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Abstract

Despite the importance of amyloid formation in disease pathology, the understanding of the
primary structure — activity relationship for amyloid-forming peptides remains elusive. Here we use a new
neural-network based method of analysis: the classifying autoencoder (CAE). This machine learning
technique uses specialized architecture of artificial neural networks to provide insight into typically
opaque classification processes. The method proves to be robust to noisy and limited datasets, as well as
being capable of disentangling relatively complicated rules over datasets. We demonstrate its capabilities
by applying the technique to an experimental database (the Waltz database) and demonstrate the CAE’s
capability to provide insight into a novel descriptor, dimeric isotropic deviation — an experimental
measure of the aggregation properties of the amino acids. We measure this value for all 20 of the common
amino acids and find correlation between dimeric isotropic deviation and the failure to form amyloids
when hydrophobic effects are not a primary driving force in amyloid formation. These applications show
the value of the new method and provide a flexible and general framework to approach problems in

biochemistry using artificial neural networks.



Introduction

Amyloid aggregates are pathologically associated with numerous diseases and biological
functions, with their existence having long drawn the attention of the biochemical and biological scientific
communities . An amyloid is defined as a proteinaceous fibrillar aggregate where the proteins are
arranged with a “cross-f” spine — that is, both the protein backbone and the normal vector of the beta
sheet plane are perpendicular to the fibril axis ®’. The fibril typically ranges from 60-200 A in diameter
when fully mature, with fibril-like subunits which have been observed in isolation with diameters as small
as 10 A 2. While amyloids are particularly known for association with degenerative diseases such as

4,13,14

Alzheimer’s , Parkinson’s **, Huntington’s °, type 2 diabetes *’, and amyotrophic lateral sclerosis ¢,

they may also play beneficial roles. The motif appears in spider silks, egg shells, biofilms and biomechanical

scaffolds for human synthetic pathways 2.

Despite the apparent importance of these aggregate structures, specifics regarding the physics

driving the formation of these structures remains weakly characterized. There is interest in developing a
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process which relates a primary structure to that peptide’s ability to form amyloids . Enough

algorithms have been developed on this topic that there exists prediction algorithms which take into

22,23

account as many other algorithms as possible . These meta-predictors improve predictions, but

unfortunately step into a major criticism of machine learning based classifiers: hiding insight into why they
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make the classifications they do This is also common in attempts to use machine learning for

understanding amyloid aggregation **°

. With these predictors it is possible to get either a positive or
negative prediction, but it is hard to examine the process and learn what aspects of the peptide are
contributing to for this prediction. For example, there could be multiple mechanisms for amyloid
formation, such as one driven by hydrophobic interactions and one driven by electrostatic interaction.

Many algorithms would be able to make the correct prediction, but the opaque construction of those

algorithms makes it hard to distinguish the difference between the first and second mechanisms. Our aim
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was to develop a method that addressed these problems; a method which would be able to give us

predictions and allow us to easily visualize what factors contributed to those predictions.

One machine learning framework, artificial neural networks (ANNs), offers a powerful approach
to classification problems. By using numerical descriptions of a system, many fitting parameters, and a set
of data points to learn from, ANNs generate a complicated mapping from the descriptions to an output.
This output can be any target set of numbers but is often a numerical representation of a class — for our
purposes, whether a peptide sequence is amyloid-forming or not. These classification networks have been

employed in a number of fields, from ecological studies to economics to chemistry 2’~°

. Attempts have
been made to elucidate the inner workings of ANNs ***?, however these methods can still leave intuition

difficult to obtain.

Fundamentally, classification can be viewed as a dimensional reduction problem in which
numerous pieces of descriptive input data (an attribute of an amino acid, in our case) must be reduced to
a single descriptive dimension (the propensity to aggregate). Autoencoders are an architecture of ANNs
that have been applied to the problem of dimensional reduction, capable of reducing relatively complex
descriptions of objects to a lower dimension (termed the latent space), and then reconstructing the
original description of the object with as much fidelity as can be allowed **. Differing versions of the basic
autoencoder, perhaps most notably the Variational Autoencoder (VAE) ** have emerged, with variants
typically involving goals beyond dimensional reduction and reconstruction of the data *. In this paper,
our goal was to develop a method of classification, which we call the classifying autoencoder (CAE), based

29,30,34

on prior algorithms , that could offer easily-interpreted insight into our classification task.

For this work, we develop a relation between the attributes of the amino acids in a six amino acid
peptide (hexapeptide) and the amyloid propensity of the sequences. The use of hexapeptides means the

primary structure will dominate the behavior of a given peptide. While other peptide lengths can also



form amyloids, hexapeptides are the shortest length for which a large number of amyloid forming
peptides are known®®. There are relatively few known examples of smaller peptides which form

- 1.37,38
amyloids™”

. Longer peptides are more likely to have more complex mechanisms of amyloid formation
involving thorough considerations of internal secondary and tertiary structures. We adopt a reductionist
paradigm and posit understanding simple systems will help understanding of more complex systems in
future work. A database exists in which about one thousand hexapeptides have been experimentally
characterized as amyloid or non-amyloid, which we use here®. We this database to help prove the
concept of our method and explore some of its potential usages, including elucidating the role specific

descriptors play in establishing the classification and whether any motifs within these descriptor

sequences can be identified as especially related to amyloid formation.

In the next sections we first assess the capability of the CAE to identify motifs by generating a
dataset and then using the method to recover the motifs used in generating the dataset. With our
method’s concept successfully tested, we demonstrate its ability to analyze the relationship between a
novel experimentally measured descriptor of a system, and that system’s properties. We have called the
new descriptor dimeric isotropic deviation (DID). Deviation from isotropic aggregation of amino acids has
previously been suggested a parameter predictive of amyloid formation® for a small data set (3 peptides)
and only 5 amino acids. DID differs from the isotropic deviation previously utilized (explained in Results
and Discussion), but these simplifying differences enabled the measurement of all 20 common amino
acids, allowing for a more robust exploration of DID and amyloid aggregation over a set of about one

thousand peptides >°.

Methods

Generated Database



It was important to first test our architecture on a generated database, so that we could examine
the method under a controlled setting. We devised a set of amino acid sequences that were assigned as
belonging to an archetype (we use this term to describe a pattern within the sequence, such as alternating
amino acid hydrophobicity), and then the sequence classified as positive or negative. Fig. 1 depicts a flow

chart of the process used to generate this database.

