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a b s t r a c t

The Reduced Basis Method (RBM) is a rigorous model reduction approach for solving
parameterized partial differential equations. It identifies a low-dimensional subspace for
approximation of the parametric solution manifold that is embedded in high-dimensional
space. A reduced order model is subsequently constructed in this subspace. RBM relies on
residual-based error indicators or a posteriori error bounds to guide construction of the
reduced solution subspace, to serve as a stopping criteria, and to certify the resulting sur-
rogate solutions. Unfortunately, it is well-known that the standard algorithm for residual
norm computation suffers from premature stagnation at the level of the square root of
machine precision.

In this paper, we develop two alternatives to the standard offline phase of reduced basis
algorithms. First, we design a robust strategy for computation of residual error indicators
that allows RBM algorithms to enrich the solution subspace with accuracy beyond root
machine precision. Secondly, we propose a new error indicator based on the Lebesgue
function in interpolation theory. This error indicator does not require computation of
residual norms, and instead only requires the ability to compute the RBM solution. This
residual-free indicator is rigorous in that it bounds the error committed by the RBM
approximation, but up to an uncomputable multiplicative constant. Because of this, the
residual-free indicator is effective in choosing snapshots during the offline RBM phase,
but cannot currently be used to certify error that the approximation commits. However,
it circumvents the need for a posteriori analysis of numerical methods, and therefore can
be effective on problems where such a rigorous estimate is hard to derive.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental reason that many model reduction approaches for parametric partial differential equations (PDE) are
successful is that, for many PDE of interest, the solutionmanifold induced by the parametric variation has small and rapidly-
decaying Kolmogorov n-width [1]. Among the reduction strategies that utilize this fact is the greedy approach to the Reduced
Basis Method (RBM). It identifies a small set of representative points in parameter space, and obtains solution to the PDE at
these points. The construction of this point set proceeds via a greedy algorithm that relies on an a posteriori error estimate
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for guidance. This solution ensemble on this small set is typically assembled from iterated queries to a potentially expensive
existing solver.

The topic of this paper is the greedy approach for reduced basis methods. In such cases, there are offline and online stages
for RBM algorithms [2–6], see also the recent monologue [7–9]. During the offline stage, significant computational effort is
invested so that the online stage, when reduced order solutions for arbitrary parameter values are computed, can be efficient.
During the offline stage, the parameter dependence is inspected and the greedy algorithm which the RBM methods mainly
rely on judiciously selects a small number of parameter values on which the full-order, expensive PDE solver is employed
to obtain so-called solution snapshots. During the online stage, a surrogate solution is efficiently computed for any new
parameter value as a linear combination of these stored snapshots. The coefficients of this linear combination are computed
via a reduced-order formulation of the PDE. This reduced solve can usually be completedwith orders ofmagnitude less effort
than a full PDE solve, and thus RBM achieves significant speedup when both the offline phase is not too expensive and when
multiple online queries are utilized.

A critical component in RBM algorithms is the a posteriori error estimate, which dictates the adaptive sampling criterion
in the offline greedy algorithm. This error estimate is the main concern of the current paper. The offline phase of the RBM
algorithm finds a parameter value that maximizes the numerically-computed error estimate. Therefore, the accuracy (or the
lack thereof) in this calculation dictates the accuracy of the RBM solution. Due to standard computational implementations
of the RBM error estimate for elliptic PDE, the accuracy of this estimate stagnates around the level of the square root of
the machine accuracy. Therefore, more accurate schemes for calculating the error estimate are necessary if one demands
higher accuracy or when the query is close to the part of the parameter domain where resonances occur (and the stability
constant approaches zero). To our knowledge, there are two previous attempts to resolve this issue [10,11] and [12]. The
method in [10,11] employs an additional sampling of the parameter domain, potentially randomly, to generate a linear
system to solve online for the stable calculation of the a posteriori error estimate. This is improved in [11] by the empirical
interpolationmethod. These approaches increase theOffline andOnline cost, andmay suffer from ill-conditioning depending
on the additional sampling. On the other hand, [12,13] presents a strategy that amends a direct computation of the a posteriori
error estimate by rewriting it in a new form; the authors there show that their approach can circumvent stagnation errors
due to floating-point arithmetic. Thus, the loss of accuracy of half of the digits caused by taking the square root is not new. But
with this understanding, we devise a new approach for computing an a posteriori error estimate, and demonstrate that it can
be used to circumvent loss of significance from floating-point arithmetic. Ourmethod performs similarly to [12], but in cases
where a matrix of residual vectors is rank-deficient, our approach is more efficient. We focus on the standard error criterion
for selecting snapshots in this paper, that is, error in the solution, but note that goal-oriented strategies exist [14–16].

The main contributions of this paper are twofold, in the theoretical and algorithmic design of robust residual-based, and
residual-free error estimates for the offline RBM phase. Our first contribution is to the standard, residual-based method. We
design and test a novel computational strategy for residual-based RBM error estimators that is capable of delaying error
stagnation until much closer to machine precision. This new strategy computes the residual-based error norms in different
ways compared to standard RBM algorithms, but are just as efficient as those algorithms.

Our second contribution to the offline RBM phase is more general and falls into a residual-free category. The efficiency of
the error estimate calculation directly determines that of RBM. When the parameter is high-dimensional then the requisite
size of the training set is very large, and it is computationally infeasible to repeatedly maximize a residual-based error
estimate over the training set. The situation is exacerbated when a standard residual-based RBM error estimate cannot be
computed, such as for hyperbolic problems, or in convection-dominated convection–diffusion equations. To the best of our
knowledge, computational stratagems in the RBM framework to tackle this problem are underdeveloped. We propose and
test an error indication strategy that forgoes the residual norm calculation entirely and requires only the RBM coefficients.
This newprocedure is rigorous and applicable to anyparameterized problemwithout requiring any a posteriori error analysis.
However, the procedure cannot certify error due to the presence of a scaling constant thatwe have not been able to compute.
Nevertheless, this new error estimate performs comparably to standard RBM algorithms for the examples thatwe have tried.

All of the numerical examples in this manuscript investigate parametric PDE’s that are relatively standard situations
when RBM algorithms are known to perform well. We demonstrate for these cases that our strategies work well, and there
is no methodological restriction that prevents our strategies from being applied in more general, difficult cases. However,
we leave investigations of our approaches for computationally large-scale andmoremathematically challenging parametric
PDE’s for future work.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of the RBM framework
and the typical setting it is successful for. Close attention is paid to the error estimate calculation, the focus of this paper.
In Section 3, we detail our two approaches to tackle the afore-mentioned two challenges. Section 4 is devoted to numerical
results corroborating the efficiency and accuracy gain of the proposed approaches. Finally, some concluding remarks are
given in Section 5.

