
TLP 18 (3–4): 607–622, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000303

607

A Probabilistic Extension of Action Language BC+

J O O H Y U N G L E E and Y I W A N G

School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA

(e-mails: joolee@asu.edu; ywang485@asu.edu)

submitted 2 May 2018; accepted 13 May 2018

Abstract

We present a probabilistic extension of action language BC+. Just like BC+ is defined as a high-level

notation of answer set programs for describing transition systems, the proposed language, which we call

pBC+, is defined as a high-level notation of LPMLN programs—a probabilistic extension of answer set

programs. We show how probabilistic reasoning about transition systems, such as prediction, postdiction,

and planning problems, as well as probabilistic diagnosis for dynamic domains, can be modeled in pBC+

and computed using an implementation of LPMLN.

1 Introduction

Action languages, such as A (Gelfond and Lifschitz 1993), B (Gelfond and Lifschitz 1998), C

(Giunchiglia and Lifschitz 1998), C+ (Giunchiglia et al. 2004), and BC (Lee and Meng 2013),

are formalisms for describing actions and their effects. Many of these languages can be viewed

as high-level notations of answer set programs structured to represent transition systems. The

expressive possibility of action languages, such as indirect effects, triggered actions, and additive

fluents, has been one of the main research topics. Most of such extensions are logic-oriented, and

less attention has been paid to probabilistic reasoning, with a few exceptions such as (Baral

et al. 2002; Eiter and Lukasiewicz 2003), let alone automating such probabilistic reasoning and

learning parameters of an action description.

Action language BC+ (Babb and Lee 2015), one of the most recent additions to the family of

action languages, is no exception. While the language is highly expressive to embed other action

languages, such as C+ (Giunchiglia et al. 2004) and BC (Lee et al. 2013), it does not have a

natural way to express the probabilities of histories (i.e., a sequence of transitions).

In this paper, we present a probabilistic extension of BC+, which we call pBC+. Just like BC+

is defined as a high-level notation of answer set programs for describing transition systems, pBC+

is defined as a high-level notation of LPMLN programs—a probabilistic extension of answer set

programs. Language pBC+ inherits expressive logical modeling capabilities of BC+ but also

allows us to assign a probability to a sequence of transitions so that we may distinguish more

probable histories.

We show how probabilistic reasoning about transition systems, such as prediction, postdiction,

and planning problems, can be modeled in pBC+ and computed using an implementation of

LPMLN. Further, we show that it can be used for probabilistic abductive reasoning about dy-

namic domains, where the likelihood of the abductive explanation is derived from the parameters

manually specified or automatically learned from the data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

608 J. Lee and Y. Wang

The paper is organized as follows. Section 2 reviews language LPMLN and multi-valued

probabilistic programs that are defined in terms of LPMLN. Section 3 presents language pBC+,

and Section 4 shows how to use pBC+ and system LPMLN2ASP (Lee et al. 2017) to perform

probabilistic reasoning about transition systems, such as prediction, postdiction, and planning.

Section 5 extends pBC+ to handle probabilistic diagnosis.

2 Preliminaries

2.1 Review: Language LPMLN

We review the definition of LPMLN from (Lee and Wang 2016; Lee and Wang 2015), limited to

the propositional case. An LPMLN program is a finite set of weighted rules w : R where R is a

propositional formula, w is a real number (in which case, the weighted rule is called soft) or α

for denoting the infinite weight (in which case, the weighted rule is called hard).

For any LPMLN program Π and any interpretation I , Π denotes the usual (unweighted) ASP

program obtained from Π by dropping the weights, and ΠI denotes the set of w : R in Π such

that I |= R, and SM[Π] denotes the set {I | I is a stable model of ΠI}. The unnormalized weight

of an interpretation I under Π is defined as

WΠ(I) =

⎧

⎪

⎨

⎪

⎩

exp

(

∑

w:R ∈ ΠI

w

)

if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as

PΠ(I) = lim
α→∞

WΠ(I)
∑

J∈SM[Π]

WΠ(J)
.

Interpretation I is called a (probabilistic) stable model of Π if PΠ(I) �= 0. The most probable

stable models of Π are the stable models with the highest probability.

2.2 Review: Multi-Valued Probabilistic Programs

Multi-valued probabilistic programs (Lee and Wang 2016) are a simple fragment of LPMLN that

allows us to represent probability more naturally.

We assume that the propositional signature σ is constructed from “constants” and their “val-

ues.” A constant c is a symbol that is associated with a finite set Dom(c), called the domain.

The signature σ is constructed from a finite set of constants, consisting of atoms c = v 1 for

every constant c and every element v in Dom(c). If the domain of c is {f, t} then we say that c is

Boolean, and abbreviate c= t as c and c= f as ∼c.

