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Abstract

Logic Programs with Ordered Disjunction (LPOD) is an extension of standard answer set programs to

handle preference using the construct of ordered disjunction, and CR-Prolog
2

is an extension of standard

answer set programs with consistency restoring rules and LPOD-like ordered disjunction. We present

reductions of each of these languages into the standard ASP language, which gives us an alternative way to

understand the extensions in terms of the standard ASP language.

1 Introduction

In answer set programming, each answer set encodes a solution to the problem that is being

modeled. There is often a need to express that one solution is preferable to another, so several ex-

tensions of answer set programs were made to express a qualitative preference over answer sets.

In Logic Programs with Ordered Disjunction (LPOD) (Brewka 2002), this is done by introducing

the construct of ordered disjunction in the head of a rule: A × B ← Body intuitively means,

when Body is true, if possible then A, but if A is not possible, then at least B. Proposition 2

from (Brewka 2002) states that there is no reduction of LPOD to disjunctive logic programs

(Gelfond and Lifschitz 1991) based on the fact that the answer sets of disjunctive logic programs

are subset-minimal whereas LPOD answer sets are not necessarily so. However, this justification

is limited to translations that preserve the underlying signature, and it remained an open question

if it is possible to turn LPOD into the language of standard ASP such as ASP-Core 2 (Calimeri

et al. 2012) by using auxiliary atoms. In this paper, we provide a positive answer to this question.

We present a reduction of LPOD to standard answer set programs by compiling away ordered

disjunctions. The translation gives us an alternative way to understand the semantics of LPOD in

terms of the standard ASP language, and more generally, a method to express preference relations

among answer sets. Instead of iterating the generator and the tester programs as in (Brewka et al.

2002), our reduction is one-pass: the preferred answer sets can be computed by calling an answer

set solver one time.

It turns out that the translation idea is not restricted to LPOD but also applies to CR-Prolog2

(Balduccini and Mellarkod 2004), which not only has a construct similar to ordered disjunction

in LPOD but also inherits the construct of consistency-restoring rules—rules that can be added to

make inconsistent programs to be consistent—from CR-Prolog (Balduccini and Gelfond 2003).

With some modifications to the LPOD translation, we show that CR-Prolog2 programs can also

be turned into standard answer set programs by compiling away both ordered disjunctions and

consistency-restoring rules.
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590 J. Lee and Z. Yang

The paper is organized as follows. Section 2 reviews LPOD and presents a translation that

turns LPOD into standard answer set programs. Section 3 reviews CR-Prolog2 and presents a

translation that turns CR-Prolog2 into standard answer set programs. The complete proofs are in

the supplementary material at the TPLP archives (Lee and Yang 2018).

2 LPOD to ASP with Weak Constraints

2.1 Review: LPOD

We review the definition of LPOD by Brewka (2002). As in that paper, for simplicity, we assume

the underlying signature is propositional.

Syntax: A (propositional) LPOD Π is Πreg ∪Πod, where its regular part Πreg consists of usual

ASP rules Head ← Body, and its ordered disjunction part Πod consists of LPOD rules of the

form

C1 × · · · × Cn ← Body (1)

in which Ci are atoms, n is at least 2, and Body is a conjunction of atoms possibly preceded by

not.1 Rule (1) intuitively says “when Body is true, if possible then C1; if C1 is not possible then

C2; . . . ; if all of C1, . . . , Cn−1 are not possible then Cn.”

Semantics: For an LPOD rule (1), its i-th option (i = 1, . . . , n) is defined as

Ci ← Body, not C1, . . . , not Ci−1.

A split program of an LPOD Π is obtained from Π by replacing each rule in Πod by one of its

options. A set S of atoms is a candidate answer set of Π if it is an answer set of a split program

of Π.

Example 1

(From (Brewka 2002)) The following LPOD Π1,

a× b ← not c

b× c ← not d,

has four split programs:

a ← not c a ← not c

b ← not d c ← not d, not b

b ← not c, not a b ← not c, not a

b ← not d c ← not d, not b.

(2)

Each of them has the following answer sets respectively, which are the candidate answer sets

of Π1.

{a, b} {c}

{b} {b}, {c}.

A candidate answer set S of Π is said to satisfy rule (1)

1 In (Brewka 2002), a usual ASP rule is viewed as a special case of a rule with ordered disjunction when n = 1 but in
this paper, we distinguish them. This simplifies the presentation of the translation and also allows us to consider LPOD
that are more general than the original definition by allowing modern ASP constructs such as aggregates.
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Translating LPOD and CR-Prolog2 into standard answer set programs 591

• to degree 1 if S does not satisfy Body, and

• to degree j (1 ≤ j ≤ n) if S satisfies Body and j = min{k | Ck ∈ S}.

When Πod contains m LPOD rules, the satisfaction degree list of a candidate answer set S

of Π is (d1, . . . , dm) where di is the degree to which S satisfies rule i in Πod. For a candidate

answer set S, let Si(Π) denote the set of rules in Πod satisfied by S to degree i. For candidate

answer sets S1 and S2 of Π, Brewka (2005) introduces the following four preference criteria.

1. Cardinality-Preferred: S1 is cardinality-preferred to S2 (S1 >c S2) if there is a positive

integer i such that |Si
1(Π)| > |Si

2(Π)|, and |Sj
1(Π)| = |Sj

2(Π)| for all j < i.

2. Inclusion-Preferred: S1 is inclusion-preferred to S2 (S1 >i S2) if there is a positive integer

i such that Si
2(Π) ⊂ Si

1(Π), and Sj
1(Π) = Sj

2(Π) for all j < i.

3. Pareto-Preferred: S1 is Pareto-preferred to S2 (S1 >p S2) if there is a rule that is satisfied

to a lower degree in S1 than in S2, and there is no rule that is satisfied to a lower degree in

S2 than in S1.

4. Penalty-Sum-Preferred: S1 is penalty-sum-preferred to S2 (S1 >ps S2) if the sum of the

satisfaction degrees of all rules is smaller in S1 than in S2.

A candidate answer set S of Π is a k-preferred (k ∈ {c, i, p, ps}) answer set if there is no

candidate answer set S′ of Π such that S′ >k S.

Example 1 (Continued)

Recall that Π1 has three candidate answer sets: {a, b}, {b}, and {c}. Their satisfaction degree lists

are (1,1), (2,1), and (1,2), respectively. One can check that {a, b} is the only preferred answer set

according to any of the four preference criteria.