2. Reduced basis method: a brief overview

In this section, we present a brief overreview of the Reduced Basis Method (RBM), in particular the error estimate and its
implementation in the classical form. All of this is standard in the RBM literature. Therefore the reader familiar with RBM
may skip this section, referring to Table 1 for our notation.
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Table 1
Notation used throughout this article.
µ Parameter in D ⊆ Rp

u(µ) Function-valued solution of a parameterized PDE
N Degrees of freedom (DoF) in PDE ‘‘truth’’ solver
XN Truth solver solution space, having dimension N
uN (µ) Truth solution (finite-dimensional)
N Number of reduced basis snapshots, N ≪ N
µj ‘‘Snapshot’’ parameter values, j = 1, . . . ,N
SN Sample set SN = {µ1, . . . ,µN

}

XN
N Span of uN

(
µk
)
for k = 1, . . . ,N

uNN (µ) Reduced basis solution, uNN ∈ XN
N

eN (µ) Reduced basis solution error, equals uN (µ)− uNN (µ)
Ξtrain Parameter training set, a finite subset of D
∆N (µ) Error estimate (upper bound) for ∥eN (µ)∥

ϵtol Error estimate stopping tolerance in greedy sweep

2.1. Problem setting

LetD ⊂ Rp be the domain for a p-dimensional parameter, and letΩ ⊂ Rd (for d = 2 or 3) be a bounded physical domain.
Let X be a Hilbert space of functions on Ω . Given µ ∈ D, the goal is to compute u(µ) ∈ X satisfying

a(u(µ), v;µ) = f (v;µ), v ∈ X, (2.1)

which corresponds to a parametric partial differential equation (pPDE) written in weak form; a(·, ·;µ) is a bilinear form and
f may encode forcing terms and/or boundary conditions. We assume u ∈ X and that H1

0 (Ω) ⊂ X(Ω) ⊂ H1(Ω), where

H1(Ω) =
{
w ∈ L2(Ω)

⏐⏐ ∫
Ω

∥∇w∥2 dx <∞

}
,

H1
0 (Ω) =

{
w ∈ L2(Ω)

⏐⏐ ∫
Ω

∥∇w∥2 dx <∞ and w|∂Ω= 0
}

.

We denote by (·, ·)X the inner product associated with the space X , whose induced norm ∥ · ∥X =
√
(·, ·)X is equivalent to

the usual H1(Ω) norm. For µ-uniform well-posedness of (2.1), we assume that a(·, ·;µ) : X × X → R is continuous and
uniformly coercive over X for all µ in D, and that f (·) is a linear continuous functional over X for all µ. That is,

γ (µ) := sup
w∈X

sup
v∈X

a(w, v;µ)
∥w∥X∥v∥X

<∞, ∀µ ∈ D, (2.2a)

α(µ) := inf
w∈X

a(w, w;µ)
∥w∥2X

⩾ α0 > 0, ∀µ ∈ D, (2.2b)

sup
u∈X
|f (u;µ)| <∞, ∀µ ∈ D. (2.2c)

As is common in the RBM literature [17], we assume that a(·, ·;µ) is ‘‘affine’’ with respect to the parameterµ: I.e., there exist
µ-dependent coefficient functions Θ

q
a : D → R for q = 1, . . . ,Qa, and Θ

q
f : D → R for q = 1, . . . ,Qf , and corresponding

continuous µ-independent bilinear forms aq(·, ·) : X × X → R and linear forms f q(·) : X → R, respectively, such that

a(w, v;µ) =
Qa∑
q=1

Θq
a (µ)aq(w, v), f (w;µ) =

Qf∑
q=1

Θ
q
f (µ)f q(w). (2.3)

There are strategies for situations when the affine assumption is not satisfied, e.g., empirical interpolation [18]. These
strategies generally replace a non-affine operator by an affine operator with sufficiently large Qa and Qf so that the solution
of the affine problem well approximates the solution to the non-affine problem. Note, however, that such an approach can
require large Qa and/or Qf and that RBM strategies can suffer substantially in computational efficiency in this case.

In order to compute solutions to (2.1) suppose that forµ fixed, a spatial discretization (e.g., a finite element solver) can be
employed withN ≫ 1 degrees of freedom that computes an approximate solution uN (µ) to within an acceptable accuracy
for every µ ∈ D. This approximate solution uN is called the ‘‘truth" solution, and the associated spatial discretization and
solver is called the ‘‘truth" solver.

The truth solution uN is sought in an N -dimensional subspace XN (i.e., dim(XN ) = N ) that is a discretization of X , and
(2.1) is discretized as{

For µ ∈ D, find the ‘‘truth’’ approximation uN (µ) ∈ XN such that
a(uN , v;µ) = f (v;µ) ∀v ∈ XN .

(2.4)



1966 Y. Chen, J. Jiang and A. Narayan / Computers and Mathematics with Applications 77 (2019) 1963–1979

The other relevant quantities are defined according to the discretization. For example, the coercivity constant (2.2b) is
approximated by its numerical counterpart αN (µ) = inf

w∈XN

a(w,w;µ)
∥w∥2X

, ∀µ ∈ D.

A naïve approach to computing solutions to (2.1) for many µ would be to query the truth solver many times, which
is expensive under the N ≫ 1 assumption. RBM methods attempt to provide numerical solutions of (2.1) with accuracy
comparable to uN , but with orders-of-magnitude less computational cost than the truth solver. The essential idea is to
project the collection of discrete solutions uN (µ) for µ ∈ D onto a low-dimensional representation, and then to efficiently
compute this projected representation.

2.2. RBM framework

The reduced basismethod is a reliablemodel reduction strategy that replaces a relatively expensive truth solver (2.4)with
a less expensive surrogate. The best possible accuracy of the surrogate is governed by a theoretical quantity, the Kolmogorov
N-width of the solution set UN , defined as

UN
:= {u(µ) | µ ∈ D} ⊂ XN . (2.5)

When the N-width of UN decays quickly with respect to N , an RBM strategy is effective. Practitioners in advance identify a
large but finite training set discretizing the parameter domainΞtrain ⊂ D, and amaximumdimensionNmax (usually≪ N ). An
RBM algorithm then approximates the solution space by an N-dimensional subspace of XN , denoted by XN

N , with N ⩽ Nmax.
The surrogate for the truth discretization is denoted uN

N (µ) and is computed as a member of the reduced space XN
N .

