

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 57

An attempt to replace the predicate WaterLevel(t, l) by equality using a function, e.g. “WaterLevel(t) = l,” does not work under
the standard stable model semantics: “not ∼(WaterLevel(t+1) = l)” is not even syntactically valid because strong negation
precedes equality, rather than an ordinary ASP atom. Besides, WaterLevel(t) = l is false under any Herbrand interpretation
unless l is the term WaterLevel(t) itself, implying that WaterLevel(t) =WaterLevel(t + 1) is always false.

While semantically correct, a computational drawback of using a rule like (1) is that a large set of ground rules needs
to be generated when the water level ranges over a large integer domain. Moreover, real numbers are not supported at all
because grounding cannot even be applied.

To alleviate the “grounding problem,” there have been recent efforts in integrating ASP with constraint solving, where
functional fluents can be represented by constraint variables and computed without fully grounding their value variables,
e.g., Mellarkod et al. [44], Gebser et al. [21], Balduccini [3], Janhunen et al. [25]. Constraint ASP solvers have demonstrated
significantly better performance over traditional ASP solvers on many domains involving a large set of numbers, but they do
not provide a fully satisfactory solution to the problem above because the concept of a function is not sufficiently general.
For example, one may be tempted to rewrite rule (1) in the language of a constraint ASP solver, such as clingcon

1—a
combination of ASP solver clingo and constraint solver gecode, as

WaterLevel(t+1)=$ l ←WaterLevel(t)=$ l, not ¬(WaterLevel(t+1)=$ l) (2)

where =$ indicates that the atom containing it is a constraint to be processed by constraint solver gecode and not to be
processed by ASP solver clingo. The constraint variable WaterLevel(t) is essentially a function that is mapped to a numeric
value. However, this idea does not work either.2 While it is possible to say that WaterLevel (t) = 10 and WaterLevel(t + 1) =
WaterLevel (t) are true in the language of clingcon, negation as failure (not) in front of constraints does not work in the
same way as it does when it is in front of standard ASP atoms. Indeed, rule (2) has no effect on characterizing the default
value of WaterLevel(t) and can be dropped without affecting answer sets. This is because nonmonotonicity of the stable
model semantics (as well as almost all extensions, including those of Constraint ASP) is related to the minimality condition
on predicates but has nothing to do with functions. Thus, unlike with predicates, they do not allow for directly asserting
that functions have default values. Such an asymmetric treatment between functions and predicates in Constraint ASP makes
the language of Constraint ASP less general than one might desire.

It is apparent that one of the main obstacles encountered in the above work is due to an insufficient level of generality
regarding functions. Recently, the problem has been addressed in another, independent line of research to allow general
first-order functions in ASP, although it was not motivated by efficient computation. Lifschitz [39] called such functions
“intensional functions”—functions whose values can be described by logic programs, rather than being pre-defined, thus
allowing for defeasible reasoning involving functions in accordance with the stable model semantics. In Cabalar [12], based
on the notions of partial functions and partial satisfaction, functional stable models were defined by imposing minimality on
the values of partial functions. The semantics presented in Balduccini [4] is a special case of the semantics from Cabalar [12]

as shown in Bartholomew and Lee [9]. On the other hand, intensional functions defined in Lifschitz [39] do not require the
rather complex notions of partial functions and partial satisfaction but instead impose the uniqueness of values on total
functions similar to the way nonmonotonic causal theories [24] are defined. This led to a simpler semantics, but as we show
later in this paper, the semantics is not a proper generalization of the first-order stable model semantics from Ferraris et
al. [16], and moreover, it exhibits some unintuitive behavior.

We present an alternative approach to incorporating intensional functions into the stable model semantics by a sim-

ple modification to the first-order stable model semantics from Ferraris et al. [16]. It turns out that unlike the semantics
from Lifschitz [39], this formalism, which we call “Functional Stable Model Semantics (FSM),” is a proper generalization of
the language from Ferraris et al. [16], and avoids the unintuitive cases that the language from Lifschitz [39] encounters. Fur-
thermore, unlike the one from Cabalar [12], it does not require the extended notion of partial interpretations that deviates
from the notion of classical interpretations. Nevertheless, the semantics from Cabalar [12] can be embedded into FSM by
simulating partial interpretations by total interpretations with auxiliary constants [9].

Unlike the semantics from Cabalar [12], as FSM properly extends the notion of functions in classical logic, its restriction
to background theories provides a straightforward, seamless integration of ASP and Satisfiability Modulo Theories (SMT),
which we call “Answer Set Programming Modulo Theories (ASPMT),” analogous to the known relationship between first-
order logic and SMT. SMT is a generalization of SAT and, at the same time, a special case of first-order logic in which certain
predicate and function symbols in background theories have fixed interpretations. Such background theories include differ-
ence logic, linear arithmetic, arrays, and non-linear real-valued functions. Likewise, as Fig. 1 shows, ASPMT can be viewed
as a generalization of the traditional ASP and, at the same time, a special case of FSM in which certain background theories
are assumed as in SMT. On the other hand, unlike SMT, ASPMT is not only motivated by computational efficiency, but also

1 http://potassco .sourceforge .net/.
2 However, there is rather an indirect way to represent the assertion in the language of clingcon using Ab predicates:

WaterLevel(t + 1)=$ l ←WaterLevel(t)=$ l,not Ab(t).

.

58 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Monotonic Nonmonotonic

FOL FSM

SMT ASP Modulo Theories

SAT Traditional ASP

Fig. 1. Analogy between SMT and ASPMT.

by expressive knowledge representation. This is due to the fact that ASPMT is a natural extension of both ASP and SMT.
Using SMT solving techniques involving functions, ASPMT can be applied to domains containing real numbers and alleviates
the grounding problem. It turns out that constraint ASP can be viewed as a special case of ASPMT in which functions are
limited to non-intensional ones.

The paper is organized as follows. Section 2 reviews the stable model semantics from Ferraris et al. [16], which Sec-
tion 3 extends to allow intensional functions. Section 4 shows that many known properties of the stable model semantics
are naturally established for this extension. Section 5 shows how to eliminate intensional predicates in favor of intensional
functions, and Section 6 shows the opposite elimination under a specific condition. Section 7 compares FSM to other ap-
proaches to defining intensional functions. Section 8 extends FSM to be many-sorted, and, based on it, Section 9 defines
the concept of ASPMT as a special case of many-sorted FSM, and presents its reduction to SMT under certain conditions.
Section 10 compares ASPMT to other approaches to combining ASP with CSP and SMT.

This article is an extended version of the conference papers [6,7].3

2. Review: first-order stable model semantics with intensional predicates

The proposed definition of a stable model in this paper is a direct generalization of the one from Ferraris et al. [16],
which we review in this section. Stable models are defined as classical models that satisfy a certain “stability” condition,
which is expressed by ensuring a minimality condition on predicates.

The syntax of formulas is defined the same as in the standard first-order logic. A signature consists of function constants
and predicate constants. Function constants of arity 0 are called object constants, and predicate constants of arity 0 are called
propositional constants. A term of a signature σ is formed from object constants of σ and object variables using function
constants of σ . An atom of σ is an n-ary predicate constant followed by a list of n terms; atomic formulas of σ are atoms
of σ , equalities between terms of σ , and the 0-place connective ⊥ (falsity). First-order formulas of σ are built from atomic
formulas of σ using the primitive propositional connectives ⊥, ∧, ∨, →, as well as quantifiers ∀, ∃. We understand ¬F

as an abbreviation of F → ⊥; symbol � stands for ⊥ → ⊥, and F ↔ G stands for (F → G) ∧ (G → F), and t1
= t2 stands
for ¬(t1 = t2).

In Ferraris et al. [16], stable models are defined in terms of the SM operator, whose definition is similar to the CIRC
operator used for defining circumscription [43,35]. As in circumscription, for predicate symbols (constants or variables) u
and p, expression u ≤ p is defined as shorthand for ∀x(u(x) → p(x)); expression u = p is defined as ∀x(u(x) ↔ p(x)). For
lists of predicate symbols u = (u1, . . . , un) and p = (p1, . . . , pn), expression u ≤ p is defined as (u1 ≤ p1)∧ · · · ∧ (un ≤ pn),
expression u = p is defined as (u1 = p1)∧ · · · ∧ (un = pn), and expression u < p is defined as u≤ p∧¬(u= p).

For any first-order formula F and any finite list of predicate constants p = (p1, . . . , pn), formula SM[F ; p] is defined as

F ∧¬∃̂p(p̂ < p∧ F ∗(̂p)),

where ̂p is a list of distinct predicate variables p̂1, . . . , ̂pn , and F ∗(̂p) is defined recursively as follows:

• When F is an atomic formula, F ∗(̂p) is a formula obtained from F by replacing all predicate constants p in it with the
corresponding predicate variables from ̂p;

• (G ∧ H)∗(̂p) = G∗(̂p) ∧ H∗(̂p);

• (G ∨ H)∗(̂p) = G∗(̂p) ∨ H∗(̂p);

• (G → H)∗(̂p) = (G∗(̂p) → H∗(̂p)) ∧ (G → H);

• (∀xG)∗(̂p) = ∀xG∗(̂p);

• (∃xG)∗(̂p) = ∃xG∗(̂p).

The predicate constants in p are called intensional: these are the predicates that we “intend to characterize” by F .4 When F
is a sentence (i.e., formula without free variables), the models of the second-order sentence SM[F ; p] are called the stable
models of F relative to p: they are the models of F that are “stable” on p.

Answer sets are defined as a special class of first-order stable models as follows. By σ (F) we denote the signature
consisting of the function and predicate constants occurring in F . If F contains at least one object constant, an Herbrand

3 Besides the complete proofs, this article contains some new results, such as the non-existence of translation from non-c-plain formulas to c-plain
formulas, the usefulness of non-c-plain formulas, reducibility of many-sorted FSM to unsorted FSM, and more complete formal comparison with related
works.
4 Intensional predicates are analogous to output predicates in Datalog, and non-intensional predicates are analogous to input predicates in Datalog [38].

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 59

interpretation of σ (F) that satisfies SM[F ; p] is called an answer set of F , where p is the list of all predicate constants
in σ (F). The answer sets of a logic program � are defined as the answer sets of the FOL-representation of �, which is
obtained from � by

• replacing every comma by conjunction and every not by ¬5

• turning every rule Head← Body into a formula rewriting it as the implication Body→ Head, and
• forming the conjunction of the universal closures of these formulas.

For example, the FOL-representation of the program

p(a)

q(b)

r(x) ← p(x),not q(x)

is

p(a)∧ q(b)∧ ∀x((p(x) ∧¬q(x)) → r(x)) (3)

and SM[F ; p, q, r] is

p(a)∧ q(b)∧ ∀x((p(x) ∧¬q(x)) → r(x))

∧¬∃uvw
((

(u, v, w) < (p,q, r)
)
∧ u(a)∧ v(b)

∧∀x
((

(u(x) ∧ (¬v(x)∧¬q(x))) → w(x)
)
∧

(
(p(x) ∧¬q(x)) → r(x)

)))
,

which is equivalent to the first-order sentence

∀x(p(x) ↔ x= a)∧ ∀x(q(x) ↔ x= b)∧ ∀x(r(x) ↔ (p(x) ∧¬q(x))) (4)

[14, Example 3]. The stable models of F are any first-order models of (4). The only answer set of F is the Herbrand model
{p(a), q(b), r(a)}.

Remark 1. According to Ferraris et al. [16], this definition of an answer set, when applied to the syntax of logic programs,
is equivalent to the traditional definition of an answer set that is based on grounding and fixpoints as in Gelfond and
Lifschitz [23].

It is also noted in Ferraris et al. [16] that if we replace F ∗(̂p) with a simpler expression F (̂p) (which substitutes p̂ for
p), then the definition of SM[F ; p] reduces to the definition of CIRC[F ; p].

The definition of a stable model above is not limited to Herbrand models, so it allows general functions as in classical
first-order logic. Indeed, in Section 10, we show that the previous approaches to combining answer set programs and
constraint processing can be viewed as special cases of first-order formulas under the stable model semantics. However,
these functions are “extensional,” and cannot cover examples like (2).

3. Extending first-order stable model semantics to allow intensional functions

In this section, we generalize the first-order stable model semantics to allow intensional functions in addition to inten-
sional predicates.

3.1. Second-order logic characterization of the stable model semantics

We extend expression u = c as ∀x(u(x) = c(x)) if u and c are function symbols. For lists of predicate and function
symbols u = (u1, . . . , un) and c = (c1, . . . , cn), expression u = c is defined as (u1 = c1)∧ · · · ∧ (un = cn).

Let c be a list of distinct predicate and function constants, and let ̂c be a list of distinct predicate and function variables
corresponding to c. By cpred (cfunc , respectively) we mean the list of all predicate constants (function constants, respectively)
in c, and by ̂cpred (̂cfunc , respectively) the list of the corresponding predicate variables (function variables, respectively) in ̂c.
For any formula F , expression SM[F ; c] is defined as

F ∧¬∃̂c(ĉ < c∧ F ∗(ĉ)), (5)

where ̂c < c is shorthand for (̂cpred ≤ cpred) ∧¬(̂c= c), and F ∗(̂c) is defined recursively in the same way as F ∗(̂p) except
for the base case, which is defined as follows.

5 Strong negation can be incorporated by introducing “negative” predicates as in [16, Section 8], or can be represented by a Boolean function with the
value false [8]. For example, ∼ p can be represented by p =false.

60 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

• When F is an atomic formula, F ∗(̂c) is F ′ ∧ F where F ′ is obtained from F by replacing all (predicate and function)
constants c in it with the corresponding variables from ̂c.

As before, we say that an interpretation I that satisfies SM[F ; c] a stable model of F relative to c. Clearly, every stable
model of F is a model of F but not vice versa.

Remark 2. It is easy to see that the definition of a stable model above is a proper generalization of the one from Ferraris et
al. [16], also reviewed in the previous section: the definition of SM[F ; c] in this section reduces to the one in the previous
section when all intensional constants in c are predicate constants only.

When all intensional constants are function constants only, the definition of SM[F ; c] is similar to the first-order non-
monotonic causal theories defined in [36]. The only difference is that, instead of F ∗(̂c), a different expression is used there.
A more detailed comparison is given in Section 7.1.

We will often write F → G as G ← F and identify a finite set of formulas with the conjunction of the universal closures
of each formula in that set.

For any formula F , expression {F }ch denotes the “choice” formula (F ∨¬F).

The following two lemmas are often useful in simplifying F ∗(̂c), as we demonstrate in Example 1 below. They are
natural extensions of Lemmas 5 and 6 from [16].

Lemma 1. Formula

(ĉ < c)∧ F ∗(ĉ) → F

is logically valid.

Proof. By induction on the structure of F . �

Lemma 2. Formula

ĉ < c→ ((¬F)∗(ĉ) ↔¬F)

is logically valid.

Proof. Immediate from Lemma 1. �

Example 1. The following program F1 describes the level of an unlimited water tank that is filled up unless it is flushed.

{Amt1=x+1}ch ← Amt0=x,

Amt1=0 ← Flush .
(6)

Here Amt1 is an intensional function constant, and x is a variable ranging over nonnegative integers. Intuitively, the first
rule asserts that the amount increases by one by default.6 However, if Flush action is executed (e.g., if we add the fact Flush
to (6)), this behavior is overridden, and the amount is set to 0.

Using Lemmas 1 and 2, under the assumption Âmt1 < Amt1 , one can check that formula F ∗
1 (Âmt1) is equivalent to the

conjunction consisting of (6) and

(Âmt1 = x+1∧ Amt1 = x+1)∨¬(Amt1 = x+1) ← Amt0=x,

Âmt1 = 0∧ Amt1 = 0 ← Flush,
(7)

so that

SM[F1;Amt1] = F1 ∧¬∃Âmt1(Âmt1
= Amt 1 ∧ F ∗
1(Âmt1))

⇔ F1 ∧¬∃Âmt1(Âmt1
= Amt1∧

∀x(Amt0=x→¬(Amt1 = x+1))∧ (Flush→⊥)).

Consider the first-order interpretations that have the set of nonnegative integers as the universe, interprets integers,
arithmetic functions, and comparison operators in the standard way, and maps the other constants in the following way.

6 Section 4.2 explains why choice formulas are read as specifying default values.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 61

Amt0 Flush Amt1

I1 5 false 6

I2 5 false 8

I3 5 true 0

• Interpretation I1 is in accordance with the intuitive reading of the rules above, and it is indeed a model of SM[F1; Amt1].
• Interpretation I2 is not intuitive (the amount suddenly jumps up with no reason). It is not a model of SM[F1; Amt1]

though it is a model of F1 .
• Interpretation I3 is in accordance with the intuitive reading of the rules above. It is a model of SM[F1; Amt1].

3.2. Reduct-based characterization of the stable model semantics

The second-order logic based definition of a stable model in the previous section is succinct, and is a natural extension
of the first-order stable model semantics that is defined in [16], but it may look distant from the usual definition of a stable
model in the literature that is given in terms of grounding and fixpoints.

In [9], an equivalent definition of the functional stable model semantics in terms of infinitary ground formulas and reduct
is given. Appendix A of this article contains a review of the definition.

4. Properties of functional stable models

Many properties known for the stable model semantics can be naturally extended to the functional stable model seman-

tics, which is a desirable feature of the proposed formalism.

4.1. Constraints

Following Ferraris et al. [15], we say that an occurrence of a constant or any other subexpression in a formula F is
positive if the number of implications containing that occurrence in the antecedent is even, and negative otherwise. We say
that the occurrence is strictly positive if the number of implications in F containing that occurrence in the antecedent is 0.
For example, in ¬(f = 1) → g = 1, the occurrences of f and g are both positive, but only the occurrence of g is strictly
positive.7

About a formula F we say that it is negative on a list c of predicate and function constants if F has no strictly positive
occurrence of a constant from c. Since any formula of the form ¬H is shorthand for H →⊥, such a formula is negative on
any list of constants. The formulas of the form ¬H are called constraints in the literature of ASP: adding a constraint to a
program affects the set of its stable models in a particularly simple way by eliminating the stable models that “violate” the
constraint.8

The following theorem is a generalization of Theorem 3 from [16] for the functional stable model semantics.