Example 2

To illustrate the difference among the four preference criteria, consider the following LPOD Π2

about picking a hotel near the Grand Canyon. hotel(1) is a 2 star hotel but is close to the Grand

Canyon, hotel(2) is a 3 star hotel and the distance is medium, and hotel(3) is a 4 star hotel but

is too far.

close×med× far × tooFar

star4 × star3 × star2

1{hotel(X) : X = 1..3}1

⊥ ← hotel(1), not close

⊥ ← hotel(1), not star2

⊥ ← hotel(2), not med

⊥ ← hotel(2), not star3

⊥ ← hotel(3), not tooFar

⊥ ← hotel(3), not star4

Π2 has 4 × 3 split programs but only the following three programs are consistent (The regular

part of Π2 is not listed).

close med ← not close

star2 ← not star4, not star3 star3 ← not star4

tooFar ← not close, not med, not far

star4

The candidate answer sets of Π2 and their satisfaction degree lists are

S1 = {hotel(1), close, star2, . . . }, (1, 3) S2 = {hotel(2),med, star3, . . . }, (2, 2)

S3 = {hotel(3), tooFar, star4, . . . }, (4, 1)
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By definition, the cardinality-preferred answer set is S1, the inclusion-preferred answer sets are

S1 and S3, the Pareto-preferred answer sets are S1, S2 and S3, while the penalty-sum-preferred

answer sets are S1 and S2.

2.2 An Alternative Way to Generate Candidate Answer Sets: Assumption Programs

Before we describe the translation of LPOD into standard answer set programs, we consider

an alternative way to generate candidate answer sets together with their “assumption degrees,”

which serves as a basis of our translation.

Let Π be an LPOD with m LPOD rules. For an LPOD rule i (i ∈ {1, . . . ,m})

C1
i × · · · × Cni

i ← Bodyi , (3)

its x-th assumption (x ∈ {0, . . . , ni}), denoted by Oi(x), is defined as the set of ASP rules

bodyi ← Bodyi (4)

⊥ ← x = 0, bodyi (5)

⊥ ← x > 0, not bodyi (6)

Cj
i ← bodyi, x = j (for 1 ≤ j ≤ ni) (7)

⊥ ← bodyi, x �= j, not C1
i , . . . , not Cj−1

i , Cj
i (for 1 ≤ j ≤ ni) (8)

where bodyi is a new, distinct atom for each LPOD rule i. Rules (4)—(6) ensure that the body of

(3) is false iff x = 0. Rule (7) represents that Cx
i is true under the x-th assumption, and rule (8)

ensures that all atoms C1
i , . . . , C

x−1
i are false. The last two rules together tells us that the first

atom in C1
i , . . . , C

ni

i that is true is Cx
i . The reason we call rules (4)—(8) the x-th assumption is

because they encode a certain assumption imposed on rule (3) in deriving each candidate answer

set: x = 0 assumes Bodyi is false, whereas x > 0 assumes Bodyi is true and the x-th atom in the

head is to be derived.

An assumption program of an LPOD Π is obtained from Π by replacing each rule in Πod

by one of its assumptions. If each LPOD rule i is replaced by its xi-th assumption, we call

(x1, . . . , xm) the assumption degree list of the assumption program.

The following proposition asserts that the candidate answer sets can be obtained from assump-

tion programs instead of split programs.

Proposition 1

For any LPOD Π of σ and any set S of atoms of σ, S is a candidate answer set of Π iff S∪{bodyi |

S satisfies the body of rule i in Πod} is an answer set of some assumption program of Π.

Example 1 (Continued) The assumptions for rule a × b ← not c, denoted by O1(X1), and the

assumptions for rule b× c ← not d, denoted by O2(X2) are as follows, where X1 and X2 range

over {0, 1, 2}.

O1(X1) : body1 ← not c O2(X2) : body2 ← not d

⊥←X1 = 0, body1 ⊥←X2 = 0, body2

⊥←X1 > 0, not body1 ⊥←X2 > 0, not body2

a← body1, X1 =1 b← body2, X2 =1
b← body1, X1 =2 c← body2, X2 =2
⊥← body1, X1 �= 1, a ⊥← body2, X2 �= 1, b
⊥← body1, X1 �= 2, not a, b ⊥← body2, X2 �= 2, not b, c
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Translating LPOD and CR-Prolog2 into standard answer set programs 593

Π1 has 9 assumption programs,

O1(0) ∪O2(0) O1(0) ∪O2(1) O1(0) ∪O2(2) , {c}

O1(1) ∪O2(0) O1(1) ∪O2(1) , {a, b} O1(1) ∪O2(2)

O1(2) ∪O2(0) O1(2) ∪O2(1) , {b} O1(2) ∪O2(2),

among which the three assumption programs in the boxes are consistent. Their answer sets are

shown together.

An advantage of considering assumption programs over split programs is that the satisfaction

degrees—a basis of comparing the candidate answer sets—can be obtained from the assumption

degrees with a minor modification (Section 2.3.1). This is in part because each candidate answer

set is obtained from only one assumption program whereas the same candidate answer set can be

obtained from multiple split programs (e.g., {b} in Example 1).

2.3 Turning LPOD into Standard Answer Set Programs

We define a translation lpod2asp(Π) that turns an LPOD Π into a standard answer set program.

Let Π be an LPOD of signature σ where Πod contains m propositional rules with ordered

disjunction:

1 : C1
1 × · · · × Cn1

1 ← Body1

. . . (9)

m : C1
m × · · · × Cnm

m ← Bodym

where 1, . . . ,m are rule indices, and ni ≥ 2 for 1 ≤ i ≤ m.

The first-order signature σ′ of lpod2asp(Π) contains m-ary predicate constant a/m for each

propositional constant a of σ. Besides, σ′ contains the following predicate constants not in σ:

ap/m (“assumption program”), degree/(m+1), bodyi/m (i ∈ {1, . . . ,m}), prf/2 (“preferred”),

and pAS/m (“preferred answer set”). Furthermore, σ′ contains the following predicate constants

according to each preference criterion:

• for cardinality-preferred: card/3, equ2degree/3, prf2degree/3

• for inclusion-preferred: even/1, equ2degree/3, prf2degree/3

• for Pareto-preferred: equ/2

• for penalty-sum-preferred: sum/2.

2.3.1 Generate Candidate Answer Sets

The first part of the translation lpod2asp(Π) is to generate all candidate answer sets of Π based

on the notion of assumption programs. We use the assumption degree list as a “name space” for

each candidate answer set, so that we can compare them in a single answer set program.

1. We use atom ap(x1, . . . , xm) to denote the assumption program whose assumption degree list

is (x1, . . . , xm). We consider all consistent assumption programs by generating a maximal set of

ap(·) atoms: ap(x1, . . . , xm) is included in an optimal answer set 2 iff the assumption program

2 For programs containing weak constraints, an optimal answer set is defined by the penalty that comes from the weak
constraints that are violated. (Calimeri et al. 2012)
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denoted by ap(x1, . . . , xm) is consistent.

