
BLOCK-RANDOMIZED STOCHASTIC PROXIMAL GRADIENT FOR CONSTRAINED
LOW-RANK TENSOR FACTORIZATION

Xiao Fu†, Cheng Gao†, Hoi-To Wai?, and Kejun Huang∗

†School of EECS, Oregon State University, Corvallis, OR, USA
?Department of SEEM, The Chinese University of Hong Kong, NT, Hong Kong

∗ Department of CISE, University of Florida, Gainesville, FL, USA

ABSTRACT

This work focuses on canonical polyadic decomposition (CPD) for
large-scale tensors. Many prior works rely on data sparsity to de-
velop scalable CPD algorithms, which are not suitable for handling
dense tensor, while dense tensors often arise in applications such as
image and video processing. As an alternative, stochastic algorithms
utilize data sampling to reduce per-iteration complexity and thus are
very scalable, even when handling dense tensors. However, existing
stochastic CPD algorithms are facing some challenges. For exam-
ple, some algorithms are based on randomly sampled tensor entries,
and thus each iteration can only updates a small portion of the la-
tent factors. This may result in slow improvement of the estimation
accuracy of the latent factors. In addition, the convergence proper-
ties of many stochastic CPD algorithms are unclear, perhaps because
CPD poses a hard nonconvex problem and is challenging for anal-
ysis under stochastic settings. In this work, we propose a stochas-
tic optimization strategy that can effectively circumvent the above
challenges. The proposed algorithm updates a whole latent factor at
each iteration using sampled fibers of a tensor, which can quickly
increase the estimation accuracy. The algorithm is flexible—many
commonly used regularizers and constraints can be easily incorpo-
rated in the computational framework. The algorithm is also backed
by a rigorous convergence theory. Simulations on large-scale dense
tensors are employed to showcase the effectiveness of the algorithm.

Index Terms— Canonical polyadic decomposition, PARAFAC,
stochastic optimization

1. INTRODUCTION

Canonical polyadic decomposition (CPD) is arguably the most
popular low-rank tensor factorization model. CPD has become a
workhorse for tensor data analytics in many fields, such as compu-
tational chemistry, social network mining, computer vision, topic
modeling, and hidden Markov model identification, just to name a
few [1–3]. Computing the CPD, however, poses a very hard opti-
mization problem. Many algorithms have been proposed through
the years, e.g., those in [4–6].

In the era of big data, one critical challenge is how to scale up
tensor factorization algorithms to keep pace with the overwhelm-
ingly large volume of data. A number of scalable tensor factorization
methods have been proposed in the literature [4, 5, 7, 8]. Many of
these methods are specialized to handle big sparse data—the major
insights there are to judiciously utilize zero elements in the data
to compute key operations in the classical alternating least squares

This work was supported in part by National Science Foundation under
Project NSF ECCS-1808159

(ALS) algorithm such as the Khatri-Rao product-matrix multipli-
cation. Another pressing challenges is to handle big dense ten-
sors, which frequently arise in timely applications such as medical
imaging, remote sensing, and computer vision. Under such circum-
stances, the sparsity-enabled efficient algorithms [4, 5, 7–9] are no
longer scalable. In fact, since big dense tensors typically cost a lot of
memory (e.g., a dense tensor with a size of 2, 000× 2, 000× 2, 000
occupies 57.52GB memory if saved as double-precision numbers),
it is even hard to load them in RAM of desktops or even servers.
Methods that can effectively handle such tensors with lightweight
updates and small footprint in memory are highly desired.

