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Abstract

We present a probabilistic extension of action language BC+. Just like BC+ is defined as a high-level
notation of answer set programs for describing transition systems, the proposed language, which we call
pBC+, is defined as a high-level notation of LP™™Y programs—a probabilistic extension of answer set
programs. We show how probabilistic reasoning about transition systems, such as prediction, postdiction,
and planning problems, as well as probabilistic diagnosis for dynamic domains, can be modeled in p3C+
and computed using an implementation of LPMEN

1 Introduction

Action languages, such as A (Gelfond and Lifschitz 1993), 5 (Gelfond and Lifschitz 1998), C
(Giunchiglia and Lifschitz 1998), C+ (Giunchiglia e al. 2004), and BC (Lee and Meng 2013),
are formalisms for describing actions and their effects. Many of these languages can be viewed
as high-level notations of answer set programs structured to represent transition systems. The
expressive possibility of action languages, such as indirect effects, triggered actions, and additive
fluents, has been one of the main research topics. Most of such extensions are logic-oriented, and
less attention has been paid to probabilistic reasoning, with a few exceptions such as (Baral
et al. 2002; Eiter and Lukasiewicz 2003), let alone automating such probabilistic reasoning and
learning parameters of an action description.

Action language BC+ (Babb and Lee 2015), one of the most recent additions to the family of
action languages, is no exception. While the language is highly expressive to embed other action
languages, such as C+ (Giunchiglia et al. 2004) and BC (Lee et al. 2013), it does not have a
natural way to express the probabilities of histories (i.e., a sequence of transitions).

In this paper, we present a probabilistic extension of BC+, which we call pBC+. Just like BC+
is defined as a high-level notation of answer set programs for describing transition systems, p3C+
is defined as a high-level notation of LPM™Y programs—a probabilistic extension of answer set
programs. Language pBC+ inherits expressive logical modeling capabilities of BC+ but also
allows us to assign a probability to a sequence of transitions so that we may distinguish more
probable histories.

We show how probabilistic reasoning about transition systems, such as prediction, postdiction,
and planning problems, can be modeled in pBBC+ and computed using an implementation of
LPMIN | Further, we show that it can be used for probabilistic abductive reasoning about dy-
namic domains, where the likelihood of the abductive explanation is derived from the parameters
manually specified or automatically learned from the data.
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608 J. Lee and Y. Wang

The paper is organized as follows. Section 2 reviews language LPMN and multi-valued
probabilistic programs that are defined in terms of LPM™YN_ Section 3 presents language pBC+,
and Section 4 shows how to use pBC+ and system LPMLN2ASP (Lee et al. 2017) to perform
probabilistic reasoning about transition systems, such as prediction, postdiction, and planning.
Section 5 extends pBC+ to handle probabilistic diagnosis.

2 Preliminaries

2.1 Review: Language LPM™N

We review the definition of LPM™N from (Lee and Wang 2016; Lee and Wang 2015), limited to
the propositional case. An LPMIN
propositional formula, w is a real number (in which case, the weighted rule is called soft) or «
for denoting the infinite weight (in which case, the weighted rule is called hard).

For any LPM™N program II and any interpretation I, II denotes the usual (unweighted) ASP
program obtained from II by dropping the weights, and IT; denotes the set of w : R in II such
that I &= R, and SM([IT] denotes the set {I | I is a stable model of II; }. The unnormalized weight
of an interpretation I under II is defined as

W (1) = exp(w:RZe . w) if I € SM[IIJ;

0 otherwise.

program is a finite set of weighted rules w : R where R is a

The normalized weight (a.k.a. probability) of an interpretation / under II is defined as

— W (l)
= TS W)
JesM[M]

Interpretation I is called a (probabilistic) stable model of II if P(I) # 0. The most probable
stable models of II are the stable models with the highest probability.

2.2 Review: Multi-Valued Probabilistic Programs

Multi-valued probabilistic programs (Lee and Wang 2016) are a simple fragment of LPMIN that
allows us to represent probability more naturally.

We assume that the propositional signature o is constructed from “constants” and their “val-
ues.” A constant ¢ is a symbol that is associated with a finite set Dom(c), called the domain.
The signature o is constructed from a finite set of constants, consisting of atoms ¢ = v ! for
every constant ¢ and every element v in Dom(c). If the domain of ¢ is {f, t} then we say that c is
Boolean, and abbreviate c=t as ¢ and c=f as ~c.