Theorem 1. For any first-order formulas F and G, if G is negative on c, then SM[F ∧ G; c] is equivalent to SM[F ; c] ∧ G.

Example 2. Consider SM[F2 ∧¬(f =1); f g] where F2 is (f =1∨ g=1)∧ (f =2∨ g=2). Since ¬(f =1) is negative on { f , g},
according to Theorem 1, SM[F2 ∧¬(f =1); f g] is equivalent to SM[F2; f g] ∧¬(f =1), which is equivalent to f =2 ∧ g=1.

4.2. Choice and defaults

Similar to Theorem 2 from [16], Theorem 2 below shows that making the set of intensional constants smaller can only
make the result of applying SM weaker, and that this can be compensated by adding choice formulas. For any predicate
constant p, by Choice (p) we denote the formula ∀x{p(x)}ch (recall that {F }ch is shorthand for F ∨ ¬F), where x is a
list of distinct object variables. For any function constant f , by Choice(f) we denote the formula ∀xy{ f (x) = y}ch , where
y is an object variable that is distinct from x. For any finite list of predicate and function constants c, the expression
Choice (c) stands for the conjunction of the formulas Choice(c) for all members c of c. We sometimes identify a list with
the corresponding set when there is no confusion.

The following theorem is a generalization of Theorem 7 from [16] for the functional stable model semantics.

Theorem 2. For any first-order formula F and any disjoint lists c, d of distinct constants, the following formulas are logically valid:

SM[F ; cd]→ SM[F ; c],
SM[F ∧ Choice(d); cd] ↔ SM[F ; c].

7 Recall that we understand ¬F as shorthand for F →⊥.
8 Note that the term “constraint” here is different from the one used in CSP.

62 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

For example,

SM[(g=1→ f =1)∧ ∀y(g= y ∨¬(g= y)); f g]

is equivalent to

SM[g=1→ f =1; f].

A formula { f (t) = t′}ch , where f is an intensional function constant and t, t′ contain no intensional function constants,
intuitively represents that f (t) takes the value t′ by default. For example, the stable models of {g=1}ch relative to g map g
to 1. On the other hand, the default behavior is overridden when we conjoin the formula with g=2: the stable models of

{g=1}ch ∧ g=2

relative to g map g to 2, and no longer to 1.
The treatment of {g = 1}ch as (g = 1) ∨¬(g = 1) is similar to the choice rule {p}ch in ASP for propositional constant p,

which stands for p ∨ ¬p, with an exception that g has to satisfy a functional requirement, i.e., it is mapped to a unique
value. Under that requirement, an interpretation that maps g to 1 is a stable model but another assignment to g is not a
stable model because the choice rule itself does not force one to believe that g is mapped to that other value. This makes
the choice rule for the function work as assigning a default value to the function.

With this understanding, the commonsense law of inertia can be succinctly represented using choice formulas for func-
tions. For instance, the formula

Loc(b, t)=l → {Loc (b, t+1)=l}ch, (8)

where Loc is an intensional function constant, represents that the location of a block b at next step retains its value by
default. The default behavior can be overridden if some action moves the block. In contrast, the standard ASP representation
of the commonsense law of inertia, such as (1), uses both default negation and strong negation, and requires the user to be
aware of the subtle difference between them.

4.3. Strong equivalence

Strong equivalence [33] is an important notion that allows us to replace a subformula with another subformula without
affecting the stable models. The theorem on strong equivalence can be extended to formulas with intensional functions as
follows.

For first-order formulas F and G , we say that F is strongly equivalent to G if, for any formula H , any occurrence of F

in H , and any list c of distinct predicate and function constants, SM[H; c] is equivalent to SM[H ′; c], where H ′ is obtained
from H by replacing the occurrence of F by G .

The following theorem tells us that strong equivalence can be characterized in terms of equivalence in classical logic.

Theorem 3. Let F and G be first-order formulas, let c be the list of all predicate and function constants occurring in F or G, and let ̂c
be a list of distinct predicate and function variables corresponding to c. The following conditions are equivalent to each other.

• F and G are strongly equivalent to each other;
• Formula

(F ↔ G)∧ (ĉ < c→ (F ∗(ĉ) ↔ G∗(ĉ))) (9)

is logically valid.

For instance, choice formula {F }ch is strongly equivalent to ¬¬F → F . This can be shown, in accordance with Theorem 3,
by checking that not only they are classically equivalent but also

(F ∨¬F)∗(ĉ)

and

(¬¬F → F)∗(ĉ)

are classically equivalent under ̂c < c. Indeed, in view of Lemma 2, (F ∨¬F)∗(̂c) is equivalent to (F ∗(̂c) ∨¬F) and (¬¬F →

F)∗(̂c) is equivalent to F → F ∗(̂c). This fact allows us to rewrite formula (8) as an implication in which the consequent is
an atomic formula:

Loc(b, t)=l ∧¬¬(Loc(b, t + 1)=l) → Loc(b, t+1)=l.

For another example, (G → F) ∧ (H → F) is strongly equivalent to (G ∨ H) → F . This is useful for rewriting a theory into
“Clark normal form,” to which we can apply completion as presented in the next section.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 63

4.4. Completion

Completion [13] is a process that turns formulas under the stable model semantics to formulas under the standard
first-order logic.

We say that a formula F is in Clark normal form (relative to a list c of intensional constants) if it is a conjunction of
sentences of the form

∀x(G → p(x)) (10)

and

∀xy(G → f (x)= y) (11)

one for each intensional predicate constant p in c and each intensional function constant f in c, where x is a list of distinct
object variables, y is another object variable, and G is a formula that has no free variables other than those in x and y.

The completion of a formula F in Clark normal form relative to c, denoted by COMP[F ; c], is obtained from F by replacing
each conjunctive term (10) with

∀x(p(x) ↔ G) (12)

and each conjunctive term (11) with

∀xy(f (x)= y ↔ G). (13)

The dependency graph of F (relative to c), denoted by DGc[F], is the directed graph that

• has all members of c as its vertices, and
• has an edge from c to d if, for some strictly positive occurrence of G → H in F ,

· c has a strictly positive occurrence in H , and
· d has a strictly positive occurrence in G .

We say that F is tight (on c) if the dependency graph of F (relative to c) is acyclic. The following theorem, which
generalizes Theorem 11 from [16] for the functional stable model semantics, tells us that, for a tight formula, completion
is a process that allows us to reclassify intensional constants as non-intensional ones. It is similar to the main theorem
of Lifschitz and Yang [32], which describes functional completion in the context of nonmonotonic causal logic.

Theorem 4. For any formula F in Clark normal form relative to c that is tight on c, an interpretation I that satisfies ∃xy(x
= y) is a
model of SM[F ; c] iff I is a model of COMP[F ; c].

Example 1 Continued Formula F1 is not in Clark normal Form relative to Amt1 , but it is strongly equivalent to

Amt1= y ← y=x+1∧ Amt0=x∧¬¬(Amt1 = y),

Amt1= y ← y=0∧ Flush .

and further to

Amt1= y ←
(
y=x+1∧ Amt0=x∧¬¬(Amt1= y)

)
∨

(
y=0∧ Flush

)
,

which is in Clark normal form relative to Amt1 and is tight on Amt1 . In accordance with Theorem 4, the stable models of
F1 relative to Amt1 coincide with the classical models of

Amt1= y ↔
(
y=x+1∧ Amt0=x∧¬¬(Amt1= y)

)
∨

(
y=0∧ Flush

)
.

The assumption ∃xy(x
= y) in the statement of Theorem 4 is essential to avoid the mismatch between “trivial” stable
models and models of completion when the universe is a singleton. Recall that in order to dispute the stability of a model
I in the presence of intensional function constants, one needs another interpretation that is different from I on intensional
function constants. If the universe contains only one element, the stability of a model is trivial. For example, take F to be
� and c to be an intensional function constant f . If the universe |I| of an interpretation I is a singleton, then I satisfies
SM[F] because there is only one way to interpret c, but I does not satisfy the completion formula ∀xy(f (x) = y ↔⊥).

5. Eliminating intensional predicates in favor of intensional functions

In first-order logic, it is known that predicate constants can be replaced by function constants and vice versa. This section
and the next section show similar transformations under the functional stable model semantics.

64 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

5.1. Eliminating intensional predicates

Intensional predicate constants can be eliminated in favor of intensional function constants as follows.

Given a formula F and an intensional predicate constant p, formula F p

f
is obtained from F as follows:

• in the signature of F , replace p with a new intensional function constant f of arity n, where n is the arity of p, and
add two new non-intensional object constants 0 and 1 (rename if necessary);

• replace each subformula p(t) in F with f (t) = 1.

By FC f (“Functional Constraint on f ”) we denote the conjunction of the following formulas, which enforces f to be
two-valued:

0
= 1, (14)

¬¬∀x(f (x) = 0∨ f (x) = 1), (15)

where x is a list of distinct object variables. By DF f (“Default False on f ”) we denote the formula

∀x{ f (x) = 0}ch. (16)

Example 3. Let F be the conjunction of the universal closures of the following formulas:

Loc(b, t)=l →{Loc (b, t + 1)=l}ch,
Move(b, l, t) → Loc(b, t + 1) = l

(lower case symbols are variables). We eliminate the intensional predicate constant Move in favor of an intensional function
constant Move f to obtain FMove

Move f
∧ FCMove f

∧ DFMove f
, which is the conjunction of the universal closures of the following

formulas:

Loc(b, t)=l →{Loc(b, t+1)=l}ch,

Move f (b, l, t) = 1→ Loc(b, t+1) = l,

0
= 1,

¬¬(Move f (b, l, t) = 0∨Move f (b, l, t) = 1),

{Move f (b, l, t) = 0}ch.

The following theorem asserts the correctness of the elimination method.

Theorem 5. The set of formulas

{∀x(f (x) = 1↔ p(x)), FC f }

entails

SM[F ; pc] ↔ SM[F
p

f
∧ DF f ; f c].

The following corollary to Theorem 5 tells us that there is a 1–1 correspondence between the stable models of F and
the stable models of its “functional image” F p

f
∧DF f ∧ FC f . For any interpretation I of the signature of F , by I p

f
we denote

the interpretation of the signature of F p

f
obtained from I by replacing the set p I with the function f I

p

f such that, for all
ξ1, . . . , ξn in the universe of I ,

f
I
p

f (ξ1, . . . , ξn) = 1I if p I (ξ1, . . . , ξn) = true

f
I
p

f (ξ1, . . . , ξn) = 0I otherwise .

Furthermore, we assume that I p
f
satisfies (14). Consequently, I p

f
satisfies FC f .

Corollary 6. Let F be a first-order sentence.

(a) An interpretation I of the signature of F is a model of SM[F ; pc] iff I p
f
is a model of SM[F

p

f
∧ DF f ∧ FC f ; f c].

(b) An interpretation J of the signature of F p

f
is a model of SM[F

p

f
∧ DF f ∧ FC f ; f c] iff J = I

p

f
for some model I of SM[F ; pc].

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 65

In Corollary 6 (b), it is clear by the construction of I p
f
that, for each J , there is exactly one I that satisfies the statement.

Repeated applications of Corollary 6 allow us to completely eliminate intensional predicate constants in favor of inten-
sional function constants, thereby turning formulas under the stable model semantics from Ferraris et al. [16] into formulas
under FSM whose intensional constants are function constants only.

Note that ¬¬ in (15) cannot be dropped in general. The formula ¬¬F is not strongly equivalent to F . The former is a
weaker assertion than the latter under the stable model semantics. Indeed, if it is dropped, in Corollary 6, when F is �, the
empty set is the only model of SM[F ; p] whereas SM[F

p

f
∧ DF f ∧ FC f ; f] has two models where f is mapped to 0 or 1.

6. Eliminating intensional functions in favor of intensional predicates

We show how to eliminate intensional function constants in favor of intensional predicate constants. Unlike in the
previous section, the result is established for “ f -plain” formulas only. It turns out that there is no elimination method for
arbitrary formulas that is both modular and signature-preserving.

6.1. Eliminating intensional functions from c-plain formulas in favor of intensional predicates

Let f be a function constant. A first-order formula is called f -plain [31] if each atomic formula in it

• does not contain f , or
• is of the form f (t) = t1 where t is a tuple of terms not containing f , and t1 is a term not containing f .

For example, f =1 is f -plain, but each of p(f), g(f) = 1, and 1 = f is not f -plain.
For any list c of predicate and function constants, we say that F is c-plain if F is f -plain for each function constant f

in c.

Let F be an f -plain formula, where f is an intensional function constant. Formula F f
p is obtained from F as follows:

• in the signature of F , replace f with a new intensional predicate constant p of arity n + 1, where n is the arity of f ;

• replace each subformula f (t) = t1 in F with p(t, t1).

The following theorem asserts the correctness of the elimination.

Theorem 7. For any f -plain formula F , the set of formulas

{∀xy(p(x, y) ↔ f (x) = y), ∃xy(x
= y)}

entails

SM[F ; f c] ↔ SM[F
f
p ; pc].

The theorem tells us how to eliminate an intensional function constant f from an f -plain formula in favor of an inten-
sional predicate constant. By UECp we denote the following formulas that enforce the “functional image” on the predicate p,

∀xyz(p(x, y)∧ p(x, z)∧ y
= z →⊥),

¬¬∀x∃y p(x, y),
(17)

where x is an n-tuple of variables, and all variables in x, y, and z are pairwise distinct. Note that each formula is negative
on any list of constants, so they work as constraints (Section 4.1) to eliminate the stable models that violate them.

Example 4. Consider the same formula F in Example 3. We eliminate the function constant Loc in favor of the inten-
sional predicate constant Locp to obtain F Loc

Locp
∧ UECLocp , which is the conjunction of the universal closures of the following

formulas:

Locp(b, t, l) →{Locp(b, t+1, l)}ch,

Move(b, l, t) → Locp(b, t+1, l),

Locp(b, t, l) ∧ Loc p(b, t, l
′)∧ l
= l′ →⊥,

¬¬∀b t ∃l(Locp(b, t, l)).

(18)

The following corollary shows that there is a simple 1–1 correspondence between the stable models of F and the stable
models of F f

p ∧ UECp . Recall that the signature of F
f
p is obtained from the signature of F by replacing f with p. For any

66 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

interpretation I of the signature of F , by I fp we denote the interpretation of the signature of F f
p obtained from I by replacing

the function f I with the predicate p I that consists of the tuples

〈ξ1, . . . , ξn, f I (ξ1, . . . , ξn)〉

for all ξ1, . . . , ξn from the universe of I .

Corollary 8. Let F be an f -plain sentence.

(a) An interpretation I of the signature of F that satisfies ∃xy(x
= y) is a model of SM[F ; f c] iff I fp is a model of SM[F
f
p ∧UEC p; pc].

(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x
= y) is a model of SM[F

f
p ∧UECp; pc] iff J = I

f
p for some model I

of SM[F ; f c].

In Corollary 8 (b), it is clear by the construction of I fp that, for each J , there is exactly one I that satisfies the statement.

Theorem 7 and Corollary 8 are similar to Theorem 3 and Corollary 5 from Lifschitz and Yang [31], which are about
eliminating “explainable” functions in nonmonotonic causal logic in favor of “explainable” predicates.

Similar to Theorem 4, the condition ∃xy(x
= y) is necessary in Theorem 7 and Corollary 8 because in order to dispute the
stability of a model I in the presence of intensional function constants, one needs another interpretation that is different
from I on intensional function constants. Such an interpretation simply does not exist if the condition is missing, so I
becomes trivially stable. For example, consider the formula � with signature σ = { f } and the universe {1}. There is only
one interpretation, which maps f to 1. This is a stable model of �. On the other hand, the formula � ∧ UECp , which is
� ∧¬¬∃y p(y), has no stable models.

The method above eliminates only one intensional function constant at a time, but repeated applications can eliminate
all intensional function constants from a given c-plain formula in favor of intensional predicate constants. In other words, it
tells us that the stable model semantics for c-plain formulas can be reduced to the stable model semantics from Ferraris et
al. [16] by adding uniqueness and existence of value constraints.

The elimination method described in Corollary 8 has shown to be useful in a special class of FSM, known as multi-valued
propositional formulas [24].9 In [27], the method allows us to relate the two different translations of action language BC

into multi-valued propositional formulas and into the usual ASP programs. Also, it led to the design of mvsm,10 which
computes stable models of multi-valued propositional formulas using f2lp and clingo, and the design of cplus2asp [2],11

which computes action languages using ASP solvers.
Interestingly, the elimination method results in a new way of formalizing the commonsense law of inertia using choice

rules instead of using strong negation, e.g., (1). The formulas (18) can be more succinctly represented in the language of
ASP as follows.

{Locp(b, t+1, l)}ch ← Locp(b, t, l)

Locp(b, t+1, l) ←Move(b, l, t)

← not 1{Loc p(b, t, l) : Location(l)}1,Block(b),Time(t)

where Location, Block, and Time are domain predicates. The first rule says that if the location of b at time t is l, then decide
arbitrarily whether to assert Locp(b, t+1, l) at time t+ 1. In the absence of additional information about the location of b at
time t + 1, asserting Locp(b, t+1, l) will be the only option, as the third rule requires one of the location l to be associated
with the block b at time t + 1. But if we are given conflicting information about the location at time t + 1 due to the Move

action, then not asserting Locp(b, t+1, l) will be the only option, and the second rule will tell us the new location of b at
time t + 1.

6.2. Non-c-plain formulas vs. c-plain formulas

One may wonder if the method of eliminating intensional function constants in the previous section can be extended to
non-c-plain formulas, possibly by first rewriting the formulas into c-plain formulas. In classical logic, this is easily done by
“unfolding” nested functions by introducing existential quantifiers, but this is not the case under the stable model semantics
because nested functions in general express weaker assertions than unfolded ones.

Example 5. Consider F to be a + b = 5, where a and b are object constants. The formula F is equivalent to ∃xy(a =x ∧ b =
y ∧ x + y =5) under classical logic, but this is not the case under FSM. The former has no stable models, and the latter
has many stable models, including I such that aI = 1, b I = 4.