The space XN
N is constructed in a hierarchical manner as the span of so-called ‘‘snapshots’’, by hierarchically constructing a

sample set SN = {µ1, . . . ,µN
} from the training set Ξtrain and solving (2.4) with µ = µn. Explicitly:

XN
N := span{uN (µn), 1 ⩽ n ⩽ N}, N = 1, . . . ,Nmax. (2.6)

Given µ ∈ D, we define the RBM solution uN
N (µ) ∈ XN

N as the solution to the following reduced problem{
For µ ∈ D, find the RB solution uN

N (µ) ∈ XN
N ⊂ XN such that

a(uN
N , v;µ) = f (v;µ) ∀v ∈ XN

N .
(2.7)

The truth system (2.4) is N -dimensional, but the reduced system (2.7) is N-dimensional. When N ≪ N , this results
in a significant computational savings. This saving is realized by precomputing and storing the parameter-independent
components of the RB ‘‘stiffness’’ matrix which is decomposed via the affine assumption (2.3)

(a(vm, vn;µ))N×N =
Qa∑
q=1

Θq
a (µ)

(
aq(vm, vn)

)
N×N . (2.8)

The nested structure of XN
N (XN

1 ⊂ XN
2 ⊂ . . . ⊂ XN

Nmax
⊂ XN ) allows us to expand these parameter-independent

components (aq(vm, vn))N×N by adding one more row and one more column each time a new sample location µi is selected
and the new snapshot resolved.

2.3. Computational details

The Galerkin procedure in (2.7) can be transformed into an algorithm by using the following ansatz for the RBM
solution:

uN
N (µ) =

N∑
m=1

uN
Nm(µ)uN (µm) . (2.9)

Using this in (2.7) and choosing the test functions as v = uN
(
µ(n)

)
for n = 1, . . . ,N , results in a solvable linear system

for the unknown RB coefficients {uN
Nm(µ)}Nm=1, which defines uN

N . In practice, this strategy tends to produce ill-conditioned
systems. To ameliorate this effect, practitioners usually choose an orthonormal basis for XN

N for both trial and test
functions:

uN
N (µ) =

N∑
m=1

ûN
Nm(µ)ξm, ⟨ξm, ξn⟩X = δn,m, {ξm}

N
m=1 ⊂ XN

N . (2.10)

The ξn are hierarchically computed by orthogonalizing the snapshots uN
(
µ(m)

)
each time SN is updated. We note that

computing the ûN
Nm coefficients is mathematically equivalent to computing the uN

Nm coefficients, as the two are related by a
change of basis transformation: The computational representation (2.10) can be transformed into the representation (2.9)
(and vice versa) through a linear transformation that we omit for brevity. The representation (2.10) is used in practical
implementations of RBM algorithms (both in general and in the examples of this paper), but our discussion will use the
formulation (2.9) because this formulation is more convenient to describe our residual-free error indicator in Section 3.3.
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2.4. Selecting snapshots through the a posteriori error estimate

Here we describe the procedure for selecting the representative parameters µ1, . . . ,µN for the sample set SN . This is an
important task since these parameter choices define the reduced space (2.6). RBM adopts a greedy scheme to iteratively
construct SN , and leans on mathematical theory for the truth discretization (2.4). In particular, there exist efficiently-
computable error estimates that quantify the discrepancy between the dimension-n RBM surrogate solution uN

n (µ) and the
truth solution uN (µ). This error estimate is denoted ∆n, and satisfies ∆n(µ) ⩾

uN
n (µ)− uN (µ)


XN . Assuming existence of

this error estimate, the greedy procedure for constructing SN is summarized in Algorithm 1.

Algorithm 1 Greedy algorithm for constructing SN and XN
N .

1: Input: training set Ξtrain, an accuracy tolerance εtol, maximum RB dimension Nmax.
2: Randomly select the first sample µ1

∈ Ξtrain, and set n = 1 and ε = 2εtol.
3: Obtain truth solution uN (µ1), and set XN

1 = span
{
uN (µ1)

}
.

4: while (ε > εtol and n < Nmax) do
5: for each µ ∈ Ξtrain do
6: Obtain RBM solution uN

n (µ) ∈ XN
n and error estimate ∆n(µ)

7: end for
8: µn+1

= argmax
µ∈Ξtrain

∆n(µ), ε = ∆n(µn+1).

9: Augment the sample set Sn+1 = Sn
⋃
{µn+1

} and the RB space XN
n+1 = XN

n ⊕ {u
N (µn+1)}.

10: Set n← n+ 1.
11: end while

The design and efficient implementation of the error bound ∆n is usually accomplished with a posteriori error estimates
from the truth discretization. Mathematical rigor of this estimate is crucial for the accuracy of the reduced basis solution.
The main novelties of this paper are replacements of the ‘‘classical" a posteriori error estimate with alternatives that are
either more efficient or have enhanced accuracy properties. We finish this section by describing how ∆n is evaluated in the
classical fashion.

The error between the reduced basis surrogate solution and the truth discretization is eN (µ) := uN (µ) − uN
N (µ) ∈ XN .

Unfortunately, this is not computable directly without knowledge of uN , which we want to avoid computing. However, the
linearity of a(·, ·;µ) results in

a(eN (µ), v;µ) = rN (v;µ) ∀v ∈ XN , (2.11)

with the residual rN (v;µ) ∈ (XN )′ (the dual of XN ) defined as f (v;µ)− a(uN
N (µ), v;µ). The Riesz representation theorem

and a variational inequality imply that ∥eN (µ)∥XN ⩽
∥rN (·;µ)∥(XN )′

αN (µ) , where αN (µ) = inf
w∈XN

a(w,w,µ)
∥w∥2X

is the stability (coercivity)

constant for the elliptic bilinear form a. Therefore, we can define an a posteriori RBM error estimator as

∆N (µ) =
∥rN (·;µ)∥(XN )′

αN
LB (µ)

⩾ ∥eN (µ)∥XN . (2.12)

Here αN
LB (µ) is a lower bound for αN (µ) which is expensive to compute directly for all µ. However, approaches for

computationally efficient estimation of the stability factor αN
LB (µ) has been undergoing vast development in [19,20] and

recently in [21–23]. Furthermore, an offline–online decomposition is also exploited to speed up the evaluation of αN
LB (µ).