We assume that constants are divided into probabilistic constants and non-probabilistic con-

stants. A multi-valued probabilistic program Π is a tuple 〈PF,Π〉, where

• PF contains probabilistic constant declarations of the following form:

p1 :: c=v1 | · · · | pn :: c=vn (1)

1 Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order logic.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 609

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi �= vj , 0 ≤

p1, . . . , pn ≤ 1 and
∑n

i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other words,

PF describes the probability distribution over each “random variable” c.

• Π is a set of rules of the form Head ← Body (identified with formula Body → Head

such that Head and Body do not contain implications, and Head contains no probabilistic

constants.

The semantics of such a program Π is defined as a shorthand for LPMLN program T (Π) of

the same signature as follows.

• For each probabilistic constant declaration (1), T (Π) contains, for each i = 1, . . . , n, (i)

ln(pi) : c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ⊥ ← c=vi if pi = 0.

• For each rule Head ← Body in Π, T (Π) contains α : Head ← Body.

• For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (2)

for all v1, v2 ∈ Dom(c) such that v1 �= v2, and the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)

c=v . (3)

In the presence of the constraints (2) and (3), assuming T (Π) has at least one (probabilistic)

stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies c = v for

exactly one value v, so we may identify I with the value assignment that assigns v to c.

3 Probabilistic BC+

3.1 Syntax

We assume a propositional signature σ as defined in Section 2.2. We further assume that the

signature of an action description is divided into four groups: fluent constants, action constants,

pf (probability fact) constants, and initpf (initial probability fact) constants. Fluent constants are

further divided into regular and statically determined. The domain of every action constant is

Boolean. A fluent formula is a formula such that all constants occurring in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language from (Babb and

Lee 2015).

A static law is an expression of the form

caused F if G (4)

where F and G are fluent formulas.

A fluent dynamic law is an expression of the form

caused F if G after H (5)

where F and G are fluent formulas and H is a formula, provided that F does not contain statically

determined constants and H does not contain initpf constants.

A pf constant declaration is an expression of the form

caused c = {v1 : p1, . . . , vn : pn} (6)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

610 J. Lee and Y. Wang

P = t P = f

A: 0.8

A: 0.8

~A: 1; A: 0.2 ~A: 1; A: 0.2

Fig. 1. A transition system with probabilistic transitions

where c is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}2, and

p1 + · · · + pn = 1. In other words, (6) describes the probability distribution of c.

An initpf constant declaration is an expression of the form (6) where c is an initpf constant.

An initial static law is an expression of the form

initially F if G (7)

where F is a fluent constant and G is a formula that contains neither action constants nor pf

constants.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf constant

declaration, or an initial static law. An action description is a finite set of causal laws.

We use σfl to denote the set of fluent constants, σact to denote the set of action constants,

σpf to denote the set of pf constants, and σinitpf to denote the set of initpf constants. For any

signature σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : a | a ∈ σ′}.

By i : F we denote the result of inserting i : in front of every occurrence of every constant in

formula F . This notation is straightforwardly extended when F is a set of formulas.

Example 1

The following is an action description in pBC+ for the transition system shown in Figure 1, P is

a Boolean regular fluent constant, and A is an action constant. Action A toggles the value of P

with probability 0.8. Initially, P is true with probability 0.6 and false with probability 0.4. We

call this action description PSD. (x is a schematic variable that ranges over {t, f}.)

caused P if � after ∼P ∧A ∧ Pf ,

caused ∼P if � after P ∧A ∧ Pf ,

caused {P}ch
if � after P,

caused {∼P}ch
if � after ∼P,

caused Pf = {t : 0.8, f : 0.2},

caused InitP = {t : 0.6, f : 0.4},

initially P = x if InitP = x.

({P}ch is a choice formula standing for P ∨ ¬P .)

3.2 Semantics

Given a non-negative integer m denoting the maximum length of histories, the semantics of an

action description D in pBC+ is defined by a reduction to multi-valued probabilistic program

Tr(D,m), which is the union of two subprograms Dm and Dinit as defined below.

For an action description D of a signature σ, we define a sequence of multi-valued probabilistic

program D0, D1, . . . , so that the stable models of Dm can be identified with the paths in the

2 We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if pi = 0 or pi = 1

for some i, that means either vi can be removed from the domain of c or there is not really a need to introduce c as a
pf constant. So this assumption does not really sacrifice expressivity.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 611

transition system described by D. The signature σm of Dm consists of atoms of the form i : c = v

such that

• for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),

• for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

For x ∈ {act, f l, pf}, we use σx
m to denote the subset of σm

{i : c = v | i : c = v ∈ σm and c ∈ σx}.

For i ∈ {0, . . . ,m}, we use i : σx to denote the subset of σx
m

{i : c = v | i : c = v ∈ σx
m}.