9 We discuss the relationship in Section 8.2.
10 http://reasoning .eas .asu .edu /mvsm/.
11 http://reasoning .eas .asu .edu /cplus2asp/.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 67

Gelfond and Kahl [22] describe the intuitive meaning of stable models in terms of rationality principle: “believe nothing
you are not forced to believe.” In the example above, it is natural to understand that a + b = 5 does not force one to believe
a = 1 and b = 4.

The weaker assertion expressed by function nesting is useful for specifying the range of a function using a domain
predicate, or expressing the concept of synonymity between the two functions without forcing the functions to have specific
values.

Example 6. Consider F to be Dom(a) where Dom is a predicate constant and a is an object constant. The formula F can be
viewed as applying the sort predicate (i.e., domain predicate) Dom to specify the value range of a, but it does not force one
to believe that a has a particular value. In classical logic, F is equivalent to ∃x(Dom(x)∧ x= a), but their stable models are
different. The former has no stable models, and the latter has many stable models, including I such that DomI = {1, 2, 3}
and aI = 1.

Example 7. A “synonymity” rule [31] has the form

B → f1(t1) = f2(t2), (19)

where f1 , f2 are intensional function constants in f, and t1 , t2 are tuples of terms not containing members of f. This
rule expresses that we believe f1(t1) to be “synonymous” to f2(t2) under condition B , but it does not force one to assign
particular values to f1(t1) and f2(t2). As a special case, consider f1 = f2 vs. ∃x(f1 = x ∧ f2 = x). The latter forces one to
assign some values to f1 and f2 , and does not express the intended weaker assertion that they are synonymous.

To sum up, in Examples 5, 6, and 7, the classically equivalent transformations do not preserve strong equivalence. They
affect the beliefs, forcing one to believe more than what the original formulas assert.

On the other hand, there is some special class of formulas for which the process of “unfolding” preserves stable models.
We first define precisely the process.

Definition 1. The process of unfolding F w.r.t. a list c of constants, denoted by UFc(F), is recursively defined as follows.

• If F is an atomic formula that is c-plain, UFc(F) is F ;
• If F is an atomic formula of the form p(t1, . . . , tn) (n ≥ 0) such that tk1 , . . . , tk j

are all the terms in t1, . . . , tn that contain
some members of c, then UFc(p(t1, . . . , tn)) is

∃x1 . . . x j

(
p(t1, . . . , tn)

′′ ∧
∧

1≤i≤ j

UFc(tki = xi)
)
,

where p(t1, . . . , tn)′′ is obtained from p(t1, . . . , tn) by replacing each tki with a new variable xi .
• If F is an atomic formula of the form f (t1, . . . , tn) = t0 (n ≥ 0) such that tk1 , . . . , tk j

are all the terms in t0, . . . , tn that
contain some members of c, then UFc(f (t1, . . . , tn) = t0) is

∃x1 . . . x j

(
(f (t1, . . . , tn) = t0)

′′ ∧
∧

1≤i≤ j

UFc(tki = xi)
)
,

where (f (t1, . . . , tn) = t0)
′′ is obtained from f (t1, . . . , tn) = t0 by replacing each tki with a new variable xi .

• UFc(F � G) is UF c(F) � UFc(G), where �∈ {∧,∨,→}.
• UFc(Q xF) is Q x UF c(F (x)), where Q ∈ {∀, ∃}.

In Example 6, UFDom(F) is ∃x(Dom(x) ∧a = x), and in Example 5, UF(a,b)(F) is ∃xy(a = x ∧b = y ∧x + y = 5). In Example 7,
UF(f1, f2)(f1 = f2) is ∃x(f1 = x ∧ f2 = x). We already observed that the process of unfolding does not preserve the stable
models of the formulas.

Theorem 9 below presents a special class of formulas, for which the process of unfolding does preserve stable models,
or in other words, unfolding does not affect the beliefs.

Definition 2. We say that a formula is head-c-plain if every strictly positively occurrence of an atomic formula in it is c-plain.

For instance, f (g) =1 → h =1 is head-(f , g, h)-plain, though it is not (f , g, h)-plain.

Theorem 9. For any head-c-plain sentence F that is tight on c and any interpretation I satisfying ∃xy(x
= y), we have I |= SM[F ; c]
iff I |= SM[UFc(F); c].

68 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

One may wonder if there is any other translation that would work to unfold nested functions. However, it turns out that
there is no modular, signature-preserving translation from arbitrary formulas to c-plain formulas while preserving stable
models.

Theorem 10. For any set c of constants, there is no strongly equivalent transformation that turns an arbitrary formula into a c-plain
formula.

The proof follows from the following lemma.

Lemma 3. There is no f -plain formula that is strongly equivalent to p(f) ∧ p(1) ∧ p(2) ∧¬p(3).

Theorem 10 tells us that the set of arbitrary formulas is strictly more expressive than the set of c-plain formulas of the
same signature. One application of this greater expressivity is in reducing many-sorted FSM to unsorted FSM in Section 8.1

later.

7. Comparing FSM with other approaches to intensional functions

7.1. Relation to nonmonotonic causal logic

A (nonmonotonic) causal theory is a finite list of rules of the form

F ⇐ G

where F and G are formulas as in first-order logic. We identify a rule with the universal closure of the implication G → F .
A causal model of a causal theory T is defined as the models of the second-order sentence

CM[T ; f] = T ∧¬∃̂f(̂f
= f∧ T †(̂f))

where f is a list of explainable function constants, and T † (̂f) denotes the conjunction of the formulas12

∀̃(G → F (̂f)) (20)

for all rules F ⇐ G of T . By a definite causal theory, we mean the causal theory whose rules have the form either

f (t) = t1 ⇐ B (21)

or

⊥ ⇐ B, (22)

where f is an explainable function constant, t is a list of terms that does not contain explainable function constants, and t1
is a term that does not contain explainable function constants. By Tr(T) we denote the theory consisting of the following
formulas:

∀̃(¬¬B → f (t) = t1)

for each rule (21) in T , and

∀̃¬B

for each rule (22) in T . The causal models of such T coincide with the stable models of Tr(T).

Theorem 11. For any definite causal theory T , I |= CM[T ; f] iff I |= SM[Tr(T); f].

For non-definite theories, they do not coincide as shown by the following example.

Example 8. Consider the following non-definite causal theory T :

¬(f = 1) ⇐ �
¬(f = 2) ⇐ �

12 ∀̃F represents the universal closure of F .

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 69

An interpretation I where |I| = {1, 2, 3}, and f I = 3 is a causal model of T . However, the corresponding formula Tr(T) is
equivalent to

¬(f = 1)∧¬(f = 2),

which has no stable models.

The following example, a variant of Lin’s suitcase example [41], demonstrates some unintuitive behavior of definite causal
theories in representing indirect effects of actions, which is not present in the functional stable model semantics.

Example 9. Consider the two switches which can be flipped but cannot be both up or down at the same time. If one of
them is down and the other is up, the direct effect of flipping only one switch is changing the status of that switch, and the
indirect effect is changing the status of the other switch. Let Up(s, t), where s is switch A or B , and t is a time stamp 0 or
1, be object constants whose values are Boolean, let Flip(s), where s is switch A or B , be function constants whose values
are Boolean, and let x, y be variables ranging over Boolean values. The domain can be formalized in a causal theory as

Up(s,1)=x ⇐ Up(s,0)= y ∧ Flip(s)=true (x
= y)

Up(s,1)=x ⇐ Up(s′,1)= y (s
= s′, x
= y)

Up(s,1)=x ⇐ Up(s,1)=x∧ Up (s,0)=x

Flip(s)=x ⇐ Flip(s)=x

Up(A,0)=false ⇐ �

Up(B,0)=true ⇐ �

There are five causal models as shown in the following table.

Up(A,0) Up(B ,0) Flip(A) Flip(B) Up(A,1) Up(B ,1)

I1 false true false false false true

I2 false true false true true false

I3 false true true false true false

I4 false true true true true false

I5 false true false false true false

I2 and I3 exhibit the indirect effect of the action Flip. Only I5 is not intuitive because the fluent Up changes its value for
no reason.

In the functional stable model semantics, the domain can be represented as

Up(s,1)=x ← Up(s,0)= y ∧ Flip(s)=true (x
= y)

Up(s,1)=x ← Up(s′,1)= y (s
= s′, x
= y)

{Up(s,1)=x}ch ← Up(s,0)=x

{F lip(s)=x}ch ← �

Up(A,0)=false ← �

Up(B,0)=true ← �

The program has four stable models I1, I2, I3, I4; The unintuitive causal model I5 is not its stable model.

7.2. Relation to Cabalar semantics

As mentioned earlier, the stable model semantics by Cabalar [12] is defined in terms of partial satisfaction, which de-
viates from classical satisfaction. Bartholomew and Lee [9] show its relationship to FSM. There, it is shown that when we
consider stable models to be total interpretations only, both semantics coincide on c-plain formulas. Also, F and UFc(F)

have the same stable models under the Cabalar semantics, so any complex formula under the Cabalar semantics can be
reduced to a c-plain formula by preserving stable models. Furthermore, partial stable models under the Cabalar semantics
can be embedded into FSM by introducing an auxiliary object constant none to denote that the function is undefined. Con-
sequently, the Cabalar semantics can be fully embedded into FSM by unfolding using an auxiliary constant. We refer the
reader to [9, Section 4] for the details.

On the other hand, Theorem 10 of this paper shows that the reverse direction is not possible because the class of c-plain
formulas is a restricted subset in the functional stable model semantics, which is not the case with the Cabalar semantics.
In other words, non-c-plain formulas are weaker than c-plain formulas under FSM whereas the Cabalar semantics does not

70 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

distinguish them. For instance, under the Cabalar semantics, the formula a + b = 5 in Example 5 has many stable models I
as long as aI + b I = 5; in Example 6, Dom(a) has many stable models rather than simply restricting the value of a to the
extent of Dom; in Example 7, f1 = f2 has stable models as long as the functions are assigned the same values instead of
merely stating that the functions are synonymous.

We observe that the weaker assertions by non-c-plain formulas are often useful but they are not allowed in the Cabalar
semantics. In particular, the use of “sort predicates” as in Example 6 is important in specifying the range of an intensional
function, rather than a particular value.13 The synonymity rule like Example 7 is useful for the design of modular action
languages as described in [31].

7.3. Relation to IF-programs

The functional stable model semantics presented here is inspired by IF-programs from Lifschitz [39], where intensional
functions were defined without requiring the complex notion of partial functions and partial satisfaction but instead by
imposing the uniqueness of values on total functions. It turns out that neither semantics is stronger than the other while
they coincide on a certain syntactically restricted class of programs. However, the semantics of IF-programs exhibits an
unintuitive behavior.

7.3.1. Review of IF-programs

We consider rules of the form

H ← B, (23)

where H and B are formulas that do not contain →. As before, we identify a rule with the universal closure of the
implication B → H . An IF-program is a finite conjunction of those rules.

An occurrence of a symbol in a formula is negated if it belongs to a subformula that begins with negation, and is
non-negated otherwise. Let F be a formula, let f be a list of distinct function constants, and let ̂f be a list of distinct function
variables similar to f. By F � (̂f) we denote the formula obtained from F by replacing each non-negated occurrence of a
member of f with the corresponding function variable in ̂f. By IF[F ; f] we denote the second-order sentence

F ∧¬∃̂f(̂f
= f∧ F �(̂f)).

According to Lifschitz [39], the f-stable models of an IF-program � are defined as the models of IF[F ; f], where F is the
FOL-representation of �.

7.3.2. Comparison

The definition of the IF operator above looks close to our definition of the SM operator. However, they often behave quite
differently.

Example 10. Let F be the following program

d= 2← c = 1,

d= 1

and let I be an interpretation such that |I| = {1, 2}, c I = 2 and dI = 1. I is a model of IF[F ; cd], but not a model of SM[F ; cd].
The former is not intuitive from the rationality principle because c does not even appear in the head of a rule.

Example 11. Let F be the following program

(c = 1∨ d= 1)∧ (c = 2∨ d= 2)

and let I1 and I2 be interpretations such that |I1| = |I2| = {1, 2, 3} and I1(c) = 1, I1(d) = 2, I2(c) = 2, I2(d) = 1. The
interpretations I1 and I2 are models of SM[F ; cd]. On the other hand, IF[F ; cd] has no models.

Example 12. Let F1 be ¬(c=1) ← � and let F2 be ⊥ ← c=1. Under the functional stable model semantics, they are
strongly equivalent to each other, and neither of them has a stable model. However, this is not the case with IF-programs.
For instance, let I be an interpretation such that |I| = {1, 2} and I(c) = 2. I satisfies IF[F2; c] but not IF[F1; c].

13 In Section 8.1 below, we formally show how to reduce many-sorted FSM into unsorted FSM and notes that the axioms used there is not expressible in
the Cabalar semantics.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 71

While ⊥ ← F is a constraint in our formalism, in view of Theorem 1, the last example illustrates that ⊥ ← F is not
considered a constraint in the semantics of IF-programs. This behavior deviates from the standard stable model semantics.
Unlike the functional stable model semantics, in general, it is not obvious how various mathematical results established for
the first-order stable model semantics, such as the theorem on strong equivalence [33], the theorem on completion [16],
and the splitting theorem [15], can be extended to the above formalisms on intensional functions.

The following theorem gives a specific form of formulas on which the two semantics agree.

Theorem 12. Let T be an IF-program whose rules have the form

f (t) = t1 ←¬¬B (24)

where f is an intensional function constant, t and t1 do not contain intensional function constants, and B is an arbitrary formula. We
identify T with the corresponding first-order formula. Then we have I |= SM[T ; f] iff I |= IF[T ; f].

8. Many-sorted FSM

The following is the standard definition of many-sorted first-order logic. A signature σ is comprised of a set of function
and predicate constants and a set of sorts. To every function and predicate constant of arity n, we assign argument sorts
s1, . . . , sn and to every function constant of arity n, we assign also its value sort sn+1 . We assume that there are infinitely
many variables for each sort. Atomic formulas are built similar to the standard unsorted logic with the restriction that in
a term f (t1, . . . , tn) (an atom p(t1, . . . , tn), respectively), the sort of ti must be a subsort of the i-th argument of f (p,
respectively). In addition t1 = t2 is an atomic formula if the sorts and t1 and t2 have a common supersort.

A many-sorted interpretation I has a non-empty universe |I|s for each sort s. When s1 is a subsort of s2 , an interpretation
must satisfy |I|s1 ⊆ |I|s2 . The notion of satisfaction is similar to the unsorted case with the restriction that an interpretation
maps a term to an element in its associated sort.

The definition of many-sorted FSM is a straightforward extension of unsorted FSM. For any list c of constants in σ , an
interpretation I is a stable model of F relative to c if I satisfies SM[F ; c], where SM[F ; c] is syntactically the same as in
Section 3 but formulas are understood as in many-sorted logic.

8.1. Reducing many-sorted FSM to unsorted FSM

We can turn many-sorted FSM into unsorted FSM as follows. Given a many-sorted signature σ , we define the signature
σ ns to contain every function and predicate constant from σ . In addition, for each sort s ∈ σ , we add a unary predicate s
to σ ns .

Given a formula F of many-sorted signature σ , we obtain the formula Fns of the unsorted signature σ ns as follows.

We replace every formula ∃xF (x), where x is a variable of sort s, with the formula

∃y(s(y)∧ F (y))

where y is an unsorted variable and s is a predicate constant in σ ns corresponding to s in σ . Similarly, we replace every
∀x F (x), where x is a variable of sort s, with the formula

∀y(s(y) → F (y)).

By S Fσ we denote the conjunction of

• the formulas ∀y(si(y) → s j(y)) for every two sorts si and s j in σ such that si is a subsort of s j (si
= s j).

• the formulas ∃y s(y) for every sort s in σ .

• the formulas

∀y1 . . . yk(args1(y1)∧ · · · ∧ argsk(yk) → vals(f (y1, . . . , yk)))

for each function constant f in σ , where the arity of f is k, and the i-th argument sort of f is argsi and the value sort
of f is vals.

• the formulas

∀y1 . . . yk+1(¬args1(y1)∨ · · · ∨ ¬argsk(yk) →{ f (y1, . . . , yk) = yk+1}
ch)

for each function constant f in σ , where the arity of f is k and the i-th argument sort of f is argsi .
• the formulas

∀y1 . . . yk(¬args1(y1)∨ · · · ∨ ¬argsk(yk) →{p(y1, . . . , yk)}
ch)

for each predicate constant p in σ , where the arity of p is k, and the i-th argument sort of p is argsi .

72 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Note that only the first three items are necessary for classical logic but we need to add the fourth and fifth items for
the FSM semantics so that the witness J to dispute the stability of I can only disagree with I on the atomic formulas that
actually correspond to atomic formulas in the many-sorted setting (which has arguments adhering to the argument sorts).
Also note that the formulas in item 3 are not c-plain, which illustrates the usefulness of non-c-plain formulas.

We map an interpretation I of a many-sorted signature σ to an interpretation Ins of an unsorted signature σ ns as follows.
First, the universe |Ins| of σ ns is

⋃
s is a sort in σ

|I|s . We specify that the sort predicates and sorts correspond by defining the

extent of sort predicate s for every sort s ∈ σ as

s
Ins = |I|s.

For every function constant f in σ and every tuple ξ comprised of elements from |Ins|, we take

f I
ns

(ξ) =

{
f I (ξ) if each ξi ∈ |I|argsi where argsi is the i-th argument sort of f

|Ins|0 otherwise

where |Ins|0 is an arbitrarily chosen element in the universe |Ins| (we use the same element for every situation this case
holds).

For every predicate constant p in σ and every ξ , we take

p Ins (ξ) =

{
p I (ξ) if each ξi ∈ |I|argsi where argsi is the i-th argument sort of p

false otherwise.

Note that false was arbitrarily chosen.
The choice of Ins mapping a function whose arguments are not of the intended sort to the value |Ins|0 is arbitrary and so

there are many unsorted interpretations that correspond to the many-sorted interpretation. To characterize this one-to-many
relationship, we say two unsorted interpretations I and J are related with relation R , denoted R(I, J), if for every predicate
or function constant c, we have c I (ξ1, . . . , ξk) = c J (ξ1, . . . , ξk) whenever each ξi ∈ argsi where argsi is the i-th argument
sort of c.

