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Abstract
Selecting appropriate tutoring help actions that account for
both a student’s content mastery and engagement level is es-
sential for effective human tutors, indicating the critical need
for these skills in autonomous tutors. In this work, we formu-
late the robot-student tutoring help action selection problem
as the Assistive Tutor partially observable Markov decision
process (AT-POMDP). We designed the AT-POMDP and de-
rived its parameters based on data from a prior robot-student
tutoring study. The policy that results from solving the AT-
POMDP allows a robot tutor to decide upon the optimal tutor-
ing help action to give a student, while maintaining a belief of
the student’s mastery of the material and engagement with the
task. This approach is validated through a between-subjects
field study, which involved 4th grade students (n = 28) inter-
acting with a social robot solving long division problems over
five sessions. Students who received help from a robot us-
ing the AT-POMDP policy demonstrated significantly greater
learning gains than students who received help from a robot
with a fixed help action selection policy. Our results demon-
strate that this robust computational framework can be used
effectively to deliver diverse and personalized tutoring sup-
port over time for students.

Introduction
Robots have shown increasing promise as a technology
to emulate many of the benefits of one-on-one human tu-
toring in a variety of domains (Belpaeme et al. 2018;
Hood, Lemaignan, and Dillenbourg 2015; Kanda et al.
2004). Notably, the physical presence of robots has demon-
strated enhanced student learning gains, compliance, and
enjoyment in learning interactions (Bainbridge et al. 2011;
Leyzberg et al. 2012; Pereira et al. 2008). Many aspects of
the robot-student tutoring interaction have been investigated
such as building models of student knowledge (Spaulding,
Gordon, and Breazeal 2016), evaluating different teaching
and instruction paradigms (Hood, Lemaignan, and Dillen-
bourg 2015), and determining how and when a specific type
of help would be best administered to students (Ramachan-
dran, Litoiu, and Scassellati 2016).

Although most prior work has focused on modifying and
optimizing a single component of the robot-student tutor-
ing interaction (e.g. building a model of student knowledge,
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Figure 1: We studied the effects of the AT-POMDP policy on
student learning in multiple tutoring sessions with a robot.

determining when hints should be provided), robot tutors
could be even more effective by, like human tutors, work-
ing from a unified model of the student that encompasses
the student’s knowledge and engagement and employing a
diverse set of assistive behaviors in order to facilitate a more
comprehensive, diverse, and personalized robot-student tu-
toring interaction. Studies of highly successful human tutors
describe how human tutors “maintain a ‘working model’ of
each tutee” enabling students to do as much of the work as
possible as well as receive sufficient guidance to prevent
frustration and confusion (Lepper and Woolverton 2002;
Merrill et al. 1992). For example, human tutors are excel-
lent at giving minimal help to students who have proven
their competence with the tutoring content, guiding students
with low knowledge step-by-step through the process of how
to solve a problem, and discerning when to stop and take a
break when students get frustrated or bored.

In this work, we emulate expert human tutors in the de-
sign of a robot tutor that models the affective and knowl-
edge states of students and, using that model, selects appro-
priate actions to assist student learners. We design the Assis-
tive Tutor partially observable Markov decision process (AT-
POMDP), a unified framework in which a robot tutor can
maintain a belief estimate of student knowledge and engage-
ment via observations that can be directly sensed through
the tutoring system and subsequently plan what supportive
help actions to provide to enhance learning. We also vali-



date the model’s effectiveness in decision making by con-
ducting a user study in which fourth grade students interact
with a robot tutor that employs AT-POMDP to provide sup-
port to the students over five tutoring sessions (Figure 1).
We found that the AT-POMDP policy significantly improves
learning gains for students when compared to a fixed pol-
icy for choosing help actions, indicating the importance of
providing personalized tutoring support for young children.

Background
In this section, we present work on help action selection for
tutoring systems, other computational approaches to tutor-
ing, and the generalized POMDP framework.