Archetypes
Generate Random Hexapeptide
Generate a random hexapeptide ideal positive ideal negative
described by a sequence of numbers. sequence sequence | Assigned peptides:
Depicted here is a peptide described by a [ & O [ ( ({ Classified and
single descriptor (e.g. hydrophobicity). added to the

Each amino acid has a different value for generated database Generated Database

this descriptor. Here the value is achcotrdingt;(]o the This peptide is
represented by the color of the dot. Compute 2 value for the uiiaRASISSEE assigned to the
. . assigned to .

C& & ¢ generated peptide with each positive
archetype. If r? is within a archetype and
threshold value the peptide is classified as
assigned to an archetype. If positive
the peptide is not within a [ O & ¢

threshold value it is deemed

unassigned.

Unassigned peptides:
Given a random classification or thrown out \
depending on the experiment

Fig. 1 This flow chart depicts the generation of the database. In the example depiction shown in the flow chart a random peptide
is added to the database by being assigned to the positive archetype and classified as positive.

We generated two artificial descriptors for our validation database. A descriptor is a property of
the system (e.g. the hydrophobicity of an amino acid). The two descriptors were uncorrelated and
generated to be linearly distributed between 0 and 1. Peptide archetypes were also defined. These
archetypes are treated as the ideal positive or negative peptide (in the context of amyloid aggregation
this assumes that certain patterns would yield an optimal activity, and the activity could be directly
correlated to the degree of difference between an archetype’s set of descriptor values and a peptide’s

set of descriptor values). The database was generated by randomly picking hexapeptides and classifying



them as positive or negative (e.g. amyloid or not amyloid). These classifications were based on equation

1, which compares a generated peptide to an archetype:

2
2 _
re = z:i=amino acidszj=descriptors (farchetype;i,j - fl]) (1)

Where f orchetype;i,j is the value of the j™ descriptor of the i amino acid in an archetypal peptide, and
fi,j is the corresponding value of the peptide that is being classified. This r-squared value between the
peptide and the archetypes served as our metric of distance. A peptide is assigned to an archetype with
which it has the smallest r-squared value. The peptide is then classified based on which archetype it has
been assigned to. In addition, if the peptide is not within a threshold r-squared of any of the archetypes,
that peptide was deemed unassigned and either given a random classification or thrown out, depending

on which validation test we were performing.
Experimental Database

Given that our goal is to better understand how the physical descriptors of a peptide relate to

36,40
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amyloid activity, we used a database of experimentally-verified peptides. We use the Waltz-DB
1089 hexapeptides that have been experimentally tested for amyloid formation by transmission electron
microscopy, dye binding, and Fourier transform infrared spectroscopy. Of the 1089 peptides, 244 form
amyloids, and the rest do not. This database is known to have over-representation of peptides similar to
the peptide sequence STVIIE. The database was pruned to exclude any peptide which is within three point

mutations of the peptide sequence STVIIE. This reduced the database to 946 total peptides. Of the pruned

data set, 174 form amyloids; 772 do not.

The model was trained on half of the database, while the other half of the database was used for
validation. The ratio of amyloid peptides to non-amyloid peptides was held constant over the training set

and the validation set. Other fitting algorithms often use upwards of 66% of the database for training and



34% for validation ***°

. We opted for a larger validation set at the cost of a smaller training set since the
database is relatively small and we wanted to make sure there was enough data in the validation set to

get a good idea of how generalizable the model is.

Polarity Descriptor

We found the hydrophobic parameter using the AAindex database **™**

. This parameter was first
measured by Jean-Luc Fauchere, in which the amino acids were dissolved in octanol and water and the
relative solubility was measured **. We choose this metric for hydrophobicity because it correlates with

many of the other hydrophobicity metrics in the database, it performs well for classification, and has a

clear experimental basis and intuitive interpretation.
Cross Section Measurements

To measure the DID, amino acid samples were dissolved in water to concentrations between 1
and 12 millimolar. The cross section of the singly charged amino acid, and the cross section of the singly
charged dimer cluster of the amino acid were measured using a lab-built ion mobility mass spectrometer
which is described in detail elsewhere *°. Briefly, this instrument uses nano-electrospray ionization to
generate ions. The ions enter the instrument from atmosphere into a 10 torr source region. The ions are
stored in an ion funnel and pulse injected into a 2-meter-long drift cell which is held at 0.25 torr above
the pressure in the ion funnel to maintain a pure helium buffer gas in the drift cell. The ions exit the drift
cell through another ion funnel and are mass selected with a quadrupole before being detected. This
instrument is notable for minimization of energizing the sample ions at all stages. This allows us to easily

measure non-covalently bound assemblies such as the amino acid clusters reported here.

To measure the cross section, the ions traverse the drift cell at various drift voltages. The time it

. 2/T P .
takes to reach the detectoris t, = ~ (%) (;) + to, where Lis the cell length, T the temperature, V the
0



voltage across the cell, P the pressure in the cell, and t, the time from exiting the drift cell to the detector

recorded for mobility calculations®. The reduced mobility, K, is related to the cross section by the

equation o = 3 ( 2m )2 (i) Here e is the charge of the ion, Ny is the number density of the buffer
16N0 HkBT KO

gas, U is the reduced mass of the buffer gas and the ion, kg is the Boltzmann constant, and ¢ is the cross

section of the ion *’.
Software

All neural nets were constructed and trained using the Keras software package® with the

Tensorflow backend®.
Results and Discussion
Developing the Classifying Autoencoder

Classification is a specific type of dimensional reduction. We hypothesize we can learn more about
why the classifying model is making its predictions by combining it with a variational autoencoder (VAE).
A primer of VAEs can be found in the supporting information, but briefly, a VAE is an unsupervised neural-
network-based dimensional reduction algorithm which seeks a robust reduced representation of a data
set. As with any fitting algorithm, it quantifies the quality of the fit by defining and minimizing a loss
function. For standard linear regression this is typically the sum of squares of the residuals, r>. The VAE
has a two-term loss function. The first term relates the fidelity between the reduced representation and
the original representation. This is called the reconstruction term since it is a measure of how well the
model can reconstruct the original representation if only given the reduced representation. The second
term adds noise to the data during training. These competing loss terms lead to robust reduced

representations.



