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The Reduced Basis Method (RBM) is a rigorous model reduction approach for solving
parameterized partial differential equations. It identifies a low-dimensional subspace for
approximation of the parametric solution manifold that is embedded in high-dimensional
space. A reduced order model is subsequently constructed in this subspace. RBM relies on
residual-based error indicators or a posteriori error bounds to guide construction of the
reduced solution subspace, to serve as a stopping criteria, and to certify the resulting sur-
rogate solutions. Unfortunately, it is well-known that the standard algorithm for residual
norm computation suffers from premature stagnation at the level of the square root of
machine precision.

In this paper, we develop two alternatives to the standard offline phase of reduced basis
algorithms. First, we design a robust strategy for computation of residual error indicators
that allows RBM algorithms to enrich the solution subspace with accuracy beyond root
machine precision. Secondly, we propose a new error indicator based on the Lebesgue
function in interpolation theory. This error indicator does not require computation of
residual norms, and instead only requires the ability to compute the RBM solution. This
residual-free indicator is rigorous in that it bounds the error committed by the RBM
approximation, but up to an uncomputable multiplicative constant. Because of this, the
residual-free indicator is effective in choosing snapshots during the offline RBM phase,
but cannot currently be used to certify error that the approximation commits. However,
it circumvents the need for a posteriori analysis of numerical methods, and therefore can
be effective on problems where such a rigorous estimate is hard to derive.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental reason that many model reduction approaches for parametric partial differential equations (PDE) are
successful is that, for many PDE of interest, the solution manifold induced by the parametric variation has small and rapidly-
decaying Kolmogorov n-width [ 1]. Among the reduction strategies that utilize this fact is the greedy approach to the Reduced
Basis Method (RBM). It identifies a small set of representative points in parameter space, and obtains solution to the PDE at
these points. The construction of this point set proceeds via a greedy algorithm that relies on an a posteriori error estimate
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for guidance. This solution ensemble on this small set is typically assembled from iterated queries to a potentially expensive
existing solver.

The topic of this paper is the greedy approach for reduced basis methods. In such cases, there are offline and online stages
for RBM algorithms [2-6], see also the recent monologue [7-9]. During the offline stage, significant computational effort is
invested so that the online stage, when reduced order solutions for arbitrary parameter values are computed, can be efficient.
During the offline stage, the parameter dependence is inspected and the greedy algorithm which the RBM methods mainly
rely on judiciously selects a small number of parameter values on which the full-order, expensive PDE solver is employed
to obtain so-called solution snapshots. During the online stage, a surrogate solution is efficiently computed for any new
parameter value as a linear combination of these stored snapshots. The coefficients of this linear combination are computed
via a reduced-order formulation of the PDE. This reduced solve can usually be completed with orders of magnitude less effort
than a full PDE solve, and thus RBM achieves significant speedup when both the offline phase is not too expensive and when
multiple online queries are utilized.

A critical component in RBM algorithms is the a posteriori error estimate, which dictates the adaptive sampling criterion
in the offline greedy algorithm. This error estimate is the main concern of the current paper. The offline phase of the RBM
algorithm finds a parameter value that maximizes the numerically-computed error estimate. Therefore, the accuracy (or the
lack thereof) in this calculation dictates the accuracy of the RBM solution. Due to standard computational implementations
of the RBM error estimate for elliptic PDE, the accuracy of this estimate stagnates around the level of the square root of
the machine accuracy. Therefore, more accurate schemes for calculating the error estimate are necessary if one demands
higher accuracy or when the query is close to the part of the parameter domain where resonances occur (and the stability
constant approaches zero). To our knowledge, there are two previous attempts to resolve this issue [10,11] and [12]. The
method in [10,11] employs an additional sampling of the parameter domain, potentially randomly, to generate a linear
system to solve online for the stable calculation of the a posteriori error estimate. This is improved in [11] by the empirical
interpolation method. These approaches increase the Offline and Online cost, and may suffer from ill-conditioning depending
on the additional sampling. On the other hand, [ 12,13] presents a strategy that amends a direct computation of the a posteriori
error estimate by rewriting it in a new form; the authors there show that their approach can circumvent stagnation errors
due to floating-point arithmetic. Thus, the loss of accuracy of half of the digits caused by taking the square root is not new. But
with this understanding, we devise a new approach for computing an a posteriori error estimate, and demonstrate that it can
be used to circumvent loss of significance from floating-point arithmetic. Our method performs similarly to [ 12], but in cases
where a matrix of residual vectors is rank-deficient, our approach is more efficient. We focus on the standard error criterion
for selecting snapshots in this paper, that is, error in the solution, but note that goal-oriented strategies exist [ 14-16].