{ap(X1, . . . , Xm) : X1 = 0..n1, . . . , Xm = 0..nm}. (10)

:∼ ap(X1, . . . , Xm). [−1, X1, . . . , Xm] (11)

Rule (10) generates an arbitrary subset of ap(·) atoms, each of which records an assumption

degree list. Rule (11) is a weak constraint that maximizes the number of ap(·) atoms by adding

the penalty −1 for each true instance of ap(X1, . . . , Xm). Together with the rules below, these

rules ensure that we consider all assumption programs that are consistent and that no candidate

answer sets are missed in computing preference relationship in the second part of the translation.

2. We extend each atom to include the assumption degrees X1, . . . , Xm, and append atom

ap(X1, . . . , Xm) in the bodies of rules.

• For each rule Head ← Body in Πreg , lpod2asp(Π) contains

Head(X1, . . . , Xm) ← ap(X1, . . . , Xm),Body(X1, . . . , Xm) (12)

where Head(X1, . . . , Xm) and Body(X1, . . . , Xm) are obtained from Head and Body by

replacing each atom A in them with A(X1, . . . , Xm). Each schematic variable Xi ranges

over {0, . . . , ni}.

• For each rule

C1
i × · · · × Cni

i ← Bodyi

in Πod, where n ≥ 2, lpod2asp(Π) contains

bodyi(X1, . . . , Xm) ← ap(X1, . . . , Xm),Bodyi(X1, . . . , Xm) (13)

⊥ ← ap(X1, . . . , Xm), Xi = 0, bodyi(X1, . . . , Xm) (14)

⊥ ← ap(X1, . . . , Xm), Xi > 0, not bodyi(X1, . . . , Xm). (15)

And for 1 ≤ j ≤ ni, lpod2asp(Π) contains

Cj
i (X1, . . . , Xm) ← bodyi(X1, . . . , Xm), Xi = j. (16)

⊥ ← bodyi(X1, . . . , Xm), Xi �= j,

not C1
i (X1, . . . , Xm), . . . , not Cj−1

i (X1, . . . , Xm), Cj
i (X1, . . . , Xm).

(17)

3. The satisfaction degree list can be obtained from the assumption degree list encoded in

ap(x1, . . . , xm) by changing xi to 1 if it was 0. For this, lpod2asp(Π) contains

1{degree(ap(X1, . . . , Xm), D1, . . . , Dm) : D1 = 1..n1, . . . , Dm = 1..nm}1

← ap(X1, . . . , Xm). (18)

and for 1 ≤ i ≤ m, lpod2asp(Π) contains

⊥ ← degree(ap(X1, . . . , Xm), D1, . . . , Dm), Xi = 0, Di �= 1. (19)

⊥ ← degree(ap(X1, . . . , Xm), D1, . . . , Dm), Xi > 0, Di �= Xi. (20)

Since all answer sets of the same assumption program are associated with the same satisfaction

degree list, we say an assumption program satisfies LPOD rule i to degree d if its answer sets

satisfy the rule to degree d. Rule (18) reads “for any assumption program ap(x1, . . . , xm), it has

exactly one assignment of satisfaction degrees D1, . . . , Dm.” Rules (19) and (20) say that the
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assumption program ap(x1, . . . , xm) satisfies LPOD rule i to degree 1 if xi = 0 (in which case

Bodyi is false) and to degree xi if xi > 0 (in which case Bodyi is true).

Let us denote the set of rules (10)—(20) by lpod2asp(Π)base. Observe that the atoms a(v) in

the original signature σ are in the form of a(v, x1, . . . , xm) in the answer sets of lpod2asp(Π)base.

We define a way to retrieve the candidate answer set of Π by removing x1, . . . , xm as follows.

Let S be an optimal answer set of lpod2asp(Π)base, and let

shrink(S, x1, . . . , xm) be {a(v) | a(v, x1, . . . , xm) ∈ S and a(v) ∈ σ}.

If S |= ap(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) as a candidate answer set on

σ of lpod2asp(Π)base.3

The following proposition asserts the soundness of the translation lpod2asp(Π)base.

Proposition 2

The candidate answer sets of an LPOD Π of signature σ are exactly the candidate answer sets on

σ of lpod2asp(Π)base.

Example 1 Continued: The following is the encoding of lpod2asp(Π1)base in the input language
of CLINGO.

%%%% 1 %%%%

{ap(X1,X2): X1=0..2, X2=0..2}. :∼ ap(X1,X2). [-1, X1, X2]

%%%% 2 %%%%

% a*b <- not c.

body_1(X1,X2) :- ap(X1,X2), not c(X1,X2).

:- ap(X1,X2), X1=0, body_1(X1,X2). :- ap(X1,X2), X1>0, not body_1(X1,X2).

a(X1,X2) :- body_1(X1,X2), X1=1. b(X1,X2) :- body_1(X1,X2), X1=2.

:- body_1(X1,X2), X1!=1, a(X1,X2).

:- body_1(X1,X2), X1!=2, not a(X1,X2), b(X1,X2).

% b*c <- not d.

body_2(X1,X2) :- ap(X1,X2), not d(X1,X2).

:- ap(X1,X2), X2=0, body_2(X1,X2). :- ap(X1,X2), X2>0, not body_2(X1,X2).

b(X1,X2) :- body_2(X1,X2), X2=1. c(X1,X2) :- body_2(X1,X2), X2=2.

:- body_2(X1,X2), X2!=1, b(X1,X2).

:- body_2(X1,X2), X2!=2, not b(X1,X2), c(X1,X2).

%%%% 3 %%%%

1{degree(ap(X1,X2), D1, D2): D1=1..2, D2=1..2}1 :- ap(X1,X2).

:- degree(ap(X1,X2), D1, D2), X1=0, D1!=1.

:- degree(ap(X1,X2), D1, D2), X1>0, D1!=X1.

:- degree(ap(X1,X2), D1, D2), X2=0, D2!=1.

:- degree(ap(X1,X2), D1, D2), X2>0, D2!=X2.

3 We also apply this notation to the full translation lpod2asp(Π) and crp2asp(Π) below.
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The optimal answer set S of lpod2asp(Π1)base is

{ap(1, 1), a(1, 1), b(1, 1), . . . , ap(2, 1), b(2, 1), . . . , ap(0, 2), c(0, 2), . . . } (21)

(bodyi(·) and degree(·) atoms are not listed). Since S satisfies ap(1, 1), ap(2, 1), and ap(0, 2),

the candidate answer sets on σ of lpod2asp(Π1)base are

shrink(S, 1, 1) = {a, b}, shrink(S, 2, 1) = {b}, shrink(S, 0, 2) = {c}

which are exactly the candidate answer sets of Π1.

