulting multi-locus sequence alignment had a total length of 1000 kb.

Replicate Datasets. A model condition in our study consisted of fixed values
for each of the above model parameters. For each model condition, the simulation
procedure was repeated twenty times to generate twenty replicate datasets.

Species Network Inference Methods. Our simulation study compared the
performance of FastNet against existing methods which were among the fastest
and most accurate in our previous performance study of state-of-the-art species
network inference methods [17]. Like FastNet, these methods perform summary-
based inference — i.e., the input consists of gene trees inferred from sequence
alignments for multiple loci, rather than the sequence alignments themselves.
The methods are broadly characterized by their statistical optimization crite-
ria: either maximum likelihood or maximum pseudo-likelihood under the multi-
species network coalescent (MSNC) model [47]. The maximum likelihood esti-
mation methods consisted of two methods proposed by Yu et al. [48] which
are implemented in PhyloNet [43]. One method utilizes gene trees with branch
lengths as input observations, whereas the other method considers gene tree
topologies only; we refer to the methods as MLE-length and MLE, respectively.
Our study also included the pseudo-likelihood-based method of [46], which we
refer to as MPL. For each analysis in our study, all species network inference
methods — MLE, MLE-length, MPL, and FastNet — were provided with identical
inputs.

Our study included two categories of experiments. The “boosting” experi-
ments in our simulation study compared the performance of FastNet against its
base method; we refer to all other experiments in our study as “non-boosting”.
To make boosting comparisons explicit, each boosting experiment will refer
to “FastNet(BaseMethod)” which is FastNet run with a specific base method
“BaseMethod” — either MLE-length, MLE, or MPL. The input for each boost-
ing experiment consisted of either true or inferred gene trees for all loci. The
inferred gene trees were obtained using FastTree [37] with default settings to
perform maximum likelihood estimation under the Jukes-Cantor substitution
model [22]. The inferred gene trees were rooted using the outgroup. The non-
boosting experiments focused on the performance of FastNet using MLE as a
base method and inferred gene trees as input, where gene trees were inferred
using the same procedure as in the boosting experiments.

Performance Measures. The species network inference methods in our study
were evaluated using two different criteria.

The first criterion was topological accuracy. For each method, we compared
the inferred species phylogeny to the model phylogeny using the tripartition
fraction [35], which counts the proportion of tripartitions that are not shared
between the inferred and model network. It has been shown that the tripartition
fraction is not a metric on rooted phylogenetic networks in general [8]. How-
ever, the model networks in our study satisfy the tree-child condition (i.e., every
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internal node has at least one child that is a tree node) since the simulation pro-
cedure stipulates that reticulation placements can only connect tree edges; the
reticulation placement procedure also naturally gives a temporal representation
[5] and ensures that the parents of a reticulation node cannot be connected by a
path. Cardona et al. [8] showed that the tripartition fraction is a metric for the
subset of rooted phylogenetic networks that satisfy these constraints.

The second criterion was computational runtime. All computational analy-
ses were run on computing facilities in Michigan State University’s High Perfor-
mance Computing Center. We used compute nodes in the intell6 cluster, each
of which had a 2.5 GHz Intel Xeon E5-2670v2 processor with 64 GiB of main
memory. All replicates completed with memory usage less than 32 GiB.

3 Results

FastNet’s use of phylogenetic divide-and-conquer is compatible with a range of
different methods for inferring rooted species networks on subproblems, which
we refer to as “base” methods. From a computational perspective, FastNet can
be seen as a general-purpose framework for boosting the performance of base
methods. We began by assessing the relative performance boost provided by
FastNet when used with two different state-of-the-art network inference meth-
ods. We evaluated two different aspects of performance: topological error as
measured by the tripartition fraction [35] between an inferred species network
and the model network, and computational runtime. The initial set of boosting
experiments focused on species network inference in isolation of upstream infer-
ence accuracy by providing true gene trees as input to all of the summary-based
inference methods.