Assistive Actions Employed by Tutors
In previous work in intelligent tutoring systems, many forms
of help have been developed to assist learners. Below we de-
scribe some common types of help used in tutoring systems.
Hints, or help messages, are one of the most common forms
of help and typically contain information about specific fea-
tures of the given problem. Tutoring systems often use mul-
tiple levels of ordered hints, where subsequent hints contain
more specific information to solving the problem at hand.
Worked examples refer to problems that show all the neces-
sary steps to solve them successfully, and have been shown
to be an effective form of help (McLaren et al. 2014). Self-
explanations are defined as the generation of explanations
to oneself and have been shown to improve understanding
(Chi et al. 1994). This process can also be referred to as
thinking aloud which has been investigated as a metacogni-
tive strategy and has led to improved performance (Aleven
and Koedinger 2002). Step-based tutoring refers to track-
ing progress of individual steps in a problem and providing
feedback on these intermediary steps rather than all at once
after the student provides an answer (Vanlehn et al. 2005).
In tutoring systems, interactive tutorials implement this step-
based tutoring and leverage this idea that more interactivity
and feedback on each step may lead to stronger understand-
ing of where a misconception occurs (VanLehn 2011). Re-
searchers have designed principles on how to provide help
in tutoring systems, suggesting that the system should first
elicit as much self-explanation (requesting the student to
think aloud) as possible from the student and then provide
instructional explanations, progressing from minimalistic to
extensive forms of help (Renkl 2002).

In addition to help actions that relate to improving mas-
tery of the educational concepts within tutoring, other sup-
port mechanisms are employed by intelligent tutoring sys-
tems to maintain learner engagement. Prior work in robot
tutoring systems suggests that short, non-task breaks can be
used throughout a tutoring interaction to sustain and restore
engagement when provided based on student progress (Ra-
machandran, Huang, and Scassellati 2017).

Based on these design recommendations from prior work,
we find that thinking aloud, hints, worked examples, tutori-
als, and breaks are all useful actions that can be used to ben-
efit learners during a tutoring interaction. Our work focuses
on planning which supportive tutoring actions to provide to

a given student from a bank of actions we identify as poten-
tially helpful to students.

Computational Approaches to Tutoring
Since the field of Intelligent Tutoring Systems (ITS) began,
researchers have been investigating ways to computation-
ally model the student in order to inform effective tutoring
strategies. The most widely used tactic for modeling student
knowledge is a method called Bayesian Knowledge Tracing
(BKT) (Corbett and Anderson 1994). Though this is an ef-
fective technique for modeling a student’s knowledge state,
the computational focus is on accurately estimating student
knowledge of skills and utilizing this information to inform
content selection based on fixed mastery thresholds (Lee and
Brunskill 2012; Yudelson, Koedinger, and Gordon 2013).

Recent work has explored employing POMDPs to plan
actions in a teaching setting (Rafferty et al. 2016; Folsom-
Kovarik, Sukthankar, and Schatz 2013). Rafferty et al. used
a POMDP to find optimal teaching actions during a con-
cept learning task, in which they minimize the expected time
for a learner to acquire a new concept in a short interaction
by balancing three teaching actions: presenting an example,
giving a quiz question, and asking a question with feedback.
They demonstrate that adults can learn a fabricated, simple
concept mapping faster when receiving teaching actions dic-
tated by the POMDP model versus a random baseline (Raf-
ferty et al. 2016). In contrast to this work, our approach uses
a POMDP to plan supportive help actions, rather than in-
structive teaching actions, to students during a real-world
robot-child tutoring task in which students practice a diffi-
cult mathematical concept they have learned in school over
several tutoring sessions. In addition, our approach consid-
ers the learner’s engagement rather than just the learner’s
knowledge of a given concept and contains a rich repertoire
of supportive help actions.