2.3.2 Find Preferred Answer Sets

The second part of the translation lpod2asp(Π) is to compare the candidate answer sets to find the

preferred answer sets. For each preference criterion, lpod2asp(Π) contains the following rules

respectively. Below maxdegree is max{ni | i ∈ {1, . . . ,m}}.

(a) Cardinality-Preferred: For this criterion, lpod2asp(Π) contains the following rules.

card(P,X,N) ← degree(P,D1, . . . , Dm), X = 1..maxdegree,

N = {D1 = X; . . . ;Dm = X}. (22)

equ2degree(P1, P2, X) ← card(P1, X,N), card(P2, X,N), P1 �= P2. (23)

prf2degree(P1, P2, X) ← card(P1, X,N1), card(P2, X,N2), N1 > N2. (24)

prf (P1, P2) ← X = 0..maxdegree− 1, prf2degree(P1, P2, X + 1),

X{equ2degree(P1, P2, Y ) : Y = 1..X}. (25)

pAS(X1, . . . , Xm) ← ap(X1, . . . , Xm), {prf (P, ap(X1, . . . , Xm))}0. (26)

P , P1, and P2 denote assumption programs in the form of ap(X1, . . . , Xm). card(P,X,N)

is true if P satisfies N rules in Πod to degree X . equ2degree(P1, P2, X) is true if P1 and P2

have the same number of rules that are satisfied to degree X . prf2degree(P1, P2, X) is true

if P1 satisfies more rules to degree X than P2 does. prf (P1, P2) is true if P1 is cardinality-

preferred to P2: P1 satisfies more rules to degree X + 1 than P2 does whereas they satisfy

the same number of rules up to degree X . Rule (26) reads as: given an assumption program

represented by ap(X1, . . . , Xm), if we cannot find an assumption program P that is more

preferable, then the answer sets of ap(X1, . . . , Xm) are all preferred answer sets of Π. Note

that P in rule (26) is a local variable that ranges over all ap(·) atoms.

(b) Inclusion-Preferred: For this criterion, lpod2asp(Π) contains the following rules.

even(0; 2). (27)

equ2degree(P1, P2, X) ← P1 �= P2, X = 1..maxdegree,

degree(P1, D11, . . . , D1m), degree(P2, D21, . . . , D2m),

C1 = {D11 = X;D21 = X}, . . . , Cm = {D1m = X;D2m = X},

even(C1), . . . , even(Cm). (28)

prf2degree(P1, P2, X) ← P1 �= P2, X = 1..maxdegree,

not equ2degree(P1, P2, X),

degree(P1, D11, . . . , D1m), degree(P2, D21, . . . , D2m),

{D11 �= X;D21 = X}1, . . . , {D1m �= X;D2m = X}1. (29)

prf (P1, P2) ← X = 0..maxdegree− 1, prf2degree(P1, P2, X + 1),

X{equ2degree(P1, P2, Y ) : Y = 1..X}. (30)

pAS(X1, . . . , Xm) ← ap(X1, . . . , Xm), {prf (P, ap(X1, . . . , Xm))}0. (31)
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where {D11 = X;D21 = X} counts the number of true atoms in this set, so it equals to 0

(or 2) when none (or both) of D11 = X and D21 = X are true; {D11 �= X;D21 = X}1

means that the number of true atoms in this set must be smaller or equal to 1, which means

that D11 �= X and D21 = X cannot be true at the same time – in other words, D21 = X

implies D11 = X .

(c) Pareto-Preferred: For this criterion, lpod2asp(Π) contains the following rules.

equ(P1, P2) ← degree(P1, D1, . . . , Dm), degree(P2, D1, . . . , Dm). (32)

prf (P1, P2) ← degree(P1, D11, . . . , D1m), degree(P2, D21, . . . , D2m),

not equ(P1, P2), D11 ≤ D21, . . . , D1m ≤ D2m. (33)

pAS(X1, . . . , Xm) ← ap(X1, . . . , Xm), {prf (P, ap(X1, . . . , Xm))}0. (34)

where equ(P1, P2) means that P1 is equivalent to P2 at all degrees.

(d) Penalty-Sum-Preferred: For this criterion, lpod2asp(Π) contains the following rules.

sum(P,N) ← degree(P,D1, . . . , Dm), N = D1 + · · · + Dm. (35)

prf (P1, P2) ← sum(P1, N1), sum(P2, N2), N1 < N2. (36)

pAS(X1, . . . , Xm) ← ap(X1, . . . , Xm), {prf (P, ap(X1, . . . , Xm))}0. (37)

where sum(P,N) means that the sum of P ’s satisfaction degrees of all rules is N .

If S |= pAS(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) to be a preferred answer

set on σ of lpod2asp(Π).

a

The following theorem assert the soundness of the translation lpod2asp(Π).

Theorem 1

Under any of the four preference criteria, the candidate (preferred, respectively) answer sets of

an LPOD Π of signature σ are exactly the candidate (preferred, respectively) answer sets on σ of

lpod2asp(Π).

Example 2 Continued: The first part of lpod2asp(Π2) contains the following rules.

#const maxdegree = 4.

%%%% 1 %%%%

{ap(X1,X2): X1=0..4, X2=0..3}. :∼ ap(X1,X2). [-1, X1, X2]

%%%% 2 %%%%

1{hotel(H,X1,X2): H=1..3}1 :- ap(X1,X2).

:- ap(X1,X2), hotel(1,X1,X2), not close(X1,X2).

:- ap(X1,X2), hotel(1,X1,X2), not star2(X1,X2).

:- ap(X1,X2), hotel(2,X1,X2), not med(X1,X2).

:- ap(X1,X2), hotel(2,X1,X2), not star3(X1,X2).

:- ap(X1,X2), hotel(3,X1,X2), not tooFar(X1,X2).

:- ap(X1,X2), hotel(3,X1,X2), not star4(X1,X2).

% close * med * far * tooFar.

body_1(X1,X2) :- ap(X1,X2).
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:- ap(X1,X2), X1=0, body_1(X1,X2). :- ap(X1,X2), X1>0, not body_1(X1,X2).

close(X1,X2) :- body_1(X1,X2), X1=1. med(X1,X2) :- body_1(X1,X2), X1=2.

far(X1,X2) :- body_1(X1,X2), X1=3. tooFar(X1,X2) :- body_1(X1,X2), X1=4.

:- body_1(X1,X2), X1!=1, close(X1,X2).

:- body_1(X1,X2), X1!=2, not close(X1,X2), med(X1,X2).