We used the underlying architecture and concept of the VAE, but added another term to the loss
function to make the reduced representation also function as a classification metric. We have called this
the classifying autoencoder (CAE), and depicted it in Fig. 2. Inputs (a description of the peptide) are fed
into the model via the input nodes. The depiction in Fig. 2 shows only four input nodes, but in the final
model there will be an input node for each value that represents the peptide, i.e. the number of
descriptors times the number of amino acids in the peptide. The hidden layers add more fitting
parameters. The nodes labeled u represent what is termed the latent space. Typically, the term latent
space is used to refer to the space of the reduced representation. Here, these values are also used as the
prediction. The latent space is two dimensional, one for the amyloid propensity and one for the non-
amyloid propensity. A peptide is classified depending which node outputs a higher value. The nodes
labeled N (i, 02) inject noise into the data during training. This noise is in the form of a normal distribution
centered at the reduced representation, u, and has a standard deviation, o?. The nodes to the right of
the nodes labeled N (u, 52) (the decoder) attempt to reconstruct the original input. For a more detailed
explanation of this please see the primer of VAEs in the supporting information.

Prediction, O Input

Input, Reconstructed,
U
Hidden l

recon

Fig. 2 Depicted is the architecture of a classifying autoencoder (CAE) with four inputs, and one hidden layer with three nodes. The
latent space in this model is two-dimensional and is labeled p. These nodes are also used as the prediction layer. Noise is added
to the latent space at the nodes labeled N(u, a2); this noise is in the form of a normal distribution centered on the reduced
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representation, u, with a standard deviation, 2. The decoder (all nodes to the right of the nodes which introduce the noise) tries

to reconstruct the input. Dense connectivity (see primer of VAEs in Supporting Information) can be assumed for all layers not
drawn explicitly. In addition, connectivity has been drawn explicitly at the latent space to highlight that the output nodes are not
fed into the decoder, but the nodes labeled N (i, o) are fed to the decoder.

Validation on a Constructed Data Set

To verify that the CAE successfully elucidates and reconstructs characteristic archetypes, we
generated an artificial peptide database as discussed in Methods. Using the constructed database allowed
us to verify the model was performing its intended functions, while also testing how sensitive the model
is to potential issues within the database, such as small database sizes or flawed results. We did this in
two ways. First, we allowed for some unassigned peptides (peptides which were not in the neighborhood
of any archetype) to be given a random class to see if the model would be able to see through the resulting
noise. This tests situations where the descriptor we are using contributes to the amyloid activity of some
of the peptides, while other peptides are dominated by a mechanism unrelated to the descriptors that
have been chosen. The second test only used peptides that have been assigned to an archetype but
introduced a stochastic element to classifications. When a peptide was assigned to an archetype it was
classified as amyloidogenic or non-amyloidogenic according to a probability. The second scenario captures
errors in the experimental data in the database, or an amyloid mechanism that only partially relates to

the chosen descriptors.

All models are trained on 500 peptides and validated with 500 different peptides. Peptides are
described with two descriptors per amino acid. The axes for each plot in Fig. 3 are the values in the latent
space; that is the values output by the two nodes labeled u in Fig. 2. The y-axis is the positive prediction
axis, and the x-axis is the negative prediction axis. A peptide is classified as positive if its positive prediction
value is greater than its negative prediction value. Thus, if a peptide falls above the red line on the plots
that peptide is predicted positive, while falling below the red line is a negative prediction. Figs. 3 A, D, and

E plot each peptide in the database according to where they fall in latent space. Figs. 3 B and C show the
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reconstructed description of the peptide for equally spaced points in latent space. These types of plots

will be referred as reconstruction plots.

30% assigned Descriptor 1 reconstruction
« (-(-(-(-(-(-(-(B

2 I (€0 (00 (O (CI (CD (¢ (O (oD,
€C (€ (0 (€0 (0O (0D (O (0D,

-2 -1 0 1 2

Positive

b assignment
Negative

®  assignment
Decision

Lowerboundary Upper

-1 0 1
40% misclassification

Fig. 3 For all plots, the y-axis is the positive prediction axis, and the x-axis is the negative prediction axis. A peptide is predicted
positive if it is falls above the red line and is predicted negative if it falls below the red line. Plot (A) shows where each peptide is
encoded by the CAE, while plots (B) and (C) show the reconstructed description at each point in latent space for that same model.
Plots (D) and (E) are each a separate model (see text) and show where each peptide in their database encodes to in latent space.

Figs. 3 A-C are generated from the same model. Of the 1000 peptides 27% are assigned to an
archetype, and subsequently classified as either positive or negative depending on the archetype. The
positive archetype is LULULU (U = upper, L = lower) in descriptor 1 and LLLLLL or UUUUUU in descriptor 2.
The negative archetype is LLLUUU for descriptor 1 and either LLLLLL or UUUUUU in descriptor 2. All
peptides not assigned to an archetype were not within a threshold r-squared distance of any of these

archetypes and were classified randomly.

In Fig. 3 A, each peptide is encoded to two numbers (the values output by ) and plotted according
to those values, showing how the peptides are arranged in latent space. The color of the marker

represents the peptide’s classification in the database; pink markers are positive, while green are
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negative. In Fig. 3 B and C, we visualize the reconstructed description of the peptide, descriptors 1 and 2,
respectively, in latent space. This representation of the peptide description arranged in latent space, the
reconstruction plot, is the key to gaining intuition from the CAE, as it visualizes the different regions of

positive and negative predictions that the CAE identified.

Figs. 3 D and E depict different models than Figs. 3 A-C. These use a database generated to mimic
a set of experiments that yielded occasionally flawed results. In Figs. 3 D and E all peptides in the database
are within a threshold distance to one of four archetypes. For the two positive archetypes, one archetype
was always classified positive, while the other archetype was misclassified at the rate indicated in the plot

title. The negative archetypes were assigned in the same way.