The remaining ingredient for efficient computation of the a posteriori error estimation is the evaluation of ∥rN (·;µ)∥(XN )′ ,
which is the chief concern of this manuscript. The following discussion details how this is achieved in a standard RB
implementation. The Riesz representation theorem states that we can calculate functions C q̃

∈ XN and Lq
m ∈ XN , for

1 ⩽ q̃ ⩽ Qf ,1 ⩽ m ⩽ N, 1 ⩽ q ⩽ Qa, such that{
(Cq̃, v)XN = f q̃(v)XN ∀v ∈ XN

(Lq
m, v)XN = aq(uN (µm) , v) ∀v ∈ XN .

(2.13)

With the availability of Cq̃ and Lq
m, the classical implementation of RBM then adopts an offline–online decomposition for

∥rN (·;µ)∥2(XN )′ . Combining (2.11), (2.9), and (2.3), we have

∥rN (·;µ)∥2(XN )′ =

Qf∑
q̃1=1

Qf∑
q̃2=1

Θ
q̃1
f (µ)Θ q̃2

f (µ)(Cq̃1 , Cq̃2 )XN+

Qa∑
q=1

N∑
m=1

Θq
a (µ)uN

Nm

⎧⎨⎩
Qa∑

q′=1

N∑
m′=1

Θq′
a (µ)uN

Nm′ (L
q
m,Lq′

m′ )XN

⎫⎬⎭− 2
Qa∑
q=1

N∑
m=1

Qf∑
q̃=1

Θq
a (µ)uN

Nm(µ)(Cq̃,Lq
m)X . (2.14)
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Most of the quantities above can be precomputed and stored explicitly from the form of the pPDE. Therefore, the offline
stage is devoted to calculating and storing

(Cq̃1 , Cq̃2 )XN , (Cq̃1 ,Lq
m)XN , (Lq

m,Lq′

m′ )XN , 1 ⩽ m,m′ ⩽ NRB, 1 ⩽ q̃1, q̃2 ⩽ Qf , 1 ⩽ q, q′ ⩽ Qa.

During the online stage, given anyparameterµ, we only need to evaluateΘ
q
a (µ), Θ

q̃
f (µ), uN

Nm(µ), 1 ⩽ m ⩽ N , andperform the
addition and subtraction according to (2.14). However, the coefficients uN

Nm are the RBM expansion coefficients from (2.9),
and therefore evaluation of (2.14) at each µ also requires computation of the RB solution uN

N . We denote this numerical
approximation of ∆n(µ) in (2.12) by E1(µ; n).

3. Novel approaches for error quantification

As shown by Algorithm 1, the classical RBM computes the maximum of the error estimator ∆n(·) over Ξtrain in a brute-
force manner. Ξtrain is large especially for a high-dimensional parameter domain. Moreover, this maximization procedure
must be done for every n = 1, . . . ,N . For these two reasons, the process of selecting snapshots is usually the computational
bottleneck of RBM algorithms. Another observation is that the dual norm of the residual is computed as a square root of its
square which is evaluated as the difference between a sum of two positive terms and a third term. This is prone to loss of
significance and one suspects that errors smaller than the square root of machine precision are not computable using the
form (2.14). This supposition is borne out in numerical results for RBM.

In this section, we provide two novel approaches to mitigate the deficiencies of classical RBM residual estimation. We
begin first by discussing why the classical approach for evaluation of the error estimate via the formula (2.14) is not ideal
when implemented in finite-precision arithmetic. We follow this by presenting our robust residual-based error estimate,
which directly evaluates ∥rN (·;µ)∥(XN )′ without computing its squared value; this allows the newmethod to achieve errors
much smaller than root machine precision. Finally, we present our residual-free approach that uses a surrogate for the
residual that circumvents requirement of computing αLB(·). Thus the second approach is applicable to pPDE where no
rigorous a posteriori error estimate is available. Our preliminary analysis and numerical experiments suggest that the
residual-freemethod is promising, but rigorous theoretical analysis demonstrating its utility in the RBM setting is the subject
of ongoing work.

3.1. Finite-precision limitations for residual norm evaluation

The formula (2.14) is an expanded quadratic form for the expression

∥rN (·;µ)∥2(XN )′ =
a(uN

N − uN , ·;µ)
2
(XN ′) =

a(uN
N , ·;µ)− f (·;µ)

2
(XN )′ (3.1)

At the root of the floating-point stagnation is evaluation of the above quadratic form via the formula

(a− b)2 = a2 − 2ab+ b2.

Indeed, the right-hand side expansion of the above equation is (2.14). A simple floating point error analysis reveals the
following lemma, where we use ϵ to denote the machine precision, and fl(·) to denote the floating point representation of a
number.

Lemma 3.1. In the case of b = a+ O(ϵ), we have that

fl(a2 − 2ab+ b2) = O(ϵ),

while

fl((a− b)2) = O(ϵ2).

Proof. Assume fl(x) = x(1+ Cϵ), where C is an ϵ-independent constant that does depend on x. We have |C | ⩽ 1, and in the
sequel we use Cj for j = 1, 2 . . . , to denote various such constants. Since a− b = O(ϵ), we have

fl(a2 − 2ab+ b2) =
(
a2(1+ C2ϵ)− 2ab(1+ C3ϵ)+ b2(1+ C4ϵ)

)
(1+ C1ϵ)

= (a− b)2 + ((a− b)2C1 + a2C2 − 2abC3 + b2C4)ϵ + (O(ϵ))2

= (O(ϵ))2 + O(ϵ)
= O(ϵ).

showing the first equation in the Lemma’s conclusion. The second equation is straightforward since fl((fl(a) − fl(b))2) =
(a(1+ Caϵ)− b(1+ Cbϵ))2(1+ Cϵ) = ϵ2(1+ (aCa + bCb))2(1+ Cϵ) = O(ϵ2). □
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Fig. 1. The loss of accuracy for the formula (a − b)2 = a2 − 2ab + b2 , with a randomly chosen from (0, 1) and b = a + µ4−N . Implemented in double
precision, we have

√
ϵ ≈ 10−8 . We see that the a2 − 2ab+ b2 formula stagnates around this level.