:- body_1(X1,X2), X1!=3, not close(X1,X2), not med(X1,X2), far(X1,X2).

:- body_1(X1,X2), X1!=4, not close(X1,X2), not med(X1,X2), not far(X1,X2),

tooFar(X1,X2).

% star4 * star3 * star2.

body_2(X1,X2) :- ap(X1,X2).

:- ap(X1,X2), X2=0, body_2(X1,X2). :- ap(X1,X2), X2>0, not body_2(X1,X2).

star4(X1,X2) :- body_2(X1,X2), X2=1. star3(X1,X2) :- body_2(X1,X2), X2=2.

star2(X1,X2) :- body_2(X1,X2), X2=3.

:- body_2(X1,X2), X2!=1, star4(X1,X2).

:- body_2(X1,X2), X2!=2, not star4(X1,X2), star3(X1,X2).

:- body_2(X1,X2), X2!=3, not star4(X1,X2), not star3(X1,X2), star2(X1,X2).

%%%% 3 %%%%

1{degree(ap(X1,X2), D1, D2): D1=1..4, D2=1..3}1 :- ap(X1,X2).

:- degree(ap(X1,X2), D1, D2), X1=0, D1!=1.

:- degree(ap(X1,X2), D1, D2), X1>0, D1!=X1.

:- degree(ap(X1,X2), D1, D2), X2=0, D2!=1.

:- degree(ap(X1,X2), D1, D2), X2>0, D2!=X2.

For the second part of the translation, lpod2asp(Π2) contains one of the following sets of rules.

%%%% a. Cardinality %%%%

card(P,X,N) :- degree(P,D1,D2), X=1..maxdegree, N={D1=X; D2=X}.

equ2degree(P1,P2,X) :- card(P1,X,N), card(P2,X,N), P1!=P2.

prf2degree(P1,P2,X) :- card(P1,X,N1), card(P2,X,N2), N1>N2.

prf(P1,P2) :- X=0..maxdegree-1, prf2degree(P1,P2,X+1), X{equ2degree(P1,P2,Y):

Y=1..X}.

pAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

%%%% b. Inclusion %%%%

even(0;2).

equ2degree(P1,P2,X) :- P1!=P2, X=1..maxdegree, degree(P1,D11,D12),

degree(P2,D21,D22),

C1 = {D11=X; D21=X}, C2={D12=X; D22=X}, even(C1),

even(C2).

prf2degree(P1,P2,X) :- P1!=P2, X=1..maxdegree, not equ2degree(P1,P2,X),

degree(P1,D11,D12), degree(P2,D21,D22),

{D11!=X; D21=X}1, {D12!=X; D22=X}1.

prf(P1,P2) :- X=0..maxdegree-1, prf2degree(P1,P2,X+1), X{equ2degree(P1,P2,Y):
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Y=1..X}.

pAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

%%%% c. Pareto %%%%

equ(P1,P2) :- degree(P1,D1,D2), degree(P2,D1,D2).

prf(P1,P2) :- degree(P1,D11,D12), degree(P2,D21,D22), not equ(P1,P2),

D11<=D21, D12<=D22.

pAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

%%%% d. Penalty-Sum %%%%

sum(P,N) :- degree(P,D1,D2), N=D1+D2.

prf(P1,P2) :- sum(P1,N1), sum(P2,N2), N1<N2.

pAS(X1,X2) :- ap(X1,X2), {prf(P, ap(X1,X2))}0.

Note that each set of rules in the second part conservatively extends the answer set of the base

program. For example, the optimal answer set of lpod2asp(Π1) under Penalty-Sum preference

is the union of (21) and {sum(ap(0, 2), 3), sum(ap(1, 1), 2), sum(ap(2, 1), 3), prf(ap(1, 1),

ap(0, 2)), prf(ap(1, 1), ap(2, 1)), pAS(1, 1)}, which indicates that {a, b} is the preferred an-

swer set.

The optimal answer set S of lpod2asp(Π2) under the cardinality preference is

{pAS(1, 3), ap(1, 3), hotel(1, 1, 3), close(1, 3), star2(1, 3),

ap(2, 2), hotel(2, 2, 2), med(2, 2), star3(2, 2),

ap(4, 1), hotel(3, 4, 1), tooFar(4, 1), star4(4, 1), . . . }

Since S satisfies ap(1, 3), ap(2, 2), and ap(4, 1), the candidate answer sets on σ of lpod2asp(Π2)

are

shrink(S, 1, 3) = {hotel(1), close, star2},

shrink(S, 2, 2) = {hotel(2),med, star3},

shrink(S, 4, 1) = {hotel(3), tooFar, star4},

which are exactly the candidate answer sets of Π2. Since S satisfies pAS(1, 3), the preferred

answer sets on σ of lpod2asp(Π2) is shrink(S, 1, 3) = {hotel(1), close, star2} which is

exactly the cardinality-preferred answer set of Π2. Let

pAS1 = {pAS(1, 3), hotel(1, 1, 3), close(1, 3), star2(1, 3)},

pAS2 = {pAS(2, 2), hotel(2, 2, 2),med(2, 2), star3(2, 2)},

pAS3 = {pAS(4, 1), hotel(3, 4, 1), tooFar(4, 1), star4(4, 1)}.

The optimal answer sets of lpod2asp(Π2) under 4 criteria contain

cardinality-preferred: pAS1 inclusion-preferred: pAS1 ∪ pAS3

Pareto-preferred: pAS1 ∪ pAS2 ∪ pAS3 penalty-sum-preferred: pAS1 ∪ pAS2

which are in a 1-1 correspondence with the preferred answer sets of Π2 under each of the four

criteria respectively.

3 CR-Prolog2 to ASP with Weak Constraints

3.1 Review: CR-Prolog2

We review the definition of CR-Prolog2 from (Balduccini et al. 2003).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000315
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at



600 J. Lee and Z. Yang

Syntax: A (propositional) CR-Prolog2 program Π consists of four kinds of rules:

regular rule Head ← Body (38)

ordered rule i : C1 × · · · × Cni ← Body (39)

cr-rule i : Head
+
← Body (40)

ordered cr-rule i : C1 × · · · × Cni
+
← Body (41)

where Head ← Body is a standard ASP rule, i is the index of the rule, Cj are atoms, and ni ≥ 2.

The intuitive meaning of an ordered disjunction C1×· · ·×Cni is similar to the one for LPOD. A

cr-rule (40) or an ordered cr-rule (41) is applied in Π if it is treated as a usual ASP rule in Π (by

replacing
+
← with ←); it is not applied if it is omitted in Π. A cr-rule (40) or an ordered cr-rule

(41) is applied only if the agent has no way to obtain a consistent set of beliefs using regular

rules or ordered rules only. By Head(i) and Body(i), we denote the head and the body of rule i.