These results show the models can simultaneously sort the data into the positive and negative
classifications and identify the original archetypes used to generate the data. In the top left of Fig. 3 A,
the positive prediction region of the latent space, positive peptides have been separated from a mixture
of positive and negative peptides, correctly predicting those peptides as positive. The corresponding
region in the reconstruction plot, Figs. 3 B and C, correctly reflects the positive archetypes. This happens
similarly for the negative prediction region. We, also, learn how to interpret the reconstruction plot by
examining Figs. 3 B and C. The middle of Fig. 3 A, the data’s latent space distribution, shows mixed positive
and negative peptides; in Figs. 3 B and C, the reconstruction plot, this region shows no evidence of the
positive or negative archetypes. However, as we move to the top left of the data’s latent space
distribution, Fig. 3 A, we see a separation of positive classifications from the mixture of classifications;
when we follow this trajectory in the reconstruction plot, Figs. 3 B and C, the positive archetype emerges.
The separation of a single class from a mixture of classes can tell us about the trend that contributed to

that separation.
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In Figs 3 D and E, the model correctly shows four clusters in the latent space, according to the four
archetypes used to construct the database. The reconstruction plot (Fig. S5) correctly reflects the four
archetypes. This gives us insight to how the model deals with the uncertainty in the data. In Fig. 3 D, the
archetype which has been 80% classified positive and 20% classified negative is placed in the positive
prediction region of the latent space. However, this is nearer the decision boundary (the red line) than
the cluster associated with the 100% positive archetype, suggesting the model identified the ambiguous
archetype. Further, in Fig. 3 E, the ambiguous archetype was associated 60% to one classification and 40%
to the other. In this case, the cluster that represents the ambiguous archetype is placed nearly atop the
decision boundary, leaning slightly positive. The method is capable of making identifications regarding
how an archetype leans, in addition to characterizing archetypes that are certainly associated with

activities.

We note our validations show our method works with large databases that are typically used in
machine learning (N = 10,000; Fig. S7), but crucially also with the limited databases we have available for
amyloid studies (N = 1000; as shown here). This suggests potential generalizability of the models to

problems associated with relatively small databases, such as the Waltz database we use later *°.

Ultimately, these results demonstrate the CAE’s ability to relate sequences to an interesting
activity. Even adding disturbances to the ideality of an artificially constructed database, the CAE was able
to mine the patterns associated with the class of interest, and discern when a pattern had a leaning, rather
than a fixed identity. This suggests the validity of this method for the task at hand: identifying

characteristics and motifs of sequences that yield amyloidogenic behavior.
CAE on an Experimental Database: Hydrophobicity

Metrics related to hydrophobicity were found to be the most effective descriptors, and such a

metric is used in both descriptors examined here. In Fig. 4 B (and later in Fig. 5 B) we can see a region of
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peptides with yellow or green amino acids in the middle (positions 3 and 4) and dark green or blue amino
acids on the ends. This means peptides in this region of the latent space tend to be hydrophobic in the
middle, and more hydrophilic on the ends, suggesting this type of amyloid fibril buries the hydrophobic
core by stacking while the hydrophilic ends on the outside interact with water. It should be noted in both
cases much of this region is an extrapolation by the model (there are few data points in the latent space
in these regions). While extrapolation must be taken with caution, this motif in this “most-likely amyloid”
region is worth noting due to the intuitive sense that hydrophobic amino acids should be buried away
from the solvent. This motivates further investigation on sequences capturing this motif. In other words,
if a goal is to investigate the coarse forces driving amyloid formation or design new amyloid forming

peptides, the CAE’s extrapolation can be a hypothesis to pursue.

Encoded Sequences Reconstructed Hydrophobicity

® Experimentally amyloid >
Experimentally
non-amyloid
= Decision boundary
Hydrophilic/ Hydrophobic/
Small Large _
Cross Section Cross Section

Fig. 4 Representative model trained using hydrophobicity and monomer cross section (MCS). (A) All sequences in the validation
set plotted in latent space. Each axis here is the value of one of the latent space nodes. The color of the point represents the
experimental classification of that peptide. (B) and (C) show the reconstructed descriptions. The axes here also represent values
in the latent space, but the markers represent peptide descriptions. Each group of six dots represents a peptide, and the color of
that dot represents the reconstructed descriptor value at that point in latent space. (B) depicts the hydrophobicity of the peptides,
where yellow is hydrophobic, and blue is hydrophilic. (C) depicts the monomer cross section (MCS) of each point in latent space.
Here yellow is a large cross section, and blue a small cross section.
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There also exists some signs of the West et al result *° of NPNPNP (P = hydrophobic (polar), N =
hydrophilic (non-polar) within the core residues (2, 3, 4, 5) in both models. This patterning is also
characterized by less extreme hydrophobicity, suggesting this motif is preferred by those residues with
moderate hydrophobicity values. It is worth noting this region has been interpolated as there are many
amyloid points in this region of the latent space; we can then be more confident that these motifs are
well-represented within the database. Observations based on this interpolated region could also provide

grounds to investigate forces driving amyloid formation or to inspire novel amyloid forming peptides.

These two motifs are consistently represented in the amyloid region independently of the second

descriptor, giving further confidence these motifs are mirrored in the data.

CAE on an Experimental Database: Monomeric Cross Section

Fig. 4 represents a model trained using Monomeric Cross Section (reported in Table 1) and
hydrophobicity as the descriptors. The populated region on the amyloid side tends to include mid-to-
large residues, while the populated region in the non-amyloid side tends to include small residues. This
could suggest a preference for bulky side chains, perhaps to help drive amyloid stability through surface-
area dependent forces such as van der Waals. Additionally, on the amyloid side, there is some
alternation of large and small residues. We also note that hydrophobicity similarly alternates in the
same region of latent space. Perhaps this alludes to a connection between the size of a side chain and its
potential for stronger hydrophobic-related forces resulting in a preference for sequences that alternate

large, hydrophobic residues and small, hydrophilic residues>* 2.