Theorem 13. Let F be a formula of a many-sorted signature σ , and let c be a set of function and predicate constants.

(a) If an interpretation I of signature σ is a model of SM[F ; c], then Ins is a model of SM[Fns ∧ S Fσ ; c].
(b) If an interpretation L of signature σ ns is a model of SM[Fns ∧ S Fσ ; c] then there is some interpretation I of signature σ such that

I is a model of SM[F ; c] and R(L, Ins).

Example 13. Consider σ = {s1, s2, f /1, 1, 2} where both the argument and the value sort of function constant f are s1 .
Take F to be f (1) = 1 ∧ f (2) = 2. The many-sorted interpretation I such that |I|s1 = {1, 2}, |I|s2 = {3, 4}, nI = f I (n) = n for
n ∈ {1, 2} is clearly a stable model of F . However, if we drop the last two items of S Fσ , formula Fns ∧ S Fσ is

f (1) = 1∧ f (2) = 2 ∧

∃ys1(y)∧ ∃y s2(y) ∧

∀y1(s1(y1) → s1(f (y1)))

and K is an unsorted interpretation such that |K | = {1, 2, 3, 4}, (s1)
K = {1, 2}, (s2)

K = {3, 4}, nK = n for n ∈ {1, 2, 3, 4},
f K (n) = n for n ∈ {1, 2, 3, 4}, which is not a stable model of Fns since we can take J that is different from K only on f (4),
i.e., f J (4) = 3, to dispute the stability of K .

8.2. Relation to multi-valued propositional formulas under the stable model semantics

Multi-valued propositional formulas [24] are an extension of the standard propositional formulas where atomic parts of
a formula are equalities of the kind found in constraint satisfaction problems. Action languages such as C+ [24] and BC [27]

are defined based on multi-valued propositional formulas. In particular, the latter two languages are defined as shorthand
for multi-valued propositional formulas under the stable model semantics, which is a special case of the functional stable
model semantics as we show in this section.

A multi-valued propositional signature is a set σ of symbols called multi-valued propositional constants (mvp-constants),
along with a nonempty finite set Dom(c) of symbols, disjoint from σ , assigned to each mvp-constant c. We call Dom(c) the
domain of c. A multi-valued propositional atom (mvp-atom) of a signature σ is an expression of the form c=v (“the value of c
is v”) where c ∈ σ and v ∈ Dom(c). A multi-valued propositional formula (mvp-formula) of σ is a propositional combination of
mvp-atoms.

A multi-valued propositional interpretation (mvp-interpretation) of σ is a function that maps every element of σ to an ele-
ment of its domain. An mvp-interpretation I satisfies an mvp-atom c=v (symbolically, I |= c=v) if I(c) = v . The satisfaction

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 73

relation is extended from mvp-atoms to arbitrary mvp-formulas according to the usual truth tables for the propositional
connectives.

The reduct F I of an mvp-formula F relative to an mvp-interpretation I is the mvp-formula obtained from F by replacing
each maximal subformula that is not satisfied by I with ⊥. I is called a stable model of F if I is the only mvp-interpretation
satisfying F I .

Multi-valued propositional formulas can be viewed as a special class of ground first-order formulas of many-sorted
signatures. We identify a multi-valued propositional signature with a many-sorted signature that consists of mvp-constants
and their values understood as object constants. Each mvp-constant c is identified with an intensional object constant
whose sort is Dom(c). Each value in Dom(c) is identified with a non-intensional object constant of the same sort Dom(c),
except that if the same value v belongs to multiple domains, the sort of v is the union of the domains.14 For instance,
if Dom(c1) = {1, 2} and Dom (c2) = {2, 3}, then the sort of 2 is Dom(c1) ∪ Dom (c2), while the sort of 1 is Dom(c1) and
the sort of 3 is Dom(c2). An mvp-atom c=v is identified with an equality between an intensional object constant c and a
non-intensional object constant v .

We identify an mvp-interpretation with the many-sorted interpretation in which each non-intensional object constant is
mapped to itself, and is identified with an element in Dom(c) for some intensional object constant c.

It is easy to check that an mvp-interpretation I is a stable model of F in the sense of multi-valued propositional formulas
iff I is a stable model of F in the sense of the functional stable model semantics. Under this view, every mvp-formula is
identified with a c-plain formula, where c is the set of all mvp-constants. The elimination of intensional functions in favor
of intensional predicates in Section 6.1 essentially turns mvp-formulas into the usual propositional formulas.

9. Answer set programming modulo theories

Sections 5 and 6 show that intensional predicate constants and intensional function constants are interchangeable in
many cases. On the other hand, this section shows that considering intensional functions has the computational advantage
of making use of efficient computation methods available in the work on satisfiability modulo theories.

We define ASPMT as a special case of many-sorted FSM by restricting attention to interpretations that conform to the
background theory.

9.1. ASPMT as a special case of the functional stable model semantics

Formally, an SMT instance is a formula in many-sorted first-order logic, where some designated function and predicate
constants are constrained by some fixed background interpretation. SMT is the problem of determining whether such a
formula has a model that expands the background interpretation [5].

Let σT be the many-sorted signature of the background theory T . An interpretation of σT is called the background
interpretation if it satisfies the background theory. For instance, in the theory of reals, we assume that σT contains the set
R of symbols for all real numbers, the set of arithmetic functions over real numbers, and the set {<, >, ≤, ≥} of binary
predicates over real numbers. A background interpretation interprets these symbols in the standard way.

Let σ be a signature that contains σT . An interpretation of σ is called a T -interpretation if it agrees with the fixed
background interpretation of σT on the symbols in σT .

A T -interpretation is a T -model of F if it satisfies F .
For any list c of constants in σ \ σT , a T -interpretation I is a T -stable model of F relative to c if I satisfies SM[F ; c].

9.2. Describing actions in ASPMT

The following example demonstrates how ASPMT can be applied to solve an instance of planning problem with the
continuous time that requires real number computation. The encoding extends the standard ASP representation for transition
systems [30].

Example 14. Consider the following running example from a Texas Action Group discussion posted by Vladimir Lifschitz.15

A car is on a road of length L. If the accelerator is activated, the car will speed up with constant acceleration A until the
accelerator is released or the car reaches its maximum speed MS, whichever comes first. If the brake is activated, the
car will slow down with acceleration −A until the brake is released or the car stops, whichever comes first. Otherwise,
the speed of the car remains constant. Give a formal representation of this domain, and write a program that uses your
representation to generate a plan satisfying the following conditions: at duration 0, the car is at rest at one end of the
road; at duration T , it should be at rest at the other end.

14 This is because in many-sorted logic with ordered sorts, the equality is defined when both terms have the same common supersort.
15 http://www.cs .utexas .edu /users /vl /tag /continuous _problem.

74 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

This example can be represented in ASPMT as follows. Below s ranges over time steps, b is a Boolean variable, x, y, a, c, d
are variables over nonnegative reals, and A and MS are some specific real numbers.

We represent that the actions Accel and Decel are exogenous and the duration of each time step is to be arbitrarily
selected as

{Accel(s) = b}ch,

{Decel(s) = b}ch,

{Duration(s) = x}ch.

Both Accel and Decel cannot be performed at the same time:

⊥← Accel(s) = true∧ Decel(s) = true.

The effects of Accel and Decel on Speed are described as

Speed(s+ 1) = y ← Accel(s)=true ∧ Speed(s)=x ∧ Duration(s)=d ∧ (y = x+ A× d),

Speed(s+ 1) = y ← Decel(s)=true ∧ Speed(s)=x ∧ Duration(s)=d ∧ (y = x− A× d).

The preconditions of Accel and Decel are described as

⊥← Accel(s)=true ∧ Speed(s)=x ∧ Duration(s)=d ∧ (y = x+ A× d) ∧ (y > MS),

⊥← Decel(s)=true ∧ Speed(s)=x ∧ Duration(s)=d ∧ (y = x− A× d) ∧ (y < 0).

Speed is inertial:

{Speed(s+ 1) = x}ch ← Speed(s) = x.

Speed at any moment does not exceed the maximum speed MS:

⊥← Speed(s) > MS.

Location is defined in terms of Speed and Duration as

Location(s+ 1) = y ← Location(s) = x∧ Speed(s) = a∧ Speed (s+ 1) = c

∧ Duration(s)=d ∧ y = x+ ((a+ c)/2)× d.

Theorem 4 tells us that a tight ASPMT theory in Clark normal form can be turned into an SMT instance.

Example 14 Continued Since the formalization above can be written in Clark Normal Form that is tight, its stable models
coincide with the models of the completion formulas. For instance, to form the completion of Speed(1), consider the rules
that have Speed(1) in the head:

Speed(1)= y ← Accel(0)=true ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+ A× d)∧ (y ≤MS),

Speed(1)= y ← Decel(0)=true ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x− A× d)∧ (y ≥ 0),

Speed(1)= y ← Speed(0)= y ∧ ¬¬(Speed(1)= y)

({c=v}ch ← G is strongly equivalent to c=v ← G ∧¬¬(c=v)). The completion turns them into the following equivalence:

Speed(1) = y ↔

∃xd((Accel(0)=true ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+ A× d)∧ (y ≤MS))

∨ (Decel(0)=true ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x− A× d)∧ (y ≥ 0))

∨ Speed(0) = y).

(25)

It is worth noting that most action descriptions can be represented by tight ASPMT theories due to the associated time
stamps. In [26], ASPMT was used as the basis of extending action language C+ [24] to represent the durative action model
of PDDL 2.1 [17] and the start-process-stop model of representing continuous changes in PDDL+ [18]. In [28], language C+
was further extended to allow ordinary differential equations (ODE), the concept borrowed from SAT modulo ODE. As our
action language is based on ASPMT, which in turn is founded on the basis of ASP and SMT, it enjoys the development in
SMT solving techniques as well as the expressivity of ASP language.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 75

9.3. Implementations of ASPMT

A few implementations of ASPMT emerged based on the idea that reduces tight ASPMT theories to the input language
of SMT solvers. System aspmt2smt [10] is a proof-of-concept implementation of ASPMT by reducing ASPMT programs into
the input language of SMT solver z3, and is shown to effectively handle real number computation for reasoning about
continuous changes. The system allows a fragment of ASPMT in the input language, whose syntax resembles ASP rules and
which can be effectively translated into the input language of SMT solvers. In particular, the language imposes a syntactic
condition that quantified variables can be eliminated by equivalent rewriting.

Wałega et al. [45] extended the system aspmt2smt to handle nonmonotonic spatial reasoning that uses both qualitative
and quantitative information, where spatial relations are encoded in theory of nonlinear real arithmetic.

In [28], based on the recent development in SMT called “Satisfiability Modulo Ordinary Differential Equations (ODE)”
[19] and its implementation dReal [20], the system cplus2aspmt was built on top of aspmt2smt. The paper showed that a
general class of hybrid automata with non-linear flow conditions and non-convex invariants can be turned into first-order
action language C+, and cplus2aspmt can be used to compute the action language modulo ODE by translating C+ into
ASPMT. For example, the effect of Accel in Example 14 can be represented using ODE as

Speed(s+1) = x+ y ← Accel(s)=true ∧ Speed(s)=x ∧ Duration(s)=δ ∧ y=

δ∫

0

A dt ∧ y≤MS.

The theory of reals is decidable as shown by Tarski, and some SMT solvers do not always approximate reals with floating
point numbers. Even for undecidable theories, such as formulas with trigonometric functions and differential equations, SMT
solving techniques ensure certain error-bounds: A δ-complete decision procedure [19] for such an SMT formula F returns
false if F is unsatisfiable, and returns true if its syntactic “numerical perturbation” of F by bound δ is satisfiable, where
δ > 0 is number provided by the user to bound on numerical errors. This is practically useful since it is not possible to
sample exact values of physical parameters in reality. ASPMT is able to take the advantage of the SMT solving techniques
whereas it is shown that the ASPMT description of action domains is much more compact than the SMT counterpart.

In [1], the authors presented the “ordered completion,” that compiles logic programs with convex aggregates into the
input language of SMT solvers. The focus there was to compute the standard ASP language using SMT solvers. So unlike
the other systems mentioned above, neither intensional functions nor various background theories in SMT were considered
there. On the other hand, the input programs are not restricted to tight programs.

10. Comparing ASPMT with other approaches to combining ASP with CSP/SMT

We compare ASPMT with other approaches to combining ASP with CSP/SMT. These approaches can be related to a special
case of ASPMT in which all functions are non-intensional.

10.1. Relation to clingcon programs

A constraint satisfaction problem (CSP) is a tuple (V , D, C), where V is a set of constraint variables with their respective
domains in D , and C is a set of constraints that specify some legal assignments of values in the domains to the constraint
variables.

A clingcon program � [21] with a constraint satisfaction problem (V , D, C) is a set of rules of the form

a← B,N,Cn, (26)

where a is a propositional atom or ⊥, B is a set of positive propositional literals, N is a set of negative propositional literals,
and Cn is a set of constraints from C , possibly preceded by not.

Clingcon programs can be viewed as ASPMT instances. Below is a reformulation of the semantics using the terminologies
in ASPMT. We assume that constraints are expressed by ASPMT sentences of signature V ∪ σT , where V is a set of object
constants, which is identified with the set of constraint variables V in (V , D, C), whose value sorts are identified with
the domains in D; we assume that σT is disjoint from V and contains all values in D as object constants, and other
symbols to represent constraints, such as +, ×, and ≥. In other words, we represent a constraint as a formula F (v1, . . . , vn)
over V ∪ σT where F (x1, . . . , xn) is a formula of the signature σT and F (v1, . . . , vn) is obtained from F (x1, . . . , xn) by
substituting the object constants (v1, . . . , vn) in V for (x1, . . . , xn). We say this background theory T conforms to (V , D, C).

For any signature σ that consists of object constants and propositional constants, we identify an interpretation I of σ as
the tuple 〈I f , X〉, where I f is the restriction of I onto the object constants in σ , and X is a set of propositional constants
in σ that are true under I .

Given a clingcon program � with (V , D, C), and a T -interpretation I = 〈I f , X〉, we define the constraint reduct of �
relative to X and I f (denoted by �X

I f
) as the set of rules a ← B for each rule (26) in � such that I f |= Cn, and X |= N . We

say that a set X of propositional atoms is a constraint answer set of � relative to I f if X is a minimal model of �X
I f
.

76 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Example 1 Continued The rules

Amt1 =$ Amt0+1← not Flush,

Amt1 =$ 0← Flush

are identified with

⊥← not Flush,not(Amt 1 =$ Amt0+1)

⊥← Flush,not (Amt1 =$ 0)

under the semantics of clingcon programs with the theory of integers as the background theory; Amt0 , Amt1 are object
constants and Flush is a propositional constant. Consider I1 in Example 1, which can be represented as 〈(I1) f , X〉 where
(I1)

f maps Amt0 to 5, and Amt1 to 6, and X = ∅. The set X is the constraint answer set relative to (I1) f because X is the
minimal model of the constraint reduct relative to X and (I1) f , which is the empty set.

Similar to the way that rules are identified as a special case of formulas [16], we identify a clingcon program � with the
conjunction of implications B ∧ N ∧ Cn → a for all rules (26) in �. The following theorem tells us that clingcon programs
are a special case of ASPMT in which the background theory T conforms to (V , D, C), and intensional constants are limited
to propositional constants only, and do not allow function constants, so the language cannot express the default assignment
of values to a function.

Theorem 14. Let � be a clingcon program with CSP (V , D, C), let p be the set of all propositional constants occurring in �, let T be
the background theory conforming to (V , D, C), and let 〈I f , X〉 be a T -interpretation. Set X is a constraint answer set of � relative
to I f iff 〈I f , X〉 is a T -stable model of � relative to p.

Note that a clingcon program does not allow an atom that consists of elements from both V and p. Thus the truth value
of an atom is determined by either I f or X , but not by involving both of them.

In [29], the authors compared Constraint ASP and SMT by relating the different terminologies and concepts used in each
of them. This is related to the relationship shown in Theorem 14 since T -stable models of an ASPMT program � relative
to ∅ are precisely SMT models of � with background theory T . One main difference between the two comparisons is that
an answer set in [29] is a set containing ordinary atoms and theory/constraint atoms, while a stable model in this paper is a
classical model.

10.2. Relation to ASP(LC) programs

Liu et al. [42] consider logic programs with linear constraints, or ASP(LC) programs, comprised of rules of the form

a← B,N, LC (27)

where a is a propositional atom or ⊥, B is a set of positive propositional literals, and N is a set of negative propositional

literals, and LC is a set of theory atoms—linear constraints of the form
n∑

i=1

(ci × xi) �� k where ��∈ {≤, ≥, =}, each xi is an

object constant whose value sort is integers (or reals), and each ci , k is an integer (or real).
An ASP(LC) program � can be viewed as an ASPMT formula whose background theory T is the theory of integers or

the theory of reals. We identify an ASP(LC) program � with the conjunction of ASPMT formulas B ∧ N ∧ LC → a for all
rules (27) in �.

An LJN-interpretation is a pair (X, T) where X is a set of propositional atoms and T is a subset of theory atoms occurring
in � such that there is some T -interpretation I that satisfies T ∪ T , where T is the set of negations of each theory atom
occurring in � but not in T . An LJN-interpretation (X, T) satisfies an atom b if b ∈ X , the negation of an atom not c if c /∈ X ,
and a theory atom t if t ∈ T . The notion of satisfaction is extended to other propositional connectives as usual.

The LJN-reduct of a program � with respect to an LJN-interpretation (X, T), denoted by �(X,T) , consists of rules a ← B

for each rule (27) such that (X, T) satisfies N ∧ LC . (X, T) is an LJN-answer set of � if (X, T) satisfies �, and X is the
smallest set of atoms satisfying �(X,T) .

The following theorem tells us that there is a one-to-many relationship between LJN-answer sets and the stable models
in the sense of ASPMT. Essentially, the set of theory atoms in an LJN-answer set encodes all valid mappings for functions in
the stable model semantics.

Theorem 15. Let � be an ASP(LC) program of signature 〈σ p, σ f 〉 where σ p is a set of propositional constants, and let σ f be a set of
object constants, and let I f be an interpretation of σ f .