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is the conjunc-

tion of

i : F ← i : G (8)

for every static law (4) in D and every i ∈ {0, . . . ,m},

i+1 : F ← (i+1 : G) ∧ (i : H) (9)

for every fluent dynamic law (5) in D and every i ∈ {0, . . . ,m− 1},

{0:c = v}ch (10)

for every regular fluent constant c and every v ∈ Dom(c),

{i : c = t}ch, {i : c = f}ch (11)

for every action constant c, and PF consists of

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (12)

(i = 0, . . . ,m − 1) for each pf constant declaration (6) in D that describes the probability

distribution of pf .

Also, we define the program Dinit, whose signature is 0 :σinitpf ∪ 0 :σfl. Dinit is the multi-

valued probabilistic program

Dinit = 〈PF init,Πinit〉

where Πinit consists of the rule

⊥ ← ¬(0 :F) ∧ 0:G

for each initial static law (7), and PF init consists of

p1 :: 0 :pf = v1 | . . . | pn :: 0 :pf = vn

for each initpf constant declaration (6).

We define Tr(D,m) to be the union of the two multi-valued probabilistic program

〈PF ∪ PF init,Π ∪ Πinit〉.

Example 2

For the action description PSD in Example 1, PSDinit is the following multi-valued probabilistic

program (x ∈ {t, f}):

0.6 :: 0 : InitP | 0.4 :: 0 :∼InitP

⊥ ← ¬(0 :P =x) ∧ 0 : InitP=x.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

612 J. Lee and Y. Wang

and PSDm is the following multi-valued probabilistic program (i is a schematic variable that

ranges over {1, . . . ,m− 1}):

0.8 :: i : Pf | 0.2 :: i :∼Pf

i+1 : P ← i :∼P ∧ i : A ∧ i : Pf

i+1 :∼P ← i : P ∧ i : A ∧ i : Pf

{i+1 : P}ch ← i : P

{i+1 :∼P}ch ← i :∼P

{i : A}ch

{i :∼A}ch

{0:P}ch

{0:∼P}ch

For any LPMLN program Π of signature σ and a value assignment I to a subset σ′ of σ, we

say I is a residual (probabilistic) stable model of Π if there exists a value assignment J to σ \ σ′

such that I ∪ J is a (probabilistic) stable model of Π.

For any value assignment I to constants in σ, by i : I we denote the value assignment to

constants in i :σ so that i :I |= (i :c) = v iff I |= c = v.

We define a state as an interpretation Ifl of σfl such that 0 : Ifl is a residual (probabilistic)

stable model of D0. A transition of D is a triple 〈s, e, s′〉 where s and s′ are interpretations of

σfl and e is an interpretation of σact such that 0 : s ∪ 0 : e ∪ 1 : s′ is a residual stable model of

D1. A pf-transition of D is a pair (〈s, e, s′〉, pf), where pf is a value assignment to σpf such

that 0:s ∪ 0:e ∪ 1 : s′ ∪ 0:pf is a stable model of D1.

A probabilistic transition system T (D) represented by a probabilistic action description D is

a labeled directed graph such that the vertices are the states of D, and the edges are obtained

from the transitions of D: for every transition 〈s, e, s′〉 of D, an edge labeled e : p goes from s

to s′, where p = PrDm
(1 : s′ | 0 : s, 0 : e). The number p is called the transition probability of

〈s, e, s′〉.

The soundness of the definition of a probabilistic transition system relies on the following

proposition.

Proposition 1

For any transition 〈s, e, s′〉, s and s′ are states.

We make the following simplifying assumptions on action descriptions:

1. No Concurrency: For all transitions 〈s, e, s′〉, we have e(a) = t for at most one a ∈ σact;

2. Nondeterministic Transitions are Controlled by pf constants: For any state s, any value

assignment e of σact such that at most one action is true, and any value assignment pf of

σpf , there exists exactly one state s′ such that (〈s, e, s′〉, pf) is a pf-transition;

3. Nondeterminism on Initial States are Controlled by Initpf constants: Given any assign-

ment pfinit of σinitpf , there exists exactly one assignment fl of σfl such that 0:pfinit∪0:fl

is a stable model of Dinit ∪D0.

For any state s, any value assignment e of σact such that at most one action is true, and any

value assignment pf of σpf , we use φ(s, e, pf) to denote the state s′ such that (〈s, a, s′〉, pf)

is a pf-transition (According to Assumption 2, such s′ must be unique). For any interpretation

I , i ∈ {0, . . . ,m} and any subset σ′ of σ, we use I|i:σ′ to denote the value assignment of I to

atoms in i : σ′. Given any value assignment TC of 0:σinitpf ∪ σpf
m and a value assignment A of

σact
m , we construct an interpretation ITC∪A of Tr(D,m) that satisfies TC ∪A as follows:

• For all atoms p in σpf
m ∪ 0:σinitpf , we have ITC∪A(p) = TC(p);

• For all atoms p in σact
m , we have ITC∪A(p) = A(p);

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 613

• (ITC∪A)|0:σfl is the assignment such that (ITC∪A)|0:σfl∪0:σinitpf is a stable model of

Dinit ∪D0.