Monomer Cross Section and Dimeric Isotropic Deviation

Monomer Dimeric isotropic
Cross Section deviation, Ai,
Amino acid | (A+Standard x100 (+
Deviation) Standard
Deviation)
Glutamic acid 61.9+0.3 -6.1+0.3
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Leucine 65.3 +0.2 -5.8+0.4
Isoleucine 64.2 +0.4 -4.8 £ 0.5
Glutamine 63.3 +0.1 -47+0.4
Valine 58.8 +0.2 -4.7 £ 0.7
Methionine 65.6 + 0.3 -4.5+0.2
Proline 56.5+ 0.2 -3.21£0.2
Histidine 66.3 + 0.4 -29+0.5
Threonine 56.3+ 0.3 -2510.6
Aspartic acid 57.8+ 0.4 -1.7+ 0.5
Arginine 71.84+0.2 -1.0+ 0.4
Asparagine 59.0 + 0.4 -0.1£0.5
Lysine 65.4 + 0.2 0.5+0.4
Alanine 50.6 + 0.3 0.8+0.3
Serine 52.1+ 0.5 1.2+0.9
Phenylalanine 7201+ 0.4 35+0.6
Tyrosine 75.2+0.3 4.0x+0.0
Tryptophan 81.3+0.7 6.0+ 1.0
Cysteine 55.7+0.3 9.2+03
Glycine 491+ 04 11.6 £ 0.5

Table 1 Experimentally measured monomer cross section and dimeric isotropic deviation (4i,) for each
amino acid. The 4i, have been multiplied by 100 for ease of reading. Convention dictates a negative
value is associated with growth larger than isotropic prediction, zero is isotropic growth, and a positive
deviation growth more compact than the isotropic prediction.

Introducing Dimeric Isotropic Deviation (DID)

To offer insight into isotropic deviation, consider growth around a sphere as material is added. If
that volume is distributed equally around the object, isotropically, it is straight-forward to write an

14

. 2/3
equation which predicts the cross section when material is added: ¢'**° = g, (V—) , Where 1 is the
0

original volume of the sphere, V the final volume of the sphere, g, the cross section of the original sphere,
and aS° the cross section given isotropic addition of volume. If that volume is not added isotropically, or

the overall density changes, the system will deviate from that prediction. In the same way, if we calculate
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the volume of an amino acid based off our experimentally measured cross section and assume isotropic
growth, we can predict the cross section of an oligomer (in this case, a cluster of amino acids) based on

iso

the volume of the monomer using the equation g;,° = JlexP n?/3

, where n is the number of amino acid
molecules in the oligomer *°. Most amino acids do not grow isotropically, and we call the degree of

deviation from this growth isotropic deviation.

Itis intuitive that this property of amino acid aggregation could be used to make predictions about
the aggregation properties of peptides since it reflects some degree of order in the amino acid aggregates.
In the Do paper, isotropic deviation is measured for different large order oligomers (n = 20 to 30), but was
only measured for five amino acids, and verified on three peptides *°. As we collected more data on
aggregation of amino acids, we found that this value was oligomer size dependent (Fig. S3). We also found
the monomer and dimer to be the only oligomer sizes that could we could consistently observe across all
amino acids. The desire for a systematic metric for all amino acids drove the development of what we call
DID (reported in Table 1). For the data available, comparison of Do’s measure and DID does not show
strong correlation, however DID’s basis in peptide packing behavior suggests a potential relation to

amyloid formation.

DID is calculated as follows. We have measured the cross section of the singly charged monomer
and the singly charged dimer of each of the 20 canonical amino acids (arrival time distributions and cross
sections in Fig. S4). If the dimer cross section is larger than the isotropic prediction, convention dictates a
negative isotropic deviation is obtained, which we will refer to as extended growth. An experimental
dimer cross section which is smaller than the isotropic prediction, compact growth, results in a positive

exp

isotropic deviation according to the equation, Ai, = (1 - aziso). Here azexp is the experimentally
2

measured cross section of the dimer with one charge, and azis" the isotropic prediction of the dimer based

on the singly charged monomer’s cross section.
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Use of DID (a descriptor to be assessed) along with hydrophobicity (a known strong descriptor)
shows an important power of the CAE: the ability to assess the relationship between a potential descriptor
and classification. The strong descriptor essentially scaffolds the latent space’s shape, ensuring good
classifications, while the other descriptor can then be used to refine details within the latent space, either
indicating that descriptor’s relationship to the activity through meaningful contributions, or no such

relationship through a lack of systematic contributions. This process is illustrated below.

CAE on an Experimental Database: Dimeric Isotropic Deviation (DID)

Here we probe the relationship between DID and amyloid propensity. For the most part, Fig. 5 C
shows few features in the amyloid region and the peptides are generally on the extended side of DID. The
top left shows some signs of compact DID. This is also the same region where the hydrophobic core motif
is represented. Like the monomer cross section result, here the hydrophobicity is likely the larger factor
governing amyloid formation, as evidenced by the larger diversity of hydrophobicity motifs in the amyloid
region. In the non-amyloid region, there exists a region of mixed amyloid and non-amyloid points (middle
of the plots), as well as a region of pure non-amyloid points (the right of the plots), reminiscent to the
pattern we saw in the distribution of points during the first validation experiment (Fig. 3 A). Within these
regions the hydrophobicity motifs have relatively low diversity, being generally hydrophilic, while there is
greater diversity in the DID motifs. Critically, as one moves deeper into the non-amyloid region, one
observes a rise in the compactness of the residues. Thus, in the same way the model from Fig. 3 A
determined the archetype in the pure green region, the CAE has determined a strong relationship
between compactness and a failure to grow fibrils — the extrapolated “least amyloidogenic” peptides
(those that would appear in the bottom right of Fig. 5 C) are most strongly characterized by a higher

degree of compactness, with less distinguishing features in hydrophobicity representation.
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Fig. 5 Representative model trained using hydrophobicity and DID. This figure is the same representation of a model as Fig.
4except (C) depicts the DID of each point in latent space. Here yellow is extended growth, and blue is compact growth.

These results provide potential insight about how DID relates to amyloid formation. Namely,
compact growth of the amino acids could block the amyloid process of the peptide when hydrophobic
interactions are not a significant driving force of amyloid formation. While it was not found that DID could
be used by itself to attain reliable correlations with amyloid-forming behavior, likely due to the specificity
of the interaction observed at the dimer level, the CAE determined that DID could be strongly related to
a failure to form fibrils. Further, from this observation we may gain some insight about the differences
between amyloid forming hexapeptides, and larger proteins. The residue with the most compactisotropic
deviation is glycine, and indeed the peptides in the non-amyloid forming/compact isotropic deviation
region of the latent space are rich in glycine. This is a curious result since amyloids are often associated
with glycine rich proteins as they tend to be intrinsically disordered ***°. Further, it has also recently been

shown that glycine is an essential residue in cylindrin formation, structure that may be responsible for
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breaching the plasma membrane potentially leading to neuron death. However, for cylindrin formation
peptide lengths on 11 or more amino acids are required. Here, however, we see the opposite trend.
Perhaps amyloid structures for small hexapeptides are destabilized by the lack of side chains from glycine.
Larger proteins have more backbone interactions and other non-glycine side chains to stabilize the
amyloid structure. This observation may help in understanding how to use data taken on hexapeptides
to make predictions about proteins. Precise mechanistic insight is beyond the capability of this method.
However, its ability to obtain correlations may motivate more detailed experiments or simulations which

can investigate the hypotheses yielded by the trends within the CAE’s latent space representations.

