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Abstract
This paper investigates lowest-order weak Galerkin finite element methods for solving linear
elasticity problems on rectangular and brick meshes. Specifically, constant vectors are used
in element interiors and on element interfaces respectively for approximating displacement.
For these constant basis functions, their discrete weak gradients are calculated in the local
Raviart–Thomas spaces RT d[0] (d = 2 or 3), whereas their discrete weak divergences are
calculated as elementwise constants. Discrete weak strains are calculated accordingly. Then
these quantities are used to develop finite element schemes in both strain-div and grad-div
formulations, on both rectangular and brick meshes. A theoretical analysis supported by
numerical experiments in both 2-dim and 3-dim reveal that the methods are locking-free
and have optimal 1st order convergence in displacement, stress, and dilation (divergence of
displacement), when the exact solution has full regularity. The methods can also capture
low-regularity solutions very well. Strategies for efficient implementation including Schur
complement are presented. Extension to quadrilateral and hexahedral meshes, in both theo-
retical analysis and numerical experiments, is also examined.

Keywords Brick meshes · Elasticity · Lowest-order finite elements · Rectangular meshes ·
Weak Galerkin (WG)

Mathematics Subject Classification 65N30 · 74B05

1 Introduction

This paper concerns finite element methods (FEMs) for linear elasticity problems formulated
as {

− ∇ · σ = f(x), x ∈ Ω,

u|Γ D = uD, (−σn)|Γ N = tN ,
(1)
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where Ω is a 2-dim or 3-dim bounded domain occupied by a homogeneous and isotropic
elastic body, f is a body force, uD, tN are respectively Dirichlet and Neumann data, n is the
outward unit normal vector on the domain boundary ∂Ω = Γ D ∪ Γ N . As usual, u is the
solid displacement,

ε(u) = 1

2

(
∇u + (∇u)T

)
is the strain tensor, and

σ = 2μ ε(u) + λ(∇ · u)I,

is the Cauchy stress tensor, where I is the identity matrix of order two or three.
Note that the Lamé constants λ,μ are given by

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, (2)

where E is the elasticity modulus and ν is Poisson’s ratio.
Let L2(Ω), H1(Ω) be the Sobolev spaces of scalar-valued functions andL2(Ω),H1(Ω),

H2(Ω) be the Sobolev spaces of vector-valued functions. Let H1
D,0(Ω) be the subspace of

functions in H1(Ω) whose values vanish on Γ D . When Γ D = ∂Ω , we write H1
D,0(Ω) as

H1
0(Ω).
The variational form in the strain-div formulation for (1) is to seek u ∈ H1(Ω) such that

u|Γ D = uD and

2μ(ε(u), ε(v)) + λ
(∇ · u,∇ · v) = (f, v) − 〈tN , v〉Γ N , ∀v ∈ H1

D,0(Ω). (3)

When a pure Dirichlet boundary condition is considered, we have Γ D = ∂Ω and (1) can
be reformulated as {

− μΔu − (μ + λ)∇(∇ · u) = f,

u|∂Ω = uD .
(4)

Accordingly, the variational form in the grad-div formulation is to seek u ∈ H1(Ω) such that
u|Γ D = uD and

μ(∇u,∇v) + (μ + λ)(∇ · u,∇ · v) = (f, v), ∀v ∈ H1
0(Ω). (5)

The regularity of the solution to problem (4) with homogeneous Dirichlet boundary con-
ditions follows from [4,5]. When Ω is a convex polygon, there holds

‖u‖H2(Ω) + λ‖∇ · u‖H1(Ω) ≤ C‖f‖L2(Ω), (6)

where C > 0 is a constant independent of λ. Similar results for 3-dim can be found in [9].
A challenge in numerically solving linear elasticity is to overcome Poisson-locking. This

locking is often manifested as loss of convergence rates in displacement and/or other quan-
tities when λ → ∞ or ν → 1

2 , that is, the material is nearly incompressible.
The development of efficient and robust finite element methods for linear elasticity on

rectangular and brick meshes is an important problem in its own right. Some early efforts on
locking-free FEMs for linear elasticity on two- and/or three-dimensional rectangular meshes
can be found in [21,22]. These are nonconforming mixed finite element methods (MFEMs)
based on the Hellinger–Reissner formulation. A recent work in this direction [8] develops
finite elements with the least number of degrees of freedom.
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A closely related topic is the investigation of finite elements on quadrilateral and hexa-
hedral meshes. Some early efforts to construct locking-free nonconforming finite elements
for linear elasticity on general quadrilaterals can be found in [16,24]. Mixed finite elements
on quadrilaterals can be found in [2] and reference therein. In [10], a mixed finite element
method (MFEM) is developed for nearly incompressible elasticity (and also Stokes flow)
using primal and dual meshes with quadrilateral and hexahedral grids. For the MFEMs in
the displacement-pressure formulation, a biorthogonal system is developed in [11] so that
the pressure degrees of freedom can be statically condensed and the MFEMs become much
more efficient. It is unclear whether such a technique applies to the FEMs based on the
stress-displacement formulation.

Recently, the weak Galerkin (WG) methodology has emerged with some interesting fea-
tures. WGFEMs have been developed for several types of partial differential equations. A
family of WGFEMs for the linear elasticity equation on polygonal meshes was developed in
[18]. These methods use degree k ≥ 1 vector polynomials for element interiors but degree
k − 1 vector polynomials for element interfaces, and a penalization term is necessary. Order
k + 1 accuracy is attained for displacement, but only order k accuracy can be expected for
stress and dilation.

In this paper, we develop the lowest-order weak Galerkin finite element methods for linear
elasticity on rectangular and brick meshes. Namely, constant vectors are used in element
interiors and on inter-element boundaries for approximating displacement. No penalization
is needed. Themethods have optimal first order accuracy in displacement, stress, and dilation,
when the exact solution has full regularity. The new methods can also capture low regularity
solutions very well and can be extended to quadrilateral and hexahedral meshes.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts of
weak Galerkin and presents the new finite element methods in both strain-div and grad-div
formulations. Section 3 presents a theoretical analysis on rectangular meshes and examines
also the extension to quadrilateral meshes. Section 4 discusses implementation and the Schur
complement. Section 5 briefly reviews an existing WG method in [18]. Section 6 presents
test cases in two and three dimensions in order to demonstrate the important features of our
new methods, namely locking-free and optimal order convergence, the ability to accurately
capture low regularity solutions and the cost reduction achieved through the use of the Schur
complement.

2 Lowest-OrderWGFEMs for Elasticity on Rectangular and BrickMeshes

This paper develops the lowest-order weak Galerkin finite element methods

– WG(Q2
0, Q

2
0; RT 2[0], Q0) on rectangular meshes,

– WG(Q3
0, Q

3
0; RT 3[0], Q0) on brick meshes

for linear elasticity problems. In either case, the displacement is approximated by constant
vectors in element interiors and on edges/faces.

The main ideas in the weak Galerkin finite element methodology are as follows.

(i) Choose basis functions separately for element interiors and for inter-element boundaries
(or the mesh skeleton). These can be polynomials of different degrees. For example,
on a rectangle E , one can use Q2

0 (constant vectors) separately for its interior E◦ and
boundary E∂ .

(ii) Specify the discrete weak gradients or divergences of the above basis functions in
(known) spaces that have desired approximation capacity. This is established through
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integration by parts. For example, for a rectangle E , we can use the matrix-version
Raviart–Thomas space RT 2[0](E) for discrete weak gradients and simply Q0(E) for
discrete weak divergences.

(iii) Use the aforementioned basis functions to approximate the physical variable in a given
problem, e.g., displacement in elasticity. Use the discrete weak gradients or divergences
to approximate the classical gradient or divergence in the variational form of the given
problem, for example, the strain-div formulation (3).

For detailed discussion of general concepts of weak functions, weak different operators
(gradient, divergence, curl), discrete weak functions, discrete weak gradients (divergences,
curls), the reader is referred to [18,19].