Stochastic sampling/sketching based methods are suitable for
handling large and dense tensors. These methods work in an iter-
ative manner. In each iteration, a small portion of the tensor entries
are sampled from the large tensor, and the latent factors are updated
using information extracted from the sampled piece—thereby nat-
urally admitting low per-iteration computational and memory com-
plexities. For example, [10, 11] both propose algorithms under this
framework, which scale very well. The challenge here is that ev-
ery tensor entry only contains information of a certain row of the
latent factors, and updating the entire latent factors may need a lot of
iterations. This may lead to slow improvement of the latent factor es-
timation accuracy. A recent work in [12] takes a different sampling
strategy—by sampling tensor fibers, an algorithm that ensures updat-
ing one entire latent factor in every iteration is proposed. However,
the algorithm in [12] works with at least as many fibers as the ten-
sor rank, which in some cases gives rise to much higher per-iteration
complexity relative to the algorithms in [10, 11]. In addition, the al-
gorithm in [12] cannot handle constraints or regularizations on the
latent factors, which are important considerations in practice. An-
other challenge is that convergence properties of sampling based al-
gorithms such as those in [10, 12] are often unclear.

In this work, we propose a new stochastic algorithm for com-
puting the CPD of large-scale dense tensors. Our sampling strategy
is similar to that in [12]—we sample tensor fibers in each iteration.
Our contributions consist of a number of key differences relative to
the prior work in [12]. First, unlike the method in [12], our method
allows the number of sampled fibers to be much fewer than that of
the tensor rank—which substantially reduces the per-iteration com-
plexity. Second, the proposed method can easily handle a series of
regularizations and constraints (e.g., nonnegativity and sparsity) that
are frequently used in practice. Third, by judiciously combining the
sampling strategy with a randomized block variable updating rule,
we show that the algorithm converges to a stationary point of the
problem of interest. Simulation results using large and dense tensors
show that the proposed method is very promising.

7485978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. PRELIMINARIES

An N th order tensor is a multiway array whose elements are in-
dexed by N indices, i.e., X(i1, . . . , iN) denotes one element of the
tensor X with a size of I1 × I2 × . . .× IN . Our interest lies in the
CPD of an N th order tensor, which refers to the following rank-F
parametrization of a tensor. Let A(n) be an In × F matrix,

X =

F∑
f=1

A(1)(:, f) ◦A(2)(:, f) ◦ . . . ◦A(N)(:, f), (1)

where “◦” denotes the outer product of vectors. An other represen-
tation for CPD is

X(i1, . . . , iN) =

F∑
f=1

N∏
n=1

A(n)(in, f) (2)

for in ∈ {1, . . . , In}. When F is the minimal integer that satisfies
the expression in (1), the right hand side in (1) is called the canoni-
cal polyadic decomposition of the tensor X . The CPD of a tensor is
essentially unique (meaning that the latent factors A(n)’s that con-
stitute the data X are unique up to some trivial ambiguities [1]).
This interesting and important property has enabled a plethora of
applications—also see [1] for a recent overview. CPD of a tensor is
often realized by optimizing a certain decomposition criterion, e.g.,

minimize
{A(n)}Nn=1

f({A(n)}) =
∥∥∥X− F∑

f=1

A(1)(:, f)◦. . .◦A(N)(:, f)
∥∥∥2
F
.

(3)

2.1. Unfolding, ALS and Variants

An important operation in tensor algebra is the so-called matri-
cization, or unfolding. The mode-n unfolding of a tensor [2],
denoted by X(n), is an Jn × In matrix where we have the re-
lation X(i1, . . . , iN) = X(n)(j, in), and we have j = 1 +∑N
k=1,k 6=n(ik − 1)Jk and Jk =

∏k−1
m=1,m 6=n Im. Equivalently,

the mode-n unfolding can be represented as

X(n) = H(n)A
>
(n), (4)

where the Jn × F matrix H(n) is defined as H(n) = A(1) �
A(n−1) �A(n+1) � . . . �A(N) = �Ni=1,i 6=nA(i) and � denotes
the Khatri-Rao product.

The above unfolding representations have enabled the famous
ALS algorithm [13], where one finds the CPD of a tensor by solving
the following cyclically:

A(n) ← argminA

∥∥X(n) −H(n)A
>∥∥2

F
. (5)

When the problem dimension is large (which often happens in appli-
cations such as medical imaging, remote sensing, and computer vi-
sion), solving the above problem can be computationally prohibitive.
For example, the product H>(n)X(n) that happens in every iteration
of ALS costs O(∏N

n=1 InF) flops. Exploiting sparsity in the ten-
sor data, many works have considered fast algorithms for computing
this product in judicious ways [7, 14]. Some recent methods com-
bine first-order optimization and ALS [4, 5] to make the algorithms
more flexible (in terms of incorporating constraints and regulariza-
tions) and scalable—but the complexity orders of those algorithms
often scale similarly as that of ALS.