We assume that constants are divided into probabilistic constants and non-probabilistic con-
stants. A multi-valued probabilistic program IT is a tuple (PF, IT), where

e PF contains probabilistic constant declarations of the following form:

proc=vy | pp i c=v, (1

1 Note that here “=" is just a part of the symbol for propositional atoms, and is not equality in first-order logic.
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A probabilistic extension of action language BC+ 609

one for each probabilistic constant ¢, where {v1,...,v,} = Dom(c), v; # vj, 0 <
P1s--,Pn < land Y1 p; = 1. We use Mp(c = v;) to denote p;. In other words,
PF describes the probability distribution over each “random variable” c.

e Il is a set of rules of the form Head < Body (identified with formula Body — Head
such that Head and Body do not contain implications, and Head contains no probabilistic
constants.

The semantics of such a program IT is defined as a shorthand for LPM™N program T'(IT) of
the same signature as follows.

e For each probabilistic constant declaration (1), T'(IT) contains, for each i = 1,...,n, (i)
In(p;) :c=v;if0<p; < L; () a: c=v;ifp; =1 () a: L+ c=v;ifp; =0.

e For each rule Head <+ Body in 11, T(IT) contains . : Head <+ Body.

e For each constant ¢, T'(IT) contains the uniqueness of value constraints

a:l+c=vi ANc=wvy 2)
for all v1, vy € Dom(c) such that v; # v, and the existence of value constraint

a:l+- \/ c=v.
veDom(c) @)

In the presence of the constraints (2) and (3), assuming 7'(IT) has at least one (probabilistic)
stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies ¢ = v for
exactly one value v, so we may identify I with the value assignment that assigns v to c.

3 Probabilistic BC+
3.1 Syntax

We assume a propositional signature ¢ as defined in Section 2.2. We further assume that the
signature of an action description is divided into four groups: fluent constants, action constants,
pf (probability fact) constants, and initpf (initial probability fact) constants. Fluent constants are
further divided into regular and statically determined. The domain of every action constant is
Boolean. A fluent formula is a formula such that all constants occurring in it are fluent constants.

The following definition of p/3C+ is based on the definition of 3C+ language from (Babb and
Lee 2015).

A static law is an expression of the form

caused F' if G (@)

where I and G are fluent formulas.
A fluent dynamic law is an expression of the form

caused I if G after H (®))

where F' and G are fluent formulas and H is a formula, provided that F’ does not contain statically
determined constants and H does not contain initpf constants.
A pf constant declaration is an expression of the form

caused ¢ = {v1 : p1,...,Upn : D} (©)
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A: 0.8
~A: 1 A: 0.2/—\ ~A:1;A: 0.2
<\Pzt P:f/>
A: 0.8

Fig. 1. A transition system with probabilistic transitions

where ¢ is a pf constant with domain {vy,...,v,},0 < p; < 1 foreachi € {1,...,n}?, and
p1 + - -+ + pn, = 1. In other words, (6) describes the probability distribution of c.
An initpf constant declaration is an expression of the form (6) where c is an initpf constant.
An initial static law is an expression of the form

initially F' if G @)

where F is a fluent constant and G is a formula that contains neither action constants nor pf
constants.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf constant
declaration, or an initial static law. An action description is a finite set of causal laws.

We use /! to denote the set of fluent constants, o<t to denote the set of action constants,
oP7 to denote the set of pf constants, and o°™**Pf to denote the set of initpf constants. For any
signature ¢’ and any ¢ € {0,...,m}, weuse i : o’ to denote the set {i : a | a € ¢'}.

By ¢ : F we denote the result of inserting ¢ : in front of every occurrence of every constant in
formula F'. This notation is straightforwardly extended when F' is a set of formulas.

Example 1

The following is an action description in p/3C+ for the transition system shown in Figure 1, P is
a Boolean regular fluent constant, and A is an action constant. Action A toggles the value of P
with probability 0.8. Initially, P is true with probability 0.6 and false with probability 0.4. We
call this action description PSD. (x is a schematic variable that ranges over {t, f}.)

caused P if T after ~P A A A Pf, caused Pf = {t: 0.8,f: 0.2},
caused ~P if T after P A A A Pf, caused /nitP = {t: 0.6,f: 0.4},
caused {P}"if T after P, initially P = x if InitP = z.

caused {~P}"if T after ~P,
({P}" is a choice formula standing for PV ~P.)

