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Abstract	

Despite	 the	 importance	 of	 amyloid	 formation	 in	 disease	 pathology,	 the	 understanding	 of	 the	

primary	structure	–	activity	relationship	for	amyloid-forming	peptides	remains	elusive.	Here	we	use	a	new	

neural-network	 based	 method	 of	 analysis:	 the	 classifying	 autoencoder	 (CAE).	 This	 machine	 learning	

technique	 uses	 specialized	 architecture	 of	 artificial	 neural	 networks	 to	 provide	 insight	 into	 typically	

opaque	classification	processes.	The	method	proves	to	be	robust	to	noisy	and	limited	datasets,	as	well	as	

being	capable	of	disentangling	relatively	complicated	rules	over	datasets.	We	demonstrate	its	capabilities	

by	applying	the	technique	to	an	experimental	database	(the	Waltz	database)	and	demonstrate	the	CAE’s	

capability	 to	 provide	 insight	 into	 a	 novel	 descriptor,	 dimeric	 isotropic	 deviation	 —	 an	 experimental	

measure	of	the	aggregation	properties	of	the	amino	acids.	We	measure	this	value	for	all	20	of	the	common	

amino	acids	and	find	correlation	between	dimeric	 isotropic	deviation	and	the	failure	to	form	amyloids	

when	hydrophobic	effects	are	not	a	primary	driving	force	in	amyloid	formation.	These	applications	show	

the	 value	of	 the	new	method	and	provide	a	 flexible	 and	general	 framework	 to	approach	problems	 in	

biochemistry	using	artificial	neural	networks.	
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Introduction	

	 Amyloid	 aggregates	 are	 pathologically	 associated	 with	 numerous	 diseases	 and	 biological	

functions,	with	their	existence	having	long	drawn	the	attention	of	the	biochemical	and	biological	scientific	

communities	 1–5.	 An	 amyloid	 is	 defined	 as	 a	 proteinaceous	 fibrillar	 aggregate	where	 the	 proteins	 are	

arranged	with	a	“cross-β”	spine	— 	that	is,	both	the	protein	backbone	and	the	normal	vector	of	the	beta	

sheet	plane	are	perpendicular	to	the	fibril	axis	6,7.	The	fibril	typically	ranges	from	60-200	Å	in	diameter	

when	fully	mature,	with	fibril-like	subunits	which	have	been	observed	in	isolation	with	diameters	as	small	

as	10	Å	 8–12.	While	amyloids	are	particularly	known	for	association	with	degenerative	diseases	such	as	

Alzheimer’s	4,13,14,	Parkinson’s	15,	Huntington’s	16,	type	2	diabetes	17,	and	amyotrophic	lateral	sclerosis	18,	

they	may	also	play	beneficial	roles.	The	motif	appears	in	spider	silks,	egg	shells,	biofilms	and	biomechanical	

scaffolds	for	human	synthetic	pathways	2.		

Despite	the	apparent	importance	of	these	aggregate	structures,	specifics	regarding	the	physics	

driving	the	formation	of	these	structures	remains	weakly	characterized.	There	is	interest	in	developing	a	

process	 which	 relates	 a	 primary	 structure	 to	 that	 peptide’s	 ability	 to	 form	 amyloids	 19–21.	 Enough	

algorithms	have	been	developed	on	 this	 topic	 that	 there	 exists	 prediction	 algorithms	which	 take	 into	

account	 as	 many	 other	 algorithms	 as	 possible	 22,23.	 These	 meta-predictors	 improve	 predictions,	 but	

unfortunately	step	into	a	major	criticism	of	machine	learning	based	classifiers:	hiding	insight	into	why	they	

make	 the	 classifications	 they	 do	 24–26.	 	 This	 is	 also	 common	 in	 attempts	 to	 use	machine	 learning	 for	

understanding	amyloid	aggregation	24–26.	With	these	predictors	 it	 is	possible	to	get	either	a	positive	or	

negative	 prediction,	 but	 it	 is	 hard	 to	 examine	 the	 process	 and	 learn	what	 aspects	 of	 the	 peptide	 are	

contributing	 to	 for	 this	 prediction.	 	 For	 example,	 there	 could	 be	 multiple	 mechanisms	 for	 amyloid	

formation,	such	as	one	driven	by	hydrophobic	 interactions	and	one	driven	by	electrostatic	 interaction.		

Many	algorithms	would	be	able	 to	make	the	correct	prediction,	but	 the	opaque	construction	of	 those	

algorithms	makes	it	hard	to	distinguish	the	difference	between	the	first	and	second	mechanisms.		Our	aim	
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was	 to	 develop	 a	method	 that	 addressed	 these	 problems;	 a	method	which	would	 be	 able	 to	 give	 us	

predictions	and	allow	us	to	easily	visualize	what	factors	contributed	to	those	predictions.				

One	machine	learning	framework,	artificial	neural	networks	(ANNs),	offers	a	powerful	approach	

to	classification	problems.	By	using	numerical	descriptions	of	a	system,	many	fitting	parameters,	and	a	set	

of	data	points	to	learn	from,	ANNs	generate	a	complicated	mapping	from	the	descriptions	to	an	output.	

This	output	can	be	any	target	set	of	numbers	but	is	often	a	numerical	representation	of	a	class	—	for	our	

purposes,	whether	a	peptide	sequence	is	amyloid-forming	or	not.	These	classification	networks	have	been	

employed	in	a	number	of	fields,	from	ecological	studies	to	economics	to	chemistry	27–30.	Attempts	have	

been	made	to	elucidate	the	inner	workings	of	ANNs	31,32,	however	these	methods	can	still	leave	intuition	

difficult	to	obtain.	

Fundamentally,	 classification	 can	 be	 viewed	 as	 a	 dimensional	 reduction	 problem	 in	 which	

numerous	pieces	of	descriptive	input	data	(an	attribute	of	an	amino	acid,	in	our	case)	must	be	reduced	to	

a	single	descriptive	dimension	(the	propensity	to	aggregate).	Autoencoders	are	an	architecture	of	ANNs	

that	have	been	applied	to	the	problem	of	dimensional	reduction,	capable	of	reducing	relatively	complex	

descriptions	 of	 objects	 to	 a	 lower	 dimension	 (termed	 the	 latent	 space),	 and	 then	 reconstructing	 the	

original	description	of	the	object	with	as	much	fidelity	as	can	be	allowed	33.	Differing	versions	of	the	basic	

autoencoder,	perhaps	most	notably	the	Variational	Autoencoder	 (VAE)	 34	have	emerged,	with	variants	

typically	 involving	goals	beyond	dimensional	reduction	and	reconstruction	of	the	data	35.	 In	this	paper,	

our	goal	was	to	develop	a	method	of	classification,	which	we	call	the	classifying	autoencoder	(CAE),	based	

on	prior	algorithms29,30,34,	that	could	offer	easily-interpreted	insight	into	our	classification	task.	