Semantics: The semantics of CR-Prolog2 is based on the transformation from a CR-Prolog2

program Π of signature σ into an answer set program HΠ, which is constructed as follows. The

first-order signature of HΠ is σ ∪ {choice/2, appl/1, fired/1, isPreferred/2}, where choice is a

function constant, appl, fired, isPreferred are predicate constants not in σ.

1. Let RΠ be the set of rules obtained from Π by replacing every cr-rule and ordered cr-rule of

index i with a rule:

i : Head(i) ← Body(i), appl(i)

where appl(i) means rule i is applied. Notice that RΠ contains only regular rules and ordered

rules.

HΠ is then obtained from RΠ by replacing every ordered rule of index r, where Head(r) =

C1 × · · · × Cni , with the following rules (for 1 ≤ j ≤ ni):

Cj ← Body(r), appl(choice(r, j))

fired(r) ← appl(choice(r, j))

prefer(choice(r, j), choice(r, j + 1)) (j < ni)

⊥ ← Body(r), not fired(r)

(42)

where appl(choice(r, j)) means that the j-th atom in the ordered disjunction Head(r) is

chosen, i.e., Cj is true if Head(r) is true.

2. HΠ also contains the following set of rules:

isPreferred(R1, R2) ← prefer(R1, R2).

isPreferred(R1, R3) ← prefer(R1, R2), isPreferred(R2, R3).

⊥ ← isPreferred(R,R).

⊥ ← appl(R1), appl(R2), isPreferred(R1, R2).

where R1, R2, R3 are schematic variables ranging over indices of cr-rules and ordered cr-

rules in Π as well as terms of the form choice(·).

By atoms(HΠ, {appl}), we denote the set of atoms in HΠ in the form of appl(·). A general-

ized answer set of Π is an answer set of HΠ ∪A where A ⊆ atoms(HΠ, {appl}).

Let S1, S2 be generalized answer sets of Π. S1 dominates S2 if there exist r1 and r2 such

that appl(r1) ∈ S1, appl(r2) ∈ S2, and isPreferred(r1, r2) ∈ S1 ∩ S2. Further, we say this

domination is rule-wise if r1 and r2 are indices of two cr-rules; atom-wise if r1 and r2 are two
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terms of the form choice(·). S1 is a candidate answer set of Π if there is no other generalized

answer set that dominates S1.

The projection of S1 onto σ is a preferred answer set of Π if S1 is a candidate answer set of Π

and there is no other candidate answer set S2 such that S2 ∩ atoms(HΠ, {appl}) ⊂ S1.

Example 3

(From (Balduccini et al. 2003)) Consider the following CR-Prolog2 program Π3:

q ← t.

s ← t.

p ← not q.

r ← not s.

← p, r.

1 : t
+
← .

2 : q × s
+
← .

which has 5 generalized answer sets (the atoms formed by isPreferred or fired are omitted)

S1 = {q, s, t, appl(1), prefer(choice(2, 1), choice(2, 2))}

S2 = {q, r, appl(2), appl(choice(2, 1)), prefer(choice(2, 1), choice(2, 2))}

S3 = {p, s, appl(2), appl(choice(2, 2)), prefer(choice(2, 1), choice(2, 2))}

S4 = {q, s, t, appl(1), appl(2), appl(choice(2, 1)), prefer(choice(2, 1), choice(2, 2))}

S5 = {q, s, t, appl(1), appl(2), appl(choice(2, 2)), prefer(choice(2, 1), choice(2, 2))}.

Since S2 (atom-wise) dominates S3 and S5, the candidate answer sets are S1, S2, and S4. Since

S1 ∩ atoms(HΠ3
, {appl}) ⊂ S4, the preferred answer sets of Π3 are the projections from S1 or

S2 onto σ.

3.2 Turning CR-Prolog2 into ASP with Weak Constraints

We define a translation crp2asp(Π) that turns a CR-Prolog2 program Π into an answer set

program with weak constraints.

Let Π be a CR-Prolog2 program of signature σ, where its rules are rearranged such that the

cr-rules are of indices 1, . . . , k, the ordered cr-rules are of indices k + 1, . . . , l, and the ordered

rules are of indices l + 1, . . . ,m.

For an ordered rule (39) or an ordered cr-rule (41), its i-th assumption, where i ∈ {1, . . . , ni},

is defined as Ci ← Body. An assumption program AP (x1, . . . , xm) of Π whose assumption

degree list is (x1, . . . , xm) is obtained from Π as follows (xi ∈ {0, 1} if i = 1, . . . k; xi ∈

{0, . . . , ni} if i = k+1, . . . , l; xi ∈ {1, . . . , ni} if i = l+1, . . . ,m, where ni is the number of

atoms in the head of rule i).

• every regular rule (38) is in AP (x1, . . . , xm);
• a cr-rule (40) is omitted if xi = 0, and is replaced by Head ← Body if xi = 1;

• an ordered cr-rule (41) is omitted if xi = 0, and is replaced by its xi-th assumption if

xi > 0;

• an ordered rule (39) is replaced by its xi-th assumption.

Besides, each assumption program AP (x1, . . . , xm) contains

isPreferred(R1, R2) ← prefer(R1, R2).

isPreferred(R1, R3) ← prefer(R1, R2), isPreferred(R2, R3).

← isPreferred(R,R).

← xr1 > 0, xr2 > 0, isPreferred(r1, r2). (1 ≤ r1, r2 ≤ l)

The generalized answer sets of Π can be obtained from the answer sets of all the assumption

programs of Π.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000315
Downloaded from https://www.cambridge.org/core. IP address: 111.118.14.221, on 24 Jul 2019 at 06:22:48, subject to the Cambridge Core terms of use, available at



602 J. Lee and Z. Yang

Proposition 3

For any CR-Prolog2 program Π of signature σ, a set X of atoms is the projection of a generalized

answer set of Π onto σ iff X is the projection of an answer set of an assumption program of Π

onto σ.

Let Π1 and Π2 be two assumption programs of Π. We say an answer set S1 of Π1 dominates

an answer set S2 of Π2 if (i) there exists a rule i in Π that is replaced by its j1-th assumption

in Π1, is replaced by its j2-th assumption in Π2, and j1 < j2; or (ii) there exist 2 rules r1, r2
in Π such that r1 is applied in Π1, r2 is applied in Π2, and prefer(r1, r2) ∈ S1 ∩ S2. Indeed,

by Proposition 3, S1 dominates S2 iff the corresponding generalized answer set of the former

dominates that of the latter.