POMDPs
A partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) can be repre-
sented as a 7-tuple (S,A,Ω, T, R,O, γ), where:
• S is the set of partially observable states with s ∈ S
• A is the set of possible actions with a ∈ A
• Ω is the set of observations with o ∈ Ω

• T : S×A×S → [0, 1] is a probabilistic transition function
such that T (s, a, s′) ≡ Pr(s′|a, s)
• R : S × A× S → R is a reward function mapping state-

action-state tuples to rewards
• O : S × A × Ω → [0, 1] is a probabilistic observation

function such that O(a, s′, o) ≡ Pr(o|a, s′)
• γ ∈ [0, 1] is the discount factor

After each time step, the agent making decisions updates
its belief, b, a probability distribution over S, where b(s)
represents the belief relative to state s. The belief can be
updated according to the following:

b′(s′) = ηO(s′, a, o)
∑
s∈S

T (s, a, s′)b(s)



where η = 1/Pr(o|a, b), a normalization term to ensure that∑
s∈S b(s) = 1.
The solution to a POMDP is a policy that maps beliefs to

actions, π : B → A, and selects actions that maximize the
value function, the expected discounted reward.

The Assistive Tutor POMDP
This section formulates the robot tutor action selection prob-
lem as a POMDP called the Assistive Tutor POMDP (AT-
POMDP) and describes the model design and parameters1.
Many of the model parameters were derived from a previous
robot-student tutoring data set (Ramachandran, Litoiu, and
Scassellati 2016). From this data set, we retrieved timing and
accuracy data of students doing math problems with a robot
tutor as well as their engagement during the math tutoring
sessions by annotating low (bored, blind guessing) and high
engagement (focused) in the video files.

State Space
The state space of AT-POMDP consists of three dimen-
sions: knowledge level, engagement level, and math prob-
lem attempt number. There are four domain-independent
knowledge levels that roughly equate to: little to no mastery,
some mastery, moderate mastery, and near-complete mas-
tery. There are two engagement levels: low and high. High
engagement is marked by the students’ attention being fo-
cused on the math problem at hand, making honest attempts
at the problems. Low engagement is marked by either rapid
guessing on problems without knowing the correct answer
or boredom and off-task behavior. For each problem the stu-
dents complete, they have three attempts to answer correctly.
If all three attempts are answered incorrectly, they will be
moved onto the next question. Attempts 1-[after a correct
attempt], 1-[after an incorrect attempt], 2, and 3 are encoded
into our state space. With four knowledge levels, two en-
gagement levels, and four attempt definitions, the size of the
state space can be defined as |S| = 4× 2× 4 = 32.

Action and Observation Spaces
The robot’s action space consists of six tutoring actions,
which during the tutoring session are administered before
an attempt is made by the student on a problem.

For each attempt made by the student on a problem, we
observe the accuracy of the attempt (correct or incorrect) and
the speed (slow, medium, or fast) at which the student an-
swers the question. Thus, the size of the observation space
|Ω| is 2 × 3 = 6. To account for individual differences in
attempt speeds, the z-score of attempt timing, which mea-
sures how many standard deviations the current data point is
from the mean, is used to determine the timing categoriza-
tion (slow, medium, fast) of a student on a particular attempt.

Reward Model
The reward function formalizes the robot tutor’s goal of aid-
ing the student to transition from lower to higher knowledge

1Code used to create AT-POMDP is available at:
https://github.com/ScazLab/AT-POMDP

states and to transition from low to high engagement by re-
warding those transitions. Each action is also taken with a
cost proportional to the time it takes for the student to com-
plete that action (e.g. interactive-tutorials take many times
longer to complete than a hint). We also penalized any ac-
tion other than no-action heavily on the first attempt so that
students would have a chance to answer the question before
a help action was chosen and performed by the robot.