2.1 WG(Q2
0,Q

2
0; RT2[0],Q0) Scheme for Elasticity on Rectangular Meshes

Let E be a rectangle and (xc, yc) be its center. Let X = x− xc, Y = y− yc be the normalized
coordinates.

Recall that the Raviart–Thomas space RT0(E) consists of vector-valued functions whose
first components are linear functions of the first coordinate and whose second components
are linear in the second coordinate [6]. Accordingly, RT 2

0 (E) consists of functions that are
order two square matrices with row vectors in RT[0](E).

Note that the local space RT 2[0](E) can be generated by the following eight basis functions
[15]:

W1 =
[
1 0
0 0

]
, W2 =

[
0 1
0 0

]
, W3 =

[
X 0
0 0

]
, W4 =

[
0 Y
0 0

]
,

W5 =
[
0 0
1 0

]
, W6 =

[
0 0
0 1

]
, W7 =

[
0 0
X 0

]
, W8 =

[
0 0
0 Y

]
.

(7)

Their Gram matrix is an 8 × 8 symmetric positive-definite (SPD) matrix.
Next we considerWG(Q2

0, Q
2
0)-type vector-valued discrete weak functions on a rectangle

E . Such a function v = {v◦, v∂ } has two parts: v◦ denotes its value as a constant vector in the
element interior E◦; v∂ denotes its value on the element boundary E∂ , the value is a constant
vector on each edge of the boundary. The 10 basis functions are as follows.

– For the interior E◦, there are 2 basis functions v1, v2 such that their values in the element

interior are v◦
1 =

[
1
0

]
, v◦

2 =
[
0
1

]
. However, their values v∂

1, v
∂
2 on the boundary E∂ are

the zero vector.
– For the i-th (1 ≤ i ≤ 4) edge, there are also 2 basis functions v2i+1, v2i+2 such that

v∂
2i+1 =

[
1
0

]
, v∂

2i+2 =
[
0
1

]
on the edge itself, but their values are the zero vector on all

other edges and also in the element interior.

Let v = {v◦, v∂ } be a WG(Q2
0, Q

2
0)-type discrete weak function. We specify its discrete

weak gradient ∇w,dφ in RT 2[0](E) via integration by parts∫
E

(∇w,dv
) : W =

∫
E∂

v∂ · (Wn) −
∫
E◦

v◦ · (∇ · W )
, ∀W ∈ RT 2[0](E), (8)

where : is the standard colon product for matrices and n is the outward unit vector on the
element boundary E∂ . If we set∇w,dv = ∑8

j=1 c jW j , then these eight coefficients c1, . . . , c8
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are obtained by solving a SPD linear system that has the aforementioned Gram matrix as the
coefficient matrix.

The discrete weak strain of such a discrete weak function v is defined as

εw,d(v) = 1

2

(
∇w,dv + (∇w,dv

)T )
. (9)

The discrete weak divergence ∇w,d · v of such a discrete weak function v is also defined
via integration by parts∫

E

(∇w,d · v)w =
∫
E∂

v∂ · (wn) −
∫
E◦

v◦ · (∇w
)
, ∀w ∈ Q0(E). (10)

Note that the second term on the right-hand side of the above equation disappears since
the classical gradient of a constant function is a zero vector, and hence the discrete weak
divergence can be computed directly.

Let Eh be a quasi-uniform rectangular mesh. Let Γ D
h be the set of all edges along the

Dirichlet boundary Γ D . Similarly, let Γ N
h be the set of all edges on Γ N . Let Vh be the space

of all WG(Q2
0, Q

2
0)-type discrete weak functions on the whole mesh Eh , namely, their values

in element interiors are constant vectors, and their values on edges are also constant vectors.
Note that this global finite element space is obtained by gluing the local weak functions
through the inter-element boundaries (mesh skeleton). Furthermore, let V 0

h be the subspace
of discrete weak functions in Vh whose values vanish on the Dirichlet edges (Γ D

h ). Let Q∂
h

be a local L2-projection to the space of constant vectors on edges.
WG finite element scheme in strain-div formulation. The weak Galerkin (Q2

0, Q
2
0; RT 2[0],

Q0) scheme in the strain-div formulation for the linear elasticity problem (1) is formulated
as: Seek uh ∈ Vh such that uh |Γ D

h
= Q∂

h(uD) and

ASD
h (uh, v) = F SD

h (v), ∀v ∈ V 0
h , (11)

where

ASD
h (uh, v) = 2μ

∑
E∈Eh

(εw,d(uh), εw,d(v))E

+ λ
∑
E∈Eh

(∇w,d · uh,∇w,d · v)E ,
(12)

and

F SD
h (v) =

∑
E∈Eh

(f, v◦)E −
∑

γ∈Γ N
h

〈tN , v∂ 〉γ . (13)

WG finite element scheme in grad-div formulation. The weak Galerkin (Q2
0, Q

2
0; RT 2[0],

Q0) scheme in the grad-div formulation for the linear elasticity problem (4) is formulated
as: Seek uh ∈ Vh such that uh |Γ D

h
= Q∂

h(uD) and

AGD
h (uh, v) = FGD

h (v), ∀v ∈ V 0
h , (14)

where

AGD
h (uh, v) = μ

∑
E∈Eh

(∇w,duh,∇w,dv
)
E

+ (
μ + λ

) ∑
E∈Eh

(∇w,d · uh,∇w,d · v)E ,
(15)
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and

FGD
h (v) =

∑
E∈Eh

(f, v◦)E . (16)

Remarks (i) No penalization is needed for these two WG finite element schemes.
(ii) These two schemes can be extended to a quadrilateral mesh with RT[0] being the

unmapped local Raviart–Thomas space. See the end of Sect. 3 for a discussion.

2.2 WG(Q3
0,Q

3
0; RT3[0],Q0) Scheme for Elasticity on Brick Meshes

In the same spirit, WG(Q3
0, Q

3
0; RT 3[0], Q0) finite element schemes can be developed in both

strain-div and grad-div formulations for linear elasticity on a brick (3-dim rectangular) mesh.
The schemes take the same forms as those shown in (11) and (14).

Let E be a brick (3-dim rectangle) with center (xc, yc, zc). Let X = x − xc, Y = y −
yc, Z = z−zc be the normalized coordinates. Now dim(RT 3[0](E)) = 18 for the local lowest-
order Raviart–Thomas space on the brick. We still use the lowest-order WG basis functions
(Q3

0, Q
3
0). Specifically, we have three constant vector basis functions for the interior E

◦, and
also three functions for each of the six faces that consists of the boundary E∂ . This results in
21 degrees of freedom elementwise for displacement. For these 21WG basis functions, their
discrete weak gradients are obtained in RT 3[0](E) by solving size-18 SPD linear systems,
whereas their discrete weak divergences are calculated directly as constants. Their discrete
weak strains can then be calculated. These quantities are then applied in 3-dim finite element
schemes that are similar to (11) or (14) for solving displacement. Similarly, these schemes
can be readily extended to a hexahedral mesh.

3 Analysis

For ease of presentation, our error analysis focuses on the finite element scheme (14) for
problem (4) with homogeneous Dirichlet boundary conditions. We consider the grad-div
formulation on a rectangular mesh. For convenience, we use A � B to simplify an inequality
A ≤ CB when C > 0 is a constant independent of h and λ.

Let Eh be a quasi-uniform rectangular mesh. Our weak Galerkin shape functions are taken
from Vh or V 0

h . We also require the following auxiliary space,

Wh = {
q : q|E ∈ Q0(E),∀E ∈ Eh

}
. (17)

Definition 1 (Semi-norm on Vh). For v ∈ Vh , we define

|‖v‖|2 =
∑
E∈Eh

h−1
E

∥∥v∂ − v◦∥∥2
E∂ . (18)

For ease of presentation, there is a mild abuse of the notation v◦ in the above formula. In fact
we extend v◦ to the element boundary using the same constant vector. Similar interpretations
apply to Lemmas 2, 4, 5, 6, 7 and Theorems 1, 2, and their proofs.