The main contributions of this paper are twofold, in the theoretical and algorithmic design of robust residual-based, and
residual-free error estimates for the offline RBM phase. Our first contribution is to the standard, residual-based method. We
design and test a novel computational strategy for residual-based RBM error estimators that is capable of delaying error
stagnation until much closer to machine precision. This new strategy computes the residual-based error norms in different
ways compared to standard RBM algorithms, but are just as efficient as those algorithms.

Our second contribution to the offline RBM phase is more general and falls into a residual-free category. The efficiency of
the error estimate calculation directly determines that of RBM. When the parameter is high-dimensional then the requisite
size of the training set is very large, and it is computationally infeasible to repeatedly maximize a residual-based error
estimate over the training set. The situation is exacerbated when a standard residual-based RBM error estimate cannot be
computed, such as for hyperbolic problems, or in convection-dominated convection-diffusion equations. To the best of our
knowledge, computational stratagems in the RBM framework to tackle this problem are underdeveloped. We propose and
test an error indication strategy that forgoes the residual norm calculation entirely and requires only the RBM coefficients.
This new procedure is rigorous and applicable to any parameterized problem without requiring any a posteriori error analysis.
However, the procedure cannot certify error due to the presence of a scaling constant that we have not been able to compute.
Nevertheless, this new error estimate performs comparably to standard RBM algorithms for the examples that we have tried.

All of the numerical examples in this manuscript investigate parametric PDE’s that are relatively standard situations
when RBM algorithms are known to perform well. We demonstrate for these cases that our strategies work well, and there
is no methodological restriction that prevents our strategies from being applied in more general, difficult cases. However,
we leave investigations of our approaches for computationally large-scale and more mathematically challenging parametric
PDE’s for future work.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of the RBM framework
and the typical setting it is successful for. Close attention is paid to the error estimate calculation, the focus of this paper.
In Section 3, we detail our two approaches to tackle the afore-mentioned two challenges. Section 4 is devoted to numerical
results corroborating the efficiency and accuracy gain of the proposed approaches. Finally, some concluding remarks are
given in Section 5.

2. Reduced basis method: a brief overview
In this section, we present a brief overreview of the Reduced Basis Method (RBM), in particular the error estimate and its

implementation in the classical form. All of this is standard in the RBM literature. Therefore the reader familiar with RBM
may skip this section, referring to Table 1 for our notation.
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Table 1
Notation used throughout this article.
n Parameter in D € R?
u(p) Function-valued solution of a parameterized PDE
N Degrees of freedom (DoF) in PDE “truth” solver
xN Truth solver solution space, having dimension A
uN () Truth solution (finite-dimensional)
N Number of reduced basis snapshots, N < A
w “Snapshot” parameter values,j =1, ..., N
SN Sample set SN = {u', ..., uN}
X Spanof u™ (p¥) fork=1,...,N
uy () Reduced basis solution, uf € X3\’
en(p) Reduced basis solution error, equals uN(;L) — uNN(;L)
E'rain Parameter training set, a finite subset of D
Ay (@) Error estimate (upper bound) for |ley (g)]|
€tol Error estimate stopping tolerance in greedy sweep

2.1. Problem setting

Let D C R? be the domain for a p-dimensional parameter, and let 2 C R¢ (ford = 2 or 3) be a bounded physical domain.
Let X be a Hilbert space of functions on £2. Given u € D, the goal is to compute u(u) € X satisfying

a(u(p), v; p) = f(v; k), veX, (2.1)

which corresponds to a parametric partial differential equation (pPDE) written in weak form; a(-, -; ) is a bilinear form and
f may encode forcing terms and/or boundary conditions. We assume u € X and that H(}(.Q) C X(£2) C H'(£2), where

Hl(Q):{weLz(Q)| / ||Vw||2dx<oo},
2
Hy(2) = {weLz(.Q)| / ||Vw||2dx<ooandw|m:0}.
2

We denote by (-, -)x the inner product associated with the space X, whose induced norm || - ||x = +/(-, -)x is equivalent to
the usual H!(£2) norm. For p-uniform well-posedness of (2.1), we assume that a(-, -; #) : X x X — R is continuous and
uniformly coercive over X for all g in D, and that f(-) is a linear continuous functional over X for all u. That is,

a(w, v;
y(p) == sup sup J < 00, Yu € D, (2.2a)
weX veX ”w”X”v”X
a(w, w;
a(p) = infszm >ag >0, Ve D, (2.2b)
weX  lwlly
sup |f(u; p)| < oo, Yu € D. (2.2c)
ueX

