TLP 18 (3-4): 589-606, 2018.  (©) Cambridge University Press 2018 589
doi:10.1017/S1471068418000315

Translating LPOD and CR-Prolog, into standard
answer set programs

JOOHYUNG LEE and ZHUN YANG

School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, USA
(e-mails: {joolee@asu.edu, zyang90}@asu.edu)

submitted 2 May 2018; accepted 17 May 2018

Abstract

Logic Programs with Ordered Disjunction (LPOD) is an extension of standard answer set programs to
handle preference using the construct of ordered disjunction, and CR-Prolog, is an extension of standard
answer set programs with consistency restoring rules and LPOD-like ordered disjunction. We present
reductions of each of these languages into the standard ASP language, which gives us an alternative way to
understand the extensions in terms of the standard ASP language.

1 Introduction

In answer set programming, each answer set encodes a solution to the problem that is being
modeled. There is often a need to express that one solution is preferable to another, so several ex-
tensions of answer set programs were made to express a qualitative preference over answer sets.
In Logic Programs with Ordered Disjunction (LPOD) (Brewka 2002), this is done by introducing
the construct of ordered disjunction in the head of a rule: A x B < Body intuitively means,
when Body is true, if possible then A, but if A is not possible, then at least B. Proposition 2
from (Brewka 2002) states that there is no reduction of LPOD to disjunctive logic programs
(Gelfond and Lifschitz 1991) based on the fact that the answer sets of disjunctive logic programs
are subset-minimal whereas LPOD answer sets are not necessarily so. However, this justification
is limited to translations that preserve the underlying signature, and it remained an open question
if it is possible to turn LPOD into the language of standard ASP such as ASP-Core 2 (Calimeri
et al. 2012) by using auxiliary atoms. In this paper, we provide a positive answer to this question.

We present a reduction of LPOD to standard answer set programs by compiling away ordered
disjunctions. The translation gives us an alternative way to understand the semantics of LPOD in
terms of the standard ASP language, and more generally, a method to express preference relations
among answer sets. Instead of iterating the generator and the tester programs as in (Brewka et al.
2002), our reduction is one-pass: the preferred answer sets can be computed by calling an answer
set solver one time.

It turns out that the translation idea is not restricted to LPOD but also applies to CR-Prolog,
(Balduccini and Mellarkod 2004), which not only has a construct similar to ordered disjunction
in LPOD but also inherits the construct of consistency-restoring rules—rules that can be added to
make inconsistent programs to be consistent—from CR-Prolog (Balduccini and Gelfond 2003).
With some modifications to the LPOD translation, we show that CR-Prolog, programs can also
be turned into standard answer set programs by compiling away both ordered disjunctions and
consistency-restoring rules.

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



590 J. Lee and Z. Yang

The paper is organized as follows. Section 2 reviews LPOD and presents a translation that
turns LPOD into standard answer set programs. Section 3 reviews CR-Prolog, and presents a
translation that turns CR-Prolog, into standard answer set programs. The complete proofs are in
the supplementary material at the TPLP archives (Lee and Yang 2018).

2 LPOD to ASP with Weak Constraints
2.1 Review: LPOD

We review the definition of LPOD by Brewka (2002). As in that paper, for simplicity, we assume
the underlying signature is propositional.

Syntax: A (propositional) LPOD IIis II,.., UIL,4, where its regular part 11,.., consists of usual
ASP rules Head < Body, and its ordered disjunction part 11,4 consists of LPOD rules of the
form

C! x .- x C™ < Body (1)

in which C" are atoms, n is at least 2, and Body is a conjunction of atoms possibly preceded by
not.* Rule (1) intuitively says “when Body is true, if possible then C; if C'! is not possible then
C?;...;ifallof C1,...,C™ ! are not possible then C™.”

Semantics: For an LPOD rule (1), its i-th option (i = 1, ...,n) is defined as
C* « Body,not C', ... not C*~*.

A split program of an LPOD II is obtained from II by replacing each rule in 11,4 by one of its
options. A set S of atoms is a candidate answer set of 11 if it is an answer set of a split program
of II.

Example 1
(From (Brewka 2002)) The following LPOD II;,

axb< notc
bxc<+ notd,

has four split programs:

a <— not c a < not c
b+ notd c < not d,not b
2)
b < not c,not a b < not c,not a
b+ notd c < not d,not b.

Each of them has the following answer sets respectively, which are the candidate answer sets
of Hl .

{a, b} {c}
{0} {0}, {c}.
A candidate answer set .S of IT is said to satisfy rule (1)
1 In (Brewka 2002), a usual ASP rule is viewed as a special case of a rule with ordered disjunction when n = 1 but in

this paper, we distinguish them. This simplifies the presentation of the translation and also allows us to consider LPOD
that are more general than the original definition by allowing modern ASP constructs such as aggregates.

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 591

e to degree 1 if S does not satisfy Body, and
e to degree j (1 < j < n)if S satisfies Body and j = min{k | C* € S}.

When II,; contains m LPOD rules, the satisfaction degree list of a candidate answer set S
of ITis (dy,...,d,,) where d; is the degree to which S satisfies rule i in II,4. For a candidate
answer set S, let Si(H) denote the set of rules in II,4 satisfied by .S to degree 7. For candidate
answer sets 57 and S5 of II, Brewka (2005) introduces the following four preference criteria.

1. Cardinality-Preferred: S, is cardinality-preferred to Sy (S1 >¢ S) if there is a positive
integer 4 such that |S% (IT)| > |S4(IT)|, and |7 (IT)| = |53 (IT)| for all j < 4.

2. Inclusion-Preferred: S is inclusion-preferredto Sy (S; >' Sb) if there is a positive integer
i such that S3(TT) ¢ S%(IT), and S (TT) = S (TT) for all j < i.

3. Pareto-Preferred: S, is Pareto-preferred to S (S1 >P S5) if there is a rule that is satisfied
to a lower degree in S7 than in S5, and there is no rule that is satisfied to a lower degree in
S than in Sy.

4. Penalty-Sum-Preferred: S, is penalty-sum-preferred to So (S1 >P® S) if the sum of the
satisfaction degrees of all rules is smaller in S than in Ss.

A candidate answer set S of II is a k-preferred (k € {c,i,p,ps}) answer set if there is no
candidate answer set S’ of II such that S’ >* S.

Example 1 (Continued)

Recall that IT; has three candidate answer sets: {a, b}, {b}, and {c}. Their satisfaction degree lists
are (1,1), (2,1), and (1,2), respectively. One can check that {a, b} is the only preferred answer set
according to any of the four preference criteria.