For	this	work,	we	develop	a	relation	between	the	attributes	of	the	amino	acids	in	a	six	amino	acid	

peptide	(hexapeptide)	and	the	amyloid	propensity	of	the	sequences.	The	use	of	hexapeptides	means	the	

primary	structure	will	dominate	the	behavior	of	a	given	peptide.	While	other	peptide	 lengths	can	also	
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form	 amyloids,	 hexapeptides	 are	 the	 shortest	 length	 for	 which	 a	 large	 number	 of	 amyloid	 forming	

peptides	 are	 known36.	 	 There	 are	 relatively	 few	 known	 examples	 of	 smaller	 peptides	 which	 form	

amyloids37,38.		Longer	peptides	are	more	likely	to	have	more	complex	mechanisms	of	amyloid	formation	

involving	thorough	considerations	of	internal	secondary	and	tertiary	structures.		We	adopt	a	reductionist	

paradigm	and	posit	understanding	simple	systems	will	help	understanding	of	more	complex	systems	in	

future	work.	 	 	A	database	exists	 in	which	about	one	thousand	hexapeptides	have	been	experimentally	

characterized	 as	 amyloid	 or	 non-amyloid,	 which	 we	 use	 here36.	 We	 this	 database	 to	 help	 prove	 the	

concept	of	our	method	and	explore	some	of	its	potential	usages,	including	elucidating	the	role	specific	

descriptors	 play	 in	 establishing	 the	 classification	 and	 whether	 any	 motifs	 within	 these	 descriptor	

sequences	can	be	identified	as	especially	related	to	amyloid	formation.	

In	the	next	sections	we	first	assess	the	capability	of	the	CAE	to	 identify	motifs	by	generating	a	

dataset	 and	 then	 using	 the	 method	 to	 recover	 the	 motifs	 used	 in	 generating	 the	 dataset.	 With	 our	

method’s	concept	successfully	tested,	we	demonstrate	its	ability	to	analyze	the	relationship	between	a	

novel	experimentally	measured	descriptor	of	a	system,	and	that	system’s	properties.	We	have	called	the	

new	descriptor	dimeric	isotropic	deviation	(DID).	Deviation	from	isotropic	aggregation	of	amino	acids	has	

previously	been	suggested	a	parameter	predictive	of	amyloid	formation39	for	a	small	data	set	(3	peptides)	

and	only	5	amino	acids.	DID	differs	from	the	isotropic	deviation	previously	utilized	(explained	in	Results	

and	Discussion),	but	 these	 simplifying	differences	enabled	 the	measurement	of	 all	 20	 common	amino	

acids,	allowing	 for	a	more	robust	exploration	of	DID	and	amyloid	aggregation	over	a	set	of	about	one	

thousand	peptides	36.			

Methods	

Generated	Database	
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It	was	important	to	first	test	our	architecture	on	a	generated	database,	so	that	we	could	examine	

the	method	under	a	controlled	setting.	We	devised	a	set	of	amino	acid	sequences	that	were	assigned	as	

belonging	to	an	archetype	(we	use	this	term	to	describe	a	pattern	within	the	sequence,	such	as	alternating	

amino	acid	hydrophobicity),	and	then	the	sequence	classified	as	positive	or	negative.		Fig.	1	depicts	a	flow	

chart	of	the	process	used	to	generate	this	database.	

	

Fig.	1	This	flow	chart	depicts	the	generation	of	the	database.	In	the	example	depiction	shown	in	the	flow	chart	a	random	peptide	
is	added	to	the	database	by	being	assigned	to	the	positive	archetype	and	classified	as	positive.	

We	generated	two	artificial	descriptors	for	our	validation	database.		A	descriptor	is	a	property	of	

the	 system	 (e.g.	 the	 hydrophobicity	 of	 an	 amino	 acid).	 The	 two	 descriptors	 were	 uncorrelated	 and	

generated	 to	 be	 linearly	 distributed	between	0	 and	1.	 Peptide	 archetypes	were	 also	 defined.	 	 	 These	

archetypes	are	treated	as	the	ideal	positive	or	negative	peptide	(in	the	context	of	amyloid	aggregation	

this	 assumes	 that	 certain	 patterns	 would	 yield	 an	 optimal	 activity,	 and	 the	 activity	 could	 be	 directly	

correlated		to	the	degree	of	difference	between	an	archetype’s	set	of	descriptor	values	and	a	peptide’s	

set	of	descriptor	values).	The	database	was	generated	by	randomly	picking	hexapeptides	and	classifying	
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them	as	positive	or	negative	(e.g.	amyloid	or	not	amyloid).	These	classifications	were	based	on	equation	

1,	which	compares	a	generated	peptide	to	an	archetype:	

𝑟# = Σ&'()&*+	(-&./Σ0'.1/-2&34+2/	 𝑓(2-614731;&,0 − 𝑓&,0
#
																							(1)	

Where	𝑓(2-614731;&,0 	is	the	value	of	the	𝑗
th	descriptor	of	the	𝑖th	amino	acid	in	an	archetypal	peptide,	and	

𝑓&,0	is	the	corresponding	value	of	the	peptide	that	 is	being	classified.	This	r-squared	value	between	the	

peptide	and	the	archetypes	served	as	our	metric	of	distance.	A	peptide	is	assigned	to	an	archetype	with	

which	it	has	the	smallest	r-squared	value.	The	peptide	is	then	classified	based	on	which	archetype	it	has	

been	assigned	to.	In	addition,	if	the	peptide	is	not	within	a	threshold	r-squared	of	any	of	the	archetypes,	

that	peptide	was	deemed	unassigned	and	either	given	a	random	classification	or	thrown	out,	depending	

on	which	validation	test	we	were	performing.		