• For each i ∈ {1, . . . ,m},

(ITC∪A)|i:σfl = φ((ITC∪A)|(i−1):σfl , (ITC∪A)|(i−1):σact , (ITC∪A)|(i−1):σpf).

By Assumptions 2 and 3, the above construction produces a unique interpretation.

It can be seen that in the multi-valued probabilistic program Tr(D,m) translated from D, the

probabilistic constants are 0:σinitpf ∪σpf
m . We thus call the value assignment of an interpretation

I on 0:σinitpf ∪ σpf
m the total choice of I . The following theorem asserts that the probability of

a stable model under Tr(D,m) can be computed by simply dividing the probability of the total

choice associated with the stable model by the number of choice of actions.

Theorem 1

For any value assignment TC of 0 : σinitpf ∪ σpf
m and any value assignment A of σact

m , there

exists exactly one stable model ITC∪A of Tr(D,m) that satisfies TC ∪ A, and the probability

of ITC∪A is

PrTr(D,m)(ITC∪A) =

∏

c=v∈TC

M(c = v)

(|σact| + 1)m
.

The following theorem tells us that the conditional probability of transiting from a state s to

another state s′ with action e remains the same for all timesteps, i.e., the conditional probability

of i+1:s′ given i : s and i : e correctly represents the transition probability from s to s′ via e in

the transition system.

Theorem 2

For any state s and s′, and any interpretation e of σact, we have

PrTr(D,m)(i+1:s′ | i : s, i : e) = PrTr(D,m)(j+1:s′ | j : s, j : e)

for any i, j ∈ {0, . . . ,m− 1} such that PrTr(D,m)(i : s) > 0 and PrTr(D,m)(j : s) > 0.

For every subset Xm of σm \ σpf
m , let Xi(i < m) be the triple consisting of

• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σfl;

• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σact;

• the set consisting of atoms A such that i+1:A belongs to Xm and A ∈ σfl.

Let p(Xi) be the transition probability of Xi, s0 is the interpretation of σ
fl
0 defined by X0, and

ei be the interpretations of i : σact defined by Xi.

Since the transition probability remains the same, the probability of a path given a sequence

of actions can be computed from the probabilities of transitions.

Corollary 1

For every m ≥ 1, Xm is a residual (probabilistic) stable model of Tr(D,m) iff X0, . . . , Xm−1

are transitions of D and 0:s0 is a residual stable model of Dinit. Furthermore,

PrTr(D,m)(Xm | 0:e0, . . . ,m− 1:em−1) = p(X0) × · · · × p(Xm) × PrTr(D,m)(0 :s0).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

614 J. Lee and Y. Wang

Example 3

Consider the simple transition system with probabilistic effects in Example 1. Suppose a is

executed twice. What is the probability that P remains true the whole time? Using Corollary

1 this can be computed as follows:

Pr(2 : P = t, 1:P = t, 0:P = t | 0:A = t, 1:A = t)

= p(〈P = t, A = t, P = t〉) · p(〈P = t, A = t, P = t〉) · PrTr(D,m)(0 :P = t)

= 0.2 × 0.2 × 0.6 = 0.024.

4 pBC+ Action Descriptions and Probabilistic Reasoning

In this section, we illustrate how the probabilistic extension of the reasoning tasks discussed

in (Giunchiglia et al. 2004), i.e., prediction, postdiction and planning, can be represented in

pBC+ and automatically computed using LPMLN2ASP (Lee et al. 2017). Consider the following

probabilistic variation of the well-known Yale Shooting Problem: There are two (slightly deaf)

turkeys: a fat turkey and a slim turkey. Shooting at a turkey may fail to kill the turkey. Normally,

shooting at the slim turkey has 0.6 chance to kill it, and shooting at the fat turkey has 0.9 chance.

However, when a turkey is dead, the other turkey becomes alert, which decreases the success

probability of shooting. For the slim turkey, the probability drops to 0.3, whereas for the fat

turkey, the probability drops to 0.7.

The example can be modeled in pBC+ as follows. First, we declare the constants:

Notation: t range over {SlimTurkey,FatTurkey}.

Regular fluent constants: Domains:

Alive(t), Loaded Boolean

Statically determined fluent constants: Domains:

Alert(t) Boolean

Action constants: Domains:

Load , Fire(t) Boolean

Pf constants: Domains:

Pf Killed(t), Pf Killed Alert(t) Boolean

InitPf constants:

Init Alive(t), Init Loaded Boolean

Next, we state the causal laws. The effect of loading the gun is described by

caused Loaded if � after Load.