Example 2

To illustrate the difference among the four preference criteria, consider the following LPOD IIo
about picking a hotel near the Grand Canyon. hotel(1) is a 2 star hotel but is close to the Grand
Canyon, hotel(2) is a 3 star hotel and the distance is medium, and hotel(3) is a 4 star hotel but

is too far.
close x med x far x tooFar 1 <« hotel(2), not med
stard x star3 x star2 1 < hotel(2), not star3
{hotel(X) : X =1..3}1 1 < hotel(3), not tooFar
1 < hotel(1), not close 1 < hotel(3), not stard

L < hotel(1), not star2

II, has 4 x 3 split programs but only the following three programs are consistent (The regular
part of Il is not listed).

close med < not close
star2 <— not stard, not star3 star3d < not star4d

tooFar < not close, not med, not far
stard

The candidate answer sets of I, and their satisfaction degree lists are

Sy = {hotel(1), close, star2,...},(1,3) So = {hotel(2), med, star3, ...}, (2,2)
S3 = {hotel(3),tooFar, stard, ...}, (4,1)

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



592 J. Lee and Z. Yang

By definition, the cardinality-preferred answer set is S1, the inclusion-preferred answer sets are
S1 and S3, the Pareto-preferred answer sets are S7, Se and S3, while the penalty-sum-preferred
answer sets are S7 and Ss.

2.2 An Alternative Way to Generate Candidate Answer Sets: Assumption Programs

Before we describe the translation of LPOD into standard answer set programs, we consider
an alternative way to generate candidate answer sets together with their “assumption degrees,”
which serves as a basis of our translation.

Let IT be an LPOD with m LPOD rules. For an LPOD rule ¢ (i € {1,...,m})

C! x -+ x CI" < Body, , A3)
its x-th assumption (z € {0, ...,n;}), denoted by O;(x), is defined as the set of ASP rules
body; < Body, 4)
1L <« x=0, body; 5
1L« x>0, not body; (6)
C! <« body;, v =] (for1<j<my) (1)
1L < body;, x # j,not C},... not C’f_l, C’ij (for1 < j <my) (8)

where body; is a new, distinct atom for each LPOD rule i. Rules (4)—(6) ensure that the body of
(3) is false iff x = 0. Rule (7) represents that C7 is true under the x-th assumption, and rule (8)
ensures that all atoms C},...,CY ~1 are false. The last two rules together tells us that the first
atomin C}, ..., C}" that is true is C7. The reason we call rules (4)—(8) the z-th assumption is
because they encode a certain assumption imposed on rule (3) in deriving each candidate answer
set: z = 0 assumes Body, is false, whereas x > 0 assumes Body; is true and the 2-th atom in the
head is to be derived.

An assumption program of an LPOD II is obtained from II by replacing each rule in II,4
by one of its assumptions. If each LPOD rule ¢ is replaced by its x;-th assumption, we call
(z1,...,Tm) the assumption degree list of the assumption program.

The following proposition asserts that the candidate answer sets can be obtained from assump-
tion programs instead of split programs.

Proposition 1
For any LPOD II of o and any set S of atoms of ¢, S is a candidate answer set of IT iff SU{body; |
S satisfies the body of rule i in IT,4} is an answer set of some assumption program of II.

Example 1 (Continued) The assumptions for rule a X b < not ¢, denoted by O; (X), and the
assumptions for rule b x ¢ + not d, denoted by O5(X>) are as follows, where X; and X5 range

over {0,1,2}.
01(X1) : body: < not ¢ 02(X3) : bodys < not d

1+ X1 =0,bodyr 1+ X5 =0, body-
1+ X1 > 0, not body, 1+ X5 > 0, not bodys
a<+bodyi, X1=1 b+ bodyz, Xo=1
b+ body1, X1 =2 c+bodyz, Xo=2
1< bodyi, X1 # 1,a 1+ bodys, X2 # 1,b
1« bodyr, X1 # 2,not a,b 1« bodyz, X2 # 2,n0t b, c

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 593

II; has 9 assumption programs,
O, (0) U 02(0) O, (0) U 02(1) O, (0) U 02(2) R {C}
01(1) UO02(0) |O1(1) UO2(1) |,{a,b} O1(1)UO02(2)
O, (2) U 02(0) 01(2) U 02(1) R {b} 01 (2) U O (2),

among which the three assumption programs in the boxes are consistent. Their answer sets are
shown together.

An advantage of considering assumption programs over split programs is that the satisfaction
degrees—a basis of comparing the candidate answer sets—can be obtained from the assumption
degrees with a minor modification (Section 2.3.1). This is in part because each candidate answer
set is obtained from only one assumption program whereas the same candidate answer set can be
obtained from multiple split programs (e.g., {b} in Example 1).

2.3 Turning LPOD into Standard Answer Set Programs

We define a translation Ipod2asp(II) that turns an LPOD II into a standard answer set program.
Let II be an LPOD of signature o where 1,4 contains m propositional rules with ordered

disjunction:
1: Cl x -+ xC"™ « Body,
(©))
m: Ch x---x Cl' <« Body,,
where 1, ..., m are rule indices, and n; > 2 for1 < i < m.

The first-order signature ¢’ of Ipod2asp(II) contains m-ary predicate constant a/m for each
propositional constant a of o. Besides, ¢’ contains the following predicate constants not in o
ap/m (“assumption program”), degree/(m+1), body; /m (i € {1,...,m}), prf /2 (“preferred”),
and pAS/m (“preferred answer set”). Furthermore, o’ contains the following predicate constants
according to each preference criterion:

o for cardinality-preferred: card/3, equ2degree/3, pr f2degree/3
o for inclusion-preferred: even/1, equ2degree/3, pr f2degree/3
o for Pareto-preferred: equ /2

o for penalty-sum-preferred: sum/2.

2.3.1 Generate Candidate Answer Sets

The first part of the translation Ipod2asp(II) is to generate all candidate answer sets of II based
on the notion of assumption programs. We use the assumption degree list as a “name space” for
each candidate answer set, so that we can compare them in a single answer set program.

1. We use atom ap(z1, . . ., Z,) to denote the assumption program whose assumption degree list
is (x1,...,Zm). We consider all consistent assumption programs by generating a maximal set of
ap(-) atoms: ap(x1, . .., Ty,) is included in an optimal answer set ? iff the assumption program

2 For programs containing weak constraints, an optimal answer set is defined by the penalty that comes from the weak
constraints that are violated. (Calimeri et al. 2012)

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



594 J. Lee and Z. Yang

denoted by ap(z1, ..., %) is consistent.
{ap(X1,.. ., X)) s X1=0.n1, ... , Xn =0.mp }. (10)
i~ ap(Xl,...,Xm). [—].,Xl,...,Xm} (11)

Rule (10) generates an arbitrary subset of ap(-) atoms, each of which records an assumption
degree list. Rule (11) is a weak constraint that maximizes the number of ap(-) atoms by adding
the penalty —1 for each true instance of ap(X7, ..., X,,). Together with the rules below, these
rules ensure that we consider all assumption programs that are consistent and that no candidate
answer sets are missed in computing preference relationship in the second part of the translation.