3.2 Semantics

Given a non-negative integer m denoting the maximum length of histories, the semantics of an
action description D in pBC+ is defined by a reduction to multi-valued probabilistic program
Tr(D,m), which is the union of two subprograms D,,, and D;,,;; as defined below.

For an action description D of a signature o, we define a sequence of multi-valued probabilistic
program Dy, D1, ..., so that the stable models of D,, can be identified with the paths in the

2 We require 0 < p; < 1foreachi € {1,...,n} for the sake of simplicity. On the other hand, if p; = O or p; = 1
for some ¢, that means either v; can be removed from the domain of c or there is not really a need to introduce c as a
pf constant. So this assumption does not really sacrifice expressivity.
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transition system described by D. The signature o,,, of D,, consists of atoms of the form i : ¢ = v

such that
e for each fluent constant ¢ of D, i € {0,...,m} and v € Dom(c),
e for each action constant or pf constant c of D, i € {0,...,m — 1} and v € Dom(c).

For = € {act, fl,pf}, we use o, to denote the subset of 7.,
{i:c=v|i:c=v€o,andce o’}
Fori € {0,...,m}, weuse i : 0” to denote the subset of o7,
{i:e=v|i:c=veal}.

We define D,, to be the multi-valued probabilistic program (P F, IT), where II is the conjunc-

tion of
i:F+i:G ®)
for every static law (4) in D and every i € {0,...,m},
i+1: F« (i+1:G)A(i: H) )
for every fluent dynamic law (5) in D and every i € {0,...,m — 1},
{0:c = v} (10)

for every regular fluent constant ¢ and every v € Dom(c),
{i:e=t}", {i:c=f}h (11)
for every action constant ¢, and PF’ consists of
preiipf=v|-paiipf=un (12)
(@ = 0,...,m — 1) for each pf constant declaration (6) in D that describes the probability
distribution of pf.
Also, we define the program Dj,,;;, whose signature is 0: P U 0:07!. D;,;; is the multi-
valued probabilistic program
Dinit _ <PFinit’ Hznzt>
where IT" consists of the rule
L+ —(0:F)A0:G

for each initial static law (7), and PF*"* consists of
pr Oipf=v1 | ... | poi Oipf=u,

for each initpf constant declaration (6).
We define T'r(D, m) to be the union of the two multi-valued probabilistic program
(PF U PF™ T1U T,

Example 2
For the action description PSD in Example 1, PSD;,,;; is the following multi-valued probabilistic
program (z € {t,f}):

0.6 :: 0:/nitP | 0.4 :: 0:~InitP

1<+ —(0:P=2)A0: nitP=x.
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and PSD,, is the following multi-valued probabilistic program (¢ is a schematic variable that

ranges over {1,...,m — 1}):
08: i:Pf | 02: i:~Pf {i - Ayen
i+1: P+ i:~PNi:ANi:Pf {z Ajeh
i+1:~P<+i:PNi:ANi:Pf {O:P}Ch
{i+1: P}« i: P {O:NP}Ch

{i+1:~P} ¢ i:~P

For any LPM™N program II of signature ¢ and a value assignment I to a subset o’ of o, we

say I is a residual (probabilistic) stable model of 11 if there exists a value assignment J to o \ o’
such that I U J is a (probabilistic) stable model of II.

For any value assignment / to constants in o, by ¢ : [ we denote the value assignment to
constants ini:o so thati: I |= (i:¢) = viff I Ec=w.

We define a state as an interpretation 17! of ¢! such that 0: I/! is a residual (probabilistic)
stable model of Dy. A transition of D is a triple (s, e, s’) where s and s’ are interpretations of
o/l and e is an interpretation of o2 such that 0: s UO:e U 1 : s is a residual stable model of
D;. A pf-transition of D is a pair ({(s,e, s'),pf), where pf is a value assignment to o?/ such
that 0:s U0:eU1: s UO:pf is a stable model of D;.

A probabilistic transition system T (D) represented by a probabilistic action description D is
a labeled directed graph such that the vertices are the states of D, and the edges are obtained
from the transitions of D: for every transition (s, e, s’) of D, an edge labeled e : p goes from s
to s, where p = Prp_(1:s"| 0:5,0:¢). The number p is called the transition probability of
(s,e,s).