Fig. 1. From left to right: mode-1, 2, 3 tensor fibers of a third-order
tensor, respectively.

2.2. Sampling/Sketching and Stochastic Optimization
When the tensor is large and dense, working with the entire dataset
could be computationally and memory-wise expensive. A popular
workaround is to apply stochastic approximation (SA)—i.e., sam-
pling parts of the data at random and use the sampled piece to update
the latent factors. By (2), Eq. (3) can be rewritten as

minimize
{A(n)}

(1/T)
∑
i1,...,iN

fi1,...,iN
(
{A(n)}

)
, (6)

where T =
∏N
n=1 In and

fi1,...,iN ({A(n)}) =
(
X(i1, . . . , iN)−

F∑
f=1

N∏
n=1

A(n)(in, f)
)2
.

The objective function in (6) can be understood as the empirical risk
of SA. Using this observation, the algorithms in [10, 11] randomly
sample a subset set of {(i1, . . . , iN)} and update the pertinent parts
of the latent factors (note that the (i1, . . . , iN)th entry of tensor con-
tains the information of A(n)(in, :) for n = 1, . . . , N) using the
sampled entries of the tensor. For example, [11] uses a stochastic
gradient (SG) based approach and update A(n)(in, :). The sampling
method in [10] is similar, while the update is not gradient-based but
Gauss-Newton or ALS applied to the sampled set of entries (or, sub-
tensors, to be precise). The upshot of this line of work is that the
per-iteration complexity can be quite low. The downside, however,
is that in every iteration only a small part of the A(n)’s (i.e., some
rows) are updated—which may result in slow improvement of esti-
mation accuracy of the latent factors. In addition, the convergence
properties of these algorithms are unclear.

An alternative [12] to the SA based methods above is to leverage
the tensor data structure by considering randomly sampled fibers of
tensors. Note that a mode-n fiber of X (cf. Fig. 1) is a row of the
mode-n unfolding X(n) [2]. Now, assuming that one samples a set
of mode-n fibers indexed by Fn ⊂ {1, ..., Jn}, then A(n) can be
updated by solving a ‘sketched version’ of Problem (5):

A(n) ← argmin
A

∥∥X(n)(Fn, :)−H(n)(Fn, :)A>
∥∥2
F
, (7)

If |Fn| ≥ F , then H(n)(Fn, :) can be invertible and the sketched
system of linear equations X(n)(Fn, :) ≈ H(n)(Fn, :)A>(n) is
over-determined. Hence, one can update A(n) by solving the |Fn|
dimensional linear system A>(n) ← H(n)(Fn, :)†X(n)(Fn, :).
Similar to the ALS algorithm, after updating A(n), the algorithm
moves to mode-(n + 1) fibers and repeats the same for updating
A(n+1). Intuitively, the method in [12] can be more efficient than
SG based methods in terms of estimating the A(n)’s. The downside
is that it needs to sample at least F fibers for each update, and F
can be large. In addition, the update in (5) can only handle uncon-
strained/unregularized tensor decomposition, while incorporating
constraints/regularizations is often critical in practice. Convergence
properties of the method are also unclear.

7486

3. PROPOSED ALGORITHM
In this work, we combine ALS and fiber sampling, but allow |Fn| �
F—which keeps the per-iteration complexity low. As we show be-
low, the proposed algorithm can easily handle a variety of constraints
and regularizations that are commonly used in signal processing and
data analytics. In addition, we provide convergence analysis to back
up the proposed algorithm.