In the performance study of Hejase and Liu [17], the probabilistic network
inference methods were found to be the most accurate among state-of-the-art
methods, and MPL was among the fastest methods in this class. MPL utilized
a pseudo-likelihood-based approximation for increased computational efficiency
compared with full likelihood methods [45]. However, the tradeoff netted effi-
ciency that was well short of current phylogenomic dataset sizes [17].

Table 1 shows the performance of FastNet(MPL) relative to MPL on model
conditions with increasing numbers of taxa and non-deep reticulations. On model
conditions with dataset sizes ranging from 15 to 30 taxa and from 1 to 4 retic-
ulations, FastNet(MPL)’s improvement in topological error relative to its base
method was statistically significant (one-sided pairwise t-test with Benjamini-
Hochberg correction for multiple tests [6]; & = 0.05 and n = 20) and substantial
in magnitude — an absolute improvement that amounted to as much as 41%.
Furthermore, the improvement in topological error grew as datasets became
larger and involved more reticulations: the largest improvements were seen on
the 30-taxon 4-reticulation model condition. Runtime improvements were also
statistically significant and represented speedups which amounted to as much as
a day and a half of runtime.

Next, we evaluated FastNet’s performance when boosting MLE-length,
the most accurate state-of-the-art method from the performance study of
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Table 1. FastNet(MPL) “boosts” MPL’s runtime and topological accuracy,
where a greater performance boost occurs as dataset sizes increase. The
relative performance of FastNet(MPL) and MPL is compared on model conditions
with 15-30 taxa and 1-4 non-deep reticulations. The performance measures consisted
of topological error as measured by the tripartition fraction between an inferred species
network and the model network and computational runtime in hours. Average (“Avg”)
and standard error (“SE”) of FastNet(MPL)’s performance improvement over MPL is
reported (n = 20). All methods were provided with true gene trees as input. The
statistical significance of FastNet(MPL)’s performance improvement over MPL was
assessed using a one-sided t-test. Corrected g-values are reported where multiple test
correction was performed using the Benjamini-Hochberg method [6].

Number of taxa |Number of Improvement in Improvement in
reticulations topological error runtime (h)
Avg |SE Corrected g-value | Avg | SE | Corrected g-value
15 1 0.087/0.036|3.3 x 1072 2.8/0.3/7.2 x 107°
20 2 0.3460.036|1.1 x 10~° 9.6/0.1/1.1 x 1072
25 3 0.281/0.024|7.9 x 10~° 35.6/5.6/8.5 x 1074
30 4 0.413/0.001|8.8 x 10~ 12 30.3/6.5/2.8 x 1072

Hejase and Liu [17]. On model conditions with non-deep reticulations, Fast-
Net (MLE-length) had a similar boosting effect as compared to FastNet (MPL)
(Table 2). On the 15-taxon single-reticulation model condition, FastNet’s aver-
age improvement in topological error was greater when MLE-length was used
as a base method rather than MPL. An even greater improvement in compu-
tational runtime was seen: FastNet(MLE-length)’s runtime improvement over
MLE-length was over an order of magnitude greater than FastNet(MPL)’s
improvement over MPL. As the number of taxa increased from 15 to 20 (but
the number of reticulations was fixed to one), FastNet(MLE-length)’s advantage
in topological error and runtime relative to its base method nearly doubled. In
all cases, FastNet(MLE-length)’s performance improvements were statistically
significant (Benjamini-Hochberg-corrected one-sided pairwise t-test; « = 0.05
and n = 20). Although FastNet(MLE-length) successfully completed analysis
of larger datasets (i.e., model conditions with more than 20 taxa and/or more
than one reticulation), we were unable to quantify FastNet(MLE-length)’s per-
formance relative to its base method due to MLE-length’s scalability limitations.