(a) If (X, T) is an LJN-answer set of �, then for any T -interpretation I such that I f |= T ∪ T , we have 〈I f , X〉 |= SM[�; σ p].

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 77

(b) For any T -interpretation I = 〈I f , X〉, if 〈I f , X〉 |= SM[�; σ p], then an LJN-interpretation (X, T) where

T = {t | t is a theory atom in � such that I f |= t}

is an LJN-answer set of �.

Example 15. Let F be

a← x−z>0. b ← x− y≤0.

c ← b, y−z≤0. ← not a.

b ← c.

The LJN-interpretation L = 〈{a}, {x −z>0}〉 is an answer set of F since {(x −z>0, ¬(x −y ≤0), ¬(y −z≤0)} is satisfiable (e.g.,
take xI =2, y I =1, z I =0) and the set {a} is the minimal model satisfying the reduct F L , which is equivalent to (� → a) ∧
(c → b). In accordance with Theorem 15, the interpretation I such that xI =2, y I =1, z I =0, aI =true, b I =false, c I =false

satisfies I |= SM[F ; abc].

As with clingcon programs, ASP(LC) programs do not allow intensional functions.

10.3. Relation to Lin–Wang programs

Lin and Wang [40] extended answer set semantics with functions by extending the definition of a reduct, and also
provided loop formulas for such programs. We can provide an alternative account of their results by considering the notions
there as special cases of the definitions presented in this paper. Essentially, they restricted attention to a special case of
non-Herbrand interpretations such that object constants form the universe, and ground terms other than object constants
are mapped to the object constants. More precisely, according to Lin and Wang [40], an LW-program P consists of type
definitions and a set of rules of the form

A ← B1, . . . , Bm,not C1, . . . ,not Cn (28)

where A is ⊥ or an atom, and B i (1 ≤ i ≤m) and C j (1 ≤ j ≤ n) are atomic formulas possibly containing equality. Type
definitions are essentially a special case of many-sorted signature declarations, where each sort is a set of object constants.
For such many-sorted signature, we say that a many-sorted interpretation I is a P -interpretation if it evaluates each object
constant to itself, and each ground term other than object constants to an object constant conforming to the type definitions
of P . The functional reduct of P under I is a normal logic program without functions obtained from P by

(1) replacing each functional term f (t1, . . . , tn) with c where f I (t1, . . . , tn) = c;

(2) removing any rule containing c
= c or c = d where c, d are distinct constants;
(3) removing any remaining equalities from the remaining rules;
(4) removing any rule containing not A in the body of the rule where A I = true;

(5) removing any remaining not A from the bodies of the remaining rules.

A P -interpretation is an answer set of P in the sense of Lin and Wang [40] if I is the minimal model of P I .

The following theorem tells us that LW programs are a special case of FSM formulas whose function constants are
non-intensional.

Theorem 16. Let P be an LW-program and let F be the FOL-representation of the set of rules in P . The following conditions are
equivalent to each other:

(a) I is an answer set of P in the sense of Lin and Wang [40];

(b) I is a P -interpretation that satisfies SM[F ; p] where p is the list of all predicate constants occurring in F .

In other words, like clingcon programs, Lin–Wang programs can be identified with a special case of the first-order stable
model semantics from Ferraris et al. [16], which do not allow intensional functions.

11. Conclusion

In this paper, we presented the functional stable model semantics, which properly extends the first-order stable model
semantics to distinguish between intensional and non-intensional functions. We observe that many properties known for
the first-order stable model semantics naturally extend to the functional stable model semantics.

78 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

The presented semantics turns out to be useful for overcoming the limitations of the stable model semantics originat-
ing from the propositional setting, and enables us to combine with other related formalisms where general functions play a
central role in efficient computation. ASPMT benefits from the expressiveness of ASP modeling language while leveraging ef-
ficient constraint/theory solving methods originating from SMT. For instance, it provides a viable approach to nonmonotonic
reasoning about hybrid transitions where discrete and continuous changes co-exist.

The relationship between ASPMT and SMT is similar to the relationship between ASP and SAT. We expect that, in addition
to completion and the results shown in this paper, many other results known between ASP and SAT can be carried over to
the relationship between ASPMT and SMT, thereby contributing to efficient first-order reasoning in answer set programming.
A future work is to lift the limitation of the current ASPMT implementation limited to tight programs by designing and
implementing a native computation algorithm which borrows the techniques from SMT, similar to the way that ASP solvers
adapted SAT solving computation.

Acknowledgements

We are grateful to Yi Wang and Nikhil Loney for many useful discussions and to the anonymous referees for their
constructive comments. This work was partially supported by the National Science Foundation under Grants IIS-1526301,
and IIS-1815337.

Appendix A. Review of reduct-based definition of stable models

Some of the proofs below use the definition of functional stable models based on the notions of an infinitary ground
formula and a reduct from Bartholomew and Lee [9]. We review the semantics below.

A.1. Infinitary ground formulas

We assume that a signature and an interpretation are defined the same as in the standard first-order logic. For each
element ξ in the universe |I| of I , we introduce a new symbol ξ� , called an object name. By σ I we denote the signature
obtained from σ by adding all object names ξ� as additional object constants. We will identify an interpretation I of
signature σ with its extension to σ I defined by I(ξ�) = ξ .

We assume the primary connectives of infinitary ground formulas to be ⊥, {}∧ , {}∨ , and →. The usual propositional
connectives ∧, ∨ are considered as shorthands: F ∧ G as {F , G}∧ , and F ∨ G as {F , G}∨ .

Let A be the set of all ground atomic formulas of signature σ I . The sets F0, F1, . . . are defined recursively as follows:

• F0 = A ∪ {⊥};
• Fi+1(i ≥ 0) consists of expressions H∨ and H∧ , for all subsets H of F0 ∪ . . .∪Fi , and of the expressions F → G , where

F and G belong to F0 ∪ · · · ∪Fi .

We define Linf
A =

⋃∞
i=0Fi , and call elements of Linf

A infinitary ground formulas of σ w.r.t. I .

For any interpretation I of σ and any infinitary ground formula F w.r.t. I , the definition of satisfaction, I |= F , is as
follows:

• For atomic formulas, the definition of satisfaction is the same as in the standard first-order logic;
• I |=H∨ if there is a formula G ∈H such that I |= G;

• I |=H∧ if, for every formula G ∈H, I |= G;

• I |= G → H if I
|= G or I |= H .

Given an interpretation, we identify any first-order sentence with an infinitary ground formula via the process of ground-
ing relative to that interpretation. Let F be any first-order sentence of a signature σ , and let I be an interpretation of σ . By
gr I [F] we denote the infinitary ground formula w.r.t. I that is obtained from F by the following process:

• If F is an atomic formula, gr I [F] is F ;
• gr I [G � H] = gr I [G] � gr I [H] (� ∈ {∧, ∨, →});
• gr I [∃xG(x)] = {gr I [G(ξ�)] | ξ ∈ |I|}∨;
• gr I [∀xG(x)] = {gr I [G(ξ�)] | ξ ∈ |I|}∧ .

A.2. Stable models in terms of grounding and reduct

For any two interpretations I , J of the same signature and any list c of distinct predicate and function constants, we
write J <c I if

• J and I have the same universe and agree on all constants not in c,

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 79

• p J ⊆ p I for all predicate constants p in c,16 and

• J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative to an interpretation I is defined as follows:

• For any atomic formula F , F I =

{
⊥ if I
|= F

F otherwise.

• (H∧)I = {G I | G ∈H}∧ .
• (H∨)I = {G I | G ∈H}∨ .

• (G → H)I =

{
⊥ if I
|= G → H

G I → H I otherwise.

The following theorem presents an alternative definition of a stable model that is equivalent to the one in the previous
section.

Theorem 17 (Theorem 1 from [9]). Let F be a sentence and let c be a list of intensional constants. An interpretation I satisfies SM[F ; c]
iff

• I satisfies F , and
• no interpretation J such that J <c I satisfies (gr I [F])I .

Appendix B. Proofs

B.1. Proof of Theorem 1

Theorem 1. For any first-order formulas F and G, if G is negative on c, SM[F ∧ G; c] is equivalent to SM[F ; c] ∧ G.

Proof. By Lemma 2,

SM[F ∧¬G; c] = F ∧¬G ∧¬∃̂c((ĉ < c)∧ (F ∧¬G)∗(ĉ))

⇔ F ∧¬G ∧¬∃̂c((ĉ < c)∧ F ∗(ĉ)∧¬G)

⇔ F ∧¬∃̂c((ĉ < c)∧ F ∗(ĉ))∧¬G

= SM[F ; c] ∧ ¬G. �

B.2. Proof of Theorem 2

Lemma 4. Choice(c)∗(̂c) is equivalent to

(cpred ≤ ĉpred)∧ (c f unc = ĉ f unc).

Proof. Choice(c) is the conjunction for each predicate p in cpred of ∀x(p(x) ∨¬p(x)) and for each function f in c f unc of
∀xy(f (x) = y ∨¬ f (x) = y).

First,

[∀x(p(x)∨¬p(x))]∗(ĉ)

is equivalent to

∀x(̂p(x)∨ (¬p̂(x)∧¬p(x))),

which is further equivalent to

∀x(p(x) → p̂(x)),

or simply p ≤ p̂.

Next,

[∀xy(f (x) = y ∨¬(f (x) = y))]∗(ĉ)

16 For any symbol c in a signature, c I denotes the evaluation of I on c.

80 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

is equivalent to

∀xy((f̂ (x) = y ∧ f (x) = y)∨ (¬(f̂ (x) = y)∧¬(f (x) = y))),

which is further equivalent to

∀xy(f (x) = y ↔ f̂ (x) = y),

or simply f = f̂ .

Thus, Choice(c)∗(̂c) is the conjunction for each predicate p in cpred of p ≤ p̂ and for each function f in c f unc of f = f̂ ,
or simply Choice(c)∗(̂c) is

(cpred ≤ ĉpred)∧ (c f unc = ĉ f unc). �

Theorem 2. For any first-order formula F and any disjoint lists c, d of distinct constants, the following formulas are logically valid:

(i) SM[F ; cd]→ SM[F ; c]
(ii) SM[F ∧ Choice(d); cd] ↔ SM[F ; c].

Proof. The proof is not long, but there is a notational difficulty that we need to overcome before we can present it. The
notation F ∗(̂c) does not take into account the fact that the construction of this formula depends on the choice of the list c

of intensional constants. Since the dependence on c is essential in the proof of Theorem 2, we use here the more elaborate
notation F ∗[c](̂c). For instance, if F is p(x) ∧ q(x) then

F ∗[p](̂p) is p̂(x) ∧ q(x),

F ∗[pq](̂p, q̂) is p̂(x) ∧ q̂(x).

It is easy to verify by induction on F that for any disjoint lists c, d of distinct predicate constants,

F ∗[c](ĉ) = F ∗[cd](ĉ,d). (B.1)

(i) In the notation introduced above, SM[F ; c] is

F ∧¬∃̂c((ĉ < c)∧ F ∗[c](ĉ)).

By (B.1), this formula can be written also as

F ∧¬∃̂c((ĉ < c)∧ F ∗[cd](ĉ,d)),

which is equivalent to

F ∧¬∃̂c(((ĉ,d) < (c,d)) ∧ F ∗[cd](ĉ,d)). (B.2)

On the other hand, SM[F ; cd] is

F ∧¬∃̂ĉd(((ĉ, d̂) < (c,d)) ∧ F ∗[cd](ĉ, d̂)). (B.3)

It is clear that (B.3) entails (B.2).

(ii) Note that, by (B.1) and Lemma 4, the formula

∃̂ĉd(((ĉ, d̂) < (c,d))∧ F ∗[cd](ĉ, d̂)∧ Choice (d)∗[cd](ĉ, d̂))

is equivalent to

∃̂ĉd(((ĉ, d̂) < (c,d))∧ F ∗[cd](ĉ, d̂)∧ (d= d̂)).

It follows that it can be also equivalently rewritten as

∃̂c((ĉ < c)∧ F ∗[cd](ĉ,d)).

By (B.1), the last formula can be represented as

∃̂c((ĉ < c)∧ F ∗[c](ĉ)). �

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 81

B.3. Proof of Theorem 3

Recall that about first-order formulas F and G we say that F is strongly equivalent to G if, for any formula H , any
occurrence of F in H , and any list c of distinct predicate and function constants, SM[H; c] is equivalent to SM[H ′; c],
where H ′ is obtained from H by replacing the occurrence of F by G .

Lemma 5. Formula

(F ↔ G)∧ ((F ∗(ĉ) ↔ G∗(ĉ)) → (H∗(ĉ) ↔ (H ′)∗(ĉ)))

is logically valid.

Proof. By induction on the structure of H . �

The following lemma is equivalent to the “only if” part of Theorem 3.

Lemma 6. If the formula (9) is logically valid, then F is strongly equivalent to G.

Proof. Assume that (9) is logically valid. We need to show that

H ∧¬∃̂c((ĉ < c)∧ H∗(ĉ)) (B.4)

is equivalent to

H ′ ∧¬∃̂c((ĉ < c)∧ (H ′)∗(ĉ)). (B.5)

Since (9) is logically valid, the first conjunctive term of (B.4) is equivalent to the first conjunctive term of (B.5). By Lemma 5,
it also follows that the same relationship holds between the two second conjunctive terms of the same formulas. �

The following lemma is equivalent to the “if” part of Theorem 3.

Lemma 7. If F is strongly equivalent to G, then (9) is logically valid.

Proof. Let C be the formula Choice(c). Let E stand for F ↔ G , and E ′ be F ↔ F . Since F is strongly equivalent to G , the
formula SM[E ↔ C] is equivalent to SM[E ′ ↔ C].

Recall that by Lemma 4, Choice(c)∗(̂c), which we abbreviate as C∗ , is equivalent to

(cpred ≤ ĉpred)∧ (c f unc = ĉ f unc).

On the other hand, ̂c < c can be equivalently rewritten as

(ĉpred < cpred)∨ ((ĉpred = cpred)∧ (ĉ f unc
= c f unc)).

It follows that

ĉ < c→ (C∗ ↔⊥)

is logically valid.
It is easy to see that (E ↔ C)∗ can be rewritten as

E ∧ (E∗(ĉ) ↔ C∗),

and that E∗(̂c) is equivalent to

E ∧ (F ∗(ĉ) ↔ G∗(ĉ)).

Using these two facts and Lemma 1, we can simplify SM[E ↔ C] as follows:

SM[E ↔ C] ⇔ (E ↔ C)∧¬∃̂c((ĉ < c)∧ E ∧ (E∗(ĉ) ↔ C∗))

⇔ E ∧¬∃̂c((ĉ < c)∧ (E∗(ĉ) ↔⊥))

⇔ E ∧¬∃̂c((ĉ < c)∧¬E∗(ĉ))

⇔ E ∧¬∃̂c((ĉ < c)∧¬(F ∗(ĉ) ↔ G∗(ĉ)))

= (F ↔ G)∧ ∀̂c((ĉ < c) → (F ∗(ĉ) ↔ G∗(ĉ))).

82 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Similarly, SM[E ′ ↔ C] is equivalent to

(F ↔ F)∧ ∀̂c((ĉ < c) → (F ∗(ĉ) ↔ F ∗(ĉ))),

which is logically valid. Consequently, (9) is logically valid also. �

Theorem 3. Let F and G be first-order formulas, let c be the list of all constants occurring in F or G, and let ̂c be a list of distinct
predicate and function variables corresponding to c. The following conditions are equivalent to each other.

• F and G are strongly equivalent to each other;
• Formula

(F ↔ G)∧ (ĉ < c→ (F ∗(̂c) ↔ G∗(̂c)))

is logically valid.

Proof. Immediate from Lemma 6 and Lemma 7. �

B.4. Proof of Theorem 4

Lemma 8. For any first-order sentence F , any list c of constants, and any interpretations I and J such that J <c I , if I |= gr I (F)I and
J
|= gr I (F)I , then there is some constant d occurring strictly positively in F such that dI
= d J .

Proof. By induction on the structure of F . �

Lemma 9. If a ground formula F is negative on a list c of predicate and function constants, then for every J <c I ,

J |= F I iff I |= F .

Proof. By induction on the structure of F . �

Theorem 4. For any formula F in Clark normal form relative to c that is tight on c, an interpretation I that satisfies ∃xy(x
= y) is a
model of SM[F ; c] iff I is a model of COMP[F ; c].

Proof. In this proof, we use Theorem 17 and refer to the reduct-based characterization of a stable model.

(⇐) Take an interpretation I that is a model of COMP[F ; c]. I is clearly a model of F . We wish to show that, for any
interpretation J such that J <c I , we have J
|= gr I [F]

I . Let S be a subset of c consisting of constants c on which I and J
disagree, that is, c I
= c J . Let s0 be a constant from S such that there is no edge in the dependency graph from s0 to any
constant in S . Such an s0 is guaranteed to exist since F is tight on c.

If s0 is a predicate, then for some ξ , we have s0(ξ)I = true and s0(ξ) J = false by definition of J <c I . If s0 is a function,
then for some ξ , we have s0(ξ)I = v and s0(ξ) J
= v .

Since F is in Clark normal form, there must be a rule in gr I [F] of the form B → s0(ξ
�) if s0 is a predicate (B → s0(ξ

�) =
v if s0 is a function) where B may be �. Further it must be that I |= B since if not, I would not be a model of COMP[F ; c].
Thus, the corresponding rule in gr I [F]I is B I → s0(ξ

�) (B I → s0(ξ
�) = v if s0 is a function).

Now there are two cases to consider:

• Case 1: J |= B I . In this case, J
|= B I → s0(ξ
�) (or J
|= B I → s0(ξ

�) = v if s0 is a function) and so J
|= gr I [F]
I .

• Case 2: J
|= B I . By Lemma 8, there is a constant d occurring strictly positively in B that I and J disagree on. However,
this means there is an edge from s0 to d and since I and J disagree on d, d belongs to S which contradicts the fact
that s0 was chosen so that it had no edge to any element in S . Thus this case cannot arise.