The technical conclusion of this lemma can be communicated visually via Fig. 1. In this Figure, we introduce a parameter
µ ∈ (0, 1) to emulate the RBM setting, and set b = a+µ4−N . We numerically compute the µ-maximum of the expressions√
(a− b)2 = µ4−N and

√
a2 − 2ab+ b2. The figure results demonstrate that the expression

√
a2 − 2ab+ b2, representing

the direct RBMestimate (2.14), stagnates around
√

ϵ, which is about 10−8 in IEEE double-precision. Direct usage of
√
(a− b)2

does not suffer from this stagnation. This motivates the need for a robust approach to handle this case. One approach is
described in [12], and we describe a new method in the next two sections that also circumvents this issue.

3.2. A new evaluation of the residual norm

An intuitive explanation of our approach is as follows: Fix uN
N and consider the right-hand side expression in (3.1). We

define f (·;µ) = f∥ (·;µ) + f⊥(·;µ), where f∥ (·;µ) is a component of f (·;µ) that is parallel to a(uN
N , ·;µ) and f⊥(·;µ) is a

component that is perpendicular to a(uN
N , ·;µ). Therefore, Eq. (3.1) can be rewritten as

∥rN (·;µ)∥2(XN )′ =
[a(uN

N , ·;µ)− f∥ (·;µ)
]
+ f⊥(·;µ)

2
(XN )′ .

Our improvement to the standard evaluation (2.14) computes the residual norm above by the following observation: Since
the two separated terms under the norm are perpendicular, we can separate them via the Pythagorean theorem. We now
present the details; writing the residual norm as a norm in XN instead of in the dual (XN )′, we have

∥rN (·;µ)∥(XN )′ =


Qf∑
q=1

Θ
q
f (µ)Cq

−

Qa∑
q=1

N∑
m=1

Θq
a (µ)uN

NmL
q
m


XN

. (3.2)

Assume that N > QaN , which is a reasonable assumption in the RBM framework. We introduce the following subspace in
the Hilbert space XN :

VN := span
{
L1

1, . . . , LQa
1 , . . . , L1

N , . . . , LQa
N

}
,

Defining V⊥N as the XN -orthogonal complement of VN , then let PN be the XN -orthogonal projection onto VN , and let P⊥N be
the orthogonal projection onto V⊥N .

We are now ready to state a preliminary result:

Lemma 3.2. The dual norm of the residual (3.2) has the form

∥rN (·;µ)∥(XN )′ =

√


Qf∑
q=1

Θ
q
f (µ)P⊥N Cq


2

XN

+


Qf∑
q=1

Θ
q
f (µ)PNCq −

Qa∑
q=1

N∑
m=1

θ
q
a (µ) uN

NmL
q
m


2

XN

. (3.3)



1970 Y. Chen, J. Jiang and A. Narayan / Computers and Mathematics with Applications 77 (2019) 1963–1979

Proof. The result is a fairly straightforward computation in least-squares problems. We have

rN (·, µ) =

Qf∑
q=1

Θ
q
f (µ)Cq

−

Qa∑
q=1

N∑
m=1

Θq
a (µ)uN

NmL
q
m

=

Qf∑
q=1

Θ
q
f (µ)P⊥N Cq

+

⎛⎝ Qf∑
q=1

Θ
q
f (µ)PNCq

−

Qa∑
q=1

N∑
m=1

Θq
a (µ)uN

NmL
q
m

⎞⎠ .

Note that the first term is an element of P⊥N and the second term in parenthesis is an element of PN . The conclusion follows
from the Pythagorean theorem. □

This Lemma yields a computational procedure that ameliorates finite-precision loss of significance in numerical imple-
mentations.

3.2.1. Implementation and offline–online decomposition
In this section we treat elements of XN as Euclidean vectors in RN and identify the norm ∥ · ∥XN with the standard ℓ2

norm ∥ · ∥. When the norm ∥ · ∥XN is different than the ℓ2 norm, the below discussion would proceed by inserting Gramian
square root matrices in appropriate places so that the resulting weighted ℓ2 norm equals the norm on XN .

The discretized version of Lq
m ∈ XN , is L⃗q

m, aN × 1 vector. Similarly, we let C⃗q ∈ RN denote the vector representation of
Cq. We use the L⃗q

m vectors to define a matrix B and its associated column-pivoted reduced QR factorization:

B =
(
L⃗1

1, . . . , L⃗Qa
1 , . . . , L⃗1

N , . . . , L⃗Qa
N

)
∈ RN×QaN ,

BZ = QR, Q ∈ RN×rank(B), R ∈ Rrank(B)×QaN ,

where Z ∈ RQaN×QaN is a permutation matrix obtained from the column-pivoted reduced QR factorization above. Define
c⃗ (µ) the column vector

c⃗ (µ) =
(
Θ1

a (µ)uN
N1, . . . , ΘQa

a (µ)uN
N1, . . . , Θ1

a (µ)uN
NN , . . . ΘQa

a (µ)uN
NN

)T
∈ RQaN .

Finally, define VN ⊂ XN as the column space of Q, along with some associated projection matrices:

VN := range (Q) , PN = QQT , P⊥N = I − PN =: WWT .

We remark that we allow the column space of Q to be less than the number of columns of B through, e.g. a rank-revealing
QR factorization. In cases where this rank deficiency is utilized, this makes our algorithm more online-efficient than that
of [12], where a Gram–Schmidt stepwith re-iteration is used on the full dimension of the column space.With V⊥N as theRN -
orthogonal complement of VN , then PN orthogonally projects onto VN , and P⊥N orthogonally projects onto V⊥N . The columns
ofW ∈ RN×(QaN−rank(B)) are formed from any orthonormal basis for V⊥N . We can now state conclusion of Lemma 3.2 in terms
of vectors and matrices:

Theorem 3.3. The dual norm of the residual (3.2) can be evaluated by

∥rN (·;µ)∥2(XN )′ =


Qf∑
q=1

Θ
q
f (µ)WT C⃗q


2

+


Qf∑
q=1

Θ
q
f (µ)QT C⃗q

−RZT c⃗ (µ)


2

. (3.4)

Proof. The second term in this result equals the second term in (3.3) due to the fact thatQTQ = I and thatQT is an isometric
map on the range of Q:

Qf∑
q=1

Θ
q
f (µ)PNCq

−

Qa∑
q=1

N∑
m=1

θ q
a (µ) uN

NmL
q
m


2

XN

=


Qf∑
q=1

Θ
q
f (µ)PN C⃗q

− Bc⃗ (µ)