Remarks (i) This is essentially a gradient in the discrete sense for these lowest-order discrete
weak functions;

(ii) If higher order WG basis functions (Q2
k, Q

2
k)(k ≥ 1) are used, we need to add another

term to (18), e.g., ∇v◦, for the classical gradient of its interior part, see also [18].
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Lemma 0 The above semi-norm becomes a norm on V 0
h . ��

Definition 2 (Local projection operators). Let E be a rectangle. We define

(i) Qh as the L2-projection from L2(E) to the space of constant scalars on E ;
(ii) Qh = {Q◦

h,Q
∂
h}, where Q◦

h is the local L2-projection from L2(E◦) to the space of
constant vectors on E◦, whereasQ∂

h is the local L
2-projection fromL2(E∂ ) to the space

of piecewise constant vectors on E∂ ;
(iii) Qh as the local L2-projection from L2(E)2×2 to the space RT 2[0](E).

Lemma 1 (Commuting identities). Let E ∈ Eh.
(i) For u ∈ H1(E), there holds ∇w,d(Qhu) = Qh(∇u);
(ii) For u ∈ H(div, E), there holds ∇w,d · (Qhu) = Qh(∇ · u).

Proof Apply the definitions of the discrete weak gradient and discrete weak divergence, the
definitions of the above local projections, and Gauss Divergence Theorem. ��
Lemma 2 (Conversion to trace). Let E ∈ Eh and v ∈ Vh.

(i) For any W ∈ RT 2[0](E), there holds(
W ,∇w,dv

)
E = 〈

Wn, v∂ − v◦〉
E∂ . (19)

(ii) For any w ∈ Wh, there holds(
w,∇w,d · v)E = 〈

wn, v∂ − v◦〉
E∂ . (20)

Proof Apply the definitions of the discrete weak gradient and discrete weak divergence, and
Gauss Divergence Theorem. ��
Lemma 3 (Trace equivalence for RT 2[0]). For E ∈ Eh, there holds

‖Wn‖2E∂ ≈ h−1
E ‖W‖2E , ∀W ∈ RT 2[0](E). (21)

Proof It can be proved using the techniques in [6] that

‖w · n‖2E∂ ≈ h−1
E ‖w‖2E , ∀w ∈ RT[0](E),

where the equivalence holds with absolute constants that are independent of the mesh size.
The result in (21) is a matrix version of this equivalence. ��
Lemma 4 (Coercivity). There holds

|‖v‖| � ‖∇w,dv‖, ∀v ∈ V 0
h . (22)

Proof Let v ∈ V 0
h . Consider any fixed rectangle E . Since there are 8 coefficients in W and

v∂ offers 8 constant vectors on all 4 edges together, there exists W ∈ RT 2[0](E) such that

(Wn)|E∂ = v∂ − v◦. Then applying Lemma 2(i) yields∥∥v∂ − v◦∥∥2
E∂ = (W ,∇w,dv)E .

By the Cauchy–Schwarz and Young’s inequalities, we have, for any δ > 0,

∥∥v∂ − v◦∥∥2
E∂ ≤ δ

2
‖W‖2E + 1

2δ

∥∥∇w,dv
∥∥2
E .
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By the trace equivalence in (21), there exists an absolute constant C such that

‖W‖2E ≤ ChE‖Wn‖2E∂ .

So we have ∥∥v∂ − v◦∥∥2
E∂ ≤ δ

2
ChE

∥∥v∂ − v◦∥∥2
E∂ + 1

2δ

∥∥∇w,dv
∥∥2
E .

Rearranging terms yields

2δ
(
1 − δ

2
ChE

)∥∥v∂ − v◦∥∥2
E∂ ≤ ∥∥∇w,dv

∥∥2
E .

By choosing δ = 1/(ChE ), we obtain

C−1h−1
E

∥∥v∂ − v◦∥∥2
E∂ ≤ ∥∥∇w,dv

∥∥2
E .

Summing the above estimate over the entire mesh yields the desired result. ��
Lemma 5 (Boundedness). Assume v ∈ Vh and E ∈ Eh. Then∥∥∇w,dv

∥∥2
E � h−1

E

∥∥v∂ − v◦∥∥2
E∂ . (23)

and ∥∥∇w,d · v∥∥2E � h−1
E

∥∥v∂ − v◦∥∥2
E∂ . (24)

Proof For the first inequality, we proceed as follows: take W = ∇w,dv in Lemma 2(i),
then apply the Cauchy–Schwarz inequality, Lemma 3 (trace equivalence) and an elementary
(Young’s) inequality to obtain∥∥∇w,dv

∥∥2
E = 〈(∇w,dv)n, v∂ − v◦〉E∂

≤ ∥∥(∇w,dv)n
∥∥
E∂

∥∥v∂ − v◦∥∥
E∂

≤ Ch
− 1

2
E

∥∥∇w,dv
∥∥
E

∥∥v∂ − v◦∥∥
E∂

≤ 1

2

∥∥∇w,dv
∥∥2
E + 1

2
C2h−1

E

∥∥v∂ − v◦∥∥2
E∂ .

Rearranging terms yields ∥∥∇w,dv
∥∥2
E ≤ C2h−1

E

∥∥v∂ − v◦∥∥2
E∂ .

The second inequality can be proven in a similar way using the quasi-uniformity of the mesh,
which says essentially that |E |/|E∂ | ≈ h. ��
Lemma 6 (Error equation). Let uh be the numerical solution from (14) with a homogeneous
Dirichlet boundary condition. Let u be the exact solution of (4). There holds

AGD
h (uh − Qhu, v) = μG1(u, v) + (μ + λ)G2(u, v), (25)

where

G1(u, v) =
∑
E∈Eh

〈
(∇u − Qh(∇u))n, v∂ − v◦〉

E∂ , (26)

and

G2(u, v) =
∑
E∈Eh

〈
(∇ · u − Qh(∇ · u))n, v∂ − v◦〉

E∂ . (27)
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Proof Let v = {v◦, v∂ } ∈ Vh and E ∈ Eh . Using the differential equation in (4) and integra-
tion by parts, we have(

f, v◦)
E = −μ

(
Δu, v◦)

E − (μ + λ)
(∇(∇ · u), v◦)

E

= −μ
〈
(∇u)n, v◦〉

E∂ + μ
(∇u,∇v◦)

E

− (μ + λ)
〈
(∇ · u)n, v◦〉

E∂ + (μ + λ)
(∇ · u,∇ · v◦)

E .

Since v◦ is an elementwise constant vector, ∇v◦ = 0 and ∇ ·v◦ = 0. Therefore, the previous
expression can be simplified as(

f, v◦)
E = −μ

〈
(∇u)n, v◦〉

E∂ − (μ + λ)
〈
(∇ · u)n, v◦〉

E∂ . (28)

Under the assumptions of normal continuity of the exact solution and homogeneous boundary
conditions, we have∑

E∈Eh

〈
(∇u)n, v∂

〉
E∂ = 0,

∑
E∈Eh

〈
(∇ · u)n, v∂

〉
E∂ = 0. (29)

Combining these with (28) and the finite element scheme (14) gives

AGD
h (uh, v) =

∑
E∈Eh

(
f, v◦)

E = μ
∑
E∈Eh

〈
(∇u)n, v∂ − v◦〉

E∂

+ (μ + λ)
∑
E∈Eh

〈
(∇ · u)n, v∂ − v◦〉

E∂ .
(30)

On the other hand, by the commuting identities in Lemma 1 and the conversion formulas
in Lemma 2, we have(∇w,d(Qhu),∇w,dv

)
E = (Qh∇u,∇w,dv)E = 〈

(Qh∇u)n, v∂ − v◦〉
E∂ ,

and (∇w,d · (Qhu),∇w,d · v)E = (Qh(∇ · u),∇w,d · v)E = 〈
Qh(∇ · u)n, v∂ − v◦〉

E∂ .