To describe the effect of shooting at a turkey, we declare the following probability distributions

on the result of shooting at each turkey when it is not alert and when it is alert:

caused Pf Killed(SlimTurkey) = {t : 0.6, f : 0.4},

caused Pf Killed(FatTurkey) = {t : 0.9, f : 0.1},

caused Pf Killed Alert(SlimTurkey) = {t : 0.3, f : 0.7},

caused Pf Killed Alert(FatTurkey) = {t : 0.7, f : 0.3}.

The effect of shooting at a turkey is described as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 615

caused ∼Alive(t) if � after Loaded ∧ Fire(t)∧ ∼Alert(t) ∧ Pf Killed(t),

caused ∼Alive(t) if � after Loaded ∧ Fire(t) ∧ Alert(t) ∧ Pf Killed Alert(t),

caused ∼Loaded if � after Fire(t).

A dead turkey causes the other turkey to be alert:

default ∼Alert(t),

caused Alert(t1) if ∼Alive(t2) ∧ Alive(t1) ∧ t1 �= t2.

(default F stands for caused {F}ch (Babb and Lee 2015)).

The fluents Alive and Loaded observe the commonsense law of inertia:

caused {Alive(t)}ch if � after Alive(t),

caused {∼Alive(t)}ch if � after ∼Alive(t),

caused {Loaded}ch if � after Loaded,

caused {∼Loaded}ch if � after ∼Loaded.

We ensure no concurrent actions are allowed by stating

caused ⊥ after a1 ∧ a2

for every pair of action constants a1, a2 such that a1 �= a2.

Finally, we state that the initial values of all fluents are uniformly random (b is a schematic

variable that ranges over {t, f}):

caused Init Alive(t) = {t : 0.5, f : 0.5},

caused Init Loaded = {t : 0.5, f : 0.5},

initially Alive(t) = b if Init Alive(t) = b,

initially Loaded = b if Init Loaded = b.

We translate the action description into an LPMLN program and use LPMLN2ASP to answer

various queries about transition systems, such as prediction, postdiction and planning queries.3

Prediction For a prediction query, we are given a sequence of actions and observations that

occurred in the past, and we are interested in the probability of a certain proposition describing

the result of the history, or the most probable result of the history. Formally, we are interested in

the conditional probability

PrTr(D,m)(Result | Act,Obs)

or the MAP state

argmax
Result

PrTr(D,m)(Result | Act,Obs)

where Result is a proposition describing a possible outcome, Act is a set of facts of the form

i : a or i :∼a for a ∈ σact, and Obs is a set of facts of the form i : c = v for c ∈ σfl and

v ∈ Dom(c).

In the Yale shooting example, such a query could be “given that only the fat turkey is alive and

the gun is loaded at the beginning, what is the probability that the fat turkey dies after shooting

is executed?” To answer this query, we manually translate the action description above into the

input language of LPMLN2ASP and add the following action and observation as constraints:

3 The complete LPMLN2ASP program and the queries used in this section are given in Appendix B of the supplementary
material corresponding to this paper at the TPLP archives (Lee and Wang 2018).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

616 J. Lee and Y. Wang

:- not alive(slimTurkey, f, 0).

:- not alive(fatTurkey, t, 0).

:- not loaded(t, 0).

:- not fire(fatTurkey, t, 0).

Executing the command

lpmln2asp -i yale-shooting.lpmln -q alive

yields

alive(fatTurkey, f, 1) 0.700000449318

Postdiction In the case of postdiction, we infer a condition about the initial state given the

history. Formally, we are interested in the conditional probability

PrTr(D,m)(Initial State | Act,Obs)

or the MAP state

argmax
Initial State

PrTr(D,m)(Initial State | Act,Obs)

where Initial State is a proposition about the initial state; Act and Obs are defined as above.

In the Yale shooting example, such a query could be “given that the slim turkey was alive and

the gun was loaded at the beginning, the person shot at the slim turkey and it died, what is the

probability that the fat turkey was alive at the beginning?”

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln -q alive

yields

alive(fatTurkey, t, 0) 0.666661211973

Planning In this case, we are interested in a sequence of actions that would result in the highest

probability of a certain goal. Formally, we are interested in

argmax
Act

PrTr(D,m)(Goal | Initial State,Act)

where Goal is a condition for a goal state, and Act is a sequence of actions a ∈ σact specifying

actions executed at each timestep.

In the Yale shooting example, such query can be “given that both turkeys are alive and the gun

is not loaded at the beginning, generate a plan that gives best chance to kill both the turkeys with

4 actions.”

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln

finds the most probable stable model, which yields

load(t,0) fire(slimTurkey,t,1)

load(t,2) fire(fatTurkey,t,3)

which suggests to first kill the slim turkey and then the fat turkey.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 617

5 Diagnosis in Probabilistic Action Domain

One interesting type of reasoning tasks in action domains is diagnosis, where we observe a

sequence of actions that fails to achieve some expected outcome and we would like to know

possible explanations for the failure. Furthermore, in a probabilistic setting, we could also be in-

terested in the probability of each possible explanation. In this section, we discuss how diagnosis

can be automated in pBC+ as probabilistic abduction and we illustrate the method through an

example.