As is common in the RBM literature [17], we assume that a(-, -; ) is “affine” with respect to the parameter u: Le., there exist
p-dependent coefficient functions @ : D — Rforg=1,...,Q,and @ : D - Rforg=1, ..., Qf, and corresponding
continuous u-independent bilinear forms a%(-, -) : X x X — R and linear forms f4(-) : X — R, respectively, such that

Qa Y
a(w, v; ) = Y Od(w)a(w, v), flw; w) =Y O () (w). (23)
q=1 g=1

There are strategies for situations when the affine assumption is not satisfied, e.g., empirical interpolation [18]. These
strategies generally replace a non-affine operator by an affine operator with sufficiently large Q, and Qy so that the solution
of the affine problem well approximates the solution to the non-affine problem. Note, however, that such an approach can
require large Q, and/or Qy and that RBM strategies can suffer substantially in computational efficiency in this case.

In order to compute solutions to (2.1) suppose that for u fixed, a spatial discretization (e.g., a finite element solver) can be
employed with A7 >> 1 degrees of freedom that computes an approximate solution uV'(g) to within an acceptable accuracy
for every u € D. This approximate solution vV is called the “truth” solution, and the associated spatial discretization and
solver is called the “truth" solver.

The truth solution 1 is sought in an A’-dimensional subspace X* (i.e., dim(X"') = A7) that is a discretization of X, and
(2.1) is discretized as

{For 1 € D, find the “truth” approximation uN(p,) € XV such that (2.4)

a@wV, v p) =f(v; n) YvexV.
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The other relevant quantities are defined according to the discretization. For example, the coercivity constant (2.2b) is

approximated by its numerical counterpart o’V (p) = 1n§v % Yu € D.
weX
A naive approach to computing solutions to (2.1) for many x would be to query the truth solver many times, which

is expensive under the N/ > 1 assumption. RBM methods attempt to provide numerical solutions of (2.1) with accuracy
comparable to vV, but with orders-of-magnitude less computational cost than the truth solver. The essential idea is to
project the collection of discrete solutions u?'(u) for 1+ € D onto a low-dimensional representation, and then to efficiently
compute this projected representation.

2.2. RBM framework

The reduced basis method is a reliable model reduction strategy that replaces a relatively expensive truth solver (2.4) with
a less expensive surrogate. The best possible accuracy of the surrogate is governed by a theoretical quantity, the Kolmogorov
N-width of the solution set U7, defined as

={u(p) | peD}CxVN. (2.5)

When the N-width of U# decays quickly with respect to N, an RBM strategy is effective. Practitioners in advance identify a
large but finite training set discretizing the parameter domain =i, C D, and a maximum dimension Np,ax (usually << A). An
RBM algorithm then approximates the solution space by an N-dimensional subspace of XV, denoted by X}, with N < Nmax.

The surrogate for the truth discretization is denoted uy N () and is computed as a member of the reduced space XN
The space X,{,V is constructed in a hierarchical manner as the span of so-called “snapshots”, by hierarchically constructmg a
sample set SN = {u!, ..., uN} from the training set &, and solving (2.4) with u = p". Explicitly:

X3 = span{uV(p"),1<n <N}, N=1,..., Ny (26)
Given p € D, we define the RBM solution uN (n) € XN as the solution to the following reduced problem

{For 1 € D, find the RB solution uy Np) e XN c X" such that 2.7)

atuy’, v p) =f(v: p) Vv e Xy’
The truth system (2.4) is N'-dimensional, but the reduced system (2.7) is N-dimensional. When N <« A/, this results

in a significant computational savings. This saving is realized by precomputing and storing the parameter-independent
components of the RB “stiffness” matrix which is decomposed via the affine assumption (2.3)

Qa
(@, vo: WDnsn = D Q) (@ (v, vn)) (2.8)
q=1
The nested structure of X,{,V (X{v C XzN Cc ... C XAI{HX c X») allows us to expand these parameter-independent

components (a%(vm, vn))yxn by adding one more row and one more column each time a new sample location ' is selected
and the new snapshot resolved.