Thus we have, by summing over the entire mesh,

AGD
h (Qhu, v) = μ

∑
E∈Eh

〈
(Qh∇u)n, v∂ − v◦〉

E∂

+ (μ + λ)
∑
E∈Eh

〈
Qh(∇ · u)n, v∂ − v◦〉

E∂ .
(31)

Subtracting (31) from (30) yields the error equation claimed in (25). ��
Lemma 7 (Estimates on linear functionals). Assume the exact solution of (4) has regularity
u ∈ H2(Ω). Then for any v ∈ Vh, there hold

|G1(u, v)| � h‖u‖H2(Ω)|‖v‖|, (32)

|G2(u, v)| � h‖∇ · u‖H1(Ω)|‖v‖|. (33)

Remarks If u is the exact solution of (4), then G2(u, v) and G2(u, v) are indeed linear func-
tionals defined on Vh . In general, they can also be viewed as nonsymmetric bilinear forms
defined on H1(Ω) × Vh . This will allow us to readily apply the above estimates in a duality
argument to be presented later.
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Proof Consider a fixed E ∈ Eh . By Lemma 3 (trace equivalence) and the approximation
capacity of Qh , we have

‖(∇u − Qh∇u)n‖E∂ � h
− 1

2
E ‖∇u − Qh∇u‖E � h

1
2
E‖u‖H2(E).

Applying the Cauchy–Schwarz and Young’s inequalities, and the definition of semi-norm
(18) gives

|G1(u, v)| �

⎛
⎝ ∑

E∈Eh
hE‖(∇u − Qh∇u)n‖2E

⎞
⎠

1
2
⎛
⎝ ∑

E∈Eh
h−1
E ‖v∂ − v◦‖2E

⎞
⎠

1
2

�

⎛
⎝ ∑

E∈Eh
h2E‖u‖2H(E)

⎞
⎠

1
2
⎛
⎝ ∑

E∈Eh
h−1
E ‖v∂ − v◦‖2E

⎞
⎠

1
2

≤ Ch‖u‖H2(Ω)‖|v|‖,

(34)

as desired. The second estimate can be proven in a similar way. ��
Theorem 1 Let u be the exact solution of (4) and uh be the numerical solution obtained from
(14). There holds

μ
∑
E∈Eh

‖∇u − ∇w,duh‖2E + (μ + λ)
∑
E∈Eh

‖∇ · u − ∇w,d · uh‖2E � h2‖f‖2L2(Ω)
. (35)

Proof We utilize Lemma 1 (commuting identities) to split the elementwise errors into pro-
jection errors and discretization errors as shown below,

‖∇u − ∇w,duh‖2E � ‖∇u − Qh∇u‖2E + ‖Qh∇u − ∇w,duh‖2E ,

‖∇ · u − ∇w,d · uh‖2E � ‖∇ · u − Qh(∇ · u)‖2E + ‖Qh(∇ · u) − ∇w,d · uh‖2E .

For the projection errors, we have first elementwise estimates

‖∇u − Qh∇u‖E � h‖u‖H2(E),

‖∇ · u − Qh(∇ · u)‖E � h‖∇ · u‖H1(E),

and then a mesh-wise estimate

μ
∑
E∈Eh

‖∇u − Qh∇u‖2E + (μ + λ)
∑
E∈Eh

‖∇ · u − Qh(∇ · u)‖2E

� h2
(
μ‖u‖2H2(Ω)

+ (μ + λ)‖∇ · u‖2H1(Ω)

)
� h2‖f‖2L2(Ω)

.

(36)

In the last step, we have used the fact that

μ‖u‖2H2(Ω)
+ (μ + λ)‖∇ · u‖2H1(Ω)

� ‖f‖2L2(Ω)
,

which can be derived from (6) using the techniques developed in [4].
For the discretization errors between the projection and the finite element solution, we

combine Lemmas 6 and 7 to obtain

μ
∑
E∈Eh

‖Qh∇u − ∇w,duh‖2E + (μ + λ)
∑
E∈Eh

‖Qh(∇ · u) − ∇w,d · uh‖2E ,

� h2
(
μ‖u‖2H2(Ω)

+ (μ + λ)‖∇ · u‖2H1(Ω)

)
� h2‖f‖2L2(Ω)

.

(37)

The desired result follows from combining (36) and (37). ��
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We now establish an L2-norm estimate using a standard duality argument.

Theorem 2 (L2-norm estimate for displacement). Let u be the exact solution of (4) and uh
be the numerical solution obtained from (14). There holds

‖u − u◦
h‖L2(Ω) ≤ Ch‖f‖L2(Ω), (38)

where C is a positive constant independent of λ, h.

Proof Let � be the solution of the dual problem{
− μΔ� − (μ + λ)∇(∇ · �) = e◦

h,

�|∂Ω = 0.
(39)

As usual, we assume the dual solution has full regularity as follows

μ‖�‖H2(Ω) + (μ + λ)‖∇ · �‖H1(Ω) ≤ C‖e◦
h‖L2(Ω). (40)

We test the dual equation against v ∈ Vh on an arbitrary element E ∈ Eh and apply
integrating by parts to obtain

− μ〈(∇�)n, v◦〉E∂ − (μ + λ)〈(∇ · �)n, v◦〉E∂ = (e◦
h, v

◦)E . (41)

The normal continuity and boundary conditions of the dual solution together imply∑
E∈Eh

〈
(∇�)n, v∂

〉
E∂ = 0,

∑
E∈Eh

〈
(∇ · �)n, v∂

〉
E∂ = 0. (42)

Combined these yield∑
E∈Eh

(e◦
h, v

◦)E = μ
∑
E∈Eh

〈
(∇�)n, v∂ − v◦〉

E∂ + (μ + λ)
∑
E∈Eh

〈
(∇ · �)n, v∂ − v◦〉

E∂ . (43)

Alternatively, applying Lemmas 1 (commuting identities) and 2 (conversion-to-trace for-
mulas), we have elementwise

μ(∇w,d(Qh�),∇w,dv)E + (μ + λ)(∇w,d · (Qh�),∇w,d · v)E
= μ(Qh∇�,∇w,dv)E + (μ + λ)(Qh(∇ · �),∇w,d · v)E
= μ

〈
(Qh∇�)n, v∂ − v◦〉

E∂ + (μ + λ)
〈
Qh(∇ · �)n, v∂ − v◦〉

E∂ .

Over the entire mesh, we have

AGD
h (Qh�, v) = μ

∑
E∈Eh

〈
(Qh∇�)n, v∂ − v◦〉

E∂

+ (μ + λ)
∑
E∈Eh

〈
Qh(∇ · �)n, v∂ − v◦〉

E∂ .
(44)

We now set v = eh in both (43) and (44), and perform a subtraction on both sides to
obtain

‖e◦
h‖2 − AGD

h (Qh�, eh) = μG1(�, eh) + (μ + λ)G2(�, eh).

The symmetry in AGD
h (·, ·) leads to

‖e◦
h‖2 = AGD

h (eh,Qh�) + μG1(�, eh) + (μ + λ)G2(�, eh). (45)
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Similar to Lemma 7, we have immediately

|G1(�, eh)| ≤ Ch‖�‖H2(Ω)|‖eh‖|,
|G2(�, eh)| ≤ Ch‖∇ · �‖H1(Ω)|‖eh‖|.

The above two estimates combined with the dual regularity (40) imply

|μG1(�, eh) + (μ + λ)G2(�, eh)| ≤ Ch‖e◦
h‖ |‖eh‖|. (46)

To estimate |‖eh‖|, we first set v = eh in (25) and then apply Lemmas 4 (coercivity), 6,
and 7 to obtain

|‖eh‖| ≤ Ch‖f‖L2(Ω), (47)

where C > 0 is a constant independent of h and λ.
Applying Lemmas 6 (error equation) and 7, and the regularity of the exact solution (6)

yields

|AGD
h (eh,Qh�)| ≤ Ch‖f‖L2(Ω)|‖Qh�‖|.