5.1 Extending pBC+ to Allow Diagnosis

We define the following new constructs to allow probabilistic diagnosis in action domains. Note

that these constructs are simply syntactic sugars that do not change the actual expressivity of the

language.

• We introduce a subclass of regular fluent constants called abnormal fluents.

• When the action domain contains at least one abnormal fluent, we introduce a special

statically determined fluent constant ab with the Boolean domain, and add

default ∼ab.

• We introduce the expression

caused ab F if G after H

where F and G are fluent formulas and H is a formula, provided that F does not contain

statically determined constants and H does not contain initpf constants. This expression is

treated as an abbreviation of

caused F if ab ∧G after H.

Once we have defined abnormalities and how they affect the system, we can use

caused ab

to enable taking abnormalities into account in reasoning.

5.2 Example: Robot

The following example is modified from (Iwan 2002). Consider a robot located in a building

with two rooms r1 and r2 and a book that can be picked up. The robot can move to rooms, pick

up the book and put down the book. There is a 0.1 chance that it fails when it tries to enter a

room, a 0.2 chance that the robot drops the book when it has the book, and a 0.3 chance that the

robot fails when it tries to pick up the book. The robot, as well as the book, was initially at r1.

It executed the following actions to deliver the book from r1 to r2: pick up the book; go to r2;

put down the book. However, after the execution, it observes that the book is not at r2. What is

a possible reason?

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

618 J. Lee and Y. Wang

We answer this query by modeling the action domain in the probabilistic action language as

follows. We first introduce the following constants.

Notation: r range over {R1,R2}.

Regular fluent constants: Domains:

LocRobot, LocBook {R1,R2}

HasBook Boolean

Abnormal fluent constants: Domains:

EnterFailed, DropBook, PickupFailed Boolean

Action constants: Domains:

Goto(r), PickUpBook, PutdownBook Boolean

Pf constants: Domains:

Pf EnterFailed, Pf PickupFailed, Pf DropBook Boolean

Initpf constants: Domains:

Init LocRobot, Init LocBook {R1,R2}

Init HasBook Boolean

The action Goto(r) causes the location of the robot to be at r unless the abnormality

EnterFailed occurs:

caused LocRobot=r after Goto(r) ∧ ¬EnterFailed.

Similarly, the following causal laws describe the effect of the actions PickupBook and

PutdownBook:

caused HasBook if LocRobot = LocBook after PickUpBook ∧ ¬PickUpFailed

caused ∼HasBook after PutdownBook.

If the robot has the book, then the book has the same location as the robot:

caused LocBook = r if LocRobot = r ∧ HasBook.

The abnormality DropBook causes the robot to not have the book:

caused ∼HasBook if DropBook.

The fluents LocBook, LocRobot and HasBook observe the commonsense law of inertia:

caused {LocBook = r}ch after LocBook = r

caused {LocRobot = r}ch after LocRobot = r

caused {HasBook = b}ch after HasBook = b.

The abnormality EnterFailed has 0.1 chance to occur when the action Goto is executed:

caused {∼EnterFailed}ch if ∼EnterFailed

caused Pf EnterFailed = {t : 0.1, f : 0.9}

caused ab EnterFailed if � after pf EnterFailed ∧ Goto(r).

Similarly, the following causal laws describe the condition and probabilities for the abnormal-

ities PickupFailed and DropBook to occur:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 619

caused {∼PickupFailed}ch if ∼PickupFailed

caused Pf PickupFailed = {t : 0.3, f : 0.7}

caused ab PickupFailed if � after Pf PickupFailed ∧ PickupBook,

caused {∼DropBook}ch if ∼DropBook

caused Pf DropBook = {t : 0.2, f : 0.8}

caused ab DropBook if � after Pf DropBook ∧ HasBook.

We ensure no concurrent actions are allowed by stating

caused ⊥ after a1 ∧ a2

for every pair of action constants a1, a2 such that a1 �= a2. Initially, it is uniformly random where

the robot and the book is and whether the robot has the book:

caused Init LocRobot = {R1 : 0.5, R2 : 0.5}

caused Init LocBook = {R1 : 0.5, R2 : 0.5}

caused Init HasBook = {t : 0.5, f : 0.5}

initially LocRobot = r if Init LocRobot = r

initially LocBook = r if Init LocBook = r

initially HasBook = b if Init HasBook = b.

No abnormalities are possible in the initial state:

initially ⊥ if EnterFailed

initially ⊥ if PickupFailed

initially ⊥ if DropBook.