3.1. Basic Idea
We propose to tackle (3) by combining SA and exploiting the tensor
fiber structure. Instead of exactly solving the least squares subprob-
lems (5) in each iteration, we update A(n) using a doubly stochastic
procedure—specifically, at iteration r, we first sample uniformly at
random a mode index n ∈ {1, ..., N}, then we sample uniformly
a set of mode-n fibers that is indexed by Fn ⊂ {1, ..., Jn}, with
|Fn| = F . Let G(r) ∈ RI1×F × · · · × RIN×F be a collection of
matrices, representing the stochastic gradient as:

G
(r)

(n) =
1

|Fn|
(
A

(r)

(n)H
>
(n)(Fn)H(n)(Fn)−X>(n)(Fn)H(n)(Fn)

)
G

(r)

(n′) = 0, n′ 6= n, (8)

where G
(r)

(n) denotes the nth block of G(r), and we used the
shorthand notations X(n)(Fn) = X(n)(Fn, :) and H(n)(Fn) =
H(n)(Fn, :) The latent variables are updated by

A
(r+1)

(n) ← A
(r)

(n) − α
(r)G

(r)

(n), n = 1, ..., N. (9)

One observation is that G(r)

(n) is simply an SA applied to the full gra-
dient of Problem (3) w.r.t. the chosen mode-n variable A(n), and the
update is an iteration of the classical SG algorithm (with a minibatch
size |Fn|) for solving the problem in (5).

The proposed update is very efficient, since the most resource-
consuming update H>(n)X(n) in algorithms such as those in [4, 5]
is avoided. The corresponding part X>(n)(Fn, :)H(n)(Fn, :) costs
only O(|Fn|FIn) flops—and |Fn| = F is under our control. Note
that the first step in this procedure is different from standard ALS-
type algorithms that update the block variables A(n) cyclically in-
stead of updating a randomly sampled block. As we show next, this
modification will greatly simplify our convergence analysis.

3.2. Extension
In many applications the following regularized version of tensor de-
composition is of interest:

minimize
{A(n)}Nn=1

f({A(n)}) +
N∑
n=1

rn(A(n)) s.t. A(n) ∈ An, (10)

where f({A(n)}) is the objective function of (3), rn(A(n)) de-
notes a structure-promoting regularizer on A(n), e.g., rn(A(n)) =
‖vec(A(n))‖1 for promoting sparsity of A(n), and An denotes a
constraint set of A(n) (e.g., An = RIn×F+). Note that A(n) ∈ An
can also be written as a regularization rn

(
A(n)

)
if rn(·) is defined

as the indicator function of set An. Using the same fiber sampling
strategy as in the previous subsection, we update A(n) by

A
(r+1)

(n) ← arg min
A(n)

∥∥A(n) −
(
A

(r)

(n) − α
(r)G

(r)

(n)

)∥∥2
F

+ rn
(
A(n)

)
(11a)

A
(r+1)

(n′) ← A
(r)

(n′), n′ 6= n (11b)

Algorithm 1: BR-SGD
input : N -way tensor X ∈ RI1×...×IN ; rank F ; sample size

F , initialization {A(0)

(n)}
1 r ← 0;
2 repeat
3 uniformly sample n from {1, . . . , N}, then sample Fn

from {1, . . . , Jn} with |Fn| = F ;
4 form the stochastic gradient G(r) ← (8);
5 update A

(r+1)

(n) ← (11a), A(r+1)

(n′) ← A
(r)

(n′) for n′ 6= n;
6 r ← r + 1;
7 until some stopping criterion is reached;

output: {A(r)

(n)}Nn=1

Problem (11a) is also known as the proximal operator—and many
rn(·)’s admit very simple closed-form solutions for their respective
proximal operators, e.g., when rn(·) is the indicator function of the
nonnegative orthant and rn(·) = ‖ · ‖1; see more details in [4, 15].
The complexity of computing the above is similar to that of the plain
update in (9), and thus is also computationally efficient. An overview
of the proposed algorithm can be found in algorithm 1, which we
named as Block-Randomized SGD (BR-SGD).
3.3. Convergence Properties
The proposed algorithm admits a low per-iteration complexity and
is flexible in handling constraints and regularizations. These are im-
portant practical considerations. On the other hand, since we tackle
the CPD problem via sample approximations, a natural question is
does the algorithm even converge? The answer is affirmative, under
some conditions and carefully selected step size α(r).