Experimental	Database	

Given	that	our	goal	 is	to	better	understand	how	the	physical	descriptors	of	a	peptide	relate	to	

amyloid	activity,	we	used	a	database	of	experimentally-verified	peptides.	We	use	the	Waltz-DB	36,40	of	

1089	hexapeptides	that	have	been	experimentally	tested	for	amyloid	formation	by	transmission	electron	

microscopy,	dye	binding,	and	Fourier	transform	infrared	spectroscopy.	Of	the	1089	peptides,	244	form	

amyloids,	and	the	rest	do	not.	This	database	is	known	to	have	over-representation	of	peptides	similar	to	

the	peptide	sequence	STVIIE.		The	database	was	pruned	to	exclude	any	peptide	which	is	within	three	point	

mutations	of	the	peptide	sequence	STVIIE.	This	reduced	the	database	to	946	total	peptides.	Of	the	pruned	

data	set,	174	form	amyloids;	772	do	not.		

The	model	was	trained	on	half	of	the	database,	while	the	other	half	of	the	database	was	used	for	

validation.	The	ratio	of	amyloid	peptides	to	non-amyloid	peptides	was	held	constant	over	the	training	set	

and	the	validation	set.	Other	fitting	algorithms	often	use	upwards	of	66%	of	the	database	for	training	and	
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34%	for	validation	24,26.	We	opted	for	a	larger	validation	set	at	the	cost	of	a	smaller	training	set	since	the	

database	is	relatively	small	and	we	wanted	to	make	sure	there	was	enough	data	in	the	validation	set	to	

get	a	good	idea	of	how	generalizable	the	model	is.	

Polarity	Descriptor	

	 We	found	the	hydrophobic	parameter	using	the	AAindex	database	41–43.	This	parameter	was	first	

measured	by	Jean-Luc	Fauchere,	in	which	the	amino	acids	were	dissolved	in	octanol	and	water	and	the	

relative	solubility	was	measured	44.	We	choose	this	metric	for	hydrophobicity	because	it	correlates	with	

many	of	the	other	hydrophobicity	metrics	in	the	database,	it	performs	well	for	classification,	and	has	a	

clear	experimental	basis	and	intuitive	interpretation.		

Cross	Section	Measurements	

To	measure	the	DID,	amino	acid	samples	were	dissolved	in	water	to	concentrations	between	1	

and	12	millimolar.	The	cross	section	of	the	singly	charged	amino	acid,	and	the	cross	section	of	the	singly	

charged	dimer	cluster	of	the	amino	acid	were	measured	using	a	lab-built	ion	mobility	mass	spectrometer	

which	 is	 described	 in	detail	 elsewhere	 45.	 Briefly,	 this	 instrument	uses	nano-electrospray	 ionization	 to	

generate	ions.	The	ions	enter	the	instrument	from	atmosphere	into	a	10	torr	source	region.	The	ions	are	

stored	in	an	ion	funnel	and	pulse	injected	into	a	2-meter-long	drift	cell	which	is	held	at	0.25	torr	above	

the	pressure	in	the	ion	funnel	to	maintain	a	pure	helium	buffer	gas	in	the	drift	cell.	The	ions	exit	the	drift	

cell	 through	another	 ion	 funnel	and	are	mass	 selected	with	a	quadrupole	before	being	detected.	This	

instrument	is	notable	for	minimization	of	energizing	the	sample	ions	at	all	stages.	This	allows	us	to	easily	

measure	non-covalently	bound	assemblies	such	as	the	amino	acid	clusters	reported	here.		

To	measure	the	cross	section,	the	ions	traverse	the	drift	cell	at	various	drift	voltages.	The	time	it	

takes	to	reach	the	detector	is	𝑡> =
?@

AB

C
DEF

G
H
+ 𝑡F,	where	𝑙	is	the	cell	length,	𝑇	the	temperature,	𝑉	the	
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voltage	across	the	cell,	𝑃	the	pressure	in	the	cell,	and	𝑡F	the	time	from	exiting	the	drift	cell	to	the	detector	

recorded	 for	mobility	 calculations46.	 The	 reduced	mobility,	𝐾F,	 is	 related	 to	 the	 cross	 section	 by	 the	

equation	𝜎 ≈ Q1
RESB

#T
UVWC

X
@ R

AB
.	Here	𝑒	is	the	charge	of	the	ion,	𝑁F	is	the	number	density	of	the	buffer	

gas,	𝜇	is	the	reduced	mass	of	the	buffer	gas	and	the	ion,	𝑘]	is	the	Boltzmann	constant,	and	𝜎	is	the	cross	

section	of	the	ion	47.		

Software	

All	 neural	 nets	 were	 constructed	 and	 trained	 using	 the	 Keras	 software	 package48	 with	 the	

Tensorflow	backend49.			

Results	and	Discussion		

Developing	the	Classifying	Autoencoder	

	 Classification	is	a	specific	type	of	dimensional	reduction.	We	hypothesize	we	can	learn	more	about	

why	the	classifying	model	is	making	its	predictions	by	combining	it	with	a	variational	autoencoder	(VAE).		

A	primer	of	VAEs	can	be	found	in	the	supporting	information,	but	briefly,	a	VAE	is	an	unsupervised	neural-

network-based	dimensional	reduction	algorithm	which	seeks	a	robust	reduced	representation	of	a	data	

set.	 	As	with	any	 fitting	algorithm,	 it	quantifies	 the	quality	of	 the	 fit	by	defining	and	minimizing	a	 loss	

function.		For	standard	linear	regression	this	is	typically	the	sum	of	squares	of	the	residuals,	r2.		The	VAE	

has	a	two-term	loss	function.	The	first	term	relates	the	fidelity	between	the	reduced	representation	and	

the	original	representation.		This	is	called	the	reconstruction	term	since	it	is	a	measure	of	how	well	the	

model	can	reconstruct	the	original	representation	if	only	given	the	reduced	representation.		The	second	

term	 adds	 noise	 to	 the	 data	 during	 training.	 	 These	 competing	 loss	 terms	 lead	 to	 robust	 reduced	

representations.		
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We	used	the	underlying	architecture	and	concept	of	the	VAE,	but	added	another	term	to	the	loss	

function	to	make	the	reduced	representation	also	function	as	a	classification	metric.		We	have	called	this	

the	classifying	autoencoder	(CAE),	and	depicted	it	in	Fig.	2.		Inputs	(a	description	of	the	peptide)	are	fed	

into	the	model	via	the	input	nodes.	The	depiction	in	Fig.	2	shows	only	four	input	nodes,	but	in	the	final	

model	 there	 will	 be	 an	 input	 node	 for	 each	 value	 that	 represents	 the	 peptide,	 i.e.	 the	 number	 of	

descriptors	 times	 the	 number	 of	 amino	 acids	 in	 the	 peptide.	 	 The	 hidden	 layers	 add	 more	 fitting	