Transition and Observation Models
The transition model T (s, a, s′) ≡ Pr(s′|a, s) can be derived
by examining the likelihood of change in the attempt sa, en-
gagement se, and knowledge sk dimensions of a single state
s: Pr(s′|a, s) ≡ caction ·Pr(s′a|a, s) ·Pr(s′e|a, s) ·Pr(s′k|a, s),
where Pr(s′a|a, s) represents the likelihood that a student
transitions to a particular attempt state by answering a ques-
tion incorrectly/correctly, Pr(s′e|a, s) represents the likeli-
hood that a student moves from one engagement level to
another, Pr(s′k|a, s) represents the likelihood that a student
transitions from one knowledge level to another, and caction
represents an action-specific constant multiplier where each
action will uniquely influence state transitions. In our model,
we make the assumption that students can only increase their
knowledge level and cannot ‘lose’ knowledge.

We derived these transition probabilities from the
prior robot-child tutoring study data set. We determined
Pr(s′a|a, s) by examining the attempt accuracy of students
in each knowledge level, which depended on whether they
were on the first attempt or a subsequent attempt (student ac-
curacy was lower for subsequent attempts) and the students’
engagement (student accuracy was lower if they were not
engaged). We derived Pr(s′e|a, s) by calculating the propor-
tion of attempts where students moved engagement states,
which depended on their knowledge state (students in higher
knowledge states were less likely to move from high to low
engagement). We determined Pr(s′k|a, s) by computing the
proportion of attempts where a student crosses the thresh-
old from one knowledge level to another, which depended
on their engagement state (students in our data set did not
increase knowledge state when at a low engagement level).
In addition to deriving these variables from our data set, we
also tested them in simulation.

The observation model O(a, s′, o) ≡ Pr(o|a, s′), was de-
rived by computing the likelihood of the observed accuracy
and speed on the attempt just completed, given the action
and end state.

Using the prior robot-child tutoring study data set, we
were able to derive Pr(o|a, s′) by computing the propor-
tion of student attempts in the three speed categories (slow,
medium, fast), which depended on the engagement of the
student, since students with low engagement were more
likely to exhibit slow and fast attempt speeds.

AT-POMDP Policy Computation
We used an offline POMDP solver originally implemented
by (Kaelbling, Littman, and Cassandra 1998) and modified
by (Roncone, Mangin, and Scassellati 2017) to solve for
the AT-POMDP policy. We computed the AT-POMDP’s be-
lief update online and the robot’s action selection based on
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Figure 2: Tablet screenshot examples of each help action used in the tutoring system setup: (a) interactive-tutorial, (b) worked-
example, (c) hint, (d) think-aloud, (e) break.

our solved policy was determined in real-time during the re-
peated tutoring sessions with fourth grade students.

Methodology
In this section, we describe a user study that explores the ef-
fects of an autonomous robot tutoring system that employs
the AT-POMDP policy on student learning outcomes. We
describe the user study’s educational context and the design
of our integrated robot tutoring system, followed by our ex-
perimental conditions, procedure, and participants.

Evaluation Context
We developed long division math content for the tutoring
sessions for 4th grade students. Long division is a challeng-
ing concept for students and one where they could benefit
from extra practice. We designed the content to be in line
with common core standards and with the aid of a 4th grade
teacher. Although the 4th grade students in this study had
been taught long division in the classroom, many students
failed to grasp the full process or had forgotten several steps.
We focused our curriculum design on fostering improvement
with both long division strategy use as well as successful ap-
plication of division concepts (both obtaining a correct an-
swer and using the correct strategy).

Robot Tutoring System
Our tutoring system consisted of a Nao robot, a tablet de-
vice for input, and several software components that enabled
the flow of an autonomous tutoring interaction. We used a
ROS architecture to coordinate communication between the
robot, tablet, and software components of the system that
implemented our help action selection method (Quigley et
al. 2009). The Nao robot acted as a tutoring agent throughout
each interaction and facilitated the interaction by introduc-
ing each question, giving feedback on whether an entered
answer was correct or incorrect, and proactively providing
help according to the participant’s experimental condition.