The soundness of the definition of a probabilistic transition system relies on the following
proposition.

Proposition 1
For any transition (s, e, '), s and s’ are states.

We make the following simplifying assumptions on action descriptions:

1. No Concurrency: For all transitions (s, e, s), we have e(a) = t for at most one a € o*“;

2. Nondeterministic Transitions are Controlled by pf constants: For any state s, any value
assignment e of 0! such that at most one action is true, and any value assignment pf of
0P/, there exists exactly one state s’ such that ({s, e, s’), pf) is a pf-transition;

3. Nondeterminism on Initial States are Controlled by Initpf constants: Given any assign-
ment p fini; of 0P there exists exactly one assignment f1 of o/! such that 0: p fi,.;; U0 f1
is a stable model of D;,,;; U Dy.

For any state s, any value assignment e of %! such that at most one action is true, and any
value assignment pf of oPf, we use ¢(s,e,pf) to denote the state s’ such that ({s,a,s’), pf)
is a pf-transition (According to Assumption 2, such s’ must be unique). For any interpretation
I,i € {0,...,m} and any subset o’ of o, we use I|;.,» to denote the value assignment of I to
atoms in 7 : o’. Given any value assignment T'C of 0: "7/ U g2/ and a value assignment A of

act 'we construct an interpretation I7cy 4 of Tr(D,m) that satisfies TC' U A as follows:

m

ag

e For all atoms p in o2/ U 0:0"*Pf, we have Ircua(p) = TC(p);

e For all atoms p in 02!, we have Ircua(p) = A(p);
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o (Itcua)|oer is the assignment such that (Itcua)|o.erivo:einiter 1S a stable model of
Dinit U Do.
e Foreachi € {1,...,m},

(Ircua)liorn = ¢((Ircua)li-1):erts (Ircua)li-1):0act, (Ircua)l(i—1):ovs)-

By Assumptions 2 and 3, the above construction produces a unique interpretation.

It can be seen that in the multi-valued probabilistic program T'r(D, m) translated from D, the
probabilistic constants are 0: 0P/ g2/ . We thus call the value assignment of an interpretation
I on 0:0™Pf U oP1 the total choice of I. The following theorem asserts that the probability of
a stable model under T'r(D, m) can be computed by simply dividing the probability of the total
choice associated with the stable model by the number of choice of actions.

Theorem 1

For any value assignment 7C of 0 : 0P/ U gP/ and any value assignment A of ¢, there
exists exactly one stable model ITcyua of Tr(D,m) that satisfies TC U A, and the probability
of ITCUA is

[[ M(c=v)
c=veTC
(oo + 1™

Prov(p,m)(Ircua) =

The following theorem tells us that the conditional probability of transiting from a state s to
another state s’ with action e remains the same for all timesteps, i.e., the conditional probability
of i+1:s' giveni : s and 7 : e correctly represents the transition probability from s to s’ via e in
the transition system.

Theorem 2
For any state s and s’, and any interpretation e of 0%“*, we have
Proypm)(i+1:s" | i:5,i:€) = Proypm)(j+1:s" [ j:s,j:e)
forany i,j € {0,...,m — 1} such that Prp,(p ) (i : 8) > 0and Pry,pm(j : s) > 0.
For every subset X,,, of o, \ o2/, let X?(i < m) be the triple consisting of

o the set consisting of atoms A such that i : A belongs to X,, and A € o/?;
e the set consisting of atoms A such that i : A belongs to X,,, and A € ¢%“;
o the set consisting of atoms A such that i4-1: A belongs to X,,, and A € o/'.

Let p(X?) be the transition probability of X7, s is the interpretation of o}’ defined by X°, and
e; be the interpretations of i : 0%“! defined by X°.

Since the transition probability remains the same, the probability of a path given a sequence
of actions can be computed from the probabilities of transitions.