parameters.		The	nodes	labeled	𝜇	represent	what	is	termed	the	latent	space.		Typically,	the	term	latent	

space	is	used	to	refer	to	the	space	of	the	reduced	representation.		Here,	these	values	are	also	used	as	the	

prediction.	 	The	 latent	space	 is	two	dimensional,	one	for	the	amyloid	propensity	and	one	for	the	non-

amyloid	propensity.	 	 A	peptide	 is	 classified	depending	which	node	outputs	 a	 higher	 value.	 The	nodes	

labeled	𝑁(𝜇, 𝜎#)	inject	noise	into	the	data	during	training.	This	noise	is	in	the	form	of	a	normal	distribution	

centered	at	the	reduced	representation,	𝜇,	and	has	a	standard	deviation,	𝜎#.		The	nodes	to	the	right	of	

the	nodes	labeled	𝑁(𝜇, 𝜎#)	(the	decoder)	attempt	to	reconstruct	the	original	input.		For	a	more	detailed	

explanation	of	this	please	see	the	primer	of	VAEs	in	the	supporting	information.		

	

Fig.	2	Depicted	is	the	architecture	of	a	classifying	autoencoder	(CAE)	with	four	inputs,	and	one	hidden	layer	with	three	nodes.	The	
latent	space	in	this	model	is	two-dimensional	and	is	labeled		𝜇.		These	nodes	are	also	used	as	the	prediction	layer.	Noise	is	added	
to	 the	 latent	 space	at	 the	nodes	 labeled	𝑁 𝜇, 𝜎# ;	 this	noise	 is	 in	 the	 form	of	a	normal	distribution	centered	on	 the	 reduced	
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representation,	𝜇,	with	a	standard	deviation,	𝜎#.		The	decoder	(all	nodes	to	the	right	of	the	nodes	which	introduce	the	noise)	tries	
to	reconstruct	 the	 input.	Dense	connectivity	 (see	primer	of	VAEs	 in	Supporting	 Information)	can	be	assumed	for	all	 layers	not	
drawn	explicitly.	In	addition,	connectivity	has	been	drawn	explicitly	at	the	latent	space	to	highlight	that	the	output	nodes	are	not	
fed	into	the	decoder,	but	the	nodes	labeled	𝑁(𝜇, 𝜎)	are	fed	to	the	decoder.	

Validation	on	a	Constructed	Data	Set	

To	 verify	 that	 the	 CAE	 successfully	 elucidates	 and	 reconstructs	 characteristic	 archetypes,	 we	

generated	an	artificial	peptide	database	as	discussed	in	Methods.	Using	the	constructed	database	allowed	

us	to	verify	the	model	was	performing	its	intended	functions,	while	also	testing	how	sensitive	the	model	

is	to	potential	issues	within	the	database,	such	as	small	database	sizes	or	flawed	results.	We	did	this	in	

two	ways.	First,	we	allowed	for	some	unassigned	peptides	(peptides	which	were	not	in	the	neighborhood	

of	any	archetype)	to	be	given	a	random	class	to	see	if	the	model	would	be	able	to	see	through	the	resulting	

noise.	This	tests	situations	where	the	descriptor	we	are	using	contributes	to	the	amyloid	activity	of	some	

of	the	peptides,	while	other	peptides	are	dominated	by	a	mechanism	unrelated	to	the	descriptors	that	

have	been	chosen.	 	 The	 second	 test	only	used	peptides	 that	have	been	assigned	 to	an	archetype	but	

introduced	a	stochastic	element	to	classifications.	When	a	peptide	was	assigned	to	an	archetype	it	was	

classified	as	amyloidogenic	or	non-amyloidogenic	according	to	a	probability.	The	second	scenario	captures	

errors	in	the	experimental	data	in	the	database,	or	an	amyloid	mechanism	that	only	partially	relates	to	

the	chosen	descriptors.		

All	models	are	trained	on	500	peptides	and	validated	with	500	different	peptides.	Peptides	are	

described	with	two	descriptors	per	amino	acid.	The	axes	for	each	plot	in	Fig.	3	are	the	values	in	the	latent	

space;	that	is	the	values	output	by	the	two	nodes	labeled	𝜇	in	Fig.	2.	The	y-axis	is	the	positive	prediction	

axis,	and	the	x-axis	is	the	negative	prediction	axis.	A	peptide	is	classified	as	positive	if	its	positive	prediction	

value	is	greater	than	its	negative	prediction	value.	Thus,	if	a	peptide	falls	above	the	red	line	on	the	plots	

that	peptide	is	predicted	positive,	while	falling	below	the	red	line	is	a	negative	prediction.	Figs.	3	A,	D,	and	

E	plot	each	peptide	in	the	database	according	to	where	they	fall	in	latent	space.	Figs.	3	B	and	C	show	the	
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reconstructed	description	of	the	peptide	for	equally	spaced	points	in	latent	space.	These	types	of	plots	

will	be	referred	as	reconstruction	plots.		

	

Fig.	3	For	all	plots,	the	y-axis	is	the	positive	prediction	axis,	and	the	x-axis	is	the	negative	prediction	axis.	A	peptide	is	predicted	
positive	if	it	is	falls	above	the	red	line	and	is	predicted	negative	if	it	falls	below	the	red	line.	Plot	(A)	shows	where	each	peptide	is	
encoded	by	the	CAE,	while	plots	(B)	and	(C)	show	the	reconstructed	description	at	each	point	in	latent	space	for	that	same	model.	
Plots	(D)	and	(E)	are	each	a	separate	model	(see	text)	and	show	where	each	peptide	in	their	database	encodes	to	in	latent	space.	

Figs.	3	A-C	are	generated	from	the	same	model.	Of	 the	1000	peptides	27%	are	assigned	to	an	

archetype,	and	subsequently	classified	as	either	positive	or	negative	depending	on	the	archetype.	The	

positive	archetype	is	LULULU	(U	=	upper,	L	=	lower)	in	descriptor	1	and	LLLLLL	or	UUUUUU	in	descriptor	2.	

The	 negative	 archetype	 is	 LLLUUU	 for	 descriptor	 1	 and	 either	 LLLLLL	 or	 UUUUUU	 in	 descriptor	 2.	 All	

peptides	not	assigned	to	an	archetype	were	not	within	a	threshold	r-squared	distance	of	any	of	 these	

archetypes	and	were	classified	randomly.		