We first show that the stochastic gradient oracle in (8) is unbi-
ased. LetB(r) be the filtration of random variables {{A(r′)

(n) }Nn=1}(r)r′=0

during the iterations of BR-SGD, for any n = 1, ..., N , we have

G
(r)

(n) = E
[
G

(r)

(n) |B
(r)] = E[G(r)

(n) |{A
(r)

(n)}
N
n=1

]
= En′

[
1(Jn′
F

)(A(r)

(n′)H
>
(n′)H(n′) −X>(n′)H(n′)

]
(a)
=

N∑
n′=1

δ(n′ − n)
N
(Jn′
F

) (A(r)

(n′)H
>
(n′)H(n′) −X>(n′)H(n′)

)
=

1

N
(Jn
F

)(A(r)

(n)H
>
(n)H(n) −X>(n)H(n)

)
(12)

where δ(·) is the Dirac function and the expectation in (a) is taken
over the possible modes n′. The last equality shows that G

(r)

(n) is a
scaled version of the gradient of the objective function of (3) taken
w.r.t. A(r)

(n). Hence, the block sampling step together with fiber sam-
pling entails us an easy way to estimate the full gradient w.r.t. all the
latent factors in an unbiased manner. Based on this observation, we
first have the following convergence property:

Proposition 1 Consider the case with rn(·) = 0. Assume that A(r)

(n)

is bounded for all r, n; in particular, we have σmax(H
(r)

(n))
2 ≤

L
(r)

(n) ≤ L where H
(r)

(n) = �Nn′=1,n′ 6=nA
(r)

(n′). If we set {α(r)} as

a diminishing sequence such that
∑
r α

(r) =∞ and
∑
r(α

(r))2 <
∞, the solution sequence produced by BR-SGD satisfies:

lim
r→∞

inf E

[∥∥∥∇A(n)
f
(
{A(r)}

)∥∥∥2]→ 0, ∀n.

7487

The proof is omitted due to page limitations. The above proposition
implies that there exists a subsequence of solution that converges
to a stationary point in expectation. We should mention that the
SGD/stochastic proximal gradient type update and the block sam-
pling step are essential for establishing convergence—and using the
exact solution to (7) as in [12] may not have such convergence prop-
erties. Another remark is that the assumption σmax(H

(r)

(n)) being
bounded through all the iterations may be hard to check or guaran-
tee in theory, but imposing constraints or regularizations on A(n)’s
can prevent unboundedness from happening in practice. The case
for a variety of rn(·) 6= 0 can be shown in a similar way, with more
cumbersome specifications for the optimality conditions, and thus is
skipped for saving space.

4. SIMULATION AND CONCLUSION
In this section, we use simulations to showcase the effectiveness
of the proposed algorithm. Throughout this section, we use syn-
thetic tensors whose latent factors are drawn from i.i.d. uniform
distribution in between 0 and 1. This way, large and dense ten-
sors can be created. We test the algorithms on tensors having a size
of 300 × 300 × 300, which means that the tensors admit 9 × 106

real-valued elements. Different F ’s are tested. As baselines, a num-
ber of effective CPD algorithms are also tested on the same tensors,
namely, the AO-ADMM algorithm [16], the APG algorithm [5], the
CPRAND algorithm [12], and the RBS algorithm [10]. Note that
BR-SGD, CPRAND and RBS are sampling based stochastic algo-
rithms, while AO-ADMM and APG work with the whole data. For
BR-SGD, we use |Fn| = 9 and set the step size to be β/rα, where r
is the number of iterations, α = 10−6 and β typically takes a value
in between 0.001 and 0.1. For CPRAND, we follow the instruction
in the original paper [12] and sample 10F log2 F fibers for each up-
date. For RBS, we use the implementation in Tensorlab [17]. RBS
samples s × s × s sub-tensors from the original tensor in each it-
eration. We set s = 20 and 40 respectively, so that the numbers
of sampled entries by RBS in the two cases are roughly 3 and 23
times of that sampled by BR-SGD (i.e., 9 × 300), respectively. All
the algorithms above work under nonnegativity constraints (except
CPRAND and RBS which cannot handle constraints) .