2.3. Computational details

The Galerkin procedure in (2.7) can be transformed into an algorithm by using the following ansatz for the RBM
solution:

N
ud () =) ul (m (n™) . (2.9)

Using this in (2.7) and choosing the test functions as v = u ( M) forn = 1,...,N, results in a solvable linear system

for the unknown RB coefficients {uy ([L)}% 1» which defines uN In practice, this strategy tends to produce ill-conditioned
systems. To ameliorate this effect practitioners usually choose an orthonormal basis for XN for both trial and test

functions:
uy () = ZuNm Yem, (Em. En)x = Snms {Embmey € X3 (2.10)

The &, are hierarchically computed by orthogonalizing the snapshots u™" (u™) each time S is updated. We note that

computing the 'ﬁﬁfn coefficients is mathematically equivalent to computing the u% coefficients, as the two are related by a
change of basis transformation: The computational representation (2.10) can be transformed into the representation (2.9)
(and vice versa) through a linear transformation that we omit for brevity. The representation (2.10) is used in practical
implementations of RBM algorithms (both in general and in the examples of this paper), but our discussion will use the
formulation (2.9) because this formulation is more convenient to describe our residual-free error indicator in Section 3.3.
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2.4. Selecting snapshots through the a posteriori error estimate

Here we describe the procedure for selecting the representative parameters !, ..., u" for the sample set SV. This is an
important task since these parameter choices define the reduced space (2.6). RBM adopts a greedy scheme to iteratively
construct SV, and leans on mathematical theory for the truth discretization (2.4). In particular, there ex1st efficiently-
computable error estimates that quantify the discrepancy between the dlmen51on n RBM surrogate solution u; () and the
truth solution u' (). This error estimate is denoted A,, and satisfies Ap( || uy (p) — uVN || XN ASsummg existence of
this error estimate, the greedy procedure for constructing SV is summarlzed in Algonthm 1

Algorithm 1 Greedy algorithm for constructing SN and X,{,‘f .

1: Input: training set Zy.in, an accuracy tolerance &,, maximum RB dimension Npax.
2: Randomly select the first sample u! € Eipain, and setn = 1and & = 2g.

3: Obtain truth solution u'(u'), and set X}V = span {uV' (n")}.

4: while (¢ > g and n < Npax) do

for each u € Epain do
Obtain RBM solution 1 (n) € X}V and error estimate A,(p)
end for

0 N o wv

p" = argmaxAn(p), & = Ag(n"t).

MEEtrain
9:  Augment the sample set "' = S" [ J{u"*"} and the RB space X}/, = XV & {u™ (")}
10: Setn < n+ 1.

11: end while

The design and efficient implementation of the error bound A, is usually accomplished with a posteriori error estimates
from the truth discretization. Mathematical rigor of this estimate is crucial for the accuracy of the reduced basis solution.
The main novelties of this paper are replacements of the “classical” a posteriori error estimate with alternatives that are
either more efficient or have enhanced accuracy properties. We finish this section by describing how A, is evaluated in the
classical fashion.

The error between the reduced basis surrogate solution and the truth discretization is ey(p) := u™'(p) — uﬁf (n) € XN.
Unfortunately, this is not computable directly without knowledge of u?, which we want to avoid computing. However, the
linearity of a(-, -; p) results in

alen(p), v; ) = rv(v; k) Yo e XV, (2.11)
with the residual ry(v; p) € (XV) (the dual of X*V) defined as f(v; u) — a(uNN(;L), v; ). The Riesz representation theorem
and a variational inequality imply that ||ex(g)|lx~ < %’J‘Sﬂ where oV (p) = inlj\[ a(m;ﬁiﬂ) is the stability (coercivity)
constant for the elliptic bilinear form a. Therefore, we can define an a posteriori RBl\/llUZ);ror esti(mator as

Aty = IEENONY ey 2.12)

g ()

Here ai\sf () is a lower bound for oV(n) which is expensive to compute directly for all u. However, approaches for
computationally efficient estimation of the stability factor ozi‘B/ (u) has been undergoing vast development in [19,20] and
recently in [21-23]. Furthermore, an offline-online decomposition is also exploited to speed up the evaluation of (xi\,{ ().

The remaining ingredient for efficient computation of the a posteriori error estimation is the evaluation of ||ry(-; g)llx~y,
which is the chief concern of this manuscript. The following discussion details how this is achleved in a standard RB
1mplementat10n The Rlesz representation theorem states that we can calculate functions C? € XV and £, € X%, for
1<q<Q,1< < q < Qqg, such that

(3, v)yn = fﬁ(u)xN vu e XV
(8, v)xnv = al@w™ (u™),v) Yo eXxV.

m*

(2.13)

With the availability of ¢ and £, the classical implementation of RBM then adopts an offline-online decomposition for
llrn (s [L)||(2XN),. Combining (2.11), (2.9), and (2.3), we have

v (s gy = Z Zo‘“ JOP(R)C™, CT)en+

1=1g2=1

Q N Q N
PIDINCHAIE ZZO‘I e (8, L8 8 =23 %

qg=1 m=1 ¢=1m'=1 g=1 m=1

M@

Odmudr (m)C, L)k (2.14)
1

<
Il
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Most of the quantities above can be precomputed and stored explicitly from the form of the pPDE. Therefore, the offline
stage is devoted to calculating and storing

(T, €2 )en, (€T, £9)en, (£, L0 )en, T<mm' < Neg, 1< 31,8 < Q. 1<, ¢ < Q.