Applying Lemmas 4 (coercivity) and 1(i) (commuting identity), the stability of the projection
Qh and dual regularity, we have

|‖Qh�‖| � ‖∇w,d(Qh�)‖ = ‖Qh∇�‖ ≤ ‖∇�‖ ≤ ‖�‖H2(Ω) � ‖e◦
h‖.

Combining the above two estimates gives∣∣AGD
h (eh,Qh�)

∣∣ ≤ Ch‖f‖L2(Ω)‖e◦
h‖. (48)

Finally, combining (45), (46), (47), and (48) yields the desired result. ��
Theorems 1 and 2 combined imply that for elasticity problems on rectangular meshes, the

lowest-order WG finite element scheme (Q2
0, Q

2
0; RT 2[0], Q0) has the following two proper-

ties.

– First order convergence in displacement, stress, and dilation (given full regularity of the
exact solution);

– The convergence order does not deteriorate as λ → ∞, i.e, the method is locking-free.

It is observed (see Sect. 6, Example 2) that for elasticity problems with low regularity, say,
u ∈ H1+s(Ω) with s ∈ (0, 1), the method produces 1st order convergence in displacement
and order s convergence in stress and dilation.

Remarks on the extension to quadrilateral and hexahedral meshes. It can be observed
that the commuting identities in Lemma 1(i)(ii) play important roles in the error analysis.
These identities demonstrate that the discrete weak gradient and the discrete weak divergence
provide a good approximation to their classical counterparts.

Recall the definition of the discrete weak gradient,∫
E
(∇w,dv) : W =

∫
E∂

v∂ · (Wn) −
∫
E◦

v◦ · (∇ · W ), ∀W ∈ RT 2[0](E),

and Lemma 1(i)

∇w,d(Qhu) = Qh(∇u).

The above two quantities are expected to be in the same finite dimensional space, say, the
local Raviart–Thomas space RT 2[0](E) on a rectangle E , from which we take a typical test
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function W . By the definition of discrete weak gradient, the definition of the projection
Qh = {Q◦

h,Q
∂
h}, the definition of the projection Qh , and Gauss Divergence Theorem, we

should have ∫
E

∇w,d(Qhu) : W =
∫
E∂

(
Q∂

hu
) · (Wn) −

∫
E◦

(
Q◦

hu
) · (∇ · W )

‖∫
E
Qh(∇u) : W
‖∫

E
(∇u) : W =

∫
E∂

u · Wn −
∫
E◦

u · (∇ · W ).

(49)

The 1st vertical equal sign holds due to the commuting property [Lemma 1(i)]. The 2nd
vertical equal sign holds by the definition of the L2-projection Qh . This leads to Matching
Condition I for (8), namely

(i) Wn (trace) lies in the same space as v∂ or in a subspace of this space (applicable to
Q∂

hu);
(ii) ∇ · W (div) lies in the same space as v◦ or in a subspace of this space (applicable to

Q◦
hu).

A similar analysis for Lemma 1(ii) leads to Matching Condition II for (10), namely

(i) The trace wn lies in the same space as v∂ or in a subspace of this space;
(ii) The gradient ∇w lies in the same space as v◦ or in a subspace of this space.

In this regard, for rectangles (d = 2) or bricks (d = 3), (Qd
0 , Q

d
0 ; RT d[0], Q0) provide

good combinations.
The commuting identities in Lemma 1(i)(ii) while elegant, are not necessary conditions.

Generally speaking, if the discrepancy between each pair of quantities is a higher order
quantity of the mesh size:O(h1+r ) for some r > 0, then the error analysis in this section can
still go through, although it will become more technically involved.

For the (Q2
0, Q

2
0)-type discrete weak functions on quadrilaterals, there are two ways for

constructing a space for their discrete weak gradients:

(i) Using the unmapped RT 2[0] space in this paper, for which the divergence ∇ · W is a
constant vector, but the trace Wn is not a constant vector;

(ii) Using the mapped RT 2[0] space based on the Piola transform, for which Wn (trace) is a
constant vector, but ∇ · W (div) is not a constant vector [6].

A similar discussion applies to hexahedra. When the quadrilaterals are asymptotically paral-
lelogram or the hexahedra are asymptotically parallelepiped, the aforementioned discrepancy
will be a higher order quantity of the mesh size. Thus our finite element schemes can be
extended to these types of quadrilateral and hexahedral meshes, see Sect. 6, Examples 3
and 5 for numerical results.

4 Implementation

We have implemented WG(Q2
0, Q

2
0; RT 2[0], Q0) on quadrilateral meshes (including rect-

angular meshes as a special case) in our Matlab code package DarcyLite; and

123



1930 Journal of Scientific Computing (2019) 78:1917–1941

WG(Q3
0, Q

3
0; RT 3[0], Q0) on hexahedral meshes (including brick meshes as a special case)

in our code package Darcy+. For convenience, we use the normalized coordinates [14]

X = x − xc, Y = y − yc, Z = z − zc,

since
∫
E X = 0,

∫
E Y = 0,

∫
E Z = 0 on a rectangle or brick E .

4.1 Calculation of Numerical Stress on a Quadrilateral

Recall the eight basis functions Wj (1 ≤ j ≤ 8) defined in (7). We also need their averages

W j = 1

2
(Wj + WT

j )

for strain and stress calculations. Specifically, we have

W 1 =
[
1 0
0 0

]
, W 2 =

[
0 1

2
1
2 0

]
, W 3 =

[
X 0
0 0

]
, W 4 =

[
0 Y

2
Y
2 0

]
,

W 5 =
[
0 1

2
1
2 0

]
, W 6 =

[
0 0
0 1

]
, W 7 =

[
0 X

2
X
2 0

]
, W 8 =

[
0 0
0 Y

]
.

(50)

Let φi (1 ≤ i ≤ 10) be one of the ten WG(Q2
0, Q

2
0) basis functions on a quadrilateral and

its discrete weak gradient be

∇w,dφi =
8∑
j=1

ci, jW j , 1 ≤ i ≤ 10.

Clearly, its discrete weak strain is

εw,d(φi ) =
8∑
j=1

ci, jW j , 1 ≤ i ≤ 10.

Its discrete weak divergence is just a constant,

∇w,d · φi = di , 1 ≤ i ≤ 10.

The definition for discrete weak stress gives

σ = 2μεw,d(φi ) + λdi I2, 1 ≤ i ≤ 10,

where I2 is the order 2 identity matrix. By direct calculations, we obtain the numerical stress
corresponding to a single WG basis function φi (1 ≤ i ≤ 10) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

σxx = σ11 = (2μci,1 + λdi ) + 2μci,3X ,

σyy = σ22 = (2μci,6 + λdi ) + 2μci,8Y ,

σxy = σ12 = μ(ci,2 + ci,5) + μci,7X + μci,4Y ,

σyx = σ21 = σ12.

(51)

This also states that the normal stress σ11 is a linear function of only the first coordinate, the
normal stress σ22 is a linear function of only the second coordinate, whereas the shear stress
σ12 is a linear function of both coordinates. In this regard, our numerical stress has the same
form as that obtained from the simplest nonconforming finite element method investigated
in [8].
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For graphical results involving elementwise averages of the stress components, we use
(51) and numerical integration.