We further evaluated FastNet’s performance in the context of additional
experimental and methodological considerations. On model conditions with deep
gene flow (Table3), FastNet returned significant improvements in topological
accuracy and runtime relative to its base method — either MPL or MLE-length —
with one exception: on the 15-taxon single-reticulation model condition, Fast-
Net(MPL) returned a small and statistically insignificant improvement in topo-
logical error over MPL. Otherwise, FastNet’s performance boost was robust to
the choice of base method. As dataset sizes increased, the average performance
boost increased when MPL was the base method; a similar finding applied
to runtime improvements when MLE-length was the base method, whereas
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Table 2. FastNet(MLE-length) “boosts” MLE-length’s runtime and topo-
logical accuracy, where a greater performance boost occurs as dataset sizes
increase. The relative performance of FastNet(MLE-length) and MLE-length is com-
pared on model conditions with 15-20 taxa and 1-2 non-deep reticulations. Note that,
for the model condition with 20 taxa and 2 reticulations, MLE-length did not finish
analysis of any replicates after a week of runtime. Otherwise, table layout and descrip-
tion are identical to Table 1.

Number of taxa |Number of Improvement in Improvement in
reticulations topological error runtime (h)
Avg |SE Corrected g-value|Avg |SE |Corrected g-value
15 1 0.103/0.021|8.8 x 1074 49.4| 6.9/9.1 x 1077
20 1 0.195/0.024 /6.1 x 10~° 114.3(14.7/3.3 x 1077
20 2 Base method DNF

topological error improvements were largely unchanged. We note that Fast-
Net’s performance boost was somewhat smaller on model conditions involving
deep gene flow as opposed to non-deep gene flow. When maximum-likelihood-
estimated gene trees were used as input to summary-based inference in lieu of
true gene trees (Table4), FastNet boosted the topological accuracy and runtime
of its base method in all cases and the improvements were statistically signifi-
cant. As dataset sizes increased, FastNet’s improvement in topological accuracy
and runtime grew when MPL was its base method; runtime improvements grew
and topological error improvements were largely unchanged when MLE-length
was the base method. Finally, we conducted an additional experiment to evalu-
ate FastNet’s statistical efficiency when given a finite number of observations in
terms of the number of loci (Table 5). As the number of loci ranged from genome-
scale (i.e., on the order of 1000 loci) to sizes that were smaller by up to an order
of magnitude, FastNet’s average topological error increased by less than 0.02.

Table 3. Boosting experiments on model conditions with deep gene flow. The
performance improvement of FastNet over its base method (either MPL or MLE-length)
is reported for two different performance measures: topological error as measured by
tripartition fraction and computational runtime in hours. The simulation conditions
involved either 15 or 20 taxa and a single deep reticulation. Otherwise, table layout
and description are identical to Table 1.

Number of | Boosted Improvement in Improvement in
taxa method topological error runtime (h)

Avg |SE |g-value Avg|SE | g-value

15 MPL 0.015/0.017(3.8 x 10~ 1| 2.3/0.2/5.1 x 10~4
20 MPL 0.1660.035/3.2 x 10~3| 8.0/1.5/3.2 x 103
15 MLE-length |0.066/0.001|1.5 x 10=2|35.0(4.1/1.3 x 10~7

20 MLE-length {0.070/0.014|1.1 x 10~2|71.1|7.7|8.7 x 10~8
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Table 4. Boosting experiments using inferred gene trees. The performance
improvement of FastNet over its base method (either MPL or MLE-length) is reported
for two different performance measures: topological error as measured by tripartition
fraction and computational runtime in hours. For each replicate dataset, all summary-
based methods were provided with the same input: a set of rooted gene trees that was
inferred using FastTree and outgroup rooting (see Methods section for more details).
The simulation conditions involved either 15 or 20 taxa and 1-2 non-deep reticulations.
Otherwise, table layout and description are identical to Table 1.