Conclusions

Here we develop a method combining the techniques of an artificial neural network classifier and
the variational autoencoder (VAE) to analyze a set of experimental data and produce relationships
between properties of the peptides and their amyloidogenic activity. This method was validated on a set
of artificially generated data, demonstrating its ability to perform the functions intended as well as
demonstrate a robustness to both noisy and limited datasets — common features of currently available

data for biochemical assembly systems.

The CAE was then applied to the experimentally verified Waltz database to mine important motifs
correlated to amyloidogenic behavior. The CAE was able to rediscover previously observed relationships
regarding hydrophobicity and steric size and additionally establish a link between DID and amyloidogenic
activity. This observation demonstrates its ability to provide relationships between relatively complex
input spaces and a reduced-dimension output associated with whether a peptide produces amyloid fibrils.
This capability enabled us to observe an extrapolated but intuitive suggestion that hexapeptides with

highly hydrophobic, bulky cores and hydrophilic, smaller termini will be among the most likely to form

21



fibrils. We were also able to detect that the database has a strong representation of sequences in which

alternating patterns of hydrophobic and intermediate residues correlate to amyloid formation.

In addition, we used this method to elucidate the relationship between novel descriptors (such as
the newly reported DID) and activities of interest. The CAE was able to extract trends within the DID of
peptides, and demonstrate a relationship to amyloidogenicity, even though this relationship only weakly
contributed to the overall score of the model. The hydrophobicity of the peptide dominates in this
database, but we are still able to observe cases where hydrophobic forces did not strongly contribute, and

compact amino acid growth could be clearly associated with failure to form amyloid.

This method can easily be generalized to analyze many problems that involve understanding
complicated data. There are no restrictions on the number of classes or inputs that can be considered,
and while we use classification in the latent space, other loss functions could be used to alter the meaning
of the axes. While we demonstrated this works on relatively small datasets, we took great care to avoid
overfitting. The more inputs (and thus hidden layer fitting parameters) and the smaller the dataset, the

more likely the model will overfit.

We believe we have successfully illustrated a quick and understandable analysis of high
dimensional, nonlinearly dependent data. We set out to probe the relationship between DID and amyloid
formation, and our method offered a relatively rapid way to obtain correlations of significance. The
general approach established here could be used to mine databases for directions to take when
considering future experiments. As science continues to move to higher throughput methods, higher
dimensionality, and more complicated systems, machine learning methods have flourished at the cost of
physical/chemical insight. Here we have used a prescription to open the black box and have offered a way
to gain intuitive insight to the system which has been modeled, while retaining the full power of machine

learning’s modeling abilities.

22



Supporting Information

Supplementary text
Figs. S1to S7

Primer of a variational autoencoder (VAE)

Acknowledgement: We greatly appreciate the support of the National Science Foundation under grant

CHE-1565941 (MTB) and grant MCB-1716956 (JS). We also acknowledge support from the Center for

Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1720256).

References

(1)
(2)
(3)

(4)

(5)

(6)
(7)

(8)

(9)

(10)

Chiti, F.; Dobson, C. M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev.
Biochem. 2006, 75 (1), 333-366. https://doi.org/10.1146/annurev.biochem.75.101304.123901.
Fowler, D. M.; Koulov, A. V.; Balch, W. E.; Kelly, J. W. Functional Amyloid — from Bacteria to
Humans. Trends Biochem. Sci. 2007, 32 (5), 217-224. https://doi.org/10.1016/j.tibs.2007.03.003.
Zhao, W.-Q.; Townsend, M. Insulin Resistance and Amyloidogenesis as Common Molecular
Foundation for Type 2 Diabetes and Alzheimer’s Disease. Biochim. Biophys. Acta BBA - Mol. Basis
Dis. 2009, 1792 (5), 482-496. https://doi.org/10.1016/j.bbadis.2008.10.014.

Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T.; Condron, M. M.; Bitan, G.; Teplow, D.
B.; Shea, J.-E.; Ruotolo, B. T.; Robinson, C. V.; et al. Amyloid-B Protein Oligomerization and the
Importance of Tetramers and Dodecamers in the Aetiology of Alzheimer’s Disease. Nat. Chem.
20009, 1 (4), 326—331. https://doi.org/10.1038/nchem.247.

Bleiholder, C.; Dupuis, N. F.; Wyttenbach, T.; Bowers, M. T. lon Mobility—Mass Spectrometry
Reveals a Conformational Conversion from Random Assembly to B-Sheet in Amyloid Fibril
Formation. Nat. Chem. 2011, 3 (2), 172-177. https://doi.org/10.1038/nchem.945.

Astbury, W. T.; Dickinson, S.; Bailey, K. The X-Ray Interpretation of Denaturation and the
Structure of the Seed Globulins. Biochem. J. 1935, 29 (10), 2351-2360.1.

Morriss-Andrews, A.; Shea, J.-E. Computational Studies of Protein Aggregation: Methods and
Applications. Annu. Rev. Phys. Chem. 2015, 66 (1), 643—666. https://doi.org/10.1146/annurev-
physchem-040513-103738.

Economou, N. J.; Giammona, M. J.; Do, T. D.; Zheng, X.; Teplow, D. B.; Buratto, S. K.; Bowers, M.
T. Amyloid B-Protein Assembly and Alzheimer’s Disease: Dodecamers of AB42, but Not of AB40,
Seed Fibril Formation. J. Am. Chem. Soc. 2016, 138 (6), 1772-1775.
https://doi.org/10.1021/jacs.5b11913.

Makin, O. S.; Serpell, L. C. Examining the Structure of the Mature Amyloid Fibril. Biochem. Soc.
Trans. 2002, 30 (4), 521-525. https://doi.org/10.1042/.