2. We extend each atom to include the assumption degrees Xi,...,X,,, and append atom
ap(Xi,...,X,,) in the bodies of rules.

o For each rule Head < Body in I1,..4, Ipod2asp(II) contains

Head(X1,...,Xm) < ap(Xi,...,Xm),Body(X1,...,Xm) (12)
where Head(X1, ..., X,,) and Body(X1, ..., X,,) are obtained from Head and Body by
replacing each atom A in them with A(X7, ..., X,,). Each schematic variable X; ranges
over {0,...,n;}.

e For each rule
O} x -+ x CI" + Body,
in I1,4, where n > 2, Ipod2asp(II) contains

body;(X1,...,Xm) < ap(X1,...,Xm),Body;(X1,...,Xm) (13)
L+ ap(X1,...,Xm), X; =0, body;(X1,...,Xm) (14)
1+ ap(Xy,...,Xn), X; > 0, not body; (X1, ..., Xm). (15)

And for 1 < j < ny, Ipod2asp(II) contains

CHX1,.... Xpm) + bodyi(X1,..., Xm), X; = j. (16)

1+ bOdyz(Xl,,Xm)7Xz7éja
T a7

not CH( X7, .. Lnot CVNX G, X)), CH (X, Xon).

3. The satisfaction degree list can be obtained from the assumption degree list encoded in
ap(z1,...,Tm) by changing x; to 1 if it was 0. For this, I[pod2asp(II) contains

1{degree(ap(X1,...,Xm),D1,...,Dpm): Dy =1.n1,...,Dpy = L.mpp}1
—ap(X1,..., Xm). (18)
and for 1 < ¢ < m, Ipod2asp(II) contains
L + degree(ap(X1,...,Xm),D1,...,Dp), X; =0, D; # 1. (19)
L« degree(ap(X1,...,Xm), D1, .., D), X; >0, D; # Xi. (20)

Since all answer sets of the same assumption program are associated with the same satisfaction
degree list, we say an assumption program satisfies LPOD rule ¢ to degree d if its answer sets
satisfy the rule to degree d. Rule (18) reads “for any assumption program ap(x1, . .., Z, ), it has
exactly one assignment of satisfaction degrees D1, ..., D,,.” Rules (19) and (20) say that the

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 595

assumption program ap(1, . . . , T, ) satisfies LPOD rule i to degree 1 if x; = 0 (in which case
Bodly; is false) and to degree z; if x; > 0 (in which case Body; is true).

Let us denote the set of rules (10)—(20) by Ipod2asp(II)p4sc. Observe that the atoms a(v) in
the original signature o are in the form of a(v, x1, . .., x,,) in the answer sets of Ipod2asp(II)pse-
We define a way to retrieve the candidate answer set of II by removing z1, ..., z,, as follows.
Let S be an optimal answer set of Ipod2asp(II)pse, and let

shrink(S,x1,...,xm) be {a(v) | a(v,z1,...,2,) € Sand a(v) € c}.

If S = ap(z1, ..., %m), we define the set shrink(S,x1, ..., 2 ) as a candidate answer set on
o of Ipod2asp(IT)pqse.>
The following proposition asserts the soundness of the translation Ipod2asp(I1)qse-

Proposition 2
The candidate answer sets of an LPOD II of signature o are exactly the candidate answer sets on
o of Ipod2asp(IT)p se-

Example 1 Continued: The following is the encoding of Ipod2asp (111 )pase in the input language
of CLINGO.

[}
%
X2): X1=0..2, X2=0..2}. i~ ap(X1,X2). [-1, X1, X2]

% axb <- not c.

body_1(X1,X2) :- ap(X1,X2), not c(X1,X2).
:— ap(X1,X2), X1=0, body 1(X1,X2). :— ap(X1,X2), X1>0, not body 1(X1,X2).
a(X1,x2) :- body 1(X1,X2), X1=1. b(X1,X2) :- body 1(X1,X2), X1=2.

:— body_1(X1,X2), X1!'=1, a(X1,X2).
:— body_1(X1,X2), X1!=2, not a(X1,X2), b(X1,X2).

% bxc <- not d.

body_2(X1,X2) :- ap(X1,X2), not d(X1,X2).

- ap(X1,X2), X2=0, body 2(X1,X2). :— ap(X1,X2), X2>0, not body 2(X1,X2) .
b(X1,X2) :- body_2(X1,X2), X2=1. c(X1,X2) :- body 2(X1,X2), X2=2.

:— body_2(X1,X2), X2!=1, b(X1,X2).

:— body_2(X1,X2), X2!=2, not b(X1,X2), c(X1,X2).

oP

{oNeNe} o {e)
%%% 3 $%%

1{degree(ap(X1,X2), D1, D2): D1=1..2, D2=1..2}1 :- ap(X1,X2).

o

:—- degree(ap(X1,X2), D1, D2), X1=0, D1!=1.
:— degree(ap(X1,X2), D1, D2), X1>0, D1!=X1.

:—- degree(ap(X1,X2), D1, D2), X2=0, D2!=1.
:— degree(ap(X1,X2), D1, D2), X2>0, D2!=X2.

3 We also apply this notation to the full translation Ipod2asp(IT) and crp2asp(IT) below.

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



596 J. Lee and Z. Yang

The optimal answer set .S of Ipod2asp(I1; )pase 1S

{ap(1,1),a(1,1),b(1,1),...,ap(2,1),b(2,1),...,ap(0,2),¢(0,2),...} (21)
(body;(-) and degree(-) atoms are not listed). Since S satisfies ap(1, 1), ap(2,1), and ap(0, 2),
the candidate answer sets on o of Ipod2asp(I11 )pse are

shrink(S,1,1) = {a, b}, shrink(S,2,1) = {b}, shrink(S,0,2) = {c}

which are exactly the candidate answer sets of I1;.

2.3.2 Find Preferred Answer Sets

The second part of the translation Ipod2asp(II) is to compare the candidate answer sets to find the
preferred answer sets. For each preference criterion, I[pod2asp(II) contains the following rules
respectively. Below maxdegree is max{n; | i € {1,...,m}}.