In	Fig.	3	A,	each	peptide	is	encoded	to	two	numbers	(the	values	output	by	𝜇)	and	plotted	according	

to	 those	 values,	 showing	 how	 the	 peptides	 are	 arranged	 in	 latent	 space.	 The	 color	 of	 the	 marker	

represents	 the	 peptide’s	 classification	 in	 the	 database;	 pink	 markers	 are	 positive,	 while	 green	 are	
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negative.	In	Fig.	3	B	and	C,	we	visualize	the	reconstructed	description	of	the	peptide,	descriptors	1	and	2,	

respectively,	in	latent	space.		This	representation	of	the	peptide	description	arranged	in	latent	space,	the	

reconstruction	plot,	is	the	key	to	gaining	intuition	from	the	CAE,	as	it	visualizes	the	different	regions	of	

positive	and	negative	predictions	that	the	CAE	identified.	

Figs.	3	D	and	E	depict	different	models	than	Figs.	3	A-C.	These	use	a	database	generated	to	mimic	

a	set	of	experiments	that	yielded	occasionally	flawed	results.	In	Figs.	3	D	and	E	all	peptides	in	the	database	

are	within	a	threshold	distance	to	one	of	four	archetypes.	For	the	two	positive	archetypes,	one	archetype	

was	always	classified	positive,	while	the	other	archetype	was	misclassified	at	the	rate	indicated	in	the	plot	

title.	The	negative	archetypes	were	assigned	in	the	same	way.	

These	results	show	the	models	can	simultaneously	sort	the	data	into	the	positive	and	negative	

classifications	and	identify	the	original	archetypes	used	to	generate	the	data.	In	the	top	left	of	Fig.	3	A,	

the	positive	prediction	region	of	the	latent	space,	positive	peptides	have	been	separated	from	a	mixture	

of	 positive	 and	 negative	 peptides,	 correctly	 predicting	 those	 peptides	 as	 positive.	 The	 corresponding	

region	in	the	reconstruction	plot,	Figs.	3	B	and	C,	correctly	reflects	the	positive	archetypes.	This	happens	

similarly	for	the	negative	prediction	region.	We,	also,	learn	how	to	interpret	the	reconstruction	plot	by	

examining	Figs.	3	B	and	C.	The	middle	of	Fig.	3	A,	the	data’s	latent	space	distribution,	shows	mixed	positive	

and	negative	peptides;	in	Figs.	3	B	and	C,	the	reconstruction	plot,	this	region	shows	no	evidence	of	the	

positive	 or	 negative	 archetypes.	 However,	 as	 we	 move	 to	 the	 top	 left	 of	 the	 data’s	 latent	 space	

distribution,	Fig.	3	A,	we	see	a	separation	of	positive	classifications	from	the	mixture	of	classifications;	

when	we	follow	this	trajectory	in	the	reconstruction	plot,	Figs.	3	B	and	C,	the	positive	archetype	emerges.	

The	separation	of	a	single	class	from	a	mixture	of	classes	can	tell	us	about	the	trend	that	contributed	to	

that	separation.		
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In	Figs	3	D	and	E,	the	model	correctly	shows	four	clusters	in	the	latent	space,	according	to	the	four	

archetypes	used	to	construct	the	database.	The	reconstruction	plot	(Fig.	S5)	correctly	reflects	the	four	

archetypes.	This	gives	us	insight	to	how	the	model	deals	with	the	uncertainty	in	the	data.	In	Fig.	3	D,	the	

archetype	which	has	been	80%	classified	positive	and	20%	classified	negative	 is	placed	 in	 the	positive	

prediction	region	of	the	latent	space.	However,	this	is	nearer	the	decision	boundary	(the	red	line)	than	

the	cluster	associated	with	the	100%	positive	archetype,	suggesting	the	model	identified	the	ambiguous	

archetype.	Further,	in	Fig.	3	E,	the	ambiguous	archetype	was	associated	60%	to	one	classification	and	40%	

to	the	other.	In	this	case,	the	cluster	that	represents	the	ambiguous	archetype	is	placed	nearly	atop	the	

decision	boundary,	 leaning	slightly	positive.	The	method	 is	capable	of	making	 identifications	regarding	

how	 an	 archetype	 leans,	 in	 addition	 to	 characterizing	 archetypes	 that	 are	 certainly	 associated	 with	

activities.	

	 We	note	our	validations	show	our	method	works	with	large	databases	that	are	typically	used	in	

machine	learning	(N	=	10,000;	Fig.	S7),	but	crucially	also	with	the	limited	databases	we	have	available	for	

amyloid	 studies	 (N	 =	 1000;	 as	 shown	 here).	 	 This	 suggests	 potential	 generalizability	 of	 the	models	 to	

problems	associated	with	relatively	small	databases,	such	as	the	Waltz	database	we	use	later	36.			

Ultimately,	 these	 results	 demonstrate	 the	 CAE’s	 ability	 to	 relate	 sequences	 to	 an	 interesting	

activity.	Even	adding	disturbances	to	the	ideality	of	an	artificially	constructed	database,	the	CAE	was	able	

to	mine	the	patterns	associated	with	the	class	of	interest,	and	discern	when	a	pattern	had	a	leaning,	rather	

than	 a	 fixed	 identity.	 This	 suggests	 the	 validity	 of	 this	 method	 for	 the	 task	 at	 hand:	 identifying	

characteristics	and	motifs	of	sequences	that	yield	amyloidogenic	behavior.	

CAE	on	an	Experimental	Database:	Hydrophobicity		

	 Metrics	related	to	hydrophobicity	were	found	to	be	the	most	effective	descriptors,	and	such	a	

metric	is	used	in	both	descriptors	examined	here.	In	Fig.	4	B	(and	later	in	Fig.	5	B)	we	can	see	a	region	of	
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peptides	with	yellow	or	green	amino	acids	in	the	middle	(positions	3	and	4)	and	dark	green	or	blue	amino	

acids	on	the	ends.	This	means	peptides	in	this	region	of	the	latent	space	tend	to	be	hydrophobic	in	the	

middle,	and	more	hydrophilic	on	the	ends,	suggesting	this	type	of	amyloid	fibril	buries	the	hydrophobic	

core	by	stacking	while	the	hydrophilic	ends	on	the	outside	interact	with	water.	It	should	be	noted	in	both	

cases	much	of	this	region	is	an	extrapolation	by	the	model	(there	are	few	data	points	in	the	latent	space	

in	these	regions).	While	extrapolation	must	be	taken	with	caution,	this	motif	in	this	“most-likely	amyloid”	

region	is	worth	noting	due	to	the	intuitive	sense	that	hydrophobic	amino	acids	should	be	buried	away	

from	the	solvent.		This	motivates	further	investigation	on	sequences	capturing	this	motif.	In	other	words,	

if	 a	 goal	 is	 to	 investigate	 the	 coarse	 forces	 driving	 amyloid	 formation	or	 design	new	amyloid	 forming	

peptides,	the	CAE’s	extrapolation	can	be	a	hypothesis	to	pursue.	