Corollary 1
For every m > 1, X, is a residual (probabilistic) stable model of T (D, m) iff X°,..., X™~!
are transitions of D and 0: s is a residual stable model of D;,,;;. Furthermore,

Prop(pm)(Xm | 0:eg,...,m —1iepm_1) =p(X°) x -+ x p(X™) x Prop(p,m)(0:50).
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Example 3

Consider the simple transition system with probabilistic effects in Example 1. Suppose a is
executed twice. What is the probability that P remains true the whole time? Using Corollary
1 this can be computed as follows:

Pr(2:P=t1:P=t0:P=t]|0:A=t1:A=t)
=p((P=t,A=t,P=t)-p((P=t,A=t,P=1t))- Prp,(pm)(0: P =t)
= 0.2 x0.2 x 0.6 =0.024.

4 pBC+ Action Descriptions and Probabilistic Reasoning

In this section, we illustrate how the probabilistic extension of the reasoning tasks discussed
in (Giunchiglia ef al. 2004), i.e., prediction, postdiction and planning, can be represented in
pBC+ and automatically computed using LPMLN2ASP (Lee et al. 2017). Consider the following
probabilistic variation of the well-known Yale Shooting Problem: There are two (slightly deaf)
turkeys: a fat turkey and a slim turkey. Shooting at a turkey may fail to kill the turkey. Normally,
shooting at the slim turkey has 0.6 chance to kill it, and shooting at the fat turkey has 0.9 chance.
However, when a turkey is dead, the other turkey becomes alert, which decreases the success
probability of shooting. For the slim turkey, the probability drops to 0.3, whereas for the fat
turkey, the probability drops to 0.7.
The example can be modeled in pBC+ as follows. First, we declare the constants:

Notation: ¢ range over {SlimTurkey, FatTurkey}.

Regular fluent constants: Domains:
Alive(t), Loaded Boolean
Statically determined fluent constants: Domains:
Alert(t) Boolean
Action constants: Domains:
Load , Fire(t) Boolean
Pf constants: Domains:
Pf.Killed(t), PfKilled Alert(t) Boolean
InitPf constants:
Init Alive(t), Init_Loaded Boolean

Next, we state the causal laws. The effect of loading the gun is described by
caused Loaded if T after Load.

To describe the effect of shooting at a turkey, we declare the following probability distributions
on the result of shooting at each turkey when it is not alert and when it is alert:

caused Pf_Killed(SlimTurkey) = {t : 0.6,f : 0.4},
caused Pf_Killed(FatTurkey) = {t: 0.9,f: 0.1},
caused Pf_Killed_Alert(SlimTurkey) = {t: 0.3,f: 0.7},
caused Pf_Killed_Alert(FatTurkey) = {t: 0.7,f: 0.3}.

The effect of shooting at a turkey is described as
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caused ~Alive(t) if T after Loaded N Fire(t)\ ~Alert(t) A Pf_Killed(t),
caused ~Alive(t) if T after Loaded A Fire(t) A Alert(t) A\ Pf_Killed Alert(t),
caused ~Loaded if T after Fire(t).

A dead turkey causes the other turkey to be alert:

default ~Alerz(t),
caused Alert(t1) if ~Alive(ta) A Alive(ty) Aty # to.

(default F' stands for caused {F}°" (Babb and Lee 2015)).
The fluents Alive and Loaded observe the commonsense law of inertia:

caused {Alive(t)}" if T after Alive(t),
caused {~Alive(t)}" if T after ~Alive(t),
caused {Loaded}" if T after Loaded,
caused {~Loaded}°" if T after ~Loaded.

We ensure no concurrent actions are allowed by stating
caused L after a; A as

for every pair of action constants a1, as such that a; # as.
Finally, we state that the initial values of all fluents are uniformly random (b is a schematic
variable that ranges over {t, f}):

caused Init_Alive(t) = {t: 0.5,f: 0.5},
caused Init_Loaded = {t : 0.5,f : 0.5},
initially Alive(t) = b if Init Alive(t) = b,
initially Loaded = b if Init_Loaded = .

We translate the action description into an LPMEN

various queries about transition systems, such as prediction, postdiction and planning queries.

program and use LPMLN2ASP to answer
3

Prediction For a prediction query, we are given a sequence of actions and observations that
occurred in the past, and we are interested in the probability of a certain proposition describing
the result of the history, or the most probable result of the history. Formally, we are interested in
the conditional probability

Proy(p,m)(Result | Act, Obs)
or the MAP state

argmaxProy,(p m)(Result | Act, Obs)
Result

where Result is a proposition describing a possible outcome, Act is a set of facts of the form
i:aori:~afora € ot and Obs is a set of facts of the form i : ¢ = v for ¢ € of! and
v € Dom(c).