(a) Cardinality-Preferred: For this criterion, Ipod2asp(II) contains the following rules.

card(P, X, N) < degree(P,D1,...,Dy), X = l..mazdegree,

N={Dy=X;...;Dp, = X}. (22)

equ2degree(Py, P2, X) « card(P1,X,N),card(Pz, X,N), P, # P,. (23)

prf2degree(Pr, P2, X) < card(P1,X, N1), card(P2, X, N2), N1 > Na. 24)
prf(Pi, P2) < X = 0..maxdegree — 1,prf2degree(P1, P2, X + 1),

X{equ2degree(P1,P>,Y):Y =1.X}. (25)

PAS(X1,..., Xm) + ap(X1,..., Xm), {prf(P,ap(X1,...,Xm))}0. (26)

P, Py, and P, denote assumption programs in the form of ap(Xy, ..., X,,). card(P, X, N)
is true if P satisfies N rules in IT,4 to degree X. equ2degree( Py, Py, X) is true if Py and P
have the same number of rules that are satisfied to degree X. pr f2degree( P, Ps, X) is true
if Py satisfies more rules to degree X than P does. prf(P;, P») is true if P; is cardinality-
preferred to P»: P; satisfies more rules to degree X + 1 than P> does whereas they satisfy
the same number of rules up to degree X. Rule (26) reads as: given an assumption program
represented by ap(X, ..., X,,), if we cannot find an assumption program P that is more
preferable, then the answer sets of ap(X7, ..., X,,) are all preferred answer sets of II. Note
that P in rule (26) is a local variable that ranges over all ap(-) atoms.

(b) Inclusion-Preferred: For this criterion, Ipod2asp(II) contains the following rules.
even(0;2). 27
equ2degree(P1, P2, X) < Pi # P>, X = l..maxdegree,
degree(P1, D11,...,Dim),degree(Pa, D21, ..., Dam),
Cy={D11 = X;Da1 = X},...,Com = {Dim = X; Do = X},
even(Ch), ..., even(Cn). (28)
prf2degree(Pi, P2, X) + Pi1 # P2, X = l..maxdegree,
not equ2degree(Py, P2, X),
degree(P1, D11,. .., D1im),degree(Pa, D21, ..., D),

(D11 # X; Doy = X}, ..., {D1m # X; Doy = X}1. (29)

prf(Pi, P2) < X = 0..maxdegree — 1,prf2degree(Pr, P>, X + 1),
X{equ2degree(P,P>,Y):Y =1..X}. (30)
PAS(X1,..., Xm) + ap(X1,..., Xm),{prf(P,ap(X1,...,Xm))}0. 31

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 597

where { D11 = X; D21 = X} counts the number of true atoms in this set, so it equals to 0
(or 2) when none (or both) of D13 = X and Dy; = X are true; {D11 # X; Doy = X}1
means that the number of true atoms in this set must be smaller or equal to 1, which means
that Dy; # X and Doy = X cannot be true at the same time — in other words, Doy = X
implies D11 = X.

(c) Pareto-Preferred: For this criterion, Ipod2asp(II) contains the following rules.

equ(P1, P2) < degree(P1,D1,..., D), degree(P2, D1, ...,Dp). (32)
prf(Pi, P2) < degree(Pi,D11,...,Dim),degree(Pa, Da1, ..., Dom),

not equ(P1, P2), D11 < D21,...,Dim < Daopm. (33)

PAS(X1,..., Xm) + ap(X1,..., Xm), {prf(P,ap(X1,...,Xm))}0. 34)

where equ(P;, P») means that P is equivalent to P» at all degrees.
(d) Penalty-Sum-Preferred: For this criterion, Ipod2asp(II) contains the following rules.

sum(P,N) <« degree(P,D1,...,Dp),N=Di+ -+ Dp,. (35)
p?f(P1,P2) — sum(Pl,Nl),sum(Pg,Ng),]\h < Na. (36)
pAS(X1,..., Xm) + ap(X1,..., Xm),{prf (P,ap(X1,...,Xm))}0. 37

where sum(P, N) means that the sum of P’s satisfaction degrees of all rules is N.

If S = pAS(z1,...,2m), we define the set shrink(S, z1, ..., z,,) to be a preferred answer
set on o of Ipod2asp(II).

a

The following theorem assert the soundness of the translation Ipod2asp(II).

Theorem 1

Under any of the four preference criteria, the candidate (preferred, respectively) answer sets of
an LPOD II of signature ¢ are exactly the candidate (preferred, respectively) answer sets on ¢ of
Ipod2asp(I1).

Example 2 Continued: The first part of Ipod2asp(I1z) contains the following rules.

#const maxdegree = 4.

009
%%

o

1 %%%%

{ap(X1,X2) : X1=0..4, X2=0..3}. i~ ap(X1,X2). [-1, X1, X2]

oP

¥%% 2

oP

%%

1{hotel(H,X1,X2): H=1..3}1 :- ap(X1,X2).

- ap(X1,X2), hotel(l,X1,X2), not close(X1,X2).
ap(X1,X2), hotel(1,X1,X2), not star2(X1,X2).
ap(X1,X2), hotel(2,X1,X2), not med(X1,X2).

- ap(X1,X2), hotel(2,X1,X2), not star3(X1,X2).
ap(X1,X2), hotel(3,X1,X2), not tooFar(X1,X2).
ap(X1,X2), hotel(3,X1,X2), not stard(X1,X2).

% close » med * far * tooFar.

body_1(X1,X2) :- ap(X1,X2).

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



598 J. Lee and Z. Yang

:— ap(X1,X2), X1=0, body 1(X1,X2). :— ap(X1,X2), X1>0, not body_1(X1,X2).
close(X1,X2) :- body_1(X1,X2), X1=1. med(X1,X2) :- body_1(X1,X2), X1=2.
far(X1,X2) :- body_1(X1,X2), X1=3. tooFar(X1,X2) :- body 1(X1,X2), X1=4.

body 1(X1,X2), X1!'=1, close(X1,X2).

body 1(X1,X2), X1!=2, not close(X1,X2), med(X1,X2).

body 1(X1,X2), X1!=3, not close(X1,X2), not med(X1,X2), far(Xl,X2).
(
(

:— body 1(X1,X2), X1!=4, not close(X1,X2), not med(X1,X2), not far(X1,X2),
tooFar (X1,X2) .

% stard x star3 x star2.

body_2(X1,X2) :- ap(X1,X2).

:— ap(X1,X2), X2=0, body 2(X1,X2) . :— ap(X1,X2), X2>0, not body_2(X1,X2) .
star4 (X1,X2) :- body_2(X1,X2), X2=1. star3(X1,X2) :- body_2(X1,X2), X2=2.
star2(X1,X2) :- body_2(X1,X2), X2=3.

:— body_2(X1,X2), X2!=1, star4(X1,X2).
:— body 2(X1,X2), X2!=2, not star4d(X1,X2), star3(X1,X2).
:— body_2(X1,X2), X2!=3, not star4(X1,X2), not star3(X1,X2), star2(Xl,X2).

op

{o}
%%

o
o

%%% 3

l{degree(ap(X1,X2), D1, D2): D1=1..4, D2=1..3}1 :- ap(X1,X2).