	

Fig.	4	Representative	model	trained	using	hydrophobicity	and	monomer	cross	section	(MCS).	(A)	All	sequences	in	the	validation	
set	plotted	 in	 latent	space.	Each	axis	here	 is	 the	value	of	one	of	the	 latent	space	nodes.	The	color	of	the	point	represents	the	
experimental	classification	of	that	peptide.	(B)	and	(C)	show	the	reconstructed	descriptions.		The	axes	here	also	represent	values	
in	the	latent	space,	but	the	markers	represent	peptide	descriptions.	Each	group	of	six	dots	represents	a	peptide,	and	the	color	of	
that	dot	represents	the	reconstructed	descriptor	value	at	that	point	in	latent	space.	(B)	depicts	the	hydrophobicity	of	the	peptides,	
where	yellow	is	hydrophobic,	and	blue	is	hydrophilic.	(C)	depicts	the	monomer	cross	section	(MCS)	of	each	point	in	latent	space.	
Here	yellow	is	a	large	cross	section,	and	blue	a	small	cross	section.	
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There	also	exists	some	signs	of	the	West	et	al	result	50	of	NPNPNP	(P	=	hydrophobic	(polar),	N	=	

hydrophilic	 (non-polar)	 within	 the	 core	 residues	 (2,	 3,	 4,	 5)	 in	 both	 models.	 This	 patterning	 is	 also	

characterized	by	less	extreme	hydrophobicity,	suggesting	this	motif	is	preferred	by	those	residues	with	

moderate	hydrophobicity	values.	It	is	worth	noting	this	region	has	been	interpolated	as	there	are	many	

amyloid	points	in	this	region	of	the	latent	space;	we	can	then	be	more	confident	that	these	motifs	are	

well-represented	within	the	database.	Observations	based	on	this	interpolated	region	could	also	provide	

grounds	to	investigate	forces	driving	amyloid	formation	or	to	inspire	novel	amyloid	forming	peptides.		

	These	two	motifs	are	consistently	represented	in	the	amyloid	region	independently	of	the	second	

descriptor,	giving	further	confidence	these	motifs	are	mirrored	in	the	data.		

CAE	on	an	Experimental	Database:	Monomeric	Cross	Section	

	 Fig.	4	represents	a	model	trained	using	Monomeric	Cross	Section	(reported	in	Table	1)	and	

hydrophobicity	as	the	descriptors.	The	populated	region	on	the	amyloid	side	tends	to	include	mid-to-

large	residues,	while	the	populated	region	in	the	non-amyloid	side	tends	to	include	small	residues.	This	

could	suggest	a	preference	for	bulky	side	chains,	perhaps	to	help	drive	amyloid	stability	through	surface-

area	dependent	forces	such	as	van	der	Waals.		Additionally,	on	the	amyloid	side,	there	is	some	

alternation	of	large	and	small	residues.	We	also	note	that	hydrophobicity	similarly	alternates	in	the	

same	region	of	latent	space.	Perhaps	this	alludes	to	a	connection	between	the	size	of	a	side	chain	and	its	

potential	for	stronger	hydrophobic-related	forces	resulting	in	a	preference	for	sequences	that	alternate	

large,	hydrophobic	residues	and	small,	hydrophilic	residues51–53.		

Monomer	Cross	Section	and	Dimeric	Isotropic	Deviation	

	 
	 
Amino	acid 

Monomer	
Cross	Section	
(Å±Standard	
Deviation) 

Dimeric	isotropic	
deviation,	𝚫𝒊𝟐 
×𝟏𝟎𝟎	(±	
Standard	
Deviation) 

Glutamic	acid 61.9	±	0.3 -6.1	±	0.3 
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Leucine 65.3	 ±	0.2 -5.8	±	0.4 
Isoleucine 64.2	 ±	0.4 -4.8	±	0.5 
Glutamine 63.3	 ±	0.1 -4.7	±	0.4 
Valine 58.8	 ±	0.2 -4.7	±	0.7 
Methionine 65.6	 ±	0.3 -4.5	±	0.2 
Proline 56.5	±	0.2 -3.2	±	0.2 
Histidine 66.3	±	0.4 -2.9	±	0.5 
Threonine 56.3	±	0.3		 -2.5	±	0.6 
Aspartic	acid 57.8	±	0.4	 -1.7	±	0.5 
Arginine 71.8	±	0.2	 -1.0	±	0.4 
Asparagine 59.0	±	0.4	 -0.1	±	0.5 
Lysine 65.4	±	0.2	 0.5	±	0.4 
Alanine 50.6	±	0.3 0.8	±	0.3 
Serine 52.1	±	0.5 1.2	±	0.9 
Phenylalanine 72.0	±	0.4 3.5	±	0.6 
Tyrosine 75.2	±	0.3 4.0	±	0.0 
Tryptophan 81.3	±	0.7 6.0	±	1.0 
Cysteine 55.7	±	0.3 9.2	±	0.3 
Glycine 49.1	±	0.4 11.6	±	0.5 

	

Table	1	Experimentally	measured	monomer	cross	section	and	dimeric	isotropic	deviation	(𝛥𝑖#)	for	each	
amino	acid.	The	𝛥𝑖#	have	been	multiplied	by	100	for	ease	of	reading.	Convention	dictates	a	negative	
value	is	associated	with	growth	larger	than	isotropic	prediction,	zero	is	isotropic	growth,	and	a	positive	
deviation	growth	more	compact	than	the	isotropic	prediction.	