(⇒) Assume I |= SM[F ; c]. F can be viewed as the conjunction of ∀x(H(x) ← G(x)), where each H is an atomic formula
containing each intensional constant ci . It is sufficient to prove that I |= ∀x(H(x) ← G(x)) for each such formula. Assume
for the sake of contradiction that for some formula ∀x(H(x) ← G(x)) whose H contains an intensional constant c, I |= H(ξ)

and I
|= G(ξ) for some list ξ of object names.

Consider an interpretation J that differs from I only in that J
|= H(ξ). (I |= ∃xy(x
= y) means there are at least two
elements in the universe so this is possible when c is a function constant.)

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 83

• Clearly, J |= (H(ξ) ← G(ξ))I because G(ξ)I =⊥.

• For other rules H(ξ ′) ← G(ξ ′) where ξ ′ is a list of object names different from ξ , clearly, J |= H(ξ ′) iff I |= H(ξ ′). Since
G is negative on c and J <c I , by Lemma 9 we have I |= G(ξ ′) iff J |= G(ξ ′)I . Since I |= H(ξ ′) ← G(ξ ′), it follows that
J |= (H(ξ ′) ← G(ξ ′))I .

• For all other rules H ′(ξ) ← G ′(ξ) whose H ′ has an intensional constant different from c, we have I |= H ′(ξ) ← G ′(ξ).
Since H ′(ξ) ← G ′(ξ) is negative on c and J <c I , by Lemma 9, we have J |= (H ′(ξ) ← G ′(ξ))I .

The presence of J contradicts that I |= SM[F ; c]. �

B.5. Proof of Theorem 5

Theorem 5. The set of formulas consisting of

∀x(f (x) = 1↔ p(x)), (B.6)

and FC f entails

SM[F ; pc] ↔ SM[F
p

f
∧ DF f ; f c].

Proof. For any interpretation I of signature σ ⊇ { f , p, c} satisfying (B.6), it is clear that I |= F iff I |= F
p

f
∧ DF f since DF f is

a tautology and F p

f
is equivalent to F under (B.6). Thus it only remains to be shown that

I |= ∃p̂ ĉ((̂p̂c < pc)∧ F ∗(̂p ĉ))

iff

I |= ∃ f̂ ĉ((f̂ ĉ < f c)∧ (F
p

f
)∗(f̂ ĉ)∧ DF ∗

f (f̂ ĉ)).

Let σ ′ = σ ∪ {g, q, d} be an extended signature such that g, q, d are similar to f , p, c respectively, and do not belong
to σ .

(⇒) Assume I |= ∃ p̂̂c((̂p̂c < pc) ∧ F ∗ (̂p̂c)). This is equivalent to saying that there is an interpretation J of σ that agrees
with I on all constants other than p and c such that I = J

pc

qd
∪ I of signature σ ′ satisfies (qd < pc ∧ F ∗(qd)).

It is sufficient to show that there is an interpretation K of σ that agrees with J on all constants other than f such that
I ′ = K

f c

gd
∪ I of signature σ ′ satisfies (gd < f c ∧ (F

p

f
)∗(gd) ∧ DF∗

f
(gd)). We define the interpretation of K on f as follows:

f K (ξ) =

{
1 if p J (ξ) = true

0 otherwise.

We now show I ′ |= gd < f c:

• Case 1: I |= (q = p). Since I |= qd < pc, by definition I |= dpred ≤ cpred and I |= ¬(qd = pc) and since in this case,
I |= (q = p), it must be that I |= ¬(d = c). From this, we conclude I ′ |= ¬(gd = f c). Further, since I ′ |= dpred ≤ cpred ,
we conclude I ′ |= gd < f c.

• Case 2: I |= ¬(q = p). Since I |= qd < pc, by definition, I |= dpred ≤ cpred and I |= (q ≤ p). Thus, since in this case
I |= ¬(q = p), it must be that I |= ∃x(p(x) ∧ ¬q(x)). From the definition of f K and from (B.6), this is equivalent to
I ′ |= ∃x(f (x) = 1 ∧ g(x) = 0). Thus, we conclude I ′ |= ¬(f = g) and since I ′ |= dpred ≤ cpred , we further conclude that
I ′ |= gd < f c.

We now show I ′ |= DF∗
f
(gd):

Since I |= qd < pc, by definition, I |= (q ≤ p), or equivalently I |= ∀x(q(x) → p(x)) and by contraposition, I |= ∀x(¬p(x) →
¬q(x)). Finally, by (B.6), F C f , and the definition of f K , I ′ |= ∀x(f (x) = 0 → g(x) = 0) or simply I ′ |= DF∗

f
(gd).

We now show I ′ |= (F
p

f
)∗(gd) by proving the following:

Claim: I |= F ∗(qd) iff I ′ |= (F
p

f
)∗(gd).

The proof of the claim is by induction on the structure of F .

• Case 1: F is an atomic formula not containing p. F p

f
is exactly F thus F ∗(qd) is exactly (F p

f
)∗(gd), so certainly the

claim holds.
• Case 2: F is p(t) where t contains an intensional function constant from c. F ∗(qd) is p(t) ∧ q(t′) where t′ is the result

of replacing all intensional functions from c occurring in t with the corresponding function from d. Since F p

f
is f (t) = 1,

formula (F p

f
)∗(gd) is f (t) = 1 ∧ g(t′) = 1. The claim follows from (B.6) and the definition of f K .

84 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

• Case 3: F is p(t) where t does not contain any intensional function constant from c. F ∗(qd) is q(t). Since F p

f
is f (t) = 1,

formula (F p

f
)∗(gd) is f (t) = 1 ∧ g(t) = 1. Since I |= (q ≤ p), if I |= q(t), then I |= p(t). The claim follows from (B.6) and

the definition of f K .
• The other cases are straightforward from I.H.

(⇐) Assume I |= ∃ f̂ ĉ((f̂ ĉ < f c) ∧ (F
p

f
)∗(f̂ ĉ) ∧ DF∗

f
(f̂ ĉ)). This is equivalent to saying that there is an interpretation

J of σ that agrees with I on all constants other than f and c such that I = J
f c

gd
∪ I of signature σ ′ satisfies (gd <

f c) ∧ (F
p

f
)∗(f c) ∧ DF∗

f
(f c).

It is sufficient to show that there is an interpretation K of σ that agrees with J on all constants other than p such that
I ′ = K

pc

qd
∪ I of signature σ ′ satisfies (qd < pc ∧ F ∗(qd). We define the interpretation of K on p as follows:

pK (ξ) =

{
true if f J (ξ) = 1

false otherwise.

We now show I ′ |= qd < pc:

• Case 1: I |= (g = f). By definition of pK and by (B.6), in this case, I |= q = p and in particular, I |= q ≤ p. Since
I |= gd < f c, by definition I |= dpred ≤ cpred and I |= ¬(gd = f c) and since in this case, I |= (g = f), it must be that
I |= ¬(d = c). From this, we conclude I ′ |= ¬(qd = pc). Further, since I ′ |= dpred ≤ cpred , we conclude I ′ |= qd < pc.

• Case 2: I |= ¬(g = f). Since I |= DF∗
f
(gd), it must be that I |= ∀x(f (x) = 0 → g(x) = 0). From this, we conclude by

definition of pK , FC f (note that 0
= 1 is essential here) and (B.6) that I ′ |= ∀x(¬p(x) → ¬q(x)). Equivalently, this is
I ′ |= ∀x(q(x) → p(x)) or simply I ′ |= q ≤ p.

Now, since I |= F C f , then I |= ∀x(f (x) = 0 ∨ f (x) = 1). Thus, for the assumption in this case that I |= ¬(g = f) to hold,
it must be that I |= ∃x(f (x) = 1 ∧ ¬(g(x) = 1)). By definition of pK and (B.6), it follows that I ′ |= ∃x(p(x) ∧ ¬q(x)).
Thus, since I ′ |= ¬(q = p), then I ′ |= ¬(qd = pc). Also, since I |= gd < f c, by definition I ′ |= dpred ≤ cpred , and thus we
conclude that I ′ |= qd < pc.

The proof of I ′ |= F ∗(qd) is by induction similar to the proof of the claim above. �

B.6. Proof of Corollary 6

For two interpretations I of signature σ1 and J of signature σ2 , by I∪ J we denote the interpretation of signature σ1∪σ2

and universe |I| ∪ | J | that interprets all symbols occurring only in σ1 in the same way I does and similarly for σ2 and J .
For symbols appearing in both σ1 and σ2 , I must interpret these the same as J does, in which case I ∪ J also interprets
the symbol in this way.

Corollary 6.

(a) An interpretation I of the signature of F is a model of SM[F ; pc] iff I p
f
is a model of SM[F

p

f
∧ DF f ∧ FC f ; f c].

(b) An interpretation J of the signature of F p

f
is a model of SM[F

p

f
∧ DF f ∧ FC f ; f c] iff J = I

p

f
for some model I of SM[F ; pc].

Proof. (a⇒) Assume I of the signature of F is a model of SM[F ; pc]. By definition of I
p

f
, I ∪ I

p

f
|= ∀x(f (x) = 1 ↔ p(x)) ∧

FC f . Since I |= SM[F ; pc], it must be that I ∪ I
p

f
|= SM[F ; pc] and further by Theorem 5, I ∪ I

p

f
|= SM[F

p

f
∧ DF f ; f c]. By

Theorem 1, we have I ∪ I
p

f
|= SM[F

p

f
∧ DF f ∧ FC f ; f c]. Finally, since the signature of I does not contain f , we conclude

I
p

f
|= SM[F

p

f
∧ DF f ∧ FC f ; f c].

(a⇐) Assume I p
f
is a model of SM[F

p

f
∧ DF f ∧ FC f ; f c]. By Theorem 1, I p

f
is a model of SM[F

p

f
∧ DF f ; f c]. By definition of

I
p

f
, I ∪ I

p

f
|= ∀x(f (x) = 1 ↔ p(x)) ∧ FC f . Since I

p

f
|= SM[F

p

f
∧DF f ; f c], it must be that I ∪ I

p

f
|= SM[F

p

f
∧DF f ; f c] and further

by Theorem 5, I ∪ I
p

f
|= SM[F ; pc]. Finally, since the signature of I p

f
does not contain p, we conclude I |= SM[F ; pc].

(b⇒) Assume an interpretation J of the signature of F p

f
is a model of SM[F

p

f
∧DF f ∧FC f ; f c]. Let I = J

f
p , where J fp denotes

the interpretation of the signature F obtained from J by replacing f J with the set p I that consists of the tuples 〈ξ1, . . . , ξn〉
for all ξ1, . . . , ξn from the universe of J such that f J (ξ1, . . . , ξn) = 1. By definition of I , I ∪ J |= ∀x(f (x) = 1 ↔ p(x)). Since
J |= SM[F

p

f
∧ FC f ∧ DF f ; f c], it must be that I ∪ J |= SM[F

p

f
∧ DF f ∧ FC f ; f c]. Since FC f is comprised of constraints, by

Theorem 1, I ∪ J |= SM[F
p

f
∧ DF f ; f c] ∧ FC f . In particular, I ∪ J |= SM[F

p

f
∧ DF f ; f c] and further by Theorem 5, I ∪ J |=

SM[F ; pc]. Finally, since the signature of J does not contain p, we conclude I |= SM[F ; pc].

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 85

(b⇐) Take any I such that J = I
p

f
and I |= SM[F ; pc]. By definition of I p

f
, I ∪ J |= ∀x(f (x) = 1 ↔ p(x)) ∧ FC f . Since I |=

SM[F ; pc], it must be that I ∪ J |= SM[F ; pc] and further by Theorem 5, I ∪ J |= SM[F
p

f
∧ DF f ; f c]. Since the signature

of I does not contain f , we conclude J |= SM[F
p

f
∧ DF f ; f c]. Finally, since by definition of I p

f
, J |= FC f , and since FC f is

comprised of constraints, by Theorem 1 we conclude J |= SM[F
p

f
∧ DF f ∧ FC f ; f c]. �

B.7. Proof of Theorem 7

Theorem 7. For any f -plain formula F , the set of formulas consisting of

∀xy(p(x, y) ↔ f (x) = y) (B.7)

and ∃xy(x
= y) entails

SM[F ; f c] ↔ SM[F
f
p ; pc].

Proof. For any interpretation I of signature σ ⊇ { f , p, c} satisfying (B.7), it is clear that I |= F iff I |= F
f
p since F f

p is simply
the result of replacing all f (x) = y with p(x, y). Thus it only remains to be shown that

I |= ∃ f̂ ĉ((f̂ ĉ < f c)∧ F ∗(f̂ ĉ))

iff

I |= ∃p̂ ĉ((̂p̂c < pc)∧ (F
f
p)∗(̂p̂c)).

Let σ ′ = σ ∪ {g, q, d} be an extended signature such that g, q, d are similar to f , p, c respectively, and do not belong
to σ .

(⇒) Assume I |= ∃ f̂ ĉ((f̂ ĉ < f c) ∧ F ∗(f̂ , ̂c)). This is equivalent to saying that there is an interpretation J of σ that agrees
with I on all constants other than f and c such that I = J

f c

gd
∪ I of signature σ ′ satisfies (gd < f c) ∧ F ∗(gd).

It is sufficient to show that there is an interpretation K of σ that agrees with J on all constants other than p such that
I ′ = K

pc

qd
∪ I of signature σ ′ satisfies (qd < pc) ∧ (F

f
p)∗(qd). We define the interpretation of K on p as follows:

pK (ξ, ξ ′) =

{
true if I |= f (ξ) = ξ ′ ∧ g(ξ) = ξ ′

false otherwise.

We first show that if I |= (gd < f c) then I ′ |= (qd < pc):

Observe that from the definition of pK , it follows that I |= ∀xy(q(x, y) → f (x) = y) and from (B.7), this is equivalent to
∀xy(q(x, y) → p(x, y)) or simply q ≤ p. Thus, since I ′ |= dpred ≤ cpred , we have I ′ |= qdpred ≤ pcpred .

• Case 1: I |= ∀xy(f (x) = y ↔ g(x) = y).

In this case it then must be the case that I |= d
= c. Thus it follows that I ′ |= qd
= pc. Consequently, we conclude that

I
′ |= (qdpred ≤ pcpred)∧ qd
= pc

or simply, I ′ |= (qd < pc).

• Case 2: I |= ¬∀xy(f (x) = y ↔ g(x) = y).

In this case it then must be the case that for some t and c that I |= f (t) = c ∧ g(t)
= c. By the definition of pK , this
means that q(t, c)I

′
= false but by (B.7), p(t, c)I

′
= true. Therefore, I ′ |= p
= q and thus I ′ |= qd
= pc. Consequently,

we conclude

I
′ |= (qdpred ≤ pcpred)∧ qd
= pc

or simply, I ′ |= (qd < pc).

We now show that I |= (F
f
p)∗(qd) by proving the following:

Claim: I |= F ∗(gd) iff I ′ |= (F
f
p)∗(qd)

The proof of the claim is by induction on the structure of F .

• Case 1: F is an atomic formula not containing f . F f
p is exactly F thus F ∗(gd) is exactly (F f

p)∗(qd), so certainly the
claim holds.

• Case 2: F is f (t) = t1 . F ∗(gd) is f (t) = t1 ∧ g(t) = t1 . F
f
p is p(t, t1) and (F f

p)∗(qd) is q(t, t1). By the definition of pK , it
is clear that I |= f (t) = t1 ∧ g(t) = t1 iff I ′ |= q(t, t1), so certainly the claim holds.

• The other cases are straightforward from I.H.

86 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

(⇐) Assume I |= ∃ p̂̂c((̂p̂c < pc) ∧ (F
f
p)∗(̂p̂c)). This is equivalent to saying that there is an interpretation J of σ that

agrees with I on all constants other than p and c such that I = J
pc

qd
∪ I of signature σ ′ satisfies (qd < pc) ∧ (F

f
p)∗(qd).

It is sufficient to show that there is an interpretation K of σ that agrees with J on all constants other than f such that
I ′ = K

f c

gd
∪ I of signature σ ′ satisfies (gd < f c) ∧ F ∗(gd). We define the interpretation of K on f as follows:

f K (ξ) =

{
ξ ′ if I |= p(ξ, ξ ′)∧ q(ξ, ξ ′)

ξ ′′ if I |= p(ξ, ξ ′)∧¬q(ξ, ξ ′) where ξ ′
= ξ ′′.

Note that the assumption that there are at least two elements in the universe is essential to this definition. This definition
is sound due to (B.7) entailing ∀ ξ∃ξ ′(p(ξ, ξ ′)).

We first show if I |= (qd < pc) then I ′ |= (gd < f c):

Observe that I |= (qd < pc) by definition entails I |= (qdpred ≤ pcpred) and further by definition, I |= (dpred ≤ cpred) and
then since f and g are not predicates, I ′ |= ((gd)pred ≤ (f c)pred).

• Case 1: I |= ∀xy(p(x, y) ↔ q(x, y)). In this case, I |= (p = q) so for it to be the case that I |= (qd < pc), it must be that
I |= ¬(c = d). It then follows that I ′ |= ¬(f c = gd). Consequently, in this case, I ′ |= ((gd)pred ≤ (f c)pred) ∧¬(f c = gd)

or simply I ′ |= (gd < f c).

• Case 2: I |= ¬∀xy(p(x, y) ↔ q(x, y)). In this case, since I |= (q ≤ p), then it follows that ∃xy(p(x, y) ∧ ¬q(x, y)). It
follows from the definition of pK that I ′ |= ∃xyz((p(x, y) ↔ g(x) = z) ∧ y
= z) and then from (B.7), it follows that
I ′ |= ∃xyz((f (x) = y ↔ g(x) = z) ∧ y
= z) or simply I ′ |= f
= g . It then follows that I ′ |= ¬(f c = gd). Consequently, in
this case I ′ |= ((gd)pred ≤ (f c)pred) ∧¬(f c = gd) or simply I ′ |= (gd < f c).

Next, the proof of I ′ |= F ∗(gd) is by induction similar to the proof of the claim above. �

B.8. Proof of Corollary 8

Corollary 8. Let F be an f -plain sentence.

(a) An interpretation I of the signature of F that satisfies ∃xy(x
= y) is a model of SM[F ; f c] iff I fp is a model of SM[F
f
p ∧UEC p; pc].