Jiménez, J. L.; Nettleton, E. J.; Bouchard, M.; Robinson, C. V.; Dobson, C. M.; Saibil, H. R. The
Protofilament Structure of Insulin Amyloid Fibrils. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (14),
9196-9201. https://doi.org/10.1073/pnas.142459399.

23



(12)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Fitzpatrick, A. W. P.; Debelouchina, G. T.; Bayro, M. J.; Clare, D. K.; Caporini, M. A.; Bajaj, V. S.;
Jaroniec, C. P.; Wang, L.; Ladizhansky, V.; Miiller, S. A.; et al. Atomic Structure and Hierarchical
Assembly of a Cross- Amyloid Fibril. Proc. Natl. Acad. Sci. 2013, 110 (14), 5468-5473.
https://doi.org/10.1073/pnas.1219476110.

Sipe, J. D.; Cohen, A. S. Review: History of the Amyloid Fibril. J. Struct. Biol. 2000, 130 (2), 88—98.
https://doi.org/10.1006/jsbi.2000.4221.

Jarrett, J. T.; Lansbury, P. T. Seeding “One-Dimensional Crystallization” of Amyloid: A Pathogenic
Mechanism in Alzheimer’s Disease and Scrapie? Cell 1993, 73 (6), 1055-1058.
https://doi.org/10.1016/0092-8674(93)90635-4.

Stelzmann, R. A.; Norman Schnitzlein, H.; Reed Murtagh, F. An English Translation of Alzheimer’s
1907 Paper, “Uber Eine Eigenartige Erkankung Der Hirnrinde.” Clin. Anat. 1995, 8 (6), 429-431.
https://doi.org/10.1002/ca.980080612.

Maries, E.; Dass, B.; Collier, T. J.; Kordower, J. H.; Steece-Collier, K. The Role of a-Synuclein in
Parkinson’s Disease: Insights from Animal Models. Nat. Rev. Neurosci. 2003, 4 (9), 727-738.
https://doi.org/10.1038/nrn1199.

Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G. P.;
Davies, S. W.; Lehrach, H.; Wanker, E. E. Huntingtin-Encoded Polyglutamine Expansions Form
Amyloid-like Protein Aggregates In Vitro and In Vivo. Cell 1997, 90 (3), 549-558.
https://doi.org/10.1016/50092-8674(00)80514-0.

Westermark, P.; Andersson, A.; Westermark, G. T. Islet Amyloid Polypeptide, Islet Amyloid, and
Diabetes Mellitus. Physiol. Rev. 2011, 91 (3), 795-826.
https://doi.org/10.1152/physrev.00042.2009.

Elam, J. S.; Taylor, A. B.; Strange, R.; Antonyuk, S.; Doucette, P. A.; Rodriguez, J. A.; Hasnain, S. S.;
Hayward, L. J.; Valentine, J. S.; Yeates, T. O.; et al. Amyloid-like Filaments and Water-Filled
Nanotubes Formed by SOD1 Mutant Proteins Linked to Familial ALS. Nat. Struct. Mol. Biol. 2003,
10 (6), 461-467. https://doi.org/10.1038/nsb935.

Walsh, I.; Seno, F.; Tosatto, S. C. E.; Trovato, A. PASTA 2.0: An Improved Server for Protein
Aggregation Prediction. Nucleic Acids Res. 2014, 42 (Web Server issue), W301-W307.
https://doi.org/10.1093/nar/gku399.

Tartaglia, G. G.; Vendruscolo, M. The Zyggregator Method for Predicting Protein Aggregation
Propensities. Chem. Soc. Rev. 2008, 37 (7), 1395-1401. https://doi.org/10.1039/B706784B.
Thompson, M. J.; Sievers, S. A.; Karanicolas, J.; lvanova, M. |.; Baker, D.; Eisenberg, D. The 3D
Profile Method for Identifying Fibril-Forming Segments of Proteins. Proc. Natl. Acad. Sci. U. S. A.
2006, 103 (11), 4074-4078. https://doi.org/10.1073/pnas.0511295103.

Emily, M.; Talvas, A.; Delamarche, C. MetAmyl: A METa-Predictor for AMYLoid Proteins. PLOS
ONE 2013, 8 (11), €79722. https://doi.org/10.1371/journal.pone.0079722.

Tsolis, A. C.; Papandreou, N. C.; lconomidou, V. A.; Hamodrakas, S. J. A Consensus Method for the
Prediction of ‘Aggregation-Prone’ Peptides in Globular Proteins. PLOS ONE 2013, 8 (1), e54175.
https://doi.org/10.1371/journal.pone.0054175.

Stanislawski, J.; Kotulska, M.; Unold, O. Machine Learning Methods Can Replace 3D Profile
Method in Classification of Amyloidogenic Hexapeptides. BMC Bioinformatics 2013, 14, 21.
https://doi.org/10.1186/1471-2105-14-21.

Kotulska, M.; Unold, O. On the Amyloid Datasets Used for Training PAFIG - How (Not) to Extend
the Experimental Dataset of Hexapeptides. BMC Bioinformatics 2013, 14, 351.
https://doi.org/10.1186/1471-2105-14-351.

Kim, C.; Choi, J.; Lee, S. J.; Welsh, W. J.; Yoon, S. NetCSSP: Web Application for Predicting
Chameleon Sequences and Amyloid Fibril Formation. Nucleic Acids Res. 2009, 37 (Web Server
issue), W469-W473. https://doi.org/10.1093/nar/gkp351.

24



(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
(41)

(42)

(43)

(44)

Olden, J. D.; Jackson, D. A. llluminating the “Black Box”: A Randomization Approach for
Understanding Variable Contributions in Artificial Neural Networks. Ecol. Model. 2002, 154 (1-2),
135-150. https://doi.org/10.1016/50304-3800(02)00064-9.

White, H. Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns. In
IEEE 1988 International Conference on Neural Networks; 1988; pp 451-458 vol.2.
https://doi.org/10.1109/ICNN.1988.23959.

Gdémez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Herndndez-Lobato, J. M.; Sdnchez-Lengeling, B.;
Sheberla, D.; Aguilera-lparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic
Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci.
2018, 4 (2), 268-276. https://doi.org/10.1021/acscentsci.7b00572.