Number |Number of |Boosted Improvement in Improvement in
of taxa  |reticulations | method topological error runtime (h)

Avg |SE |g-value Avg|SE |g-value
15 1 MPL 0.071]0.021|1.2 x 1072| 3.8/0.5/7.7 x 107
20 2 MPL 0.134/0.017|1.4 x 1072 |15.1|1.7/6.9 x 10~
15 1 MLE-length [0.231/0.002(1.3 x 10-%|15.4(2.0(6.7 x 10~ 7
20 1 MLE-length [0.195|0.005|5.8 x 1075 |43.2|7.3|1.7 x 10~°

Table 5. The impact of the number of observed loci on FastNet(MLE)’s
topological error. The inputs to FastNet(MLE) consisted of gene trees that were
inferred using FastTree and outgroup rooting (see Methods section for more details).
The simulations sampled between 100 and 1000 loci for a single 20-taxon 1-reticulation
model condition involving non-deep gene flow. Topological error was evaluated based
upon the tripartition fraction between the model phylogeny and the species phylogeny
inferred by FastNet(MLE); average (“Avg”) and standard error (“SE”) are shown
(n = 20).

Number of loci | Topological error
Avg |SE

100 0.094 | 0.028

200 0.078|0.024

1000 0.075|0.027

4 Discussion

Relative to the state-of-the-art methods that served as base methods, FastNet
consistently returned sizeable and statistically significant improvements in topo-
logical error and computational runtime across a range of dataset scales and gene
flow scenarios. There was only a single experimental condition where compara-
ble error without statistically significant improvements was seen. This exception
occurred when FastNet was used to boost a relatively inaccurate base method
(MPL) on the smallest dataset sizes in our study and with deep gene flow; even
still, large and statistically significant runtime improvements were seen in this
case. In contrast, with a more accurate base method (i.e., MLE-length), large
and statistically significant performance improvements were seen throughout our
simulation study.
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FastNet’s boosting effect on topological error and runtime were robust to
several different experimental and design factors. The boosting performance
obtained using different base methods — one with lower computational require-
ments but higher topological error relative to a more computationally inten-
sive alternative — suggests that, while accuracy improvements can be obtained
even using less accurate subproblem inference, even greater accuracy improve-
ments can be obtained when reasonably accurate subproblem phylogenies can
be inferred. We note that the base methods were run in default mode. More
intensive search settings for each base method’s optimization procedures may
allow a tradeoff between topological accuracy and computational runtime. We
stress that our goal was not to make specific recommendations about the nuances
of running the base methods. Rather, FastNet’s divide-and-conquer framework
can be viewed as orthogonal to the specific algorithmic approaches utilized by
a base method. In this sense, improvements to the latter accrue to the former
in a straightforward and modular manner. Furthermore, FastNet’s performance
effect was robust to gene tree error and varying numbers of observed loci.

The biggest performance gains were observed on the largest, most challenging
datasets. The findings in our earlier performance study [17] suggest that, given
weeks of computational runtime, even the fastest statistical methods (including
MPL) would not complete analysis of datasets with more than 50 taxa or so and
several reticulations. In comparison to MPL, FastNet(MPL) was faster by more
than an order of magnitude on the largest datasets in our study, and we predict
that FastNet(MPL) would readily scale to datasets with many dozens of taxa
and multiple reticulations.

5 Conclusions

In this study, we introduced FastNet, a new computational method for infer-
ring phylogenetic networks from large-scale genomic sequence datasets. Fast-
Net utilizes a divide-and-conquer algorithm to constrain two different aspects of
scale: the number of taxa and evolutionary divergence. We evaluated the perfor-
mance of FastNet in comparison to state-of-the-art phylogenetic network infer-
ence methods. We found that FastNet improves upon existing methods in terms
of computational efficiency and topological accuracy. On the largest datasets
explored in our study, the use of the FastNet algorithm as a boosting frame-
work enabled runtime speedups that were over an order of magnitude faster
than standalone analysis using a state-of-the-art method. Furthermore, FastNet
returned comparable or typically improved topological accuracy compared to
the state-of-the-art-methods that were used as its base method.
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