In the Yale shooting example, such a query could be “given that only the fat turkey is alive and
the gun is loaded at the beginning, what is the probability that the fat turkey dies after shooting
is executed?” To answer this query, we manually translate the action description above into the
input language of LPMLN2ASP and add the following action and observation as constraints:

3 The complete LPMLN2ASP program and the queries used in this section are given in Appendix B of the supplementary
material corresponding to this paper at the TPLP archives (Lee and Wang 2018).
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not alive(slimTurkey, £, 0).
not alive(fatTurkey, t, 0).
not loaded(t, 0).

:— not fire(fatTurkey, t, 0).

Executing the command
lpmin2asp -i yale-shooting.lpmln -g alive
yields

alive(fatTurkey, £, 1) 0.700000449318

Postdiction In the case of postdiction, we infer a condition about the initial state given the
history. Formally, we are interested in the conditional probability

Proy(p,m)(Initial _State | Act,Obs)

or the MAP state

argmax  Prop(p,m)(Initial_State | Act, Obs)
Initial_State

where Initial_State is a proposition about the initial state; Act and Obs are defined as above.
In the Yale shooting example, such a query could be “given that the slim turkey was alive and
the gun was loaded at the beginning, the person shot at the slim turkey and it died, what is the
probability that the fat turkey was alive at the beginning?”’
Formalizing the query and executing the command

lpmin2asp -i yale-shooting.lpmln -g alive
yields

alive(fatTurkey, t, 0) 0.666661211973

Planning In this case, we are interested in a sequence of actions that would result in the highest
probability of a certain goal. Formally, we are interested in
argmax Pro,(p ) (Goal | Initial_State, Act)
Act
where Goal is a condition for a goal state, and Act is a sequence of actions a € 0! specifying
actions executed at each timestep.

In the Yale shooting example, such query can be “given that both turkeys are alive and the gun
is not loaded at the beginning, generate a plan that gives best chance to kill both the turkeys with
4 actions.”

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln
finds the most probable stable model, which yields

load(t, 0) fire(slimTurkey, t, 1)
load(t, 2) fire(fatTurkey, t, 3)

which suggests to first kill the slim turkey and then the fat turkey.
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5 Diagnosis in Probabilistic Action Domain

One interesting type of reasoning tasks in action domains is diagnosis, where we observe a
sequence of actions that fails to achieve some expected outcome and we would like to know
possible explanations for the failure. Furthermore, in a probabilistic setting, we could also be in-
terested in the probability of each possible explanation. In this section, we discuss how diagnosis
can be automated in pBC+ as probabilistic abduction and we illustrate the method through an
example.

5.1 Extending p3C+ to Allow Diagnosis

We define the following new constructs to allow probabilistic diagnosis in action domains. Note
that these constructs are simply syntactic sugars that do not change the actual expressivity of the
language.

e We introduce a subclass of regular fluent constants called abnormal fluents.

e When the action domain contains at least one abnormal fluent, we introduce a special
statically determined fluent constant ab with the Boolean domain, and add

default ~ab.

e We introduce the expression
caused_ab F if G after

where I and G are fluent formulas and H is a formula, provided that F' does not contain
statically determined constants and H does not contain initpf constants. This expression is
treated as an abbreviation of

caused I if ab A G after H.

Once we have defined abnormalities and how they affect the system, we can use
caused ab

to enable taking abnormalities into account in reasoning.

5.2 Example: Robot

The following example is modified from (Iwan 2002). Consider a robot located in a building
with two rooms r1 and r2 and a book that can be picked up. The robot can move to rooms, pick
up the book and put down the book. There is a 0.1 chance that it fails when it tries to enter a
room, a 0.2 chance that the robot drops the book when it has the book, and a 0.3 chance that the
robot fails when it tries to pick up the book. The robot, as well as the book, was initially at r1.
It executed the following actions to deliver the book from r1 to r2: pick up the book; go to r2;
put down the book. However, after the execution, it observes that the book is not at r2. What is
a possible reason?
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We answer this query by modeling the action domain in the probabilistic action language as
follows. We first introduce the following constants.

Notation: r range over {R1, R2}.