Brunner, G.; Konrad, A.; Wang, Y.; Wattenhofer, R. MIDI-VAE: Modeling Dynamics and
Instrumentation of Music with Applications to Style Transfer. arXiv:1809.07600 2018.
Hermundstad, A. M.; Brown, K. S.; Bassett, D. S.; Carlson, J. M. Learning, Memory, and the Role of
Neural Network Architecture. PLOS Comput. Biol. 2011, 7 (6), e1002063.
https://doi.org/10.1371/journal.pcbi.1002063.

Andrews, R.; Diederich, J.; Tickle, A. B. Survey and Critique of Techniques for Extracting Rules
from Trained Artificial Neural Networks. Knowl/.-Based Syst. 1995, 8 (6), 373—-389.
https://doi.org/10.1016/0950-7051(96)81920-4.

Hinton, G. E.; Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks.
Science 2006, 313 (5786), 504-507. https://doi.org/10.1126/science.1127647.

Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes. arXiv:1312.6114 2013.

Wehmeyer, C.; Noé, F. Time-Lagged Autoencoders: Deep Learning of Slow Collective Variables for
Molecular Kinetics. J. Chem. Phys. 2018, 148 (24), 241703. https://doi.org/10.1063/1.5011399.
Beerten, J.; Van Durme, J.; Gallardo, R.; Capriotti, E.; Serpell, L.; Rousseau, F.; Schymkowitz, J.
WALTZ-DB: A Benchmark Database of Amyloidogenic Hexapeptides. Bioinformatics 2015, 31 (10),
1698-1700. https://doi.org/10.1093/bioinformatics/btv027.

Reches, M.; Porat, Y.; Gazit, E. Amyloid Fibril Formation by Pentapeptide and Tetrapeptide
Fragments of Human Calcitonin. J. Biol. Chem. 2002, 277 (38), 35475-35480.
https://doi.org/10.1074/jbc.M206039200.

Reches, M.; Gazit, E. Amyloidogenic Hexapeptide Fragment of Medin: Homology to Functional
Islet Amyloid Polypeptide Fragments. Amyloid 2004, 11 (2), 81-89.
https://doi.org/10.1080/13506120412331272287.

Do, T. D.; de Almeida, N. E. C.; LaPointe, N. E.; Chamas, A.; Feinstein, S. C.; Bowers, M. T. Amino
Acid Metaclusters: Implications of Growth Trends on Peptide Self-Assembly and Structure. Anal.
Chem. 2016, 88 (1), 868—876. https://doi.org/10.1021/acs.analchem.5b03454.

Schymkowitz, J.; Rousseau, F. Peptide sequences | WALTZ-DB http://waltzdb.switchlab.org/
(accessed Jan 24, 2019).

Kawashima, S.; Kanehisa, M. AAindex: Amino Acid Index Database. Nucleic Acids Res. 2000, 28
(1), 374.

Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex:
Amino Acid Index Database, Progress Report 2008. Nucleic Acids Res. 2008, 36 (suppl_1), D202—-
D205. https://doi.org/10.1093/nar/gkm998.

Tomii, K.; Kanehisa, M. Analysis of Amino Acid Indices and Mutation Matrices for Sequence
Comparison and Structure Prediction of Proteins. Protein Eng. 1996, 9 (1), 27-36.

Fauchere, Jean Luc; Pliska, Vladimir. Hydrophobic Parameters t of Amino Acid Side Chains from
the Partitioning of N-Acetyl-Amino Acid Amides. Eur. J. Med. Chem. 1983, 18 (3), 369-375.

25



(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)
(54)

(55)

Kemper, P. R.; Dupuis, N. F.; Bowers, M. T. A New, Higher Resolution, lon Mobility Mass
Spectrometer. Int. J. Mass Spectrom. 2009, 287 (1-3), 46-57.
https://doi.org/10.1016/j.ijms.2009.01.012.

Gidden, J.; Ferzoco, A.; Baker, E. S.; Bowers, M. T. Duplex Formation and the Onset of Helicity in
Poly d(CG)n Oligonucleotides in a Solvent-Free Environment. J. Am. Chem. Soc. 2004, 126 (46),
15132-15140. https://doi.org/10.1021/ja046433+.

Mason, E. A.; McDaniel, E. W. Transport Properties of lons in Gases; Wiley-VCH Verlag GmbH &
Co. KGaA: Weinheim, FRG, 1988. https://doi.org/10.1002/3527602852.

Chollet, F.; Others. Keras; 2015.

Martin Abadi; Ashish Agarwal; Paul Barham; Eugene Brevdo; Zhifeng Chen; Craig Citro; Greg S.
Corrado; Andy Davis; Jeffrey Dean; Matthieu Devin; et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems.

West, M. W.; Wang, W.; Patterson, J.; Mancias, J. D.; Beasley, J. R.; Hecht, M. H. De Novo Amyloid
Proteins from Designed Combinatorial Libraries. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (20),
11211-11216.

Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. A Database of 660 Peptide lon Cross Sections:
Use of Intrinsic Size Parameters for Bona Fide Predictions of Cross Sections. J. Am. Soc. Mass
Spectrom. 1999, 10 (11), 1188—1211. https://doi.org/10.1016/51044-0305(99)00079-3.

Dilger, J. M.; Glover, M. S.; Clemmer, D. E. A Database of Transition-Metal-Coordinated Peptide
Cross-Sections: Selective Interaction with Specific Amino Acid Residues. J. Am. Soc. Mass
Spectrom. 2017, 28 (7), 1293-1303. https://doi.org/10.1007/s13361-016-1592-9.

Counterman, A. E.; Clemmer, D. E. Volumes of Individual Amino Acid Residues in Gas-Phase
Peptide lons. J. Am. Chem. Soc. 1999, 121 (16), 4031-4039. https://doi.org/10.1021/ja984344p.
Fink, A. L. Natively Unfolded Proteins. Curr. Opin. Struct. Biol. 2005, 15 (1), 35-41.
https://doi.org/10.1016/j.sbi.2005.01.002.

Uversky, V. N. Targeting Intrinsically Disordered Proteins in Neurodegenerative and Protein
Dysfunction Diseases: Another lllustration of the D2 Concept. Expert Rev. Proteomics 2010, 7 (4),
543-564. https://doi.org/10.1586/epr.10.36.

26