The tablet application was used to display questions, feed-
back, and help to the students and was used as an input de-
vice for entering answers to each question. The tablet had

two panels, one in which the current question and input box
was displayed, and the other in which interactive help would
be displayed (see Figure 2). In the following, we describe
each help action in detail:

• Interactive-tutorial. The tablet displayed a long division
box structure and allowed the user to only interact with the
boxes associated with one “step” of a problem at a time.
Students were required to correctly enter the numbers as-
sociated with one long division step before progressing to
the next step. The robot provided feedback and guidance
to the student through each step.

• Worked-example. The tablet displayed a comparable prob-
lem in difficulty and solution process to the problem
at hand. The robot verbally described each step of the
long division process for that problem, filling in the non-
interactive boxes in the displayed structure in time with
the verbal explanation.

• Hint. The tablet displayed an interactive long division
structure on the tablet help panel for the student’s cur-
rent problem. The robot suggested that the student use the
structure to help solve the current problem.

• Think-aloud. The robot made requests of the student to
verbalize their long division solving process. These think-
aloud prompts were also displayed in text on the tablet.

• Break. The student played one game of tic-tac-toe with
the robot as a non-task break.

• No-Action. Students received no action if the system de-
termined they did not need help on a given attempt.

Experimental Design
We designed a between-subjects study involving two experi-
mental conditions—the AT-POMDP condition and the fixed
condition. We want to understand whether the AT-POMDP
policy benefits students when compared to a ‘best practice’
fixed policy for selecting help actions. All students received
the same educational math content and help actions regard-
less of their experimental group. What differed between the
groups was the decision of which help action to provide to



the student when help was being given. Below, we describe
the action selection policies for each condition.

AT-POMDP Condition - The students in this group re-
ceived help actions according to the AT-POMDP policy. The
AT-POMDP selects the best help action to give to the stu-
dent based on its belief of the knowledge and engagement of
the student. The model’s belief is updated after each action-
observation pair and is preserved between sessions. The ini-
tial state for each student was determined by their pretest
score and the assumption that the children would be engaged
during the first problem of the first session.

Fixed Condition - The students in the fixed condition re-
ceived help according to a fixed policy we designed based
on current best practice in education and intelligent tutor-
ing systems. Each time a student gets a question incorrect,
they receive a help action, in order from the “smallest” to
the “largest” help actions, excluding no-action. We created a
fixed policy to provide progressive help in the following or-
der: think-aloud, hint, worked-example, interactive-tutorial.
This mimics hint systems commonly used in ITSs where
subsequent help given to students becomes more specific
and helpful to solving the problem. When a student answers
a question correctly, the level of help provided resets to the
smallest amount of help (think-aloud). Students in the fixed
condition received a break once per session, approximately
halfway through the 15-minute session.

Experimental Procedure
Parental and child consent forms were collected for each stu-
dent prior to participation in this experiment. Before inter-
acting with the robot tutoring system, students completed
an 8-question pretest designed to assess incoming knowl-
edge about the division concepts covered during the tutor-
ing sessions. Students were randomly assigned to one of the
experimental conditions and interacted with the robot tu-
toring system for five sessions, each lasting approximately
15 minutes. Each student completed as many problems as
they could from a bank of practice problems within the 15-
minute session. The AT-POMDP model did not influence
problem selection, and each student received the same se-
ries of long division problems regardless of experimental
condition. During each session, students sat at a table facing
the robot and tablet and used scratch paper if needed. All
one-on-one interactions were autonomous, requiring no in-
put from the experimenter during tutoring. Each of the five
sessions was completed on separate days spaced out over
approximately three weeks. On a separate day after the last
session, participants completed a posttest. The pretest and
posttest were identical, each consisting of the same ques-
tions that encompassed relevant long division concepts that
were represented during the tutoring interactions.