4.2 Calculation of Numerical Stress on a Hexahedron

In the same spirit, we consider the eighteen normalized basis functions Wj (1 ≤ j ≤ 18) for
RT 3[0] on a hexahedron. Their averages are

W 1 =
⎡
⎣ 1 0 0
0 0 0
0 0 0

⎤
⎦ , W 2 =

⎡
⎣ 0 1

2 0
1
2 0 0
0 0 0

⎤
⎦ , W 3 =

⎡
⎣ 0 0 1

2
0 0 0
1
2 0 0

⎤
⎦ ,

W 4 =
⎡
⎣ X 0 0

0 0 0
0 0 0

⎤
⎦ , W 5 =

⎡
⎣ 0 Y

2 0
Y
2 0 0
0 0 0

⎤
⎦ , W 6 =

⎡
⎣ 0 0 Z

2
0 0 0
Z
2 0 0

⎤
⎦ ,

W 7 =
⎡
⎣ 0 1

2 0
1
2 0 0
0 0 0

⎤
⎦ , W 8 =

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦ , W 9 =

⎡
⎣ 0 0 0
0 0 1

2
0 1

2 0

⎤
⎦ ,

W 10 =
⎡
⎣ 0 X

2 0
X
2 0 0
0 0 0

⎤
⎦ , W 11 =

⎡
⎣ 0 0 0
0 Y 0
0 0 0

⎤
⎦ , W 12 =

⎡
⎣ 0 0 0
0 0 Z

2
0 Z

2 0

⎤
⎦ ,

W 13 =
⎡
⎣ 0 0 1

2
0 0 0
1
2 0 0

⎤
⎦ , W 14 =

⎡
⎣ 0 0 0
0 0 1

2
0 1

2 0

⎤
⎦ , W 15 =

⎡
⎣ 0 0 0
0 0 0
0 0 1

⎤
⎦ ,

W 16 =
⎡
⎣ 0 0 X

2
0 0 0
X
2 0 0

⎤
⎦ , W 17 =

⎡
⎣ 0 0 0
0 0 Y

2
0 Y

2 0

⎤
⎦ , W 18 =

⎡
⎣ 0 0 0
0 0 0
0 0 Z

⎤
⎦ .

(52)

Similarly, let φi (1 ≤ i ≤ 21) be a WG(Q3
0, Q

3
0) basis function. Assume its discrete weak

gradient and discrete weak divergence are respectively

∇w,dφi =
18∑
j=1

ci, jW j , ∇w,d · φi = di , 1 ≤ i ≤ 21.

Then its discrete weak stress is

σw,d(φi ) = 2μ
18∑
j=1

ci, jW j + λdi I3, 1 ≤ i ≤ 21.

The components of the stress tensor are (see [8] also)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx = (2μci,1 + λdi ) + 2μci,4X ,

σyy = (2μci,8 + λdi ) + 2μci,11Y ,

σzz = (2μci,15 + λdi ) + 2μci,18Z ,

σxy = μ(ci,2 + ci,7) + μci,10X + μci,5Y ,

σxz = μ(ci,3 + ci,13) + μci,16X + μci,6Z ,

σyz = μ(ci,9 + ci,14) + μci,17Y + μci,12Z .

(53)
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4.3 Block Diagonal Schur Complement

A salient feature of WGFEMs is the non-interaction between the basis functions defined in
the interiors of different elements in the mesh. This motivates the use of Schur complement
when solving the discrete linear system resulting from (11) or (14).

For ease of presentation, we assume the aforementioned linear system is partitioned as
follows [

A00 A01

A10 A11

] [
x0
x1

]
=

[
b0
b1

]
, (54)

where label 0 refers to the degrees of freedom (DOFs) in element interiors, and label 1 refers
to the DOFs on element interfaces.

The first equation

A00x0 + A01x1 = b0

can be easily solved as

x0 = A−1
00 (b0 − A01x1) , (55)

based on the assumption that A00 is invertible and x1 is available.
Substituting the above solution into the 2nd equation in (54) produces(

A11 − A10A
−1
00 A01

)
x1 = b1 − A10A

−1
00 b0, (56)

which concerns only the unknown x1 and has a smaller size than the original linear system.
Here Â11 = A11 − A10A

−1
00 A01 is called the Schur complement (matrix) of the original

partitioned coefficient matrix in (54).
Usually, the Schur complement matrix is not formed explicitly, since it can be expensive

to compute. An iterative solver for (56) mainly requires the matrix-vector multiplication

Â11 v = A11v − A10A
−1
00 A01v.

This corresponds to four matrix-vector multiplications and one vector subtraction. For
WGFEMs, A00 is a block diagonal matrix where each block is a small-size SPD matrix,
hence A−1

00 can be pre-computed. For an elasticity problem using the lowest-order weak
Galerkin method (Q3

0, Q
3
0; RT 3[0], Q0) on a brick or hexahedral mesh, A00 is a block diago-

nal matrix where each block is a 3×3 SPDmatrix. Its inverse can be obtained using Cholesky
factorization.

5 A RelatedMethod: WG(P2
1,Prm;P2×2

0 ,P0)with Stabilization

In [18], a family of WG finite element schemes were developed for general polygonal and
polyhedralmeshes, fromwhichwe can derive a particularWGmethod on rectangularmeshes:
WG(P2

1 , Prm; P2×2
0 , P0). Here P2

1 means linear vector polynomials are used for element
interiors, and Prm means the edgewise space of rigidmotions is used.Note that dim(Prm) = 3.
Elementwise there are 18degrees of freedomfor each rectangle. For theseWGbasis functions,
however, their discrete weak gradients are just constant 2 × 2 matrices, and their discrete
weak divergences are also constants.

Here is a brief list of comparison. Our method:

– Does not require stabilization;
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Fig. 1 Some meshes used in numerical experiments: Left: An initial graded mesh used in Example 2 Case II;
Right: An initial trapezoidal meshed used in Example 3 (see [3] also)

– Uses fewer degrees of freedom;
– Achieves first-order convergence in displacement, stress, and dilation.

The WG(P2
1 , Prm; P2×2

0 , P0) method derived from [18] has the following properties:

– Requires stabilization;
– Has 2nd order convergence in displacement but only 1st order in stress and dilation;
– Can be applied to more general polygonal meshes.

6 Numerical Experiments

In this section we present numerical experiments for the new WG solvers for linear elastic-
ity on rectangular and brick meshes. We include also numerical results on asymptotically
parallelogram quadrilateral (parallelepiped hexahedral) meshes. We observe the expected
locking-free property and optimal order convergence in displacement, stress, and dilation.
The performance of the computational approach using the Schur complement is also exam-
ined. In addition to uniform rectangular and brick meshes, we use also graded rectangular
meshes and asymptotically parallelogram trapezoidal meshes (Fig. 1).

Example 1 (Locking-free). This example is a variant of Example 1 in [7]. Specifically, the
domain is Ω = (0, 1)2, a Neumann condition is posed on the right boundary of the domain,
whereas the other three sides have Dirichlet conditions. The known exact solution for dis-
placement is

u(x, y) =
[

(π/2) sin2(πx) sin(2π y)
−(π/2) sin(2πx) sin2(π y)

]
+ 1

λ

[
sin(πx) sin(π y)
sin(πx) sin(π y)

]
,

and hence

∇ · u = π

λ
cos(π(x + y)) = (1 + ν)(1 − 2ν)

Eν
π cos(π(x + y)).

It is clear that ∇ · u �= 0 if ν ∈ (0, 1
2 ), and ∇ · u = 0 if ν = 1

2 .

Numerical results for WG(Q2
0, Q

2
0; RT[0], Q0) on rectangular meshes are shown in

Tables 1 and 2. The convergence rates in displacement, stress, and dilation are demonstrably
first order for two different values of λ that are six orders of magnitude apart.
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Table 1 Example 1:
λ = 1.6644 ∗ 102,
WG(Q2

0, Q
2
0; RT[0], Q0) on

rectangular meshes

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖

8 2.5288E−1 6.6770E−1 2.1689E−3

16 1.2609E−1 3.2291E−1 1.0745E−3

32 6.2981E−2 1.6009E−1 5.3561E−4

64 3.1482E−2 8.0209E−2 2.6756E−4

Conv. rate 1st order 1st order 1st order

Table 2 Example 1:
λ = 1.667 ∗ 108,
WG(Q2

0, Q
2
0; RT[0], Q0) on

rectangular meshes

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖

8 2.5289E−1 6.6702E−1 2.1665E−09

16 1.2609E−1 3.2245E−1 1.0731E−09

32 6.2981E−2 1.5967E−1 5.3491E−10

64 3.1482E−2 7.9625E−2 2.6721E−10

Conv. rate 1st order 1st order 1st order

Example 2 (Low-regularity). This example is derived from [1]. The problem is posed on a
Γ -shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) with a body force f = 0. The known
analytical solution for displacement in polar coordinates is

u =
[
A cos θ − B sin θ, A sin θ + B cos θ

]T =: [C, D]T , (57)

where (r , θ) are the polar coordinates and⎧⎪⎪⎨
⎪⎪⎩

A = rα

2μ

(
− (1 + α) cos((1 + α)θ) + C1(C2 − 1 − α) cos((1 − α)θ)

)
,

B = rα

2μ

(
(1 + α) sin((1 + α)θ) − C1(C2 − 1 + α) sin((1 − α)θ)

)
.