2

=


Qf∑
q=1

Θ
q
f (µ)QQT C⃗q

− QRZT c⃗ (µ)


2

=


Qf∑
q=1

Θ
q
f (µ)QT C⃗q

−RZT c⃗ (µ)


2
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That the first term in the result equals the first term in (3.3) is the result of a similar computation but usingW instead ofQ:
Qf∑
q=1

Θ
q
f (µ)P⊥N C⃗q


2

=

W
Qf∑
q=1

Θ
q
f (µ)WT C⃗q


2

=


Qf∑
q=1

Θ
q
f (µ)WT C⃗q


2

. □

The theorem above immediately reveals an offline–online decomposition: The µ-independent parts of the formula
involve the matrix products

WT C⃗q, QT C⃗q, RZT ,

none of which have any dimensions dependent on N , but are simply dependent on N and Qa. Thus, these matrices may be
precomputed and stored independent of µ. One µ-dependent component involves the affine coefficients Θ

q
f (µ), which are

scalar and thus easy to compute. Finally, the coefficients c⃗ (µ) can be computed explicitly via the affine coefficients Θ
q
a (µ)

and from the RBM approximation uN
N in (2.9). Since computing RBM approximation is N -independent, the entire residual

norm computation via (3.4) isN -independent in the online phase. We denote∆N (µ) in (2.12) with residual norm computed
via this new approach by E2(µ; n).

3.3. A residual-free error indicator

Much of the RBM algorithm is dependent on rigor of the inequality in (2.12). However, in practical situations one may
not have access to such a computable a posteriori error estimator. This happens, for instance, with sufficiently complicated
nonlinear pPDE’s for which mathematical analysis is difficult or infeasible. In other situations, a rigorous error estimate like
(2.12) may exist, but is not easily computable in a N -independent fashion due to nonlinearity of the pPDE. In this case, the
offline parameter selection portion of the RBM algorithm may be so expensive as to outweigh any computational saving
gained during the online phase.

In either of the cases above, one still hopes to use an efficient model-order reduction strategy like RBM, but with an
understanding that mathematically rigorous error certification may be lost.

A strategy for devising an error estimate for such a case is the subject of this section. While presumably one always
has access to the pPDE residual, one could then use ∥rN (·;µ)∥N as an error estimator that is not mathematically rigorous.
However, this estimator may also not be N -independent, so that such an estimator is both non-rigorous and expensive.

The alternative we suggest is as follows: recall expression (2.9) that expresses the RBM approximation uN
N (µ) in terms of

the snapshots uN (µn), n = 1, . . . ,N , via the expansion coefficients
{
uN
Nm(µ)

}N
m=1. As indicated, these expansion coefficients

are functions of µ, and play role of basis functions. Furthermore, they satisfy

uN
Nm

(
µn)
= δn,m, (3.5)

where δn,m is the Kronecker delta. The above property is a direct consequence of condition (2.7) that defines the RBMsolution.
Therefore, the coefficient functions uN

Nm (·) are actually cardinal Lagrange interpolants associated to the space of functions
defined by their span. Note that, given any µ, the cost of evaluation of these cardinal functions does not depend onN , since
these coefficients are computed from the RBM solution.

We now rephrase the essential portion of the offline RBM phase: given the current parameter values µ1, . . . ,µN along
with the current subspace of parameter-dependent functions

span
{
uN
N1(·), . . . , u

N
NN (·)

}
,

can we compute the next parameter value µN+1? Abstractly, this can be interpreted as an interpolation problem to find a
nested sequence of interpolation points µj, µj+1, . . . , associated to a nested sequence of function spaces.

We consider one potential solution to this problem, inspired by concepts in polynomial approximation. We take the next
point µN+1 as the point that maximizes a function of these cardinal interpolants:

∆̃N (µ) =

(
N∑

m=1

⏐⏐uN
Nm(µ)

⏐⏐) . (3.6)

The above function is simply the Lebesgue function from interpolation theory (i.e., the norm of an interpolation operator)..
Note that evaluation of this function depends only on the RBMsolution, and does not directly involve computation of residual
norms, nor does it require mathematically rigorous a posteriori error estimates. We show in Lemma 3.4 that ∆̃N does indeed
match the behavior of eN (µ); it is therefore quite useful in selecting RBM parameter values to compute snapshots. However,
the relationship between eN and ∆̃N involves a multiplicative scaling constant that is in general an uncomputable best
approximation error. Since we cannot compute this scaling constant, we cannot certify the error committed by parameter
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values picked with this method. However, we show in our numerical results section that choosing parameter samples via
greedy maximization of (3.6) empirically produces results comparable to using the RBM error estimate (2.12). Our ongoing
work seeks to ‘‘certify’’ the surrogate error generated via this approach. A simple approach for approximating a lower bound
for ϵN can be ∥uN (µN+1)−uN

N (µN+1)∥X , which is a computable quantity requiring no additional PDE simulations in the RBM
context. Naturally, the effectiveness of this and related approaches will need to be carefully studied in the future.

We emphasize that this procedure is similar to, but distinct from, empirical interpolation procedures [18]. In empirical
interpolation, one essentially has an (N+1)-dimensional spacewithN points, and uses the discrepancy between the (N+1)-
dimensional space and the N points to pick the (N + 1)st point. We cannot do this here since the (N + 1)-dimensional
space depends explicitly on the sought point µN+1. Thus, our strategy using the objective (3.6) circumvents the needs for
identification of the higher-dimensional space.

3.3.1. Characterization of ∆̃N
We now motivate the choice of ∆̃N (µ) as an error indicator. We introduce the space of XN -valued functions in L∞(D):

L∞
(
D, XN )

=

{
u : D→ XN

⏐⏐ ∥u∥L∞(D,XN ) <∞

}
, ∥u∥L∞(D,XN ) := sup

µ∈D
∥u(µ)∥XN .

A subspace of particular interest is those functions in L∞
(
D, XN

)
whose µ-variation is prescribed by the cardinal functions

uN
Nm:

UN =

{
u =

N∑
m=1

ymuN
Nm(µ)

⏐⏐ y1, . . . , yN ∈ XN

}
⊂ L∞

(
D, XN ) .

Note that the RBM solution is in UN , and the truth solution is in L∞
(
D, XN

)
:

uN
N ∈ UN , uN

∈ L∞
(
D, XN ) .