Participants
We recruited 30 participants from a local elementary school
to participate in this study. Two participants were excluded
in this data analysis (one due to non-compliance and one
due to a perfect pretest score), resulting in a total of 28
participants. Participants were randomly distributed into the

two experimental groups, resulting in 14 students per con-
dition. The two groups were gender-balanced, each hav-
ing exactly 6 males and 8 females. Between groups, there
was no significant difference in starting knowledge levels as
measured by pretest scores between the fixed (M = .44,
SD = .31) and AT-POMDP (M = .30, SD = .36) con-
ditions, t(26) = 1.146, p = .262. All students in the study
were in fourth grade, resulting in comparable ages between
the AT-POMDP (M = 9.29, SD = .47) and fixed (M =
9.21, SD = .43) conditions, t(26) = −.422, p = .676.

Results
In this section, we present findings characterizing partici-
pants’ interactions with the system over the five tutoring ses-
sions and results on differences in learning outcomes for stu-
dents between our two experimental groups. We also show
metrics of how the AT-POMDP policy’s decisions differed
from the fixed policy’s decisions and highlight case stud-
ies of participants who benefited from the decisions of the
AT-POMDP policy. When comparing our two experimental
groups directly, we use independent t-tests and when assess-
ing one group’s progress by comparing within-subjects mea-
sures, we use paired t-tests. For all statistical tests, we used
an α level of .05 for significance in our analysis.

Action Selection in Tutoring Sessions
Participants in both groups received a similar number of help
actions over all five sessions. Participants in the fixed condi-
tion received an average of 19.43 (SD = 5.00) help actions
and participants in the AT-POMDP condition received an av-
erage of 19.57 (SD = 10.82) help actions, t(26) = −.045,
p = .965. For each of the five 15-minute sessions, partici-
pants received on average 3.90 (SD = 1.65) help actions.

Participants in the AT-POMDP and fixed conditions re-
ceived a significantly different distribution of help actions
across all five sessions, χ2(5, N = 28) = 168.78, p < .001,
as shown in Figure 3a. In addition to analyzing the difference
in the actions chosen between the fixed and AT-POMDP
conditions, we examined the differences in the actions cho-
sen for participants in the AT-POMDP condition and the ac-
tions that would have been chosen for those same partici-
pants if they had been in the fixed condition. We found a
similar result in that the distribution of help actions across all
five sessions was significantly different, χ2(5, N = 14) =
98.23, p < .001. Additionally, 85.4% of the 274 total ac-
tions the participants in the AT-POMDP condition received
were different than the actions they would have received had
they been in the fixed condition.

These results support the conclusion that participants in
the AT-POMDP and fixed conditions received significantly
different distributions of help actions and, additionally, that
the actions chosen by the AT-POMDP and fixed policies
were also significantly different.

Learning Gains Results
Students completed a pretest before the first tutoring session
and a posttest after the fifth session. Each student received a
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Figure 3: (a) Distribution of actions averaged per session per student. (b) Students in the AT-POMDP condition significantly
improved their test scores from pretest to posttest. (c) Students in the AT-POMDP condition improved their scores based on
accuracy and strategy use significantly more than those in the fixed condition.

test score for both the pretest and posttest, where each ques-
tion was scored for both accuracy (0 or 1) and correct long
division strategy use (0 or 1). This scoring scheme was in
line with the design of our mathematical content, award-
ing points for both accuracy and correct strategy use. Below
we define normalized learning gain to measure improvement
from pretest to posttest for each student i:

nlg(i) =
scorepost(i)− scorepre(i)

1− scorepre(i)

These scores were calculated by diving the number of
points received by the total number of points it was possi-
ble to receive for each test. The metric of nlg provides a
measure of learning improvement for each student, account-
ing for different starting knowledge levels. Similar uses of
nlg can be found in the review (Belpaeme et al. 2018).