Regular fluent constants: Domains:
LocRobot, LocBook {R1,R2}
HasBook Boolean

Abnormal fluent constants: Domains:
EnterFailed, DropBook, PickupFailed Boolean

Action constants: Domains:
Goto(r), PickUpBook, PutdownBook Boolean

Pf constants: Domains:
Pf_EnterFailed, Pf_PickupFailed, Pf-DropBook Boolean

Initpf constants: Domains:
Init_LocRobot, Init_LocBook {R1,R2}
Init_HasBook Boolean

The action Goto(r) causes the location of the robot to be at r unless the abnormality
EnterFailed occurs:

caused LocRobot=r after Goro(r) A —EnterFuiled.

Similarly, the following causal laws describe the effect of the actions PickupBook and
PutdownBook:

caused HasBook if LocRobot = LocBook after PickUpBook N\ —PickUpFailed
caused ~HasBook after PutdownBook.

If the robot has the book, then the book has the same location as the robot:
caused LocBook = r if LocRobot = r A HasBook.
The abnormality DropBook causes the robot to not have the book:
caused ~HasBook if DropBook.
The fluents LocBook, LocRobot and HasBook observe the commonsense law of inertia:

caused {LocBook = r}°" after LocBook = r
caused {LocRobot = r}°" after LocRobot = r
caused {HasBook = b}? after HasBook = b.

The abnormality EnterFailed has 0.1 chance to occur when the action Goto is executed:

caused {~EnterFailed}" if ~EnterFailed
caused Pf_EnterFailed = {t: 0.1,f: 0.9}
caused_ab EnterFailed if T after pf_EnterFailed N Goto(r).

Similarly, the following causal laws describe the condition and probabilities for the abnormal-
ities PickupFailed and DropBook to occur:
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caused {~PickupFailed}" if ~PickupFailed
caused Pf_PickupFailed = {t : 0.3,f: 0.7}
caused_ab PickupFailed if T after Pf_PickupFailed N\ PickupBook,

caused {~DropBook}" if ~DropBook
caused Pf_DropBook = {t : 0.2,f: 0.8}
caused_ab DropBook if T after Pf_DropBook A\ HasBook.

We ensure no concurrent actions are allowed by stating
caused L after a; A as

for every pair of action constants a1, as such that a; # as. Initially, it is uniformly random where
the robot and the book is and whether the robot has the book:

caused /nit_LocRobot = {R; : 0.5, Ry : 0.5}
caused /nit_LocBook = {Ry : 0.5, Rz : 0.5}
caused /nit_HasBook = {t: 0.5,f: 0.5}
initially LocRobot = r if Init_LocRobot = r
initially LocBook = r if Init_LocBook = r
initially HasBook = b if Init_HasBook = b.

No abnormalities are possible in the initial state:

initially L if EnterFailed
initially L if PickupFailed
initially L if DropBook.
We add
caused ab

to the action description to take abnormalities into account in reasoning and translate the action
description into LPM™N program, together with the actions that the robot has executed.*
Executing 1lpmln2asp -i robot.lpmln yields

pickupBook(t,0) ab(pickup_failed, t,1) goto(r2,t,1l) putdownBook(t,?2)

which suggests that the robot fails at picking up the book.
Suppose that the robot has observed that the book was in its hand after it picked up the book.
We expand the action history with

:— not hasBook(t, 1).
Now the most probable stable model becomes
pickupBook(t,0) goto(r2,t,1) ab(drop_book, t,2) putdownBook(t,2)

suggesting that robot accidentally dropped the book.
On the other hand, if the robot further observed that itself was not at r2 after the execution

4 For the complete translation of the action description in the language of LPMLN2ASP, we refer the reader to
Appendix C of the supplementary material corresponding to this paper at the TPLP archives (Lee and Wang 2018).
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:— locRobot(r2, 3).
Then the most probable stable model becomes
pickupBook(t,0) goto(r2,t,1) ab(enter failed, t,2) putdownBook(t,2)

suggesting that the robot failed at entering r2.