The former is true by inspection of (2.9), and the latter is true because of the truth discretization versions of the uniform
ellipticity and continuity assumptions (2.2a) – (2.2c). The following result then applies.

Lemma 3.4. Let ∥eN (µ)∥XN =
uN

N (µ)− uN (µ)

XN be the RBM error committed at parameter value µ. Then

∥eN (µ)∥XN ⩽
(
1+ ∆̃N (µ)

)
ϵN (uN ),

where ϵN is the best approximation error.

ϵN (uN ) := inf
v∈UN

uN
− v


L∞(D,XN )

.

Proof. The result is an exercise in a pointwise version of Lebesgue’s Lemma for projective approximations. We first define
two operators. The first, PN : L∞

(
D, XN

)
→ UN , is the interpolative projection operator defined by

PNv =

N∑
m=1

v
(
µm) uN

Nm(µ), v ∈ L∞
(
D, XN ) .

The second operator is δµ : L∞
(
D, XN

)
→ XN , corresponding to point-evaluation at µ ∈ D:

δµv = v(µ), v ∈ L∞
(
D, XN ) .

Note that

PNuN (µ) =
N∑

m=1

uN (µm)uN
Nm(µ) = uN

N (µ).

Now let v be any element in UN , so that PNv = v. Then

∥eN (µ)∥XN =
uN

N (µ)− uN (µ)

XN ⩽

uN
N (µ)− v(µ)


XN +

v(µ)− uN (µ)

XN

=
PN [uN

− v
]
(µ)

XN +

uN (µ)− v(µ)

XN

=
δµPN

[
uN
− v

]
XN +

uN (µ)− v(µ)

XN

⩽
[
1+

δµPN
] uN

− v

L∞(D,XN )

, (3.7)
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where ∥δµPN∥ is the induced operator norm. We can directly computeδµPN
 = sup

∥w∥L∞(D,XN )=1

δµPNw

XN

= sup
∥w∥L∞(D,XN )=1


N∑

m=1

uN
Nm(µ)w(µm)


XN

⩽

N∑
m=1

⏐⏐uN
Nm(µ)

⏐⏐ sup
∥w∥L∞(D,XN )=1

w(µm)

XN

⩽

N∑
m=1

⏐⏐uN
Nm(µ)

⏐⏐ = ∆̃N (µ).

Using the above in (3.7) and infimizing over v yields

∥eN (µ)∥XN ⩽
[
1+ ∆̃(µ)

]
inf

v∈UN

v − uN

L∞(D,XN )

=
[
1+ ∆̃N (µ)

]
ϵN (uN ). □

Lemma 3.4 states that, relative to the best approximant from UN , the RBM solution uN
N commits a µ-pointwise error that

scales monotonically with ∆̃N (µ). This is, essentially, a generalization of Lebesgue’s Lemma in approximation theory.
Therefore, at any iteration n, the function ∆̃n(µ) gives a qualitative indication of the error at µ, and so choosing a new

snapshot parameter µn+1 at the maximum of this function is a greedy function that indirectly seeks to minimize the RBM
error. However, it does not provide a certifiable error since we cannot compute the value of ϵN . Furthermore, our Lemma
shows only that our residual-free error estimate is an upper bound for the true error; a rigorous procedure would also
establish that our error estimate is a lower bound. Without this lower bound guarantee, one can contrive situations where
our error estimate chooses parameter values that are not indicative of RBM subspace quality. However, we have not observed
this in any examples we have tried. Our analysis cannot currently exclude the possibility of such pathological problems, and
our ongoing work seeks to establish a lower bound estimate that would rigorously justify our residual-free objective.

4. Numerical results

In this section, we present numerical examples to demonstrate the accuracy and efficiency of the proposed two new
approaches. The difference between all these approaches appears only in how parameter values µj are selected for use in
the RBM algorithm. We have three approaches to compare: (i) The standard RBM strategy that uses ∆N (µ) for the greedy
objective as defined in (2.12) with the residual norm computed using (2.14). (ii) The RBM strategy that again uses ∆N (µ)
from (2.12) as the greedy objective, but now uses the formula (3.3) to compute the residual norm. (iii) The greedy objective
is ∆̃N (µ), as defined in (3.6).

Since the parameter values selected by each of these three procedures is different, we use the subscript i = 1, 2, 3, to
differentiate quantities for these methods. We denote these error bounds are Ei(µ) for i = 1, 2, 3. More specifically,

E1(µ) = ∆N (µ) defined in (2.12) (4.1)

E2(µ) =
∥rN (·;µ)∥(XN )′

αN
LB (µ)

, where ∥rN (·;µ)∥(XN )′ is computed in (3.3) (4.2)

E3(µ) = ∆̃N (µ) (4.3)

Note that the first two approaches have rigorous error certification values. We use uN
N,Ei

(µ) to denote the RBM
approximation using greedy strategy i, for i = 1, 2, 3. Since the focus of this paper is on the computation of ∥rN (·;µ)∥(XN )′

for E1 and E2 and the elimination thereof for E3, we compute αN
LB (µ) through direct resolution of the eigenvalue problems.

We test the three implementations on three problems, and present the results respectively in each subsection below.

4.1. Two cases with 1-dimensional parameter

We first test the three RB methods on the following equations with one parameter.

(1+ µx)uxx + uyy = e4xy on Ω. (4.4a)

(1+ ℓ(µ)x)uxx + uyy = e4xy on Ω. (4.4b)

The first equation has continuous dependence on the parameter while the second has discontinuous dependence by having

ℓ(µ) = sin
(
(µ− sign(µ))

π

2

)
, µ ∈ D.
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Fig. 2. Results for one-parameter case (4.4a): The comparison of the three approaches (Left) and a demonstration that the residual-free error indicator
matches with the true error well (Right).

Fig. 3. The Lagrange shape functions.

We take the physical domain as Ω = [−1, 1] × [−1, 1] and impose homogeneous Dirichlet boundary conditions on ∂Ω .
The truth approximation is a spectral Chebyshev collocation method based on 50 degrees of freedom for each direction.
The parameter domain D for µ is taken to be [−0.995, 0.995], and the training set Ξtrain a uniform Cartesian grid with 512
equally spaced points.