:— degree(ap(X1,X2), D1, D2), X1=0, D1!=1.
:— degree(ap(X1,X2), D1, D2), X1>0, D1!=X1.

:— degree(ap(X1,X2), D1, D2), X2=0, D2!=1.
:— degree(ap(X1,X2), D1, D2), X2>0, D2!=X2.

For the second part of the translation, Ipod2asp(II3) contains one of the following sets of rules.

%%%% a. Cardinality %%%%

card(P,X,N) :- degree(P,D1,D2), X=1..maxdegree, N={D1=X; D2=X}.

equ2degree(P1,P2,X) :- card(Pl,X,N), card(P2,X,N), P1l!=pP2.

prf2degree(P1,P2,X) :- card(Pl,X,N1), card(P2,X,N2), NI>N2.

prf(P1l,P2) :- X=0..maxdegree-1, prf2degree(Pl,P2,X+1), X{equ2degree(Pl,P2,Y) :
Y=1..X}.

PAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

%%%% b. Inclusion %$%%%

even(0;2) .

equ2degree(P1,P2,X) :- P1!=P2, X=1..maxdegree, degree(P1l,D11,D12),
degree(P2,D21,D22),
Cl = {D11=X; D21=X}, C2={D12=X; D22=X}, even(Cl),

even(C2) .

prf2degree(P1l,P2,X) :- P1l!=P2, X=1..maxdegree, not equ2degree(Pl,P2,X),
degree(P1,D11,D12), degree(P2,D21,D22),
{D11!'=X; D21=X}1, {D12!=X; D22=X}1.

prf(P1,P2) :- X=0..maxdegree-1, prf2degree(Pl,P2,X+1), X{equ2degree(Pl,P2,Y) :

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 599

Y=1..X}.
PAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.
%%%% C. Pareto %$%%%
equ(Pl,P2) :- degree(Pl,D1,D2), degree(P2,D1,D2).
prf(P1,P2) :- degree(Pl,D11,D12), degree(P2,D21,D22), not equ(Pl,P2),
D11<=D21, D12<=D22.
PAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

%%%% d. Penalty-Sum $%%%

sum(P,N) :- degree(P,D1,D2), N=D1+D2.
prf(P1,P2) :- sum(P1,N1), sum(P2,N2), NI<N2.
PAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

Note that each set of rules in the second part conservatively extends the answer set of the base
program. For example, the optimal answer set of Ipod2asp(II;) under Penalty-Sum preference
is the union of (21) and {sum(ap(0,2),3), sum(ap(1,1),2), sum(ap(2,1),3), prf(ap(1,1),
ap(0,2)), prf(ap(1,1),ap(2,1)), pAS(1,1)}, which indicates that {a, b} is the preferred an-
swer set.

The optimal answer set .S of Ipod2asp(Il3) under the cardinality preference is

{pAS(1,3), ap(1,3), hotel(1,1,3), close(1,3), star2(1,3),
ap(2,2), hotel(2,2,2), med(2,2),  star3(2,2),
ap(4,1), hotel(3,4,1), tooFar(4,1), stard(4,1),...}
Since S satisfies ap(1, 3), ap(2, 2), and ap(4, 1), the candidate answer sets on o of Ipod2asp(115)
are
shrink(S,1,3) = {hotel(1), close, star2},
shrink(S,2,2) = {hotel(2), med, star3},
shrink(S,4,1) = {hotel(3), tooFar, stard},
which are exactly the candidate answer sets of Il,. Since S satisfies pAS(1, 3), the preferred
answer sets on o of Ipod2asp(Ily) is shrink(S,1,3) = {hotel(1),close, star2} which is
exactly the cardinality-preferred answer set of Il,. Let

pAS; = {pAS(L,3), hotel(1,1,3), close(1, 3), star2(1, 3)},
pASs = {pAS(2,2), hotel(2,2,2), med(2, 2), star3(2,2)},
pASs = {pAS(4,1), hotel(3,4,1), tooFar(4,1), stard(4,1)}.

The optimal answer sets of Ipod2asp(I13) under 4 criteria contain

cardinality-preferred: pASy inclusion-preferred: ~ pAS; UpASs
Pareto-preferred: pAST UpASy UpASs penalty-sum-preferred: pAS; U pASs

which are in a 1-1 correspondence with the preferred answer sets of II; under each of the four
criteria respectively.

3 CR-Prolog, to ASP with Weak Constraints
3.1 Review: CR-Prolog,
We review the definition of CR-Prolog, from (Balduccini et al. 2003).

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



600 J. Lee and Z. Yang

Syntax: A (propositional) CR-Prolog, program II consists of four kinds of rules:

regular rule Head < Body (38)
ordered rule i: Cl''x---x C"™ < Body (39)
cr-rule i: Head & Body 40)
ordered cr-rule i Cl'x .. x O™ & Body 41)

where Head < Body is a standard ASP rule, 7 is the index of the rule, (Y are atoms, and n; > 2.
The intuitive meaning of an ordered disjunction C! x - - - x C™i is similar to the one for LPOD. A
cr-rule (40) or an ordered cr-rule (41) is applied in 11 if it is treated as a usual ASP rule in II (by
replacing & with +); it is not applied if it is omitted in II. A cr-rule (40) or an ordered cr-rule
(41) is applied only if the agent has no way to obtain a consistent set of beliefs using regular
rules or ordered rules only. By Head(i) and Body(i), we denote the head and the body of rule i.

Semantics: The semantics of CR-Prolog, is based on the transformation from a CR-Prolog,
program IT of signature o into an answer set program Hyy, which is constructed as follows. The
first-order signature of Hiy is o U {choice/2,appl/1, fired /1, isPreferred/2}, where choice is a
function constant, appl, fired, isPreferred are predicate constants not in o.

1. Let Ry be the set of rules obtained from II by replacing every cr-rule and ordered cr-rule of
index ¢ with a rule:

i: Head(i) < Body(i), appl(i)
where appl(i) means rule i is applied. Notice that Ry contains only regular rules and ordered
rules.

Hyy is then obtained from Ryy by replacing every ordered rule of index r, where Head(r) =
Cl x -+ x C™, with the following rules (for 1 < j < n;):

C7 «+ Body(r), appl(choice(r, 7))

fired(r) < appl(choice(r, j))

prefer(choice(r, ), choice(r,j + 1)) (7 < my)
L < Body(r), not fired(r)

(42)

where appl(choice(r,j)) means that the j-th atom in the ordered disjunction Head(r) is
chosen, i.e., C7 is true if Head(r) is true.
2. Hy also contains the following set of rules:

isPreferred( R1, R2) «+ prefer(R1, R2).

isPreferred(R1, R3) <+ prefer(R1, R2), isPreferred(R2, R3).
L < isPreferred(R, R).