During the online stage, given any parameter u, we only need to evaluate ©J(n), (—)ﬁ(u), u%(u), 1 < m < N, and perform the
addition and subtraction according to (2.14). However, the coefficients u{}fn are the RBM expansion coefficients from (2.9),
and therefore evaluation of (2.14) at each u also requires computation of the RB solution uﬁ’ . We denote this numerical
approximation of A,(u)in (2.12) by &(u; n).

3. Novel approaches for error quantification

As shown by Algorithm 1, the classical RBM computes the maximum of the error estimator A,(-) over Ey.i, in a brute-
force manner. E\.i, is large especially for a high-dimensional parameter domain. Moreover, this maximization procedure
must be done for everyn = 1, ..., N. For these two reasons, the process of selecting snapshots is usually the computational
bottleneck of RBM algorithms. Another observation is that the dual norm of the residual is computed as a square root of its
square which is evaluated as the difference between a sum of two positive terms and a third term. This is prone to loss of
significance and one suspects that errors smaller than the square root of machine precision are not computable using the
form (2.14). This supposition is borne out in numerical results for RBM.

In this section, we provide two novel approaches to mitigate the deficiencies of classical RBM residual estimation. We
begin first by discussing why the classical approach for evaluation of the error estimate via the formula (2.14) is not ideal
when implemented in finite-precision arithmetic. We follow this by presenting our robust residual-based error estimate,
which directly evaluates |[ry(-; u)||(x~y without computing its squared value; this allows the new method to achieve errors
much smaller than root machine precision. Finally, we present our residual-free approach that uses a surrogate for the
residual that circumvents requirement of computing «;s(-). Thus the second approach is applicable to pPDE where no
rigorous a posteriori error estimate is available. Our preliminary analysis and numerical experiments suggest that the
residual-free method is promising, but rigorous theoretical analysis demonstrating its utility in the RBM setting is the subject
of ongoing work.

3.1. Finite-precision limitations for residual norm evaluation

The formula (2.14) is an expanded quadratic form for the expression

uV

I s mWeney = lauy =, s ) oy = a5 ) = £C5 1) poary (3.1)

At the root of the floating-point stagnation is evaluation of the above quadratic form via the formula
(a — b)* = a® — 2ab + b%.

Indeed, the right-hand side expansion of the above equation is (2.14). A simple floating point error analysis reveals the
following lemma, where we use ¢ to denote the machine precision, and fI(-) to denote the floating point representation of a
number.

Lemma 3.1. In the case of b = a + O(¢), we have that
fl(@® — 2ab + b*) = O(e),

while
filla—bY) = o(e?).

Proof. Assume fl(x) = x(1 + Ce), where C is an e-independent constant that does depend on x. We have |C| < 1, and in the
sequel we use Cjforj = 1,2..., to denote various such constants. Since a — b = O(¢), we have

flta® — 2ab + b*) = (a®(1 + Ca€) — 2ab(1 + Cze) + b*(1 + C4¢)) (1 + Cre)
= (a—b)* + ((a — b)*Cy + a>C; — 2abCs + b*Cy)e + (O(e))
= (0(€))* + O(¢)
= O(e).

showing the first equation in the Lemma’s conclusion. The second equation is straightforward since fI{(fi(a) — fI(b))?) =
(a(1 + Cqe) — b(1 4 Cpe))*(1 + Ce) = €(1 + (aCq + bCp))*(1 + Ce) = O(€2). O
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Fig. 1. The loss of accuracy for the formula (a — b)> = a?> — 2ab + b?, with a randomly chosen from (0, 1) and b = a 4 u4~N. Implemented in double
precision, we have /e ~ 1078, We see that the a> — 2ab + b? formula stagnates around this level.

The technical conclusion of this lemma can be communicated visually via Fig. 1. In this Figure, we introduce a parameter
w € (0, 1) to emulate the RBM setting, and set b = a + 4™, We numerically compute the y-maximum of the expressions
V(@ —b2 = ud4= and /a2