For students in the fixed condition, posttest (M =
.54, SD = .28) scores marginally improved from pretest
scores (M = .44, SD = .31), t(13) = −2.128, p = .053.
Students in the AT-POMDP condition had posttest scores
(M = .53, SD = .30) that were significantly higher than
their pretest scores (M = .30, SD = .36), t(13) = −4.473,
p = .001 (Figure 3b). In comparing nlg between the two
conditions, we found that average nlg for the AT-POMDP
condition (M = .41, SD = .30) was significantly higher
than for the fixed condition (M = .08, SD = .43), t(26) =
−2.326, p = .028 (Figure 3c). These results indicate that the
students who received help actions from the robot according
to the AT-POMDP policy improved their strategy use and
accuracy on long division concepts significantly more than
the students who received help actions according to a best-
practice fixed policy. Given that students across groups only
received 3.83 help actions per session on average, this dif-
ference between groups further highlights the impact of the
decisions made by the AT-POMDP policy.

Case Studies
In order to further examine the actions chosen by the AT-
POMDP policy, in this section we take a more in-depth look
at three individual students in the AT-POMDP condition. For
these students, we examine the tutoring action choices made
by the AT-POMDP policy and evaluate their effectiveness.

Participant 11 (P11) was one of the highest performing
students in our sample with an attempt accuracy of 92.1%, as
compared to the 41.2% attempt accuracy of the entire sam-
ple. Of the 114 attempts P11 made on problems over the 5
sessions, P11 received 7 tutoring help actions from the robot,
selected by the AT-POMDP policy: 1 hint, 1 break, 1 think-
aloud, and 4 no-actions. Given that P11 displayed a high
mastery of the long-division material, the AT-POMDP esti-
mated that P11 was in a high knowledge state and thus, the
cost of selecting help actions like hints, worked-examples,
and interactive-tutorials would have too high to be worth-
while, so the model selected a majority of no-action help
actions for P11. Despite not receiving help when the model
selected no-action, P11 answered the next attempt correctly
3 out of the 4 times this occurred.

Participant 25 (P25) was one of the lower performing
students in our sample. P25’s accuracy on the attempts
(19.1%) was lower than the entire sample’s attempt accu-
racy (41.2%). Additionally, P25 answered merely 1.8 at-
tempts correctly out of 9.4 on average per session. Of the
25 help actions the AT-POMDP policy selected for P25, 12
were interactive-tutorials and 7 were worked-examples, the
two most comprehensive and involved tutoring help actions.
P25 did not answer any questions correctly on either the
pretest or the posttest, however, attempted 2 more long divi-
sion problems on the posttest than the pretest, showing an in-
creased confidence with attempting long division problems.
Had P25 been in the fixed condition, the fixed policy would
have selected 9 think-alouds and 8 hints, the two most min-
imal tutoring help actions, and only 4 worked-examples and



3 interactive-tutorials. It seems unlikely that if P25 had been
in the fixed condition, P25 would have grown in confidence
and familiarity with long division from the pretest to posttest
since P25 would have received considerably less long divi-
sion assistance as compared with the help P25 received in
the AT-POMDP condition.

Participant 12 (P12) was also one of the lower performing
students in our sample. P12’s accuracy on question attempts
(9.8%) was substantially lower than the entire sample’s at-
tempt accuracy (41.2%) and P12 answered a meager 0.8 at-
tempts correctly out of 8.2 attempts on average per session.
From watching P12’s tutoring session videos, P12 tended to
be more distracted and disengaged than the average student,
likely due to the difficulty of the problems and P12’s low at-
tempt accuracy. The AT-POMDP policy selected a total of 5
tic-tac-toe breaks across the 5 sessions: 1 break in sessions 2,
3, and 4, and 2 breaks in session 5. P12 received all of these
breaks after an incorrect answer on the previous question
with a faster speed (M = 27.2s, SD = 9.0s) than P12’s av-
erage question answering speed (M = 67.6s, SD = 43.5s),
indicating that P12 was presumably making blind guesses
and that a break would likely be useful for reengaging P12.
After the tic-tac-toe breaks, P12’s accuracy on the next at-
tempt was 40.0%, much higher than P12’s overall attempt
accuracy during all of the sessions, 9.8%, suggesting that
the breaks were well-timed and effective for P12.