	

Introducing	Dimeric	Isotropic	Deviation	(DID)		

To	offer	insight	into	isotropic	deviation,	consider	growth	around	a	sphere	as	material	is	added.	If	

that	 volume	 is	 distributed	 equally	 around	 the	 object,	 isotropically,	 it	 is	 straight-forward	 to	 write	 an	

equation	which	predicts	 the	 cross	 section	when	material	 is	 added:	𝜎&/+ = 𝜎F
H
HB

# Q
,	where	𝑉F	 is	 the	

original	volume	of	the	sphere	,	𝑉	the	final	volume	of	the	sphere,	𝜎F	the	cross	section	of	the	original	sphere,	

and	𝜎&/+	the	cross	section	given	isotropic	addition	of	volume.	If	that	volume	is	not	added	isotropically,	or	

the	overall	density	changes,	the	system	will	deviate	from	that	prediction.	In	the	same	way,	if	we	calculate	
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the	volume	of	an	amino	acid	based	off	our	experimentally	measured	cross	section	and	assume	isotropic	

growth,	we	can	predict	the	cross	section	of	an	oligomer	(in	this	case,	a	cluster	of	amino	acids)	based	on	

the	volume	of	the	monomer	using	the	equation	𝜎*&/+ = 𝜎R
1i3	𝑛#/Q,	where	𝑛	is	the	number	of	amino	acid	

molecules	 in	 the	 oligomer	 39.	Most	 amino	 acids	 do	 not	 grow	 isotropically,	 and	we	 call	 the	 degree	 of	

deviation	from	this	growth	isotropic	deviation.		

It	is	intuitive	that	this	property	of	amino	acid	aggregation	could	be	used	to	make	predictions	about	

the	aggregation	properties	of	peptides	since	it	reflects	some	degree	of	order	in	the	amino	acid	aggregates.	

In	the	Do	paper,	isotropic	deviation	is	measured	for	different	large	order	oligomers	(n	=	20	to	30),	but	was	

only	measured	 for	 five	 amino	 acids,	 and	 verified	 on	 three	 peptides	 39.	 As	we	 collected	more	 data	 on	

aggregation	of	amino	acids,	we	found	that	this	value	was	oligomer	size	dependent	(Fig.	S3).	We	also	found	

the	monomer	and	dimer	to	be	the	only	oligomer	sizes	that	could	we	could	consistently	observe	across	all	

amino	acids.	The	desire	for	a	systematic	metric	for	all	amino	acids	drove	the	development	of	what	we	call	

DID	(reported	 in	Table	1).	For	the	data	available,	comparison	of	Do’s	measure	and	DID	does	not	show	

strong	 correlation,	 however	 DID’s	 basis	 in	 peptide	 packing	 behavior	 suggests	 a	 potential	 relation	 to	

amyloid	formation.		

DID	is	calculated	as	follows.	We	have	measured	the	cross	section	of	the	singly	charged	monomer	

and	the	singly	charged	dimer	of	each	of	the	20	canonical	amino	acids	(arrival	time	distributions	and	cross	

sections	in	Fig.	S4).	If	the	dimer	cross	section	is	larger	than	the	isotropic	prediction,	convention	dictates	a	

negative	 isotropic	 deviation	 is	 obtained,	which	we	will	 refer	 to	 as	 extended	 growth.	 An	 experimental	

dimer	cross	section	which	is	smaller	than	the	isotropic	prediction,	compact	growth,	results	in	a	positive	

isotropic	 deviation	 according	 to	 the	 equation,	 Δ𝑖# = 1 − n@
opq

n@rst
.	 Here	 𝜎#

1i3	 is	 the	 experimentally	

measured	cross	section	of	the	dimer	with	one	charge,	and	𝜎#&/+	the	isotropic	prediction	of	the	dimer	based	

on	the	singly	charged	monomer’s	cross	section.		
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Use	of	DID	(a	descriptor	to	be	assessed)	along	with	hydrophobicity	(a	known	strong	descriptor)	

shows	an	important	power	of	the	CAE:	the	ability	to	assess	the	relationship	between	a	potential	descriptor	

and	 classification.	 	 The	 strong	descriptor	 essentially	 scaffolds	 the	 latent	 space’s	 shape,	 ensuring	 good	

classifications,	while	the	other	descriptor	can	then	be	used	to	refine	details	within	the	latent	space,	either	

indicating	 that	 descriptor’s	 relationship	 to	 the	 activity	 through	 meaningful	 contributions,	 or	 no	 such	

relationship	through	a	lack	of	systematic	contributions.	This	process	is	illustrated	below.	

CAE	on	an	Experimental	Database:	Dimeric	Isotropic	Deviation	(DID)	

Here	we	probe	the	relationship	between	DID	and	amyloid	propensity.	For	the	most	part,	Fig.	5	C	

shows	few	features	in	the	amyloid	region	and	the	peptides	are	generally	on	the	extended	side	of	DID.	The	

top	left	shows	some	signs	of	compact	DID.	This	is	also	the	same	region	where	the	hydrophobic	core	motif	

is	represented.	Like	the	monomer	cross	section	result,	here	the	hydrophobicity	is	likely	the	larger	factor	

governing	amyloid	formation,	as	evidenced	by	the	larger	diversity	of	hydrophobicity	motifs	in	the	amyloid	

region.	In	the	non-amyloid	region,	there	exists	a	region	of	mixed	amyloid	and	non-amyloid	points	(middle	

of	the	plots),	as	well	as	a	region	of	pure	non-amyloid	points	(the	right	of	the	plots),	reminiscent	to	the	

pattern	we	saw	in	the	distribution	of	points	during	the	first	validation	experiment	(Fig.	3	A).	Within	these	

regions	the	hydrophobicity	motifs	have	relatively	low	diversity,	being	generally	hydrophilic,	while	there	is	

greater	 diversity	 in	 the	DID	motifs.	 Critically,	 as	 one	moves	 deeper	 into	 the	 non-amyloid	 region,	 one	

observes	 a	 rise	 in	 the	 compactness	 of	 the	 residues.	 Thus,	 in	 the	 same	way	 the	model	 from	 Fig.	 3	 A	

determined	 the	 archetype	 in	 the	 pure	 green	 region,	 the	 CAE	 has	 determined	 a	 strong	 relationship	

between	 compactness	 and	 a	 failure	 to	 grow	 fibrils	 –	 the	 extrapolated	 “least	 amyloidogenic”	 peptides	

(those	 that	would	appear	 in	 the	bottom	right	of	 Fig.	5	C)	 are	most	 strongly	 characterized	by	a	higher	

degree	of	compactness,	with	less	distinguishing	features	in	hydrophobicity	representation.		
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Fig.	5	Representative	model	 trained	using	hydrophobicity	and	DID.	 	 This	 figure	 is	 the	 same	 representation	of	a	model	as	Fig.	
4except	(C)	depicts	the	DID	of	each	point	in	latent	space.	Here	yellow	is	extended	growth,	and	blue	is	compact	growth.	