To measure performance, we employ two metrics. The first one
is cost value—since all the algorithms work with the same objective
function. The second one is the estimation accuracy of the latent
factors, A(n) for n = 1, . . . , N . The accuracy is measured by the
mean squared error (MSE) which is as defined in [18, 19]. All the
simulations are conducted in Matlab. All the results are averaged
from 10 random trials with different tensors.

Fig. 2 shows the cost value against the number of flops used
(measured by the number of flops needed to compute a full gradient
w.r.t. A(n) in (12)). In this case, we set F = 200—which is con-
sidered a relatively easy case since F ≤ In. Nevertheless, since the
size of the tensor is large, such cases are of interest. One can see that
the number of flops that the proposed method needs to decrease the
cost value to a satisfactory level is substantially smaller than those
needed by most of the baseline algorithms. The CPRAND algorithm
decreases the cost value at a similar rate as that of BR-SGD, possibly
because they use similar sampling strategies.

Fig. 3 shows the corresponding MSE performance in the same
simulation. Interestingly, the MSE performance of CPRAND is not
as good as in decreasing the objective value, suggesting the algo-
rithm is more likely prone to suboptimal solutions. Nevertheless, the
proposed BR-SGD and CPRAND are still the best and second best-
performing algorithms. This echoes our comment that fiber sam-
pling may help improve estimation accuracy of A(n)’s more quickly

0 20 40 60
number of gradients

10-3

10-2

10-1

100

101

C
os

t f
un

ct
io

n
va

lu
e

BR-SGD (= 0.05)
AO-ADMM
APG
CPRAND
RBS(40)
RBS(20)

Fig. 2. Cost value against flops needed (measured by number of
gradients in (12)) for the algorithms under test; F = 200.

18 36
number of gradients

10-3

10-2

10-1

100

M
S

E

APG
AO-ADMM
BR-SGD
RBS(s = 40)
RBS(s = 20)
CPRAND

Fig. 3. Average MSE of the latent factors against flops needed for
the algorithms under test. F = 200;

compared to entry sampling.
Table 1 presents the MSE performance of the algorithms when

F changes. All the algorithms are stopped when the number of flops
reaches the amount of flops needed for computing 60 gradients w.r.t.
a single latent factor A(n). Note that we dropped CPRAND in this
simulation since it is too slow when F becomes large. One can see
that the proposed method works remarkably well under all the ranks
under test, even when F largely exceeds In.

To conclude, we proposed a block-randomized stochastic gra-
dient based CPD algorithm for large-scale dense tensors. The al-
gorithm works under a doubly stochastic manner, which randomly
samples a mode and then a set of fibers for updating the latent fac-
tors. The algorithm has a series of nice features including being able
to quickly improve estimation accuracy of the latent factors and hav-
ing rigorous convergence guarantees. Simulation results show that
the algorithm outperforms a number of state-of-art CPD algorithms
when dealing with large dense tensors.

Fig. 2. Cost value against flops needed (measured by number of
gradients in (12)) for the algorithms under test; F = 200.

The proof is omitted due to page limitations. The above proposition
implies that there exists a subsequence of solution that converges
to a stationary point in expectation. We should mention that the
SGD/stochastic proximal gradient type update and the block sam-
pling step are essential for establishing convergence—and using the
exact solution to (7) as in [12] may not have such convergence prop-
erties. Another remark is that the assumption σmax(H

(r)

(n)) being
bounded through all the iterations may be hard to check or guaran-
tee in theory, but imposing constraints or regularizations on A(n)’s
can prevent unboundedness from happening in practice. The case
for a variety of rn(·) 6= 0 can be shown in a similar way, with more
cumbersome specifications for the optimality conditions, and thus is
skipped for saving space.