Through the examination of these case studies, we en-
counter three diverse action selection approaches by the AT-
POMDP policy: giving limited help to a student who dis-
played mastery of the material, providing significant help to
a student who showed little mastery of long division, and ad-
ministering appropriately timed breaks to a student who was
frequently disengaged. For these three students it is possible
that separate individual fixed policies could be developed to
support each student’s learning behavior, however, it is ex-
tremely unlikely that one overall fixed policy could be de-
veloped to provide the learning support needed for all three
students. In contrast, the AT-POMDP can produce a policy
that makes successful and effective action choices, support-
ing the learning and engagement of a diverse set of students
in one unified model.

Discussion
In this work, we implemented the AT-POMDP that enabled
robot tutors to autonomously provide an appropriate help
action to students based on an estimate of their knowledge
and engagement levels. We demonstrated that with a single,
unified model, we could provide help actions to individual
students according to their needs. By evaluating the effec-
tiveness of the AT-POMDP in a five-session long-term tutor-
ing interaction, we demonstrated that students strengthened
their learning on a long division task by exhibiting improved
test scores based on accuracy and correct strategy use. Fur-
thermore, these students improved more than students who
received help from the robot tutoring system according to
a fixed policy. By examining certain participants in closer
detail, rather than just looking at the average learning gains
across groups, we can see specific instances in which the AT-
POMDP policy selected appropriate actions for the individ-

ual child. Our results highlight the value of building robust,
computational frameworks to deliver personalized tutoring
support over time for young students.

Other investigations into probabilistic models for teaching
have also demonstrated the benefits of an approach that can
plan under uncertainty in finding useful policies for teaching
tasks (Rafferty et al. 2016; Murray and VanLehn 2006). Our
work is in agreement with this body of work, and we pro-
vide further evidence for the usefulness of a POMDP model
used to plan under uncertainty in a long-term tutoring setting
for children. Rather than focus on the sequencing of teach-
ing content, the AT-POMDP we designed selects supportive
help actions the tutor can take to strengthen student learning
of a concept that is challenging for them.

Our results indicated a difference in average learning
gains between the AT-POMDP condition and the fixed con-
dition. However, the two conditions differed in a number of
ways that could have led to the AT-POMDP condition partic-
ipants showing increased learning gains over the fixed con-
dition participants including differences in the distribution
of help actions between conditions and the variation in the
ordering of the help actions given. While we demonstrated
that the AT-POMDP could be used for personalized help ac-
tion selection in tutoring, additional research and user stud-
ies must be conducted to tease apart exactly which factors
led to the difference in learning gains between conditions
and to what degree each factor influenced the results.

Though the AT-POMDP policy was effective in strength-
ening learning outcomes, we found that not all students im-
proved their long division skills. The lowest performing stu-
dents often received “larger” help actions frequently (e.g.
interactive-tutorials, worked examples), and this may have
helped them improve their attempt rate as well as their ten-
dencies to employ the correct strategy when solving long di-
vision problems. However, we noticed that those who started
with extremely low incoming pretest scores, were typically
unable to demonstrate strong mastery of complex long di-
vision skills even after five sessions. We acknowledge that
our model could still benefit from additional personaliza-
tion, such as adapting the help action choice according to
individual preferences.

Conclusion
In this paper, we designed the Assistive Tutor POMDP (AT-
POMDP) to provide personalized support to students prac-
ticing a difficult math concept over several tutoring sessions.
The AT-POMDP estimated a student’s individual knowledge
level and engagement level and computed a policy to make
decisions on the appropriate help action to take to increase
the likelihood of the student reaching higher knowledge and
engagement levels. The AT-POMDP was effective in provid-
ing a personalized approach to planning and balancing sev-
eral different help actions in a tutoring setting. Our evalua-
tion demonstrated the effectiveness of using the AT-POMDP
to help students with a long division math task as students re-
ceiving help from the AT-POMDP policy showed improved
learning gains when compared to students receiving help
from a fixed policy to govern help action selection.
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