An answer set program with weak constraints crp2asp(Π) is obtained from Π based on the

notion of assumption programs as follows. The first-order signature σ′ of crp2asp(Π) contains

m-ary predicate constant a/m for each propositional constant a of σ. Besides, σ′ contains the

following predicate constants not in σ: ap/m, dominate/2, isPreferred/(m+2), candidate/m,

lessCrRulesApplied/2, and pAS/m.

1. To consider a maximal set of consistent assumption programs, crp2asp(Π) contains

{ap(X1, . . . , Xm) : X1 = 0..1, . . . , Xk = 0..1, Xk+1 = 0..nk+1, . . . , Xl = 0..nl,

Xl+1 = 1..nl+1, . . . , Xm = 1..nm}. (43)

:∼ ap(X1, . . . , Xm). [−1, X1, . . . , Xm] (44)

where ni is the number of atoms in Head(i), ap(X1, . . . , Xp) denotes an assumption program

obtained from Π.

2. crp2asp(Π) contains the following rules to construct all assumption programs AP (x1, . . . , xm):

• for each regular rule Head ← Body in Π, crp2asp(Π) contains

Head(X1, . . . , Xm) ← ap(X1, . . . , Xm), Body(X1, . . . , Xm) (45)

• for each cr-rule i : Headi
+
← Bodyi in Π, crp2asp(Π) contains

Headi(X1, . . . , Xm) ← ap(X1, . . . , Xm),Bodyi(X1, . . . , Xm), Xi = 1 (46)

• for each ordered rule or ordered cr-rule i : C1
i × · · · × Cn

i

(+)
← Bodyi in Π, for

1 ≤ j ≤ ni, crp2asp(Π) contains

Cj
i (X1, . . . , Xm) ← ap(X1, . . . , Xm),Bodyi(X1, . . . , Xm), Xi = j (47)

3. To define dominate in the semantics of CR-Prolog2, crp2asp(Π) contains the following rules.

Atom-wise dominance: Instead of using choice(·) terms and appl(choice(·)) atoms in (42), we

represent the atom wise dominance by comparing the assumption degrees. For ordered cr-rules

and ordered rules i ∈ {k + 1, . . .m}, we include

dominate(ap(X1, . . . , Xm), ap(Y1, . . . , Ym)) ←

ap(X1, . . . , Xm), ap(Y1, . . . , Ym), 0 < Xi, Xi < Yi (48)
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rule-wise dominance: The following rules are included only when Π contains an atom prefer(·).
r1 and r2 ranges over {1, . . . , l}.

isPreferred(R1, R2, X1, . . . , Xm) ← prefer(R1, R2, X1, . . . , Xm) (49)

isPreferred(R1, R3, X1, . . . , Xm) ← prefer(R1, R2, X1, . . . , Xm),

isPreferred(R2, R3, X1, . . . , Xm) (50)

← isPreferred(R,R,X1, . . . , Xm) (51)

← isPreferred(r1, r2, X1, . . . , Xm), Xr1
> 0, Xr2

> 0 (52)

dominate(ap(X1, . . . , Xm), ap(Y1, . . . , Ym)) ← ap(X1, . . . , Xm), ap(Y1, . . . , Ym),

isPreferred(r1, r2, X1, . . . , Xm), isPreferred(r1, r2, Y1, . . . , Ym), Xr1
> 0, Yr2

> 0 (53)

We say an assumption program Π1 dominates an assumption program Π2 if an answer set

of Π1 dominates an answer set of Π2. Indeed, our translation guarantees that if Π1 dominates

Π2, all answer sets of Π1 dominates any answer sets of Π2. Rule (48) says that the assumption

program AP (x1, . . . , xm) dominates the assumption program AP (y1, . . . , ym) if there exists a

rule i in Π that is replaced by its xi-th assumption in AP (x1, . . . , xm), by its yi-th assumption

in AP (y1, . . . , ym), and xi < yi. Rules (49), (50), (51), (52) are the set of rules in the semantics

of CR-Prolog2 with the extended signature σ′. Rule (53) says that AP (x1, . . . , xm) dominates

AP (y1, . . . , ym) if isPreferred(r1, r2) is true in both assumption programs while r1 is applied

in AP (x1, . . . , xm) and r2 is applied in AP (y1, . . . , ym).

4. To define candidate answer sets in the semantics of CR-Prolog2, crp2asp(Π) contains

candidate(X1, . . . , Xm) ← ap(X1, . . . , Xm), {dominate(P, ap(X1, . . . , Xm))}0 (54)

Rule (54) says that the answer sets of AP (x1, . . . , xm) are candidate answer sets if there does

not exist an assumption program P that dominates AP (x1, . . . , xm).

5. To define the preference between two candidate answer sets and find preferred answer sets,
crp2asp(Π) contains

lessCrRulesApplied(ap(X1, . . . , Xm), ap(Y1, . . . , Ym)) ←

candidate(X1, . . . , Xm), candidate(Y1, . . . , Ym),

1{X1 �= Y1; . . . ;Xm �= Ym}, X1 ≤ Y1, . . . , Xm ≤ Ym (55)

pAS(X1, . . . , Xm) ← candidate(X1, . . . , Xm), {lessCrRulesApplied(P, ap(X1, . . . , Xm))}0
(56)

Rule (55) says that for any different assumption programs AP (x1, . . . , xm) and AP (y1, . . . , ym)

whose answer sets are candidate answer sets, if all the choices in AP (x1, . . . , xm) is not worse

than 4 those in AP (y1, . . . , ym), then the former must apply less cr-rules or ordered cr-rules than

the latter. Rule (56) says that the answer sets of AP (x1, . . . , xm) are preferred answer sets if

these answer sets are candidate answer sets and there does not exist an assumption program P

that applies less cr-rules than AP (x1, . . . , xm).

Let S be an optimal answer set of crp2asp(Π); x1, . . . , xm be a list of integers. If S |=

ap(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) as a generalized answer set on σ of

crp2asp(Π); if S |= candidate(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) as a can-

didate answer set on σ of crp2asp(Π); if S |= pAS(x1, . . . , xp), we define the set

shrink(S, x1, . . . , xp) as a preferred answer set on σ of crp2asp(Π).

4 i.e., for any rule i in Π, if it is applied in AP (x1, . . . , xm), it must be applied in AP (y1, . . . , ym); if it is replaced
by its xi-th assumption in AP (x1, . . . , xm), it must be replaced by its yi-th assumption in AP (y1, . . . , ym) and
xi ≤ yi
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Theorem 2

For any CR-Prolog2 program Π of signature σ, (a) the projections of the generalized answer sets

of Π onto σ are exactly the generalized answer sets on σ of crp2asp(Π). (b) the projections of

the candidate answer sets of Π onto σ are exactly the candidate answer sets on σ of crp2asp(Π).