4. SIMULATION AND CONCLUSION
In this section, we use simulations to showcase the effectiveness
of the proposed algorithm. Throughout this section, we use syn-
thetic tensors whose latent factors are drawn from i.i.d. uniform
distribution in between 0 and 1. This way, large and dense ten-
sors can be created. We test the algorithms on tensors having a size
of 300 × 300 × 300, which means that the tensors admit 9 × 106

real-valued elements. Different F ’s are tested. As baselines, a num-
ber of effective CPD algorithms are also tested on the same tensors,
namely, the AO-ADMM algorithm [16], the APG algorithm [5], the
CPRAND algorithm [12], and the RBS algorithm [10]. Note that
BR-SGD, CPRAND and RBS are sampling based stochastic algo-
rithms, while AO-ADMM and APG work with the whole data. For
BR-SGD, we use |Fn| = 9 and set the step size to be β/rα, where r
is the number of iterations, α = 10−6 and β typically takes a value
in between 0.001 and 0.1. For CPRAND, we follow the instruction
in the original paper [12] and sample 10F log2 F fibers for each up-
date. For RBS, we use the implementation in Tensorlab [17]. RBS
samples s × s × s sub-tensors from the original tensor in each it-
eration. We set s = 20 and 40 respectively, so that the numbers
of sampled entries by RBS in the two cases are roughly 3 and 23
times of that sampled by BR-SGD (i.e., 9 × 300), respectively. All
the algorithms above work under nonnegativity constraints (except
CPRAND and RBS which cannot handle constraints) .

To measure performance, we employ two metrics. The first one
is cost value—since all the algorithms work with the same objective
function. The second one is the estimation accuracy of the latent
factors, A(n) for n = 1, . . . , N . The accuracy is measured by the
mean squared error (MSE) which is as defined in [18, 19]. All the
simulations are conducted in Matlab. All the results are averaged
from 10 random trials with different tensors.

18 36
number of gradients

10-3

10-2

10-1

100

M
S

E

APG
AO-ADMM
BR-SGD
RBS(s = 40)
RBS(s = 20)
CPRAND

Fig. 3. Average MSE of the latent factors against flops needed for
the algorithms under test. F = 200;

Table 1. MSE of the latent factors under different ranks after 60 full
gradients of w.r.t. A(n); In = 300, N = 3.

F 200 300 400 500
AO-ADMM 0.2669 0.2753 0.2798 0.2849
APG 0.4629 0.4942 0.5207 0.5433
BR-SGD (Proposed) 3.9089× 10−4 0.0013 0.0019 0.0075
RBS(s =40) 0.1388 0.2664 0.2799 0.2841
RBS(s =20) 0.3510 0.3856 0.6814 0.7350

Fig. 2 shows the cost value against the number of flops used
(measured by the number of flops needed to compute a full gradient
w.r.t. A(n) in (12)). In this case, we set F = 200—which is con-
sidered a relatively easy case since F ≤ In. Nevertheless, since the
size of the tensor is large, such cases are of interest. One can see that
the number of flops that the proposed method needs to decrease the
cost value to a satisfactory level is substantially smaller than those
needed by the baseline algorithms. The CPRAND algorithm also de-
creases the cost value faster than other baselines, possibly because it
uses a similar sampling strategy as that of BR-SGD.

Fig. 3 shows the corresponding MSE performance in the same
simulation. The proposed BR-SGD and CPRAND are still the best
and second best-performing algorithms. This echoes our comment
that fiber sampling may help improve the estimation accuracy of
A(n)’s more quickly compared to entry sampling. In particular, BR-
SGD outputs an MSE that is at the order of 10−3 after using flops
equivalent to that of 18 gradients w.r.t. a single A(n), while the best
baseline’s (i.e., CPRAND) MSE is still above 10−2 using the same
amount of flops.

Table 1 presents the MSE performance of the algorithms when
F changes. All the algorithms are stopped when the number of flops
reaches the amount of flops needed for computing 60 gradients w.r.t.
a single latent factor A(n). Note that we dropped CPRAND in this
simulation since it is too slow when F becomes large. One can see
that the proposed method works remarkably well under all the ranks
under test, even when F largely exceeds In.