L < appl(R1),appl(R2),isPreferred(R1, R2).

where R1, R2, R3 are schematic variables ranging over indices of cr-rules and ordered cr-
rules in IT as well as terms of the form choice(-).

By atoms(Hm, {appl}), we denote the set of atoms in Hyy in the form of appl(-). A general-
ized answer set of Il is an answer set of Hyy U A where A C atoms(Hr, {appl}).

Let S, 52 be generalized answer sets of II. Sy dominates Ss if there exist r; and ry such
that appl(r1) € Si, appl(ra) € S, and isPreferred(ri,72) € S1 N Sy. Further, we say this
domination is rule-wise if r1 and ro are indices of two cr-rules; atom-wise if 1 and ro are two

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 601

terms of the form choice(-). Sy is a candidate answer set of 11 if there is no other generalized
answer set that dominates 5.

The projection of S; onto ¢ is a preferred answer set of 11 if S7 is a candidate answer set of I1
and there is no other candidate answer set S2 such that Sy N atoms(Hm, {appl}) C S;.

Example 3
(From (Balduccini et al. 2003)) Consider the following CR-Prolog, program IIs:
q<+t. p < not q. it
54 t. T < not s. 2:qxsé.
“— p, 7.

which has 5 generalized answer sets (the atoms formed by isPreferred or fired are omitted)

S1 ={q,s,t,appl(1), prefer(choice(2,1), choice(2,2))}

So = {q,r,appl(2), appl(choice(2,1)), prefer(choice(2,1),choice(2,2))}

Ss = {p, s,appl(2), appl(choice(2,2)), prefer(choice(2,1), choice(2,2))}

Sa ={q,s,t,appl(1),appl(2), appl(choice(2,1)), prefer(choice(2,1), choice(2,2))}
Ss = {q, s, t,appl(1), appl(2), appl(choice(2,2)), prefer(choice(2,1),choice(2,2))}.

Since S5 (atom-wise) dominates S3 and Ss, the candidate answer sets are S, S, and S,. Since
Sy Natoms(Hm,, {appl}) C Sy, the preferred answer sets of I3 are the projections from S; or
S5 onto o.

3.2 Turning CR-Prolog, into ASP with Weak Constraints

We define a translation crp2asp(II) that turns a CR-Prolog, program II into an answer set
program with weak constraints.

Let II be a CR-Prolog, program of signature o, where its rules are rearranged such that the
cr-rules are of indices 1, ..., k, the ordered cr-rules are of indices k + 1, ...,[, and the ordered
rules are of indices [ + 1,...,m.

For an ordered rule (39) or an ordered cr-rule (41), its i-th assumption, where i € {1,...,n;},
is defined as C* < Body. An assumption program AP(z1,...,x,,) of Il whose assumption
degree list is (x1,...,%,,) is obtained from II as follows (z; € {0,1} ifi = 1,...k; o; €
{0,...,n;}ifi =k+1,....Lz; € {1,...,n;} if i = {4+1,...,m, where n; is the number of
atoms in the head of rule 7).

e every regular rule (38) is in AP(x1,...,Zm);
e acr-rule (40) is omitted if z; = 0, and is replaced by Head < Body if x; = 1;
e an ordered cr-rule (41) is omitted if x; = 0, and is replaced by its x;-th assumption if
z; > 0;
e an ordered rule (39) is replaced by its z;-th assumption.
Besides, each assumption program AP(x1,. .., Z,,) contains

isPreferred(R1, R2) < prefer(R1, R2).

isPreferred(R1, R3) < prefer(R1, R2), isPreferred( R2, R3).
<+ isPreferred(R, R).

— Ty, > 0,2, > 0,isPreferred(ri,ra). (1 <ri,ry <)

The generalized answer sets of II can be obtained from the answer sets of all the assumption
programs of IT.

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



602 J. Lee and Z. Yang

Proposition 3

For any CR-Prolog, program II of signature o, a set X of atoms is the projection of a generalized
answer set of IT onto o iff X is the projection of an answer set of an assumption program of II
onto o.

Let II; and II; be two assumption programs of II. We say an answer set S of IIy dominates
an answer set Sy of Il if (i) there exists a rule 4 in II that is replaced by its j;-th assumption
in IIy, is replaced by its jo-th assumption in Ily, and j; < jo; or (ii) there exist 2 rules 71,72
in IT such that r is applied in Iy, 7o is applied in Iy, and prefer(ri,r2) € S1 N Sa. Indeed,
by Proposition 3, S; dominates S» iff the corresponding generalized answer set of the former
dominates that of the latter.

An answer set program with weak constraints crp2asp(II) is obtained from II based on the
notion of assumption programs as follows. The first-order signature o’ of crp2asp(II) contains
m-ary predicate constant a/m for each propositional constant a of o. Besides, ¢’ contains the
following predicate constants not in o: ap/m, dominate/2, isPreferred /(m+2), candidate/m,
lessCrRulesApplied/2, and pAS/m.

1. To consider a maximal set of consistent assumption programs, crp2asp(II) contains

{ap(X1,..., Xpm) : X7 =0.1, ... , X, =0..1, Xpy1=0.0%41,...,X; = 0.1y,

X1 =1Ly, X = Longy e (43)
i~ap(Xy, .o, X)) [1, X1, o, X (44)
where n; is the number of atoms in Head(i), ap(X, ..., X,) denotes an assumption program

obtained from II.
2. crp2asp(II) contains the following rules to construct all assumption programs AP (1, ..., Z;,):
o for each regular rule Head < Body inII, crp2asp(II) contains

Head(X1,...,Xm) < ap(Xq,...,Xm), Body(X1,...,Xm) (45)

e foreachcrrule i: Head; < Body, in1I, crp2asp(II) contains
Head;(X1,...,Xpm) < ap(X1,..., Xm),Body;(X1,..., Xm), X; =1 (46)
e for each ordered rule or ordered cr-rule i : C} x -+ x CP @ Body; inII, for

1 < j < mny, crp2asp(Il) contains
CH (X1, Xom) < ap(X1, ..., X,n),Body, (X1, ..., Xm), Xi = j (47)

3. To define dominate in the semantics of CR-Prolog,, crp2asp(II) contains the following rules.

Atom-wise dominance: Instead of using choice(-) terms and appl(choice(-)) atoms in (42), we
represent the atom wise dominance by comparing the assumption degrees. For ordered cr-rules
and ordered rules ¢ € {k + 1,...m}, we include
dominate(ap(X1, ..., Xm),ap(Y1,...,Yy)) +

ap(X1,..., Xm),ap(Y1,...,Yn),0< X;, X; <Y; (48)