6 Related Work

There exist various formalisms for reasoning in probabilistic action domains. PC+ (Eiter and
Lukasiewicz 2003) is a generalization of the action language C+ that allows for expressing
probabilistic information. The syntax of PC+- is similar to p/3C+, as both the languages are exten-
sions of C+. PC+ expresses probabilistic transition of states through so-called context variables,
which are similar to pf constants in p3C+, in that they are both exogenous variables associated
with predefined probability distributions. In p/3C+, in order to achieve meaningful probability
computed through LPpMLN, assumptions such as all actions have to be always executable and
nondeterminism can only be caused by pf constants, have to be made. In contrast, PC+ does
not impose such semantic restrictions, and allows for expressing qualitative and quantitative
uncertainty about actions by referring to the sequence of “belief” states—possible sets of states
together with probabilistic information. On the other hand, the semantics is highly complex and
there is no implementation of PC+ as far as we know.

(Zhu 2012) defined a probabilistic action language called N B, which is an extension of the
(deterministic) action language B. A'B can be translated into P-log (Baral et al. 2004) and since
there exists a system for computing P-log, reasoning in AV action descriptions can be automated.
Like pBC+ and PC+, probabilistic transitions are expressed through dynamic causal laws with
random variables associated with predefined probability distribution. In A'B, however, these
random variables are hidden from the action description and are only visible in the translated
P-log representation. One difference between A'B and pBC+ is that in A'B a dynamic causal
law must be associated with an action and thus can only be used to represent probabilistic effect
of actions, while in pBC+, a fluent dynamic law can have no action constant occurring in it. This
means state transition without actions or time step change cannot be expressed directly in N'B.
Like pBC+, in order to translate A'B into executable low-level logic programming languages,
some semantical assumptions have to be made in A/B. The assumptions made in A'B are very
similar to the ones made in pBC+.

Probabilistic action domains, especially in terms of probabilistic effects of actions, can be
formalized as Markov Decision Process (MDP). The language proposed in (Baral et al. 2002)
aims at facilitating elaboration tolerant representations of MDPs. The syntax is similar to p.3C+.
The semantics is more complex as it allows preconditions of actions and imposes less semantical
assumption. The concept of unknown variables associated with probability distributions is simi-
lar to pf constants in our setting. There is, as far as we know, no implementation of the language.
There is no discussion about probabilistic diagnosis in the context of the language. PPDDL
(Younes and Littman 2004) is a probabilistic extension of the planning definition language
PDDL. Like N8, the nondeterminism that PPDDL considers is only the probabilistic effect
of actions. The semantics of PDDL is defined in terms of MDP. There are also probabilistic
extensions of the Event Calculus such as (D’ Asaro et al. 2017) and (Skarlatidis et al. 2011).

In the above formalisms, the problem of probabilistic diagnosis is only discussed in (Zhu
2012). (Balduccini and Gelfond 2003) and (Baral et al. 2000) studied the problem of diagnosis.
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However, they are focused on diagnosis in deterministic and static domains. (Iwan 2002) has
proposed a method for diagnosis in action domains with situation calculus. Again, the diagnosis
considered there does not involve any probabilistic measure.

Compared to the formalisms mentioned here, the unique advantages of pBC+ include its
executability through LPMIN systems, its support for probabilistic diagnosis, and the possibility
of parameter learning in actions domains.

LPMIN s closely related to Markov Logic Networks (Richardson and Domingos 2006), a
formalism originating from Statistical Relational Learning. However, Markov Logic Networks
have not been applied to modeling dynamic domains due to its limited expressivity from its
logical part.

7 Conclusion

pBC+ is a simple extension of 5C+. The main idea is to assign a probability to each path of a
transition system to distinguish the likelihood of the paths. The extension is a natural composition
of the two ideas: In the semantics of 5C+, the paths are encoded as stable models of the logic
program standing for the BC+ description. Since LPMN is a probabilistic extension of ASP, it
comes naturally that by lifting the translation to turn into LPM™N we could achieve a probabilistic
action language.

In the examples above, the action descriptions, including the probabilities, are all hand-written.
In practice, the exact values of some probabilities are hard to find. In particular, it is not likely
to have a theoretical probability for an abnormality to occur. It is more practical to statistically
derive the probability from a collection of action and observation histories. For example, in the
robot example in Section 5.2, we can provide a list of action and observation histories, where
different abnormalities occurred, as the training data. With this training data, we may learn the
weights of the LPMIN rules that control the probabilities of abnormalities.

Another future work is to build a compiler that automates the process of the translation of
pBC+ description into the input language of LPMLN2ASP by extending a system like CPLUS2ASP
(Babb and Lee 2013).
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