These	 results	 provide	 potential	 insight	 about	 how	DID	 relates	 to	 amyloid	 formation.	 Namely,	

compact	growth	of	the	amino	acids	could	block	the	amyloid	process	of	the	peptide	when	hydrophobic	

interactions	are	not	a	significant	driving	force	of	amyloid	formation.	While	it	was	not	found	that	DID	could	

be	used	by	itself	to	attain	reliable	correlations	with	amyloid-forming	behavior,	likely	due	to	the	specificity	

of	the	interaction	observed	at	the	dimer	level,	the	CAE	determined	that	DID	could	be	strongly	related	to	

a	failure	to	form	fibrils.		Further,	from	this	observation	we	may	gain	some	insight	about	the	differences	

between	amyloid	forming	hexapeptides,	and	larger	proteins.		The	residue	with	the	most	compact	isotropic	

deviation	 is	 glycine,	 and	 indeed	 the	peptides	 in	 the	non-amyloid	 forming/compact	 isotropic	 deviation	

region	of	the	latent	space	are	rich	in	glycine.		This	is	a	curious	result	since	amyloids	are	often	associated	

with	glycine	rich	proteins	as	they	tend	to	be	intrinsically	disordered	54,55.		Further,	it	has	also	recently	been	

shown	that	glycine	is	an	essential	residue	in	cylindrin	formation,	structure	that	may	be	responsible	for	
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breaching	the	plasma	membrane	potentially	leading	to	neuron	death.		However,	for	cylindrin	formation	

peptide	 lengths	 on	 11	 or	more	 amino	 acids	 are	 required.	Here,	 however,	we	 see	 the	opposite	 trend.		

Perhaps	amyloid	structures	for	small	hexapeptides	are	destabilized	by	the	lack	of	side	chains	from	glycine.	

Larger	 proteins	 have	 more	 backbone	 interactions	 and	 other	 non-glycine	 side	 chains	 to	 stabilize	 the	

amyloid	structure.		This	observation	may	help	in	understanding	how	to	use	data	taken	on	hexapeptides	

to	make	predictions	about	proteins.		Precise	mechanistic	insight	is	beyond	the	capability	of	this	method.	

However,	its	ability	to	obtain	correlations	may	motivate	more	detailed	experiments	or	simulations	which	

can	investigate	the	hypotheses	yielded	by	the	trends	within	the	CAE’s	latent	space	representations.		

Conclusions	

Here	we	develop	a	method	combining	the	techniques	of	an	artificial	neural	network	classifier	and	

the	 variational	 autoencoder	 (VAE)	 to	 analyze	 a	 set	 of	 experimental	 data	 and	 produce	 relationships	

between	properties	of	the	peptides	and	their	amyloidogenic	activity.	This	method	was	validated	on	a	set	

of	 artificially	 generated	 data,	 demonstrating	 its	 ability	 to	 perform	 the	 functions	 intended	 as	 well	 as	

demonstrate	a	robustness	to	both	noisy	and	limited	datasets	–	common	features	of	currently	available	

data	for	biochemical	assembly	systems.		

The	CAE	was	then	applied	to	the	experimentally	verified	Waltz	database	to	mine	important	motifs	

correlated	to	amyloidogenic	behavior.	The	CAE	was	able	to	rediscover	previously	observed	relationships	

regarding	hydrophobicity	and	steric	size	and	additionally	establish	a	link	between	DID	and	amyloidogenic	

activity.	 This	 observation	demonstrates	 its	 ability	 to	 provide	 relationships	 between	 relatively	 complex	

input	spaces	and	a	reduced-dimension	output	associated	with	whether	a	peptide	produces	amyloid	fibrils.	

This	 capability	 enabled	us	 to	observe	an	extrapolated	but	 intuitive	 suggestion	 that	hexapeptides	with	

highly	hydrophobic,	bulky	cores	and	hydrophilic,	smaller	termini	will	be	among	the	most	likely	to	form	
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fibrils.	We	were	also	able	to	detect	that	the	database	has	a	strong	representation	of	sequences	in	which	

alternating	patterns	of	hydrophobic	and	intermediate	residues	correlate	to	amyloid	formation.		

In	addition,	we	used	this	method	to	elucidate	the	relationship	between	novel	descriptors	(such	as	

the	newly	reported	DID)	and	activities	of	interest.	The	CAE	was	able	to	extract	trends	within	the	DID	of	

peptides,	and	demonstrate	a	relationship	to	amyloidogenicity,	even	though	this	relationship	only	weakly	

contributed	 to	 the	 overall	 score	 of	 the	 model.	 The	 hydrophobicity	 of	 the	 peptide	 dominates	 in	 this	

database,	but	we	are	still	able	to	observe	cases	where	hydrophobic	forces	did	not	strongly	contribute,	and	

compact	amino	acid	growth	could	be	clearly	associated	with	failure	to	form	amyloid.		

This	method	 can	 easily	 be	 generalized	 to	 analyze	many	 problems	 that	 involve	 understanding	

complicated	data.	There	are	no	restrictions	on	the	number	of	classes	or	inputs	that	can	be	considered,	

and	while	we	use	classification	in	the	latent	space,	other	loss	functions	could	be	used	to	alter	the	meaning	

of	the	axes.	While	we	demonstrated	this	works	on	relatively	small	datasets,	we	took	great	care	to	avoid	

overfitting.	The	more	inputs	(and	thus	hidden	layer	fitting	parameters)	and	the	smaller	the	dataset,	the	

more	likely	the	model	will	overfit.		

We	 believe	 we	 have	 successfully	 illustrated	 a	 quick	 and	 understandable	 analysis	 of	 high	

dimensional,	nonlinearly	dependent	data.	We	set	out	to	probe	the	relationship	between	DID	and	amyloid	

formation,	 and	 our	method	 offered	 a	 relatively	 rapid	 way	 to	 obtain	 correlations	 of	 significance.	 The	

general	 approach	 established	 here	 could	 be	 used	 to	 mine	 databases	 for	 directions	 to	 take	 when	

considering	 future	 experiments.	 As	 science	 continues	 to	move	 to	 higher	 throughput	methods,	 higher	

dimensionality,	and	more	complicated	systems,	machine	learning	methods	have	flourished	at	the	cost	of	

physical/chemical	insight.	Here	we	have	used	a	prescription	to	open	the	black	box	and	have	offered	a	way	

to	gain	intuitive	insight	to	the	system	which	has	been	modeled,	while	retaining	the	full	power	of	machine	

learning’s	modeling	abilities.	
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