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 603

rule-wise dominance: The following rules are included only when II contains an atom prefer(-).

r1 and ro ranges over {1,...,[}.
isPreferred(Ri, Ro, X1, ..., Xm) < prefer(Ri, R2, X1,..., Xm) (49)
isPreferred(Ri, Rs, X1,...,Xm) < prefer(Ri, R2, X1,..., Xm),

isPreferred(Rz2, R3, X1,...,Xm) (50)
< isPreferred(R, R, X1,...,Xm) (5D
< isPreferred(r1,72, X1,..., Xm), Xr; > 0,X,, >0 (52)

dominate(ap(Xi, ..., Xm),ap(Y1,...,Ym)) < ap(X1,..., Xm),ap(Y1,..., ),
isPreferred(r1,72, X1, ..., Xm), isPreferred(r1,72,Y1,...,Ym), Xr, >0,Yr, >0 (53)

We say an assumption program II; dominates an assumption program Il if an answer set
of II; dominates an answer set of Il,. Indeed, our translation guarantees that if II; dominates
115, all answer sets of II; dominates any answer sets of IIs. Rule (48) says that the assumption
program AP(x1,...,%,,) dominates the assumption program AP(y1, ...,y ) if there exists a
rule ¢ in IT that is replaced by its x;-th assumption in AP(z1, ..., Z,,), by its y;-th assumption
in AP(y1,...,ym), and x; < y;. Rules (49), (50), (51), (52) are the set of rules in the semantics
of CR-Prolog, with the extended signature o’. Rule (53) says that AP(x1, ..., z,,) dominates
AP(y1,...,Ym) if isPreferred(ry,rs) is true in both assumption programs while r; is applied
in AP(x1,...,%,,) and ro is applied in AP (y1, ..., Ym)-

4. To define candidate answer sets in the semantics of CR-Prolog,, crp2asp(II) contains
candidate(X1, ..., Xm) + ap(X1,..., Xm), {dominate(P, ap(X1,...,Xm))}0 (54)

Rule (54) says that the answer sets of AP(x1,...,2,,) are candidate answer sets if there does
not exist an assumption program P that dominates AP(x1, ..., Zm).
5. To define the preference between two candidate answer sets and find preferred answer sets,
crp2asp(II) contains
lessCrRulesApplied(ap(X1, ..., Xm),ap(Y1,...,Ym)) <

candidate(X1, ..., Xm), candidate(Y1,...,Ym),

HX1# Y. Xm Y b, X1 <Y1, X < Vi (55)
pAS(X1,..., Xm) + candidate(X1, ..., Xm), {lessCrRulesApplied(P,ap(X1,...,Xm))}0

(56)

Rule (55) says that for any different assumption programs AP (z1, ..., Z,,) and AP(y1,...,Ym)
whose answer sets are candidate answer sets, if all the choices in AP(x1, ..., Z,,) is not worse
than 4 those in AP(y1, . .., Ym), then the former must apply less cr-rules or ordered cr-rules than
the latter. Rule (56) says that the answer sets of AP(x1,...,x,,) are preferred answer sets if
these answer sets are candidate answer sets and there does not exist an assumption program P
that applies less cr-rules than AP(x1,. .., Zm).

Let S be an optimal answer set of crp2asp(Il); x1,..., 2, be a list of integers. If S |=
ap(x1,...,Tm), we define the set shrink(S,x1,..., ) as a generalized answer set on o of
crpasp(Il); if S |= candidate(xq, . . ., z,), we define the set shrink(S, z1, ..., x,,) as a can-
didate answer set on o of crp2asp(Il); if S E pAS(z1,...,x,), we define the set
shrink(S, z1,...,xp,) as a preferred answer set on o of crp2asp(II).

4 i.e., for any rule 4 in TI, if it is applied in AP(z1, ..., Zm ), it must be applied in AP(y1, ..., ym); if it is replaced

by its x;-th assumption in AP(J:1, ..., Tm), it must be replaced by its y;-th assumption in AP(y1, ..., Ym) and
z; <y

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



604 J. Lee and Z. Yang

Theorem 2

For any CR-Prolog, program II of signature o, (a) the projections of the generalized answer sets
of IT onto o are exactly the generalized answer sets on o of crp2asp(II). (b) the projections of
the candidate answer sets of II onto o are exactly the candidate answer sets on o of crp2asp(II).
(c) the preferred answer sets of II are exactly the preferred answer sets on o of crp2asp(II).

Example 3 Continued: The translated ASP program crp2asp(Il3) is

{ap(X1,X2): X1=0..1, X2=0..2}. i~ ap(X1,X2). [-1,X1,X2]

- ap(X1,X2), t(X1,X2). s(X1,X2) :- ap(X1,X2), t(X1,X2).
p(X1,X2) :- ap(X1,X2), not g(X1,X2). r(X1,X2) :- ap(X1,X2), not s(X1,X2).
- ap(X1,X2), p(X1,X2), r(X1,X2).

% 1l: t <+-.
t(X1,X2) :- ap(X1,X2), X1=1.

% 2: gxs <+-.
g(X1,X2) :- ap(X1,x2), X2=1. s(X1,X2) :- ap(X1,X2), X2=2.

dominate(ap(X1,X2), ap(Y1l,Y2)) :- ap(X1,X2), ap(Yl,Y2), 0<X1, XI<Yl.
dominate(ap(X1,X2), ap(Y1l,Y2)) :- ap(X1,X2), ap(Yl,Y2), 0<X2, X2<Y2.

2%%% 4 3%%%

candidate(X1,X2) :- ap(X1,X2), {dominate(P,ap(X1,X2))}0.

2%%% 5 %%%%

lessCrRulesApplied(ap(X1,X2), ap(Y1l,Y2)) :- candidate(X1,X2), candidate(Y1l,Y2),

1{X1!=Y1;X2!1=Y2}, X1<=Y1, X2<=Y2.
PAS(X1,X2) :- candidate(X1,X2), {lessCrRulesApplied(P,ap(X1,X2))}0.