(58)

Here α ≈ 0.544483737 is the so-called critical exponent.
We present further details about the exact solution that were not provided in the original

paper [1]. The dilation is

∇ · u = ∂r A + (∂θ B)/r + A/r , (59)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂r A = A
α

r
, ∂r B = B

α

r
,

∂θ A = rα

2μ

(
(1 + α)2 sin((1 + α)θ) − C1(C2 − 1 − α)(1 − α) sin((1 − α)θ)

)
,

∂θ B = 1

2μ
rα

(
(1 + α)2 cos((1 + α)θ) − C1(C2 − 1 + α)(1 − α) cos((1 − α)θ)

)
.

(60)

The stress is

σ =
[
2μ(∂xC) + λ(∇ · u) μ(∂yC + ∂x D)

μ(∂yC + ∂x D) 2μ(∂y D) + λ(∇ · u)

]
, (61)
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Fig. 2 Example 2 Case I (ν = 0.3): Low-regularity captured by the lowest-order WG method on rectangular
meshes

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂xC = (∂r A) cos2 θ − (∂θ A)
cos θ sin θ

r
+ A

sin2 θ

r

− (∂r B) cos θ sin θ + (∂θ B)
sin2 θ

r
+ B

cos θ sin θ

r
,

∂y D = (∂r A) sin2 θ + (∂θ A)
cos θ sin θ

r
+ A

cos2 θ

r

+ (∂r B) cos θ sin θ + (∂θ B)
cos2 θ

r
− B

cos θ sin θ

r
,

∂yC + ∂x D = (∂r A) sin(2θ) + (∂θ A)
cos(2θ)

r
− A

sin(2θ)

r

+ (∂r B) cos(2θ) − (∂θ B)
sin(2θ)

r
− B

cos(2θ)

r
.

(62)

We choose E = 105, ν = 0.3 (Case I) or ν = 0.49999 (Case II).
For Case I (ν = 0.3), Table 3 shows the numerical results of the lowest-order

WG(Q0, Q0; RT 2[0], Q0) method applied to a family of rectangular meshes. The displace-
ment error has first order convergence,whereas the stress and dilation errors have convergence

Table 3 Example 2 Case I
(ν = 0.3): lowest-order WG on
uniform rectangular meshes

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖

8 3.5814E−6 7.4745E−1 4.0348E−6

16 1.7968E−6 5.1626E−1 2.7822E−6

32 8.9935E−7 3.5529E−1 1.9134E−6

64 4.4972E−7 2.4407E−1 1.3141E−6

128 2.2480E−7 1.6751E−1 9.0181E−7

Conv. rate 0.998 0.539 0.540
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Table 4 Example 2 Case II (ν = 0.49999): lowest-order WG on graded rectangular meshes

Refinements ‖u − u◦
h‖ Rate ‖σ − σh‖ Rate ‖∇ · u − ∇w,d · uh‖ Rate

2 2.5254E−6 – 4.0880E−1 – 1.3870E−10 –

3 1.2630E−6 0.99 2.6754E−1 0.61 8.8424E−11 0.64

4 6.3149E−7 1.00 1.7960E−1 0.57 5.8522E−11 0.59

5 3.1571E−7 1.00 1.2189E−1 0.55 3.9426E−11 0.56

6 1.5784E−7 1.00 8.3149E−2 0.55 2.6792E−11 0.55

rates of approximately 0.54, close to the critical exponent α. The singularity at the origin is
also clearly reflected in the profiles of the numerical dilation and stress shown in Fig. 2.

For Case II (ν = 0.49999), we utilize graded meshes [13]. An initial mesh is shown in
Fig. 1 left panel, which has three partitions for the boundary segments connecting (0, 0)
to (1, 0) or (0, 0) to (0,−1). Successive regular refinements are performed. The results in
Table 4 indicate that our WG method handles the dual challenges of a corner singularity and
near-incompressibility very well, since the convergence rates for displacement, stress and
dilation are essentially unchanged from the case when ν = 0.3.

Example 3 For this example adopted from [8], the domain is Ω = (0, 1)2, and the Lamé
constants are λ = 1 and μ = 0.5. A homogeneous Dirichlet boundary condition is specified
on the entire boundary. The known analytical solution for displacement is u = [4x(1 −
x)y(1 − y),−4x(1 − x)y(1 − y)]T .

Numerical results using WG(Q2
0, Q

2
0; RT 2[0], Q0) on rectangular meshes and asymp-

totically parallelogram trapezoidal meshes adopted from [3] are shown in Table 5. These
demonstrate first order convergence in displacement, stress, and dilation for both types of
meshes.

Here we provide a concise definition for asymptotically parallelogram using element
diameters and certain angles [3,15]. Let E be a quadrilateral, θ1 be the angle between the
outward unit normal vectors on two opposite edges, θ2 be the angle for the other two edges.
Let σE = max{|π − θ1|, |π − θ2|} and hE be the diameter of E . A quadrilateral mesh Eh is
asymptotically parallelogram [3], provided that there exists a positive constant C such that
σE/hE ≤ C for all E ∈ Eh .

Clearly, quadrilateral or hexahedral meshes are more flexible than rectangular or brick
meshes in accommodating complicated domain geometry. It is known that quality of
quadrilateral or hexahedral meshes affects approximation accuracy [3]. In this regard, asymp-
totically parallelogram quadrilateral meshes or asymptotically parallelepiped hexahedral
meshes meet the needs well. On one hand, any polygonal or polyhedral domain can be
partitioned into such meshes [3]. On the other hand, our WG methods on such meshes pro-
vide satisfactory finite element solutions for linear elasticity, as shown by the above numerical
results and the discussion near the end of Sect. 3.

Example 4 (Comparison with WG(P2
1 , Prm; P2×2

0 , P0) method) This example is directly
taken from [18] p. 359 testcase 9.3. In particular, Ω = (0, 1)2, λ = 1, μ = 0.5.

Numerical results for the WG(Q2
0, Q

2
0; RT 2[0], Q0) method developed in this paper and

for the WG(P2
1 , Prm; P2×2

0 , P0) method with ρ = 1 derived from [18] are shown in Table 6
for a sequence of rectangular meshes. As expected, the lowest-order WG method derived in
this paper exhibits first order convergence in displacement and stress. For the WG method
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Table 5 Example 3: results of WG(Q2
0, Q

2
0; RT 2[0], Q0) on rectangular meshes and asymptotically parallel-

ogram trapezoidal meshes adopted from [3]

Rectangular meshes Asymp. parallelogram trapezoidal meshes

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖ ‖u − u◦

h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖

23 3.032E−2 1.547E−1 1.002E−1 3.106E−2 1.762E−1 1.046E−1

24 1.520E−2 7.752E−2 5.038E−2 1.556E−2 8.756E−2 5.248E−2

25 7.605E−3 3.878E−2 2.522E−2 7.784E−3 4.368E−2 2.625E−2

26 3.803E−3 1.939E−2 1.261E−2 3.892E−3 2.182E−2 1.312E−2

Rate 1st order 1st order 1st order 1st order 1st order 1st order

Table 6 Example 4: results of two WG methods on rectangular meshes

WG (Q2
0, Q

2
0; RT 2[0], Q0) WG (P2

1 , Prm ; P2×2
0 , P0) with ρ = 1

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖ ‖u − u◦

h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖

23 6.029E−2 2.823E−2 1.104E−3 5.750E−3 4.489E−2 6.621E−3

24 3.015E−2 1.404E−2 3.132E−4 1.483E−3 2.082E−2 2.087E−3

25 1.507E−2 7.011E−3 8.648E−5 3.746E−4 1.007E−2 6.093E−4

26 7.538E−3 3.504E−3 2.347E−5 9.394E−5 4.980E−3 1.711E−4

Rate 1st order 1st order ≈ 1.85 2nd order 1st order ≈ 1.75

derived in [18], the displacement has 2nd order convergence, since linear polynomials are
used for approximation. However, its stress has only 1st order convergence, since the discrete
weak gradient is in P2×2

0 and the discrete weak divergence is in P0. For both WG methods,
numerical dilation exhibit superconvergence. However, this phenomena is specific to this
example and the theoretical convergence rates are just one.