(c) the preferred answer sets of Π are exactly the preferred answer sets on σ of crp2asp(Π).

Example 3 Continued: The translated ASP program crp2asp(Π3) is

%%%% 1 %%%%

{ap(X1,X2): X1=0..1, X2=0..2}. :∼ ap(X1,X2). [-1,X1,X2]

%%%% 2 %%%%

q(X1,X2) :- ap(X1,X2), t(X1,X2). s(X1,X2) :- ap(X1,X2), t(X1,X2).

p(X1,X2) :- ap(X1,X2), not q(X1,X2). r(X1,X2) :- ap(X1,X2), not s(X1,X2).

:- ap(X1,X2), p(X1,X2), r(X1,X2).

% 1: t <+-.

t(X1,X2) :- ap(X1,X2), X1=1.

% 2: q*s <+-.

q(X1,X2) :- ap(X1,X2), X2=1. s(X1,X2) :- ap(X1,X2), X2=2.

%%%% 3 %%%%

dominate(ap(X1,X2), ap(Y1,Y2)) :- ap(X1,X2), ap(Y1,Y2), 0<X1, X1<Y1.

dominate(ap(X1,X2), ap(Y1,Y2)) :- ap(X1,X2), ap(Y1,Y2), 0<X2, X2<Y2.

%%%% 4 %%%%

candidate(X1,X2) :- ap(X1,X2), {dominate(P,ap(X1,X2))}0.

%%%% 5 %%%%

lessCrRulesApplied(ap(X1,X2), ap(Y1,Y2)) :- candidate(X1,X2), candidate(Y1,Y2),

1{X1!=Y1;X2!=Y2}, X1<=Y1, X2<=Y2.

pAS(X1,X2) :- candidate(X1,X2), {lessCrRulesApplied(P,ap(X1,X2))}0.

The optimal answer set S of crp2asp(Π3) is

{pAS(1, 0), candidate(1, 0), ap(1, 0), t(1, 0), q(1, 0), s(1, 0),

pAS(0, 1), candidate(0, 1), ap(0, 1), q(0, 1), r(0, 1),

ap(0, 2), p(0, 2), s(0, 2),

candidate(1, 1), ap(1, 1), t(1, 1), q(1, 1), s(1, 1),

ap(1, 2), t(1, 2), q(1, 2), s(1, 2), . . . }.

Since S satisfies ap(1, 0), ap(0, 1), ap(0, 2), ap(1, 1), ap(1, 2), the generalized answer sets on σ

of crp2asp(Π3) are

shrink(S, 1, 0) = {t, q, s}

shrink(S, 0, 1) = {q, r}

shrink(S, 0, 2) = {p, s}

shrink(S, 1, 1) = {t, q, s}

shrink(S, 1, 2) = {t, q, s}

which are exactly the projections of the generalized answer sets of Π3 onto σ. Similarly, we

observe that the candidate (preferred, respectively) answer sets on σ of crp2asp(Π3) are exactly

the projections of the candidate (preferred, respectively) answer sets of Π3 onto σ.

Furthermore, let Π′

3 = Π3∪{prefer(2, 1).}. The translation crp2asp(Π′

3) is crp2asp(Π3)∪R,

where R is the set of the following rules:
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%%%% 2 %%%%

prefer(2,1,X1,X2) :- ap(X1,X2).

%%%% 3 %%%%

isPreferred(R1,R2,X1,X2) :- prefer(R1,R2,X1,X2).

isPreferred(R1,R3,X1,X2) :- prefer(R1,R2,X1,X2), isPreferred(R2,R3,X1,X2).

:- isPreferred(R,R,X1,X2).

:- isPreferred(2,1,X1,X2), X2>0, X1>0.

dominate(ap(X1,X2), ap(Y1,Y2)) :- ap(X1,X2), ap(Y1,Y2),

isPreferred(2,1,X1,X2), isPreferred(2,1,Y1,Y2), X2>0, Y1>0.

The optimal answer set S of crp2asp(Π′

3) is

{ ap(1, 0), t(1, 0), q(1, 0), s(1, 0),

pAS(0, 1), candidate(0, 1), ap(0, 1), q(0, 1), r(0, 1),

ap(0, 2), p(0, 2), s(0, 2), . . . }

and it is easy to check that the generalized (/candidate/preferred) answer sets on σ of crp2asp(Π′

3)

are exactly the projections of the generalized (/candidate/preferred) answer sets of Π′

3 onto σ.

4 Related Work and Conclusion

We presented reductions of LPOD and CR-Prolog2 into the standard ASP language, which

explains the new constructs for preference handling in terms of the standard ASP language.

The one-pass translations are theoretically interesting. They may be a useful tool for studying

the mathematical properties of LPOD and CR-Prolog2 programs by reducing them to more well-

known properties of standard answer set programs. Both translations are “almost” modular in

the sense that the translations are rule-by-rule but the argument of each atom representing the

assumption degrees may need to be expanded when new rules are added.

However, the direct implementations may not lead to effective implementations. The size

of lpod2asp(Π) and crp2asp(Π) after grounding could be exponential to the size of the non-

regular rules in Π. This is because these translations compare all possible assumption programs

whose number is exponential to the size of non-regular rules. One may consider parallelizing

the computation of assumption programs since they are disjoint from each other according to the

translations.

In a sense, our translations are similar to the meta-programming approach to handle preference

in ASP (e.g., (Delgrande et al. 2003)) in that we turn LPOD and CR-Prolog2 into answer set

programs that do not have the built-in notion of preference.

In (Brewka et al. 2002), LPOD is implemented using SMODELS. The implementation inter-

leaves the execution of two programs–a generator which produces candidate answer sets and a

tester which checks whether a given candidate answer set is maximally preferred or produces a

more preferred candidate if it is not. An implementation of CR-Prolog reported in (Balduccini

2007) uses a similar algorithm. In contrast, the reductions shown in this paper can be computed

by calling an answer set solver one time without the need for iterating the generator and the tester.

This feature may be useful for debugging LPOD and CR-Prolog2 programs because it allows us

to compare all candidate and preferred answer sets globally.

Asprin (Brewka et al. 2015) provides a flexible way to express various preference relations

over answer sets and is implemented in CLINGO. Similar to the existing LPOD solvers, CLINGO
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makes iterative calls to find preferred answer sets, unlike the one-shot execution as

we do.

Asuncion et al. (2014) presents a first-order semantics of logic programs with ordered disjunc-

tion by translation into second-order logic whereas our translation is into the standard answer set

programs.
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