We add

caused ab

to the action description to take abnormalities into account in reasoning and translate the action

description into LPMLN program, together with the actions that the robot has executed.4

Executing lpmln2asp -i robot.lpmln yields

pickupBook(t,0) ab(pickup_failed,t,1) goto(r2,t,1) putdownBook(t,2)

which suggests that the robot fails at picking up the book.

Suppose that the robot has observed that the book was in its hand after it picked up the book.

We expand the action history with

:- not hasBook(t, 1).

Now the most probable stable model becomes

pickupBook(t,0) goto(r2,t,1) ab(drop_book,t,2) putdownBook(t,2)

suggesting that robot accidentally dropped the book.

On the other hand, if the robot further observed that itself was not at r2 after the execution

4 For the complete translation of the action description in the language of LPMLN2ASP, we refer the reader to
Appendix C of the supplementary material corresponding to this paper at the TPLP archives (Lee and Wang 2018).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

620 J. Lee and Y. Wang

:- locRobot(r2, 3).

Then the most probable stable model becomes

pickupBook(t,0) goto(r2,t,1) ab(enter_failed,t,2) putdownBook(t,2)

suggesting that the robot failed at entering r2.

6 Related Work

There exist various formalisms for reasoning in probabilistic action domains. PC+ (Eiter and

Lukasiewicz 2003) is a generalization of the action language C+ that allows for expressing

probabilistic information. The syntax of PC+ is similar to pBC+, as both the languages are exten-

sions of C+. PC+ expresses probabilistic transition of states through so-called context variables,

which are similar to pf constants in pBC+, in that they are both exogenous variables associated

with predefined probability distributions. In pBC+, in order to achieve meaningful probability

computed through LPMLN, assumptions such as all actions have to be always executable and

nondeterminism can only be caused by pf constants, have to be made. In contrast, PC+ does

not impose such semantic restrictions, and allows for expressing qualitative and quantitative

uncertainty about actions by referring to the sequence of “belief” states—possible sets of states

together with probabilistic information. On the other hand, the semantics is highly complex and

there is no implementation of PC+ as far as we know.

(Zhu 2012) defined a probabilistic action language called NB, which is an extension of the

(deterministic) action language B. NB can be translated into P-log (Baral et al. 2004) and since

there exists a system for computing P-log, reasoning in NB action descriptions can be automated.

Like pBC+ and PC+, probabilistic transitions are expressed through dynamic causal laws with

random variables associated with predefined probability distribution. In NB, however, these

random variables are hidden from the action description and are only visible in the translated

P-log representation. One difference between NB and pBC+ is that in NB a dynamic causal

law must be associated with an action and thus can only be used to represent probabilistic effect

of actions, while in pBC+, a fluent dynamic law can have no action constant occurring in it. This

means state transition without actions or time step change cannot be expressed directly in NB.

Like pBC+, in order to translate NB into executable low-level logic programming languages,

some semantical assumptions have to be made in NB. The assumptions made in NB are very

similar to the ones made in pBC+.

Probabilistic action domains, especially in terms of probabilistic effects of actions, can be

formalized as Markov Decision Process (MDP). The language proposed in (Baral et al. 2002)

aims at facilitating elaboration tolerant representations of MDPs. The syntax is similar to pBC+.

The semantics is more complex as it allows preconditions of actions and imposes less semantical

assumption. The concept of unknown variables associated with probability distributions is simi-

lar to pf constants in our setting. There is, as far as we know, no implementation of the language.

There is no discussion about probabilistic diagnosis in the context of the language. PPDDL

(Younes and Littman 2004) is a probabilistic extension of the planning definition language

PDDL. Like NB, the nondeterminism that PPDDL considers is only the probabilistic effect

of actions. The semantics of PDDL is defined in terms of MDP. There are also probabilistic

extensions of the Event Calculus such as (D’Asaro et al. 2017) and (Skarlatidis et al. 2011).

In the above formalisms, the problem of probabilistic diagnosis is only discussed in (Zhu

2012). (Balduccini and Gelfond 2003) and (Baral et al. 2000) studied the problem of diagnosis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

A probabilistic extension of action language BC+ 621

However, they are focused on diagnosis in deterministic and static domains. (Iwan 2002) has

proposed a method for diagnosis in action domains with situation calculus. Again, the diagnosis

considered there does not involve any probabilistic measure.

Compared to the formalisms mentioned here, the unique advantages of pBC+ include its

executability through LPMLN systems, its support for probabilistic diagnosis, and the possibility

of parameter learning in actions domains.

LPMLN is closely related to Markov Logic Networks (Richardson and Domingos 2006), a

formalism originating from Statistical Relational Learning. However, Markov Logic Networks

have not been applied to modeling dynamic domains due to its limited expressivity from its

logical part.