Example 5 (Schur complement). For this 3-dim example, Ω = (0, 1)3, λ = μ = 1, the
known exact solution for displacement is

u = 1

3π

⎡
⎣ sin(πx) cos(π y) cos(π z)
cos(πx) sin(π y) cos(π z)
cos(πx) cos(π y) sin(π z)

⎤
⎦ . (63)

Accordingly, the dilation is

∇ · u = cos(πx) cos(π y) cos(π z). (64)

The body force is f = 6π2(λ + 2μ)u and the exact stress is

σ =
⎡
⎣σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ ,
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where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx = σyy = σzz = (3λ + 2μ)/3 cos(πx) cos(π y) cos(π z),

σxy = (−2μ/3) sin(πx) sin(π y) cos(π z),

σxz = (−2μ/3) sin(πx) cos(π y) sin(π z),

σyz = (−2μ/3) cos(πx) sin(π y) sin(π z).

(65)

This problem is solved using WG(Q3
0, Q

3
0; RT 3[0], Q0) on a sequence of hexahedral

meshes adopted from [20], which are smooth perturbations of brick meshes. Specifically,
the hexahedral mesh nodes are⎧⎪⎨

⎪⎩
x = x̂ + 0.03 sin(3π x̂) cos(3π ŷ) cos(3π ẑ),

y = ŷ − 0.04 cos(3π x̂) sin(3π ŷ) cos(3π ẑ),

z = ẑ + 0.05 sin(3π x̂) cos(3π ŷ) sin(3π ẑ),

where (x̂, ŷ, ẑ) are the brick mesh nodes. Both single-matrix and Schur-complement
approaches are tested. As shown in Tables 7 and 8, the errors in displacement, stress, and
dilation are the same, since two equivalent discrete linear systems are solved. However, it
can be observed that the numbers of iterations for the Schur-complement approach are about
half of those for the single-matrix approach.

Example 6 (A nearly incompressible block under compression). This example is taken from
[17]. An elastic body has elasticity modulus E = 240.56595979 and Poisson’s ratio ν =
0.499899987, respectively. Accordingly, its Lamé constants are λ = 4.00837688 ∗ 105 and
μ = 8.0194 ∗ 101. This brick-shaped body is under compression on the middle part of its
two opposite surfaces. Utilizing symmetry, we consider the top-upper-right octant of the

Table 7 Example 5: lowest-order WG solver on hexahedral meshes: single-matrix approach

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖ DOFs #Itr Runtime (s)

4 2.488E−2 3.557E−1 1.361E−1 912 116 0.4

8 1.289E−2 1.875E−1 7.034E−2 6720 312 3.5

16 6.552E−3 9.564E−2 3.574E−2 51456 706 46

32 3.291E−3 4.795E−2 1.793E−2 402432 1415 610

64 1.648E−3 2.398E−2 8.968E−3 3182592 2748 8183

Rate 0.97 0.97 0.98

Table 8 Example 5: lowest-order WG on hexahedral meshes: Schur-complement approach

1/h ‖u − u◦
h‖ ‖σ − σh‖ ‖∇ · u − ∇w,d · uh‖ DOFs #Itr Runtime (s)

4 2.488E−2 3.557E−1 1.361E−1 720 69 0.3

8 1.289E−2 1.875E−1 7.034E−2 5184 168 3.2

16 6.552E−3 9.564E−2 3.574E−2 39168 352 31

32 3.291E−3 4.795E−2 1.793E−2 304128 659 355

64 1.648E−3 2.398E−2 8.968E−3 2396160 1292 4608

Rate 0.97 0.97 0.98
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Fig. 3 Example 6: A nearly incompressible block under compression. Left: An illustration for the problem;
Right: A profile of the vertical displacement (z-component) obtained from using WG(Q3

0, Q
3
0; RT 3[0], Q0)

with h = 1/8

Fig. 4 Example 6: WG(Q3
0, Q

3
0; RT 3[0], Q0) applied with h = 1/8. Left: Profile of elementwise normal stress

σzz ; Right: Elementwise dilation (divergence of displacement) and deformation (magnified by 100 times).
(Plots were produced using VisIt [12].)

brick domain and set the origin at the center to give an elasticity problem posed on the unit
cube Ω = (0, 1)3, see Fig. 3 left panel. The symmetry implies that for the displacement
u = [u1, u2, u3]T , we have u1 = 0 on the left face x = 0, u2 = 0 on the back face y = 0,
u3 = 0 on the bottom face z = 0. A constant downward traction [0, 0,−1]T (point-wise) is
posed on (0, 1

2 )
2 × {z = 1}. No analytical solution is available for this problem.

We apply the lowest-order WG(Q3
0, Q

3
0; RT 3[0], Q0) finite element method on a uniform

8×8×8 brick mesh. The normal stress σzz is shown Fig. 4 left panel. The numerical dilation
and deformation using the displacement values in element interiors is shown in the right
panel of Fig. 4. The deformation was magnified by 100 times for better visual effect. It can
be clearly observed that the external faces {x = 1} and {y = 1} are deformed inwards, while
the top face (lower-left part) is being deformed downwards. The lowest-order weak Galerkin
method is therefore able to capture the main features of this problem on even a very coarse
mesh.
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7 Concluding Remarks

In this paper we have investigated lowest-order weak Galerkin finite element methods for
linear elasticity on rectangular and brick meshes. These new methods are locking-free, as
demonstrated by theoretical analysis and numerical experiments. The new solvers produce
first order accuracy in displacement, stress, and dilation when the problems have full regu-
larity.

Our work is closely related to that in [8] in terms of seeking simplicity of the method.
Here is a brief comparison. The method in [8]:

– is in the mixed formulation and results in a saddle-point problem;
– has fewer DOFs per element: 9 in 2-dim and 18 in 3-dim;
– is 1st order accurate in displacement and stress.

Our methods

– are in primal formulation for displacement, resulting in SPD linear systems;
– have slightly more DOFs per element: 10 in 2-dim and 21 in 3-dim;
– are 1st order accurate in displacement, stress, and dilation;
– are extendable to quadrilateral and hexahedral meshes.

Our methods apply to asymptotically parallelogram (parallelepiped) quadrilateral (hexa-
hedral) meshes. This assumption on mesh quality is not really a severe restriction, since a
polygonal domain can be partitioned into a family of asymptotically parallelogram quadri-
lateral meshes [3]. Similarly, a polyhedral domain can be partitioned into a family of
asymptotically parallelepiped hexahedral meshes by nested refinement [23].

If general polygonal or polyhedral meshes need to be used, then the WG methods devel-
oped in [18] could be used, which involve penalization and at least linear polynomials inside
elements.

We can also develop higher order (k ≥ 1) WG(Qd
k , Q

d
k ; RT d

[k], Qk) (d = 2 or 3) methods
for linear elasticity on asymptotically parallelogram quadrilateral meshes or asymptotically
parallelepiped hexahedral meshes. The main ideas are similar, but theoretical analysis and
implementation will be more technically involved.

The lowest-orderWG solvers for linear elasticity presented in this paper have been imple-
mented in Matlab (for 2-dim) and C++ (for 3-dim). The source codes are respectively
included in our software packages DarcyLite and Darcy+, which are freely available on
the 2nd author’s webpage. We plan to migrate our codes to deal.II platform so that these
new solvers will be accessible to more researchers.
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