We show in Fig. 2 (left) the history of convergence for the three approaches. The classical approach stagnates before
reaching the square root ofmachine epsilon as expected. However, both new approaches haveworst-case error estimate and
corresponding exact error converging further toward machine accuracy. It is worth noting that the residual-free function
∆̃N (µ) used in the greedy scheme for method i = 3 is not a rigorous error bound. However, the RB space built from its
maximizers has similar approximation properties, as confirmed by the cyan curve in Fig. 2 (left). The fact that ∆̃N captures
the pattern of the true error as the parameter µ varies is shown in Fig. 2 (right). Here the black ∆̃10(µ) curve is multiplied
by 10−4 to achieve better alignment with the error curve. Finally, we show in Fig. 3 the 10 Lagrange shape functions uN

Nm(·)
as implicitly defined in (2.9) and (2.7) when a 10-dimensional RB space is used.

The Lagrange shape functions used in the residual-free method inherit the structure dictated by the PDE. For example,
they are discontinuous if the PDE enforces this. The second example (4.4b) has discontinuous parameter dependence, andwe
show the associated Lagrange shape functions for this case in Fig. 4. The results show both that convergence is not directly
affected by the discontinuity since the Lagrange functions now inherit discontinuous dependence from the PDE.
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Fig. 4. Results for the one-dimensional case with discontinuous dependence on parameter (4.4b). Top left demonstrates us the comparison of histories of
convergence for the three approaches. Top right demonstrates that the residual-free error indicator roughly matches with the true error well even when
the parametric dependence is discontinuous. Note that while error minima locations are successfully predicted, themaximum location(s) may be different.
The bottom figure shows discontinuous Lagrange functions that are necessary for the RB solution to approximate the truth solution well.

4.2. The first 2-dimensional test case

As a first test casewith 2-dimensional parameter, we consider the following equationwhose solution space ends up being
well approximated by a 40-dimensional RBM surrogate.

− uxx − µ1uyy − µ2u = −10 sin(8x(y− 1)) on Ω. (4.5)

The physical domain isΩ = [−1, 1]×[−1, 1] andwe impose homogeneous Dirichlet boundary conditions on ∂Ω . The truth
approximation is a spectral Chebyshev collocation method with Nx = 50 degrees of freedom in each direction. This means
the truth approximation has dimension N = N 2

x . The parameter domain D for (µ1, µ2) is taken to be [0.1, 4] × [0, 2]. For
the training set Ξtrain we discretize D using a tensorial 129× 65 uniform Cartesian grid.



1976 Y. Chen, J. Jiang and A. Narayan / Computers and Mathematics with Applications 77 (2019) 1963–1979

Fig. 5. History of convergence for the classical and new approaches for Eq. (4.5). The pictures on the bottom row indicate that residual-free error indicator
roughly matches with the true error well. Note that while error minima locations are successfully predicted, the maximum location(s) may be different.

Wepresent the results in Fig. 5, and observe the same behavior as in the one-dimensional case. Namely, the error estimate
and the true error stagnates when the traditional error estimate is adopted. This stagnation is eliminated by the two newly
proposed approaches. What is more, the error indicator for the residual-free approach tracks the true error across the
parameter domain as well as the one-dimensional case. It thus comes as no surprise that the third approach, albeit without
a certificate, produces RB solution as accurate as the second method.

We show in Fig. 6 the sets of snapshot locations SN for all three methods. To differentiate them, we adopt the notation
SNEi

for the sets produced by method i. We overlay the two sets S40E1
and S40E2

in the first picture. The larger the marker, the
earlier it is picked by the greedy algorithm. Clearly, the two methods start by selecting the same points before deviating.
The first method starts to clutter points in an unphysical manner and keeps doing so in the same neighborhood of the
parameter domain. This leads to stagnation and potential singularity in the reduced solver. The enhanced approach (S40E2

)
avoids clustering and thus achieves better accuracy. The third, residual-free, approach demonstrates similar behavior.



Y. Chen, J. Jiang and A. Narayan / Computers and Mathematics with Applications 77 (2019) 1963–1979 1977

Fig. 6. Location of the chose snapshots for the classical approach and the two novel methods for the second 2-dimensional test case.

4.3. The second 2-dimensional test case

The second two-dimensional example has an equation that induces a solution manifold that requires many more
snapshots to achieve small error:

(1+ µ1x)uxx + (1+ µ2y)uyy = e4xy on Ω. (4.6)

The parameter domain D here is taken to be [−0.99, 0.99]2. The physical domain Ω , boundary condition, truth solver and
its resolution are all the same as the first two-dimensional case. We discretize D using a tensorial 160× 160 Cartesian grid
with 160 equally-spaced points in each dimension.

The difficulty of this problem stems from the fact that the equation is close to degenerate at the four corners of the
parameter domain. Thus the stability constant approaches zero toward the four corners, making accurate calculation of the
residual norm evenmore critical. For example, the ratio (2.12) blows up if the denominator (the stability constant) converges
to zero while the numerator stays at the root machine accuracy level. The results are shown in Fig. 7 confirming, again, all
previously stated properties for the two novel approaches. The important role of an accurate residual norm calculation
is apparent, as for example the chosen parameter values are unnecessarily more clustered toward the corners using the
classical approach E1, see top row of Fig. 7.

5. Concluding remarks

We have proposed two novel strategies for computing objective functions in the offline greedy algorithm in the reduced
basis method. Our first strategy is residual-based, and follows standard practice in RBM by defining the objective to be an a
posteriori upper bound for the error committed by a finite element method. This bound requires computation of a residual
norm. In the standard RBM setting, this residual norm is computed in a way that can succumb to loss of significance when
the magnitude of the norm reaches root machine precision. Our residual-based reformulation circumvents this premature
stagnation without any loss in efficiency.

Our second strategy is residual-free, and uses only the RBM coefficients in the greedy objective. The particular function
is the Lebesgue function from interpolation theory. We can provide a theoretical result guaranteeing that the parametric
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Fig. 7. The results for the second test problem.

behavior of this function provides an upper bound for the parametric variation of the error, and thus is a good objective
function for a greedy search. However, the precise connection between the Lebesgue function and the error involves a
parameter-independent multiplicative constant that is an uncomputable best approximation error. Therefore, the residual-
free method can effectively choose parameter values, but it cannot provide error certification without a quantitative
understanding of this best approximation error. Furthermore, we currently lack a result establishing that the residual-free
objective is a lower bound for the true error; the establishment of such a result is a subject of ongoing work.

Our numerical experiments demonstrate that both of our strategies can effectively allow RBM to compute solutions to
an accuracy much closer to machine precision than the classical reduced basis error estimator.
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