7 Conclusion

pBC+ is a simple extension of BC+. The main idea is to assign a probability to each path of a

transition system to distinguish the likelihood of the paths. The extension is a natural composition

of the two ideas: In the semantics of BC+, the paths are encoded as stable models of the logic

program standing for the BC+ description. Since LPMLN is a probabilistic extension of ASP, it

comes naturally that by lifting the translation to turn into LPMLN we could achieve a probabilistic

action language.

In the examples above, the action descriptions, including the probabilities, are all hand-written.

In practice, the exact values of some probabilities are hard to find. In particular, it is not likely

to have a theoretical probability for an abnormality to occur. It is more practical to statistically

derive the probability from a collection of action and observation histories. For example, in the

robot example in Section 5.2, we can provide a list of action and observation histories, where

different abnormalities occurred, as the training data. With this training data, we may learn the

weights of the LPMLN rules that control the probabilities of abnormalities.

Another future work is to build a compiler that automates the process of the translation of

pBC+ description into the input language of LPMLN2ASP by extending a system like CPLUS2ASP

(Babb and Lee 2013).

Acknowledgements

We are grateful to Zhun Yang and the anonymous referees for their useful comments. This work

was partially supported by the National Science Foundation under Grant IIS-1526301.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/

S1471068418000303

References

BABB, J. AND LEE, J. 2013. Cplus2ASP: Computing action language C+ in answer set programming.

In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR). 122–134.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

622 J. Lee and Y. Wang

BABB, J. AND LEE, J. 2015. Action language BC+. Journal of Logic and Computation, exv062.

BALDUCCINI, M. AND GELFOND, M. 2003. Diagnostic reasoning with A-Prolog. Theory and Practice of

Logic Programming 3, 425–461.

BARAL, C., GELFOND, M., AND RUSHTON, N. 2004. Probabilistic reasoning with answer sets. In Logic

Programming and Nonmonotonic Reasoning. Springer Berlin Heidelberg, Berlin, Heidelberg, 21–33.

BARAL, C., MCILRAITH, S., AND SON, T. 2000. Formulating diagnostic problem solving using an action

language with narratives and sensing.

BARAL, C., TRAN, N., AND TUAN, L.-C. 2002. Reasoning about actions in a probabilistic setting. In

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 507–512.

D’ASARO, F. A., BIKAKIS, A., DICKENS, L., AND MILLER, R. 2017. Foundations for a probabilistic

event calculus. CoRR abs/1703.06815.

EITER, T. AND LUKASIEWICZ, T. 2003. Probabilistic reasoning about actions in nonmonotonic causal

theories. In Proceedings Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-2003).

Morgan Kaufmann Publishers, 192–199.

GELFOND, M. AND LIFSCHITZ, V. 1993. Representing action and change by logic programs. Journal of

Logic Programming 17, 301–322.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action languages5. Electronic Transactions on Artificial

Intelligence 3, 195–210.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., AND TURNER, H. 2004. Nonmonotonic causal

theories. Artificial Intelligence 153(1–2), 49–104.

GIUNCHIGLIA, E. AND LIFSCHITZ, V. 1998. An action language based on causal explanation: Preliminary

report. In Proceedings of National Conference on Artificial Intelligence (AAAI). AAAI Press, 623–630.

IWAN, G. 2002. History-based diagnosis templates in the framework of the situation calculus. AI

Communications 15, 1, 31–45.

LEE, J., LIFSCHITZ, V., AND YANG, F. 2013. Action language BC: Preliminary report. In Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI).

LEE, J. AND MENG, Y. 2013. Answer set programming modulo theories and reasoning about continuous

changes. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).

LEE, J., TALSANIA, S., AND WANG, Y. 2017. Computing LPMLN using ASP and MLN solvers. Theory

and Practice of Logic Programming.

LEE, J. AND WANG, Y. 2015. A probabilistic extension of the stable model semantics. In International

Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2015 Spring Symposium Series.

LEE, J. AND WANG, Y. 2016. Weighted rules under the stable model semantics. In Proceedings of

International Conference on Principles of Knowledge Representation and Reasoning (KR). 145–154.

LEE, J. AND WANG, Y. 2018. Online appendix for the paper “A probabilistic extension of action language

BC+”.

RICHARDSON, M. AND DOMINGOS, P. 2006. Markov logic networks. Machine Learning 62, 1-2, 107–

136.

SKARLATIDIS, A., PALIOURAS, G., VOUROS, G. A., AND ARTIKIS, A. 2011. Probabilistic event calculus

based on markov logic networks. In Rule-Based Modeling and Computing on the Semantic Web. Springer,

155–170.

YOUNES, H. L. AND LITTMAN, M. L. 2004. PPDDL1. 0: An extension to PDDL for expressing planning

domains with probabilistic effects.

ZHU, W. 2012. Plog: Its algorithms and applications. Ph.D. thesis, Texas Tech University.

5 http://www.ep.liu.se/ea/cis/1998/016/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000303
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:17:39, subject to the Cambridge Core terms of use, available at