(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x
= y) is a model of SM[F

f
p ∧UECp; pc] iff J = I

f
p for some model I

of SM[F ; f c].

Proof. (a⇒) Assume I |= SM[F ; f c] ∧ ∃xy(x
= y). Since I |= ∃xy(x
= y), I ∪ I
f
p |= ∃xy(x
= y) since by definition of I fp , I and

I
f
p share the same universe.

By definition of I fp , I ∪ I
f
p |= (B.7). Since I |= SM[F ; f c], we have I ∪ I

f
p |= SM[F ; f c] and by Theorem 7, we have I ∪ I

f
p |=

SM[F
f
p ; pc]. It’s clear that I |= UECp , so by Theorem 1, we have I ∪ I

f
p |= SM[F

f
p ∧ UECp; pc]. Since the signature of I does

not contain f , we conclude I fp |= SM[F
f
p ∧ UECp; pc].

(a⇐) Assume I |= ∃xy(x
= y) and I fp |= SM[F
f
p ∧ UECp; pc]. By Theorem 1, I fp |= SM[F

f
p ; pc]. Since I |= ∃xy(x
= y), we have

I ∪ I
f
p |= ∃xy(x
= y) since by definition of I fp , I and I fp share the same universe.

By definition of I fp , I ∪ I
f
p |= (B.7). Since I fp |= SM[F

f
p ; pc], we have I ∪ I

f
p |= SM[F

f
p ; pc] and by Theorem 7, we have

I ∪ I
f
p |= SM[F ; f c]. Since the signature of I fp does contain f , we conclude I |= SM[F ; f c].

(b⇒) Assume J |= ∃xy(x
= y) and J |= SM[F
f
p ∧ UECp; pc]. Let I = J

p

f
where J

p

f
denotes the interpretation of the sig-

nature of F obtained from J by replacing the set p J with the function f I such that f I (ξ1, . . . , ξk) = ξk+1 for all tuples
〈ξ1, . . . , ξk, ξk+1〉 in p J . This is a valid definition of a function since we assume J |= SM[F

f
p ∧ UECp; pc], from which we

obtain by Theorem 1 that J |= SM[F
f
p ; pc] ∧UECp and specifically, J |= UECp . Clearly, J = I

f
p so it only remains to be shown

that I |= SM[F ; f c].
Since I and J have the same universe and J |= ∃xy(x
= y), it follows that I ∪ J |= ∃xy(x
= y). Also by the definition of

J
p

f
, we have I ∪ J |= (B.7). Thus by Theorem 7, I ∪ J |= SM[F ; f c] ↔ SM[F

f
p ; pc].

Since we assume J |= SM[F
f
p ; pc], it is the case that I ∪ J |= SM[F

f
p ; pc] and thus it must be the case that I ∪ J |=

SM[F ; f c]. Now since the signature of J does not contain f , we conclude I |= SM[F ; f c].

(b⇐) Take any I such that J = I
f
p and I |= SM[F ; f c]. Since J |= ∃xy(x
= y) and I and J share the same universe, I ∪ J |=

∃xy(x
= y). By definition of J = I
f
p , I ∪ J |= (B.7). Thus by Theorem 7, I ∪ J |= SM[F ; f c] ↔ SM[F

f
p ; pc].

Since we assume I |= SM[F ; f c], it is the case that I∪ J |= SM[F ; f c] and thus it must be the case that I∪ J |= SM[F
f
p ; pc].

Further, due to the nature of functions, (B.7) entails UECp so I∪ J |= UECp . However since the signature of I does not contain

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 87

p, we conclude J |= SM[F
f
p ; pc] ∧ UECp and since UECp is comprised of constraints only, by Theorem 1 J |= SM[F

f
p ∧

UECp; pc]. �

B.9. Proof of Theorem 9

Theorem 9. For any head-c-plain sentence F that is tight on c and any interpretation I satisfying ∃xy(x
= y), we have I |= SM[F ; c]
iff I |= SM[UFc(F); c].

Proof. It is easy to check that the completion of UFc(F) relative to c is equivalent to the completion of F relative to c. By
Theorem 4, we conclude that SM[UFc(F); c] is equivalent to SM[F ; c]. �

B.10. Proof of Theorem 10

For any formula F containing object constants f and g , we call it f g-indistinguishable if every occurrence of f and g in
F is in a subformula of the form (f = t) ∧ (g = t) that is f g-plain. For any interpretations I and J of F , we say I and J
satisfy the relation R(I, J) if

• |I| = | J |,
• I(f)
= I(g),

• J (f)
= J (g), and
• for all symbols c other than f and g , I(c) = J (c).

Lemma 10. If a formula F is f g-indistinguishable, then for any interpretations I and J such that R(I, J), F I = F J .

Proof. Notice that any f g-indistinguishable formula is built on atomic formulas not containing f and g , and formula of the
form (f = t) ∧ (g = t), using propositional connectives and quantifiers. The proof is by induction on such formulas. �

Theorem 10. For any set c of constants, there is no strongly equivalent transformation that turns an arbitrary sentence into a c-plain
sentence.

Proof. The proof follows from the claim.

Claim: There is no f -plain formula that is strongly equivalent to p(f) ∧ p(1) ∧ p(2) ∧¬p(3).

Let F be p(f) ∧ p(1) ∧ p(2) ∧¬p(3). Then F ∗(g) is p(f) ∧ p(g) ∧ p(1) ∧ p(2) ∧ ¬p(3). Let I = {p(1), p(2), f =1, g=2}
and J = {p(1), p(2), f =1, g=3} (numbers are interpreted as themselves). It is easy to check that I |= F ∗(g) and J
|= F ∗(g).

Assume for the sake of contradiction that there is a f -plain formula G that is strongly equivalent to F . Since G is
f -plain, G∗(g) is f g-indistinguishable. Since R(I, J) holds, by Lemma 10, I |= G∗(g) iff J |= G∗(g), but this contradicts
Theorem 3. �

B.11. Proof of Theorem 11

Theorem 11. For any definite causal theory T , I |= CM[T ; f] iff I |= SM[Tr(T); f].

Proof. Assume that, without loss of generality, the rules (21)–(22) have no free variables. It is sufficient to prove that under
the assumption that I satisfies T , for every rule (21), J fg ∪ I satisfies

B → g(t)=t1

iff J fg ∪ I satisfies

(¬¬B)∗(g) → g(t)=t1 ∧ f (t)=t1.

Indeed, this is true since B is equivalent to (¬¬B)∗(g) (Lemma 2), and I satisfies T . �

B.12. Proof of Theorem 12

Theorem 12. I |= SM[T ; f] iff I |= IF[T ; f].

Proof. We wish to show that I |= T ∧¬∃̂f(̂f < f ∧ F ∗(̂f)) iff I |= T ∧¬∃̂f(̂f
= f ∧ F � (̂f)). The first conjunctive terms are identical
and if I
|= T then the claim holds.

88 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Let us assume then, that I |= T . By definition, ̂f < f is equivalent to ̂f
= f. What remains to be shown is the correspon-
dence between F ∗ (̂f) and F � (̂f).

Consider any list of functions g of the same length as f. Let I = J fg ∪ I be an interpretation of an extended signature
σ ′ = σ ∪ g where J is an interpretation of σ and J and I agree on functions not belonging to f.

Consider any rule f (t) = t1 ←¬¬B from T . The corresponding rule in F ∗(g) is equivalent to

f (t) = t1 ∧ g(t) = t1 ← B.

The corresponding rule in F �(g) is equivalent to

g(t) = t1 ← B.

Now we consider cases:

• I
|= B . Clearly, both versions of the rule are vacuously satisfied by I .
• I |= B . Then, since I |= T it must be that I |= f (t) = t1 and so the corresponding rule in F ∗(g) is further equivalent to

g(t) = t1 ← B

which is equivalent to the corresponding rule in F �(g) and so certainly I satisfies both corresponding rules or neither.

Thus, I |= F ∗(g) iff I |= F �(g) and so the claim holds. �

B.13. Proof of Theorem 13

Lemma 11. Given a formula F of many-sorted signature σ and an interpretation I of σ , I |= gr I [F] iff Ins |= gr Ins [F
ns].

Proof. By induction on the structure of F . �

Lemma 12. Given a formula F of many-sorted signature σ , interpretations I and J of σ and an interpretation K of σ ns such that

• for every sort s in σ , |I|s = | J |s = sK ,

• for every predicate and function constant c and for every tuple ξ composed of elements from |Ins| such that ξi ∈ |I|argsi for every
ξi ∈ ξ , where argsi is the i-th argument sort of c, we have c(ξ)K = c(ξ) J ,

• for every predicate and function constant c and for every tuple ξ composed of elements from |Ins| such that ξi /∈ |I|argsi for some
ξi ∈ |I|argsi , where argsi is the i-th argument sort of c, we have c(ξ)K = c(ξ)I

ns
,

J is a model of gr I [F]I iff K is a model of gr Ins [Fns]I
ns
.

Proof. By induction on the structure of F . �

Lemma 13. Given a formula F of many-sorted signature σ and two interpretations L and L1 of σ ns such that R(L, L1), if L |= Fns ∧
S Fσ , then L1 |= Fns ∧ S Fσ .

Proof. Assume that L |= Fns ∧ S Fσ . We first show that L1 |= S Fσ . Since R(L, L1), L and L1 agree on all sort predicates s
corresponding to sorts s ∈ σ . Thus, L1 clearly satisfies the first two items of S Fσ . We now consider the third item of S Fσ .
For tuples ξ1, . . . , ξk such that each ξi ∈ argsi where argsi is the i-th argument sort of f , since R(L, L1), L and L1 agree
on f (ξ1, . . . , ξk) so L1 satisfies the implication. For all other tuples, the implication is vacuously satisfied. Finally, the fourth
and fifth items of S Fσ are tautologies in classical logic so we conclude that L1 |= S Fσ .

Next, L1 |= Fns can be shown by induction on the structure of Fns . �

Lemma 14. Given a formula F of many-sorted signature σ , a set of function and predicate constants c from σ and two interpretations
L and L1 of σ ns such that R(L, L1), if L is a stable model of Fns ∧ S Fσ w.r.t. c, then L1 is a stable model of Fns ∧ S Fσ w.r.t. c.

Proof. Omitted. The proof is long but not complicated. �

Theorem 13. Let F be a formula of a many-sorted signature σ , and let c be a set of function and predicate constants.

(a) If an interpretation I of signature σ is a model of SM[F ; c], then Ins is a model of SM[Fns ∧ S Fσ ; c].
(b) If an interpretation L of signature σ ns is a model of SM[Fns ∧ S Fσ ; c] then there is some interpretation I of signature σ such that

I is a model of SM[F ; c] and R(L, Ins).

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 89

Proof.

(a) Consider an interpretation I (of many-sorted signature σ) that is a stable model of F w.r.t. c. This means that I |= F

and there is no interpretation J such that J <c I and J |= gr I [F]
I . We wish to show that Ins |= Fns ∧ S Fσ and there is no

(unsorted) interpretation K such that K <c Ins and K |= gr Ins [F
ns ∧ S Fσ]

Ins . From Lemma 11, I |= F iff Ins |= Fns . It follows
from the definition of Ins that Ins |= S Fσ so we conclude that I |= F iff Ins |= Fns ∧ S Fσ . For the second item, we will prove
the contrapositive: if there is an (unsorted) interpretation K such that K <c Ins and K |= gr Ins [F

ns ∧ S Fσ]
Ins , then there is a

(many-sorted) interpretation J such that J <c I and J |= gr I [F]
I .

Assume there is an interpretation K such that K <c Ins and K |= gr Ins [F
ns ∧ S Fσ]

Ins . We obtain the interpretation J as
follows. For every sort s in σ , | J |s = |I|s . For every predicate and function constant c in σ and every tuple ξ such that each
element ξi ∈ |I|si where si is the sort of the i-th argument of c, we let c J (ξ) = cK (ξ). For predicate constants, it is not hard
to see that this is a valid assignment as atoms are either true or false regardless of considering many-sorted or unsorted
logic.

We argue that this assignment is also valid for function constants. That is, K does not map a function f to a value
outside of |I|s where s is the value sort of f . This follows from the fact that Ins |= S Fσ and in particular, the third item of
S Fσ . Thus, since K |= gr Ins [F

ns ∧ S Fσ]
Ins , it follows that K too maps functions to elements of the appropriate sort.

We now show that J <c I . Since K |= gr Ins [S Fσ]
Ins , the fourth and fifth rules in S Fσ are choice formulas that force K

to agree with Ins on every predicate and function constant c for every tuple that has at least one element outside of the
corresponding sort. For every predicate and function constant c and all tuples that have all elements in the appropriate sort,
K and J agree. Further, since I and Ins agree on these as well, it follows immediately since K <c Ins , that J <c I .

To apply Lemma 12, we verify the conditions of the lemma. It is clear that the second condition is true. The first
condition follows from the definition of K <c Ins: since the sort predicates are not in c, K and Ins agree on these predicates.
The third condition follows from the fact that since K |= gr Ins [F

ns ∧ S Fσ]
Ins it follows that K |= gr Ins [S Fσ]

Ins ; the fourth
and fifth rules in S Fσ are choice formulas that force K to agree with Ins for every tuple that has at least one element
outside of the corresponding sort. Thus, by Lemma 12, since K |= gr Ins [F

ns ∧ S Fσ]
Ins and thus, K |= gr Ins [F

ns]I
ns
, it follows

that J |= gr I [F]
I .

(b) Given an interpretation L that is a stable model of Fns ∧ S Fσ w.r.t. c, we first obtain the interpretation L1 of σ ns as
follows.

• |L1| = |L|;
• sL1 = sL for every s corresponding to a sort s from σ ;

• c(ξ1, . . . , ξk)L1 = c(ξ1, . . . , ξk)L for every tuple ξ1, . . . , ξk such that ξi ∈ si where si is the i-th argument sort of c;
• c(ξ1, . . . , ξk)L1 = |L1|0 for every tuple ξ1, . . . , ξk such that ξi /∈ si for some i where si is the i-th argument sort of c.

It is easy to see that R(L, L1). By Lemma 14, L1 is a stable model of Fns ∧ S Fσ w.r.t. c. We then obtain the interpretation
I of signature σ as follows.

For every sort s in σ , |I|s = sL1 . For every predicate and function constant c in σ and every tuple ξ such that ξi ∈ |L|si

where si is the sort of the i-th argument of c, we have c(ξ)I = c(ξ)L1 . For predicate constants, it is not hard to see that this
is a valid assignment as atoms are either true or false regardless of considering many-sorted or unsorted logic.

We argue that this assignment is also valid for function constants. That is, I does not map a function f to a value outside
of |I|s where s is the value sort of f . This follows from the fact that L1 |= S Fσ (by Lemma 13) and in particular, the third
item of S Fσ . Thus, it follows that I too maps functions to elements of the appropriate sort.

Now it is clear that L1 = Ins and so we have R(L, Ins). We now show that I is a stable model of F .
We have an interpretation I (of many-sorted signature σ) such that Ins is a stable model of Fns ∧ S Fσ w.r.t. c. This

means that Ins |= Fns ∧ S Fσ and there is no interpretation K such that K <c Ins and K |= gr Ins [F
ns ∧ S Fσ]

Ins . We wish to
show that I |= F and there is no interpretation J such that J <c I and J |= gr I [F]

I . From Lemma 11, I |= F iff Ins |= Fns so
we conclude that I |= F . For the second item, we will prove the contrapositive; if there is a (many-sorted) interpretation J
such that J <c I and J |= gr I [F]

I , then there is an (unsorted) interpretation K such that K <c Ins and K |= gr Ins [F
ns∧ S Fσ]

Ins .

Assume there is an interpretation J such that J <c I and J |= gr I [F]
I . We obtain the interpretation K be Jns .

We now show that K <c Ins . For every predicate and function constant c for every tuple that has at least one element
outside of the corresponding sort, by definition of K = Jns , cK = c I

ns
= |Ins|0 if c is a function constant and cK = c I

ns
= false

if c is a predicate constant. That is, for every predicate and function constant c for every tuple that has at least one element
outside of the corresponding sort, K and Ins agree. For every predicate and function constant c and all tuples of elements
in the appropriate sort, K and J agree. Further, since I and Ins agree on these as well, K <c Ins follows immediately from
J <c I .

To apply Lemma 12, we must verify the conditions of the lemma. It is clear that the second condition is true. The first
condition follows from the definition of K = Jns . The third condition follows from the observation above: by definition of
K = Jns , cK = c I

ns
= |Ins|0 if c is a function constant and cK = c I

ns
= false if c is a predicate constant. Thus, by Lemma 12,

since J |= gr I [F]
I , it follows that K |= gr Ins [F

ns]I
ns
.

Then, it is easy to see that by definition of Ins , Ins |= S Fσ . Then, by definition of K = Jns , it is clear that K |= S Fσ . We
will show that K |= (S Fσ)I

ns
.

Since K and Ins agree on all sort predicates, it is clear that K satisfies the formulas in the first two items of (S Fσ)I
ns
.

90 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

Since K and Ins agree on all function constants f for tuples ξi, . . . , ξk such that each ξi is in |I|si where si is the i-th
argument sort of f , it is clear that K satisfies the third item of (S Fσ)I

ns
.

The last two items of (S Fσ)I
ns

are only satisfied if K agrees with Ins on all predicate (function) constants c and all tuples
ξ1, . . . , ξk such that some ξi is not in |I|si where si is the i-th argument sort of c. However, by definition of K = Jns and Ins ,
both K and Ins map this to |Ins|0 if c is a function constant or false if c is a predicate constant so K satisfies these items.
So we conclude that K |= gr Ins [F

ns ∧ S Fσ]
Ins . �

B.14. Proof of Theorem 14

Lemma 15. Let � be a clingcon program with CSP (V , D, C), let T be the background theory conforming to (V , D, C), let p be the
set of all propositional constants occurring in �, let I be a T -interpretation 〈I f , X〉 and let J be an interpretation 〈I f , Y 〉 such that
Y ⊂ X. If I |= �, then Y |= �X

I f
iff J |= �I .

Proof. Assume I |= �.

(⇒) Assume Y |= �X
I f
. This means that Y satisfies every rule in the reduct �X

I f
. For each rule r of the form (26) in �,

there are two cases:

• Case 1: X |= B and I f |= Cn. In this case, rXI f is

a← B, (B.8)

and rI is equivalent to

aI ← B I (B.9)

under the assumption I |= �.

· Subcase 1: I |= B . Since I |= �, it must be that I |= a. Consequently, (B.9) is the same as (B.8), so it follows that J |= rI .

· Subcase 2: I
|= B . Since B I =⊥, clearly, J |= rI .

• Case 2: X
|= B or I f
|= Cn . Clearly, rI is equivalent to �, so J |= rI .

(⇐) Assume J |= �I . For each rule r of the form (26) in �, there are two cases:

• Case 1: I
|= N ∧ Cn. In this case, the reduct rXI f is empty. Clearly, Y |= rXI f
.

• Case 2: I |= N ∧ Cn. The reduct rXI f is a ← B .

· Subcase 1: I |= B . rI is equivalent to aI ← (B ∧ N ∧ Cn)I . Since J |= rI , it must be that aI = a and J |= a. Consequently,
Y |= a, so Y |= rXI f

.

· Subcase 2: I
|= B (i.e., X
|= B). Since Y ⊂ X , we have Y
|= B so Y |= rXI f
. �

Theorem 14. Let � be a clingcon program with CSP (V , D, C), let p be the set of all propositional constants occurring in �, let T be
the background theory conforming to (V , D, C), and let 〈I f , X〉 be a T -interpretation. Set X is a constraint answer set of � relative
to I f iff 〈I f , X〉 is a T -stable model of � relative to p.

Proof.

X is a constraint answer set of � relative to I f

iff

X satisfies �X
I f
, and no proper subset Y of X satisfies �X

I f

iff (by Lemma 15)

〈I f , X〉 is a T -model of �, and no interpretation J such that J <p 〈I f , X〉 satisfies �I

iff

〈I f , X〉 is a T -stable model of � relative to p. �

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 91

B.15. Proof of Theorem 15

Lemma 16. For any ASP(LC) program �, any LJN interpretation (X, T), and any T -interpretation I = 〈I f , Y 〉, the following conditions
are equivalent:

• I |= T ∪ T ;

• For every theory atom t occurring in �, it holds that (X, T) |= t iff I |= t.

Proof.

(i) Assume I |= T ∪ T . Take any theory atom t occurring in �.

(⇒) Assume (X, T) |= t . It is immediate that t ∈ T and so by the assumption on I , we have I |= t .

(⇐) Assume I |= t . Since I |= T , it follows that t ∈ T and so (X, T) |= t .

(ii) Assume that, for every theory atom t occurring in �, it holds that (X, T) |= t iff I |= t . By definition of (X, T) |= t , for
every t occurring in �, it follows that t ∈ T iff I |= t . Thus I |= T and I |= T so I |= T ∪ T . �

Lemma 17. Given an ASP(LC) program �, two LJN-interpretations (X, T) and (Y , T) such that (X, T) |= � and Y ⊆ X, and two
T -interpretations I = 〈I f , X〉 and J = 〈I f , Y 〉 such that I |= �, and I f |= T ∪ T , It holds that Y |= �(X,T) iff J |= �I .

Proof. (⇒) Assume Y |= �(X,T) . This means that Y satisfies every rule in the reduct �(X,T) . For each rule r of the form
(27) in �, there are two cases:

• Case 1: (X, T) |= N ∧ LC .

In this case, the corresponding rule in the reduct �(X,T) is

a← B.

On the other hand, rI has two cases:
· Subcase 1: I |= B .

Since we assume I |= �, it must be that I |= a. By Lemma 16, since (X, T) |= t for all t in LC , so too does I and so
I |= LC . In this case, rI is

a← B,�, . . . ,�, LC I.

Since I and J interpret object constants in the same way and I |= LC I , we have J |= LC I . Thus by definition of J , it
follows that J |= B iff Y |= B and J |= a iff Y |= a, so the claim holds.

· Subcase 2: I
|= B . The reduct rI is either a ←⊥ or ⊥ ←⊥ and in either case, J |= rI .

• Case 2: (X, T)
|= N ∧ LC .

By the condition of I and by Lemma 16, I
|= N ∧ LC so rI is a ← ⊥ or ⊥ ← ⊥ depending on whether I |= a. Thus, J
trivially satisfies rI .

(⇐) Assume J |= �I . This means that J satisfies every rule in �I . For any rule r of the form (27) in �, there are two
cases.

• Case 1: I
|= N ∧ LC .

By the condition of I and by Lemma 16, (X, T)
|= N ∧ LC . Thus the reduct �(X,T) does not contain a corresponding rule
so there is nothing for Y to satisfy.

• Case 2: I |= N ∧ LC .

By the condition of I and by Lemma 16, (X, T) |= N ∧ LC so the reduct r(X,T) is a ← B .

· Subcase 1: I
|= B .

By the condition of I , X
|= B and since Y ⊆ X , Y
|= B . Thus, Y |= r(X,T) .

· Subcase 2: I |= B .

Since I |= �, it must be that I |= a so the reduct rI is a ← B ∧ LC I . Now since J and I agree on every object constant
and since I |= LC I , we have J |= LC I . Thus, J |= rI iff J |= a ← B . Since we assume J |= �I , we conclude J |= a ← B .
Now by definition of J , it follows that Y |= r(X,T) . �

Theorem 15. Let � be an ASP(LC) program of signature 〈σ p, σ f 〉 where σ p is a set of propositional constants, and let σ f be a set of
object constants, and let I f be an interpretation of σ f .

(a) If (X, T) is an LJN-answer set of �, then for any T -interpretation I such that I f |= T ∪ T , we have 〈I f , X〉 |= SM[�; σ p].
(b) For any T -interpretation I = 〈I f , X〉, if 〈I f , X〉 |= SM[�; σ p], then an LJN-interpretation (X, T) where

92 M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93

T = {t | t is a theory atom in � such that I f |= t}

is an LJN-answer set of �.

Proof. In this proof, we refer to the reduct-based characterization of a stable model from Bartholomew and Lee [9].

(a) Assume (X, T) is an LJN-answer set of �. Take any T -interpretation I = 〈I f , X〉 such that I f |=bg T ∪ T .

Now for any atom p, by the condition of I , we have I |= p iff (X, T) |= p. Similarly, for any theory atom t occurring in �,
by the condition of I and by Lemma 16, I |= t iff (X, T) |= t . Thus, since (X, T) |= �, I |= �.

We must now show that there is no interpretation J such that J <σp I and J |= �I . Take any J <σp I . That is, J = 〈I f , Y 〉
such that Y ⊂ X . By Lemma 17, J |= �I iff Y |= �(X,T) but since (X, T) is an LJN-answer set of �, Y
|= �(X,T) and thus
J
|= �I , so I is a stable model of �.

(b) Assume I = 〈I f , X〉 is a stable model of �.

Now for any atom p, by definition of (X, T), (X, T) |= p iff I |= p. Similarly, for any theory atom t occurring in �, by the
condition of I and Lemma 16, (X, T) |= t iff I |= t . Thus, since I |= �, (X, T) |= �.

We must now show that there is no set of atoms Y such that Y ⊂ X and Y |= �(X,T) . Take any Y ⊂ X . By Lemma 17,
Y |= �(X,T) iff J |= �I where J = 〈I f , Y 〉. Since J <σ p

I and I is a stable model of �, J
|= �I . Thus Y
|= �(X,T) and so
(X, T) is an LJN-answer set of �. �

B.16. Proof of Theorem 16

The proof of the theorem is rather obvious once we view the type declarations of LW-program as a special case of the
many-sorted signature declarations. So we omit the proof here.

References

[1] Vernon Asuncion, Yin Chen, Yan Zhang, Yi Zhou, Ordered completion for logic programs with aggregates, Artif. Intell. 224 (2015) 72–102.
[2] Joseph Babb, Joohyung Lee, Cplus2ASP: computing action language C+ in answer set programming, in: Proceedings of International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR), 2013, pp. 122–134.
[3] Marcello Balduccini, Representing constraint satisfaction problems in answer set programming, in: Working Notes of the Workshop on Answer Set

Programming and Other Computing Paradigms (ASPOCP), 2009.
[4] Marcello Balduccini, A “conservative” approach to extending answer set programming with non-Herbrand functions, in: Correct Reasoning – Essays on

Logic-Based AI in Honour of Vladimir Lifschitz, 2012, pp. 24–39.
[5] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli, Satisfiability modulo theories, in: Armin Biere, Marijn Heule, Hans van Maaren,

Toby Walsh (Eds.), Frontiers in Artificial Intelligence and Applications, in: Handbook of Satisfiability, vol. 185, IOS Press, 2009, pp. 825–885.
[6] Michael Bartholomew, Joohyung Lee, Stable models of formulas with intensional functions, in: Proceedings of International Conference on Principles

of Knowledge Representation and Reasoning (KR), 2012, pp. 2–12.
[7] Michael Bartholomew, Joohyung Lee, Functional stable model semantics and answer set programming modulo theories, in: Proceedings of International

Joint Conference on Artificial Intelligence (IJCAI), 2013.
[8] Michael Bartholomew, Joohyung Lee, A functional view of strong negation, in: Working Notes of the 5th Workshop on Answer Set Programming and

Other Computing Paradigms (ASPOCP), 2013.
[9] Michael Bartholomew, Joohyung Lee, On the stable model semantics for intensional functions, Theory Pract. Log. Program. 13 (4–5) (2013) 863–876.

[10] Michael Bartholomew, Joohyung Lee, System ASPMT2SMT: computing ASPMT theories by SMT solvers, in: Proceedings of European Conference on
Logics in Artificial Intelligence (JELIA), 2014, pp. 529–542.

[11] Gerhard Brewka, Ilkka Niemelä, Miroslaw Truszczynski, Answer set programming at a glance, Commun. ACM 54 (12) (2011) 92–103.
[12] Pedro Cabalar, Functional answer set programming, Theory Pract. Log. Program. 11 (2–3) (2011) 203–233.
[13] Keith Clark, Negation as failure, in: Herve Gallaire, Jack Minker (Eds.), Logic and Data Bases, Plenum Press, New York, 1978, pp. 293–322.
[14] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, A new perspective on stable models, in: Proceedings of International Joint Conference on Artificial

Intelligence (IJCAI), 2007, pp. 372–379.
[15] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, Ravi Palla, Symmetric splitting in the general theory of stable models, in: Proceedings of International

Joint Conference on Artificial Intelligence (IJCAI), AAAI Press, 2009, pp. 797–803.
[16] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, Stable models and circumscription, Artif. Intell. 175 (2011) 236–263.
[17] Maria Fox, Derek Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20 (2003) 61–124.
[18] Maria Fox, Derek Long, Modelling mixed discrete-continuous domains for planning, J. Artif. Intell. Res. 27 (2006) 235–297.
[19] Sicun Gao, Soonho Kong, Edmund Clarke, Satisfiability modulo ODEs, arXiv preprint, arXiv:1310 .8278, 2013.
[20] Sicun Gao, Soonho Kong, Edmund M. Clarke, dReal: an SMT solver for nonlinear theories over the reals, in: International Conference on Automated

Deduction, Springer, Berlin, Heidelberg, 2013, pp. 208–214.
[21] M. Gebser, M. Ostrowski, T. Schaub, Constraint answer set solving, in: Proceedings of International Conference on Logic Programming (ICLP), 2009,

pp. 235–249.

[22] Michael Gelfond, Yulia Kahl, Knowledge Representation, Reasoning, and the Design of Intelligent Agents, Cambridge University Press, 2014.
[23] Michael Gelfond, Vladimir Lifschitz, The stable model semantics for logic programming, in: Robert Kowalski, Kenneth Bowen (Eds.), Proceedings of

International Logic Programming Conference and Symposium, MIT Press, 1988, pp. 1070–1080.
[24] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, Hudson Turner, Nonmonotonic causal theories, Artif. Intell. 153 (1–2) (2004)

49–104.

[25] Tomi Janhunen, Guohua Liu, Ilkka Niemelä, Tight integration of non-ground answer set programming and satisfiability modulo theories, in: Working
Notes of the 1st Workshop on Grounding and Transformations for Theories with Variables, 2011.

[26] Joohyung Lee, Yunsong Meng, Answer set programming modulo theories and reasoning about continuous changes, in: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), 2013.

[27] Joohyung Lee, Vladimir Lifschitz, Fangkai Yang, Action language BC: preliminary report, in: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 2013.

M. Bartholomew, J. Lee / Artificial Intelligence 273 (2019) 56–93 93

[28] Joohyung Lee, Nikhil Loney, Yunsong Meng, Representing hybrid automata by action language modulo theories, in: Theory and Practice of Logic
Programming, 2017.

[29] Yuliya Lierler, Benjamin Susman, Constraint answer set programming versus satisfiability modulo theories, in: IJCAI, 2016, pp. 1181–1187.
[30] Vladimir Lifschitz, Hudson Turner, Representing transition systems by logic programs, in: Proceedings of International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR), 1999, pp. 92–106.
[31] Vladimir Lifschitz, Fangkai Yang, Eliminating function symbols from a nonmonotonic causal theory, in: Gerhard Lakemeyer, Sheila A. McIlraith (Eds.),

Knowing, Reasoning, and Acting: Essays in Honour of Hector J. Levesque, College Publications, 2011.
[32] Vladimir Lifschitz, Fangkai Yang, Functional completion, J. Appl. Non-Class. Log. 23 (1–2) (2013) 121–130.
[33] Vladimir Lifschitz, David Pearce, Agustin Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (2001) 526–541.
[34] Vladimir Lifschitz, On the declarative semantics of logic programs with negation, in: Jack Minker (Ed.), Foundations of Deductive Databases and Logic

Programming, Morgan Kaufmann, San Mateo, CA, 1988, pp. 177–192.
[35] Vladimir Lifschitz, Circumscription, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook of Logic in AI and Logic Programming, vol. 3, Oxford

University Press, 1994, pp. 298–352.
[36] Vladimir Lifschitz, On the logic of causal explanation, Artif. Intell. 96 (1997) 451–465.
[37] Vladimir Lifschitz, What is answer set programming? in: Proceedings of the AAAI Conference on Artificial Intelligence, MIT Press, 2008, pp. 1594–1597.
[38] Vladimir Lifschitz, Datalog programs and their stable models, in: O. de Moor, G. Gottlob, T. Furche, A. Sellers (Eds.), Datalog Reloaded: First International

Workshop, Datalog 2010, Oxford, UK, March 16–19, 2010, in: Revised Selected Papers, Springer, 2011.
[39] Vladimir Lifschitz, Logic programs with intensional functions, in: Proceedings of International Conference on Principles of Knowledge Representation

and Reasoning (KR), 2012, pp. 24–31.
[40] Fangzhen Lin, Yisong Wang, Answer set programming with functions, in: Proceedings of International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR), 2008, pp. 454–465.
[41] Fangzhen Lin, Embracing causality in specifying the indirect effects of actions, in: Proceedings of International Joint Conference on Artificial Intelligence

(IJCAI), 1995, pp. 1985–1991.
[42] Guohua Liu, Tomi Janhunen, Ilkka Niemelä, Answer set programming via mixed integer programming, in: Proceedings of International Conference on

Principles of Knowledge Representation and Reasoning (KR), 2012, pp. 32–42.
[43] John McCarthy, Circumscription—a form of non-monotonic reasoning, Artif. Intell. 13 (27–39) (1980) 171–172.
[44] Veena S. Mellarkod, Michael Gelfond, Yuanlin Zhang, Integrating answer set programming and constraint logic programming, Ann. Math. Artif. Intell.

53 (1–4) (2008) 251–287.
[45] Przemysław Andrzej Wałega, Mehul Bhatt, Carl Schultz, ASPMT(QS): non-monotonic spatial reasoning with answer set programming modulo theories,

in: Logic Programming and Nonmonotonic Reasoning, Springer, 2015, pp. 488–501.

	First-order stable model semantics with intensional functions
	1 Introduction
	2 Review: ﬁrst-order stable model semantics with intensional predicates
	3 Extending ﬁrst-order stable model semantics to allow intensional functions
	3.1 Second-order logic characterization of the stable model semantics
	3.2 Reduct-based characterization of the stable model semantics

	4 Properties of functional stable models
	4.1 Constraints
	4.2 Choice and defaults
	4.3 Strong equivalence
	4.4 Completion

	5 Eliminating intensional predicates in favor of intensional functions
	5.1 Eliminating intensional predicates

	6 Eliminating intensional functions in favor of intensional predicates
	6.1 Eliminating intensional functions from c-plain formulas in favor of intensional predicates
	6.2 Non-c-plain formulas vs. c-plain formulas

	7 Comparing FSM with other approaches to intensional functions
	7.1 Relation to nonmonotonic causal logic
	7.2 Relation to Cabalar semantics
	7.3 Relation to IF-programs
	7.3.1 Review of IF-programs
	7.3.2 Comparison

	8 Many-sorted FSM
	8.1 Reducing many-sorted FSM to unsorted FSM
	8.2 Relation to multi-valued propositional formulas under the stable model semantics

	9 Answer set programming modulo theories
	9.1 ASPMT as a special case of the functional stable model semantics
	9.2 Describing actions in ASPMT
	9.3 Implementations of ASPMT

	10 Comparing ASPMT with other approaches to combining ASP with CSP/SMT
	10.1 Relation to clingcon programs
	10.2 Relation to ASP(LC) programs
	10.3 Relation to Lin-Wang programs

	11 Conclusion
	Acknowledgements
	Appendix A Review of reduct-based deﬁnition of stable models
	A.1 Inﬁnitary ground formulas
	A.2 Stable models in terms of grounding and reduct

	Appendix B Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2
	B.3 Proof of Theorem 3
	B.4 Proof of Theorem 4
	B.5 Proof of Theorem 5
	B.6 Proof of Corollary 6
	B.7 Proof of Theorem 7
	B.8 Proof of Corollary 8
	B.9 Proof of Theorem 9
	B.10 Proof of Theorem 10
	B.11 Proof of Theorem 11
	B.12 Proof of Theorem 12
	B.13 Proof of Theorem 13
	B.14 Proof of Theorem 14
	B.15 Proof of Theorem 15
	B.16 Proof of Theorem 16

	References

