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As limiting behaviors of Eshelby ellipsoidal inclusions with transformation strain, crack solutions can be obtained both in statics and dynamics (for 
self-similarly expanding ones). Here is presented the detailed analysis of the static tension and shear cracks, as distributions of vertical centers of 
eigenstrains and centers antisymmetric shear, respectively, inside the ellipse being flattened to a crack, so that the singular external field is obtained by the 
analysis, while the interior is zero. It is shown that a distribution of eigenstrains that produces a symmetric center of shear cannot produce a crack. A 
possible model for the Barenblatt crack is proposed by the superposition of two elliptical inclusions by adjusting their small axis and strengths of 
eigenstrains so that the singularity cancels at the tip. 
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1. Introduction
Mura [1] has presented a method for solving crack problems as Eshleby [2] ellipsoidal inclusion problems. Based on the

constant stress Eshelby property Mura cancels the applied tractions on the faces of an ellipsoidal inclusion as the “vertical” 
axis of the ellipsoid tends to zero, so that the inclusion is flattened to a crack. The limit of the product of the eigenstrain 
times the vertical axis length, as the eigenstrain tends to infinity and the axes length tends to zero, is a finite quantity, the 
crack opening displacement. 

Here is provided a complete analysis for the tension and shear Griffith cracks based on distributing centers of 
eigenstrain. In addition to the eigenstrains considered by Mura, are included eigenstrains so that all stresses vanish in the 
interior of the crack. The external field is obtained analytically, while Mura [1] only obtains the singularity based on the 
energy-release rate known independently. We show that a crack cannot be produced as a symmetric center of shear with 
eigenstrains * * ,xx yy = −  because the internal stresses cannot be cancelled by an applied stress field in this case.

Analogously to the static, Markenscoff [3] has shown that the self-similarly expanding elliptical crack Burridge and 
Willis [4] can be obtained from the limit of the self-similarly expanding ellipsoidal inclusion with transformation strain [5–
7], since the constant stress Eshelby property is valid also in self-similarly expanding Eshelby inclusions. It may be noted 
that the dynamic Eshelby fields in respective limits give both the static Eshelby inclusion (and hence the static cracks) and 
also Rayleigh waves as the axis expansion speed of the elliptically expanding crack tends to the Rayleigh wave speed. 

2. The “flattened” elliptical cylinder with transformation strain as a crack
We consider that the crack will be a distribution of eigenstrains inside a flattened elliptical cylinder. The interior stresses

of a flattened elliptical cylinder 3( ,a → 2 1 )a a = with transformation strains *
ij  are given by (also, [1]) 
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To obtain the crack x a under tension ,yy T =  the interior stresses in the inclusion should be 0,xx xy =  =  .yy T = −

From Eqs. (1) the leading terms in the interior stresses as 0→ are 
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In order for ,yy T = − we set * ,yy e = → 0,→ and (1 ) .e T = −  Moreover, for 0,xx = from Eq. (2) there 

should exist eigenstrain * * 2.xx yy = −  Such eigenstrains were not considered by Mura, but they need to be considered to 

obtain all stress and displacement fields correctly. We give below the fields for a vertical center of eigenstrain * ,yy e =

* * * 0,xx xy zz =  =  =  and * 2
0

lim( )yya
a q

→
  =  obtained by means of the Airy stress function 
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from which we obtain 
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3 . T h e st r e ss fi el d of a c r a c k i n t e nsi o n a s a dist ri b uti o n of v e rti c al c e nt e r s of ei g e nst r ai n  

T h e cr a c k str ess fi el d is o bt ai n e d b y distri b uti n g i n t h e i nt eri or of t h e elli p s e ( cr a c k) v erti c al c e nt er s of ei g e nstr ai n 
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By distributing the centers of shear eigenstrain inside the ellipse and integrating as before we obtain the stresses  
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and the displacements 
2 20 2
1 1

1

10 2
2 2

1 1 1

2( , 0 ) ( , 0 ) , ,

, ,1( , 0)
1 sgn , ,

x x

y

q au x u x a x x a
a

x x aq au x
a x x a x a x

+ −− = − 

 − = 
 + − −   

 (8) 

where we set 2 1 04 ( 1)( ) ,a a q S + =  and we superpose xy S =  to obtain the total stresses for the Griffith shear crack. 

We may note that ( , 0)yu x x=  for 1x a  means that the shear crack rotates. 

5. Symmetric centers of shear do not produce a crack 

A symmetric center of shear consists of eigenstrains * * ,xx yy e = − =  * 0.xy =  

As Eqs. (1) indicate as e→  so that const,e→  xx →  in the interior of the crack. It is not possible to cancel 
these stresses by remote tractions as to produce a cavity for the crack. However, for a self-similarly expanding inclusion 
with transformation strain containing symmetric centers of shear, dynamic fields would be emitted outside and the shear 
stress would be singular at the tips. The stress xx  would be symmetric in x, while xy  would be antisymmetric. 

6. Concluding remarks for the Barenblatt crack 
A detailed analysis shows how a crack can be obtained as the limit of an Eshelby ellipsoidal (in 2D elliptical) inclusion 

as the eigenstrain tends to infinitity, the small axis length tends to zero, while their product to a length that gives the crack 
opening displacement. This is due to the Eshelby constant stress property so that the constant applied traction on the crack 
faces can be cancelled. This property is true also in the dynamic generalization of the Eshelby inclusion problem where the 
Burridge and Willis [4] self-similarly expanding elliptical crack is obtained, and at the corresponding axis speed Rayleigh 
waves, as M waves emitted by the expanding ellipsoid. 

A question may arise whether the Barenblatt crack can be produced by distribution of eigenstrains [9]. We may consider 
the superposed fields of two elliptical inclusions with axes lengths 1 1 2 2( , ), ( , )a b a b  as in the Fig. 1, so that all stresses in the 
interior of the inner ellipsoid vanish as to produce a crack. Only in the case 1 2a a=  we can adjust the eigenstrain densities 

1q  and 2q  that the singularity cancels at that point. It would be interesting to obtain the fields and compare with the 
Barenblatt crack. 

 



 
 

Fig. 1. Superposition of two elliptical inclusions to produce a crack with vanishing stress at the tip 
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