To conclude, we proposed a block-randomized stochastic gra-
dient based CPD algorithm for large-scale dense tensors. The al-
gorithm works under a doubly stochastic manner, which randomly
samples a mode and then a set of fibers for updating the latent fac-
tors. The algorithm has a series of nice features including being able
to quickly improve estimation accuracy of the latent factors and hav-
ing rigorous convergence guarantees. Simulation results show that
the algorithm outperforms a number of state-of-art CPD algorithms
when dealing with large dense tensors.

7488

5. REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Trans. Signal Pro-
cess., vol. 65, no. 13, pp. 3551–3582.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and ap-
plications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[3] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Ten-
sors for data mining and data fusion: Models, applications, and
scalable algorithms,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8, no. 2, p. 16, 2017.

[4] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and
efficient algorithmic framework for constrained matrix and ten-
sor factorization,” IEEE Trans. Signal Process., vol. 64, no. 19,
pp. 5052–5065, 2016.

[5] Y. Xu and W. Yin, “A block coordinate descent method for
regularized multiconvex optimization with applications to non-
negative tensor factorization and completion,” SIAM Journal
on imaging sciences, vol. 6, no. 3, pp. 1758–1789, 2013.

[6] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms
for constrained tensor factorization via alternating direction
method of multipliers,” IEEE Trans. Signal Process., vol. 63,
no. 20, pp. 5450–5463, 2015.

[7] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gi-
gatensor: scaling tensor analysis up by 100 times-algorithms
and discoveries,” in Proc. ACM SIGKDD 2012, 2012, pp. 316–
324.

[8] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Par-
cube: Sparse parallelizable tensor decompositions,” in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2012, pp. 521–536.

[9] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W.-K. Ma,
“Hyperspectral super-resolution: A coupled tensor factoriza-
tion approach,” IEEE Trans. Signal Process. to appear, 2018.

[10] N. Vervliet and L. De Lathauwer, “A randomized block sam-
pling approach to canonical polyadic decomposition of large-
scale tensors,” IEEE J. Sel. Topics Signal Process., vol. 10,
no. 2, pp. 284–295, 2016.

[11] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Pa-
palexakis, and E. P. Xing, “Flexifact: Scalable flexible factor-
ization of coupled tensors on hadoop,” in Proc. SIAM SDM
2014. SIAM, 2014, pp. 109–117.

[12] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical ran-
domized cp tensor decomposition,” SIAM Journal on Matrix
Analysis and Applications, vol. 39, no. 2, pp. 876–901, 2018.

[13] J. D. Carroll and J.-J. Chang, “Analysis of individual differ-
ences in multidimensional scaling via an N-way generalization
of “Eckart-Young” decomposition,” Psychometrika, vol. 35,
no. 3, pp. 283–319, 1970.

[14] E. E. Papalexakis, U. Kang, C. Faloutsos, N. D. Sidiropou-
los, and A. Harpale, “Large Scale Tensor Decompositions: Al-
gorithmic Developments and Applications,” IEEE Data En-
gineering Bulletin, Special Issue on Social Media and Data
Analysis, vol. 36, no. 3, pp. 59–66, Sep. 2013.

[15] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations
and Trends in optimization, vol. 1, no. 3, pp. 123–231, 2013.

[16] K. Huang, N. Sidiropoulos, E. Papalexakis, C. Faloutsos,
P. Talukdar, and T. Mitchell, “Principled neuro-functional con-
nectivity discovery,” in Proc. SIAM SDM 2015, 2015.

[17] N. Vervliet, O. Debals, and L. De Lathauwer, “Tensorlab 3.0–
numerical optimization strategies for large-scale constrained
and coupled matrix/tensor factorization,” in Proc. Asilomar
2016, 2016, pp. 1733–1738.

[18] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, “Blind
separation of quasi-stationary sources: Exploiting convex ge-
ometry in covariance domain,” IEEE Trans. Signal Process.,
vol. 63, no. 9, pp. 2306–2320, May 2015.

[19] L. D. Lathauwer and J. Castaing, “Blind identification of un-
derdetermined mixtures by simultaneous matrix diagonaliza-
tion,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1096
–1105, Mar. 2008.

7489