The optimal answer set S of crp2asp(I1;) is

{pAS(1,0), candidate(1,0), ap(1,0), t(1,0), ¢(1,0), s(1,0),
pAS(0,1), candidate(0, 1), ap(0,1), ¢(0,1),7(0,1),
ap(0,2), p(0,2),s(0,2),
candidate(1,1), ap(1,1), t(1,1),4(1,1),s(1,1),
ap(1,2) (1,2),s(1,2),...}.

of crp2asp(Il3) are

shrink(S,1,0) = {t,q, s}
shrink(S,0,1) = {q,r}
shrink(S,0,2) = {p, s}
which are exactly the projections of the generalized answer sets of I3 onto o. Similarly, we
observe that the candidate (preferred, respectively) answer sets on o of crp2asp(Ils) are exactly
the projections of the candidate (preferred, respectively) answer sets of II3 onto o.
Furthermore, let 115 = II3 U {prefer(2,1).}. The translation crp2asp(11%) is crp2asp(Il3) U R,
where R is the set of the following rules:

shrink(S,1,1) = {t,q, s}
shrink(S,1,2) = {t,q, s}

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



Translating LPOD and CR-Prolog,, into standard answer set programs 605

,X1,X2) - ap(X1,X2).

isPreferred(R1,R2,X1,X2) :- prefer(R1,R2,X1,X2).

isPreferred(R1,R3,X1,X2) :- prefer(R1,R2,X1,X2), isPreferred(R2,R3,X1,X2).
:— isPreferred(R,R,X1,X2) .

:— isPreferred(2,1,X1,X2), X2>0, X1>0.

dominate(ap(X1,X2), ap(Y1l,Y2)) :- ap(X1,X2), ap(Yl,Y2),
isPreferred(2,1,X1,X2), isPreferred(2,1,Y1,Y2), X2>0, Y1>0.

The optimal answer set .S of crp2asp(Il}) is

{ ap(l,O), t(l,O),q(l,O),s(l,O),
pAS(0,1), candidate(0,1), ap(0,1), ¢(0,1),7(0,1),
ap(0,2), p(0,2),s(0,2),...}

and it is easy to check that the generalized (/candidate/preferred) answer sets on o of crp2asp(115)
are exactly the projections of the generalized (/candidate/preferred) answer sets of II onto o.

4 Related Work and Conclusion

We presented reductions of LPOD and CR-Prolog, into the standard ASP language, which
explains the new constructs for preference handling in terms of the standard ASP language.
The one-pass translations are theoretically interesting. They may be a useful tool for studying
the mathematical properties of LPOD and CR-Prolog, programs by reducing them to more well-
known properties of standard answer set programs. Both translations are “almost” modular in
the sense that the translations are rule-by-rule but the argument of each atom representing the
assumption degrees may need to be expanded when new rules are added.

However, the direct implementations may not lead to effective implementations. The size
of Ipod2asp(II) and crp2asp(II) after grounding could be exponential to the size of the non-
regular rules in IT. This is because these translations compare all possible assumption programs
whose number is exponential to the size of non-regular rules. One may consider parallelizing
the computation of assumption programs since they are disjoint from each other according to the
translations.

In a sense, our translations are similar to the meta-programming approach to handle preference
in ASP (e.g., (Delgrande et al. 2003)) in that we turn LPOD and CR-Prolog, into answer set
programs that do not have the built-in notion of preference.

In (Brewka et al. 2002), LPOD is implemented using SMODELS. The implementation inter-
leaves the execution of two programs—a generator which produces candidate answer sets and a
tester which checks whether a given candidate answer set is maximally preferred or produces a
more preferred candidate if it is not. An implementation of CR-Prolog reported in (Balduccini
2007) uses a similar algorithm. In contrast, the reductions shown in this paper can be computed
by calling an answer set solver one time without the need for iterating the generator and the tester.
This feature may be useful for debugging LPOD and CR-Prolog, programs because it allows us
to compare all candidate and preferred answer sets globally.

Asprin (Brewka ef al. 2015) provides a flexible way to express various preference relations
over answer sets and is implemented in CLINGO. Similar to the existing LPOD solvers, CLINGO

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



606 J. Lee and Z. Yang

makes iterative calls to find preferred answer sets, unlike the one-shot execution as
we do.

Asuncion et al. (2014) presents a first-order semantics of logic programs with ordered disjunc-
tion by translation into second-order logic whereas our translation is into the standard answer set
programs.

Acknowledgements

We are grateful to Yi Wang and the anonymous referees for their useful comments. This work
was partially supported by the National Science Foundation under Grant I11S-1526301.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/
S1471068418000315

References

ASUNCION, V., ZHANG, Y., AND ZHANG, H. 2014. Logic programs with ordered disjunction: first-order
semantics and expressiveness. In Proceedings of the Fourteenth International Conference on Principles
of Knowledge Representation and Reasoning. AAAI Press, 2—11.

BALDUCCINI, M., BALDUCCINI, M., AND MELLARKOD, V. 2003. CR-Prolog with ordered disjunction.
In In ASPO3 Answer Set Programming: Advances in Theory and Implementation, volume 78 of CEUR
Workshop proceedings.

BALDUCCINI, M. 2007. CR-MODELS: an inference engine for CR-Prolog. In Proceedings of the 9th
international conference on Logic programming and nonmonotonic reasoning. Springer-Verlag, 18-30.

BALDUCCINI, M. AND GELFOND, M. 2003. Logic programs with consistency-restoring rules. In
International Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring
Symposium Series. 9-18.

BALDUCCINI, M. AND MELLARKOD, V. 2004. A-Prolog with CR-rules and ordered disjunction. In
Intelligent Sensing and Information Processing, 2004. Proceedings of International Conference on.
IEEE, 1-6.

BREWKA, G. 2002. Logic programming with ordered disjunction. In AAAI/IAAL 100-105.

BREWKA, G. 2005. Preferences in answer set programming. In CAEPIA. Vol. 4177. Springer, 1-10.

BREWKA, G., DELGRANDE, J. P., ROMERO, J., AND SCHAUB, T. 2015. asprin: Customizing answer set
preferences without a headache. In AAAIL 1467-1474.

BREWKA, G., NIEMELA, 1., AND SYRJANEN, T. 2002. Implementing ordered disjunction using answer
set solvers for normal programs. In European Workshop on Logics in Artificial Intelligence. Springer,
444-456.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE, N.,
Ricca, F., AND SCHAUB, T. 2012. ASP-Core-2: Input language format. ASP Standardization Working
Group, Tech. Rep.

DELGRANDE, J. P., SCHAUB, T., AND TOMPITS, H. 2003. A framework for compiling preferences in
logic programs. Theory and Practice of Logic Programming 3, 2, 129-187.

FERRARIS, P. 2011. Logic programs with propositional connectives and aggregates. ACM Transactions on
Computational Logic (TOCL) 12, 4, 25.

FERRARIS, P., LEE, J., LIFSCHITZ, V., AND PALLA, R. 2009. Symmetric splitting in the general theory
of stable models. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).
797-803.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365-385.

LEE, J. AND YANG, Z. 2018. Online appendix for the paper “Translating LPOD and CR-Prolog2 into
standard answer set programs”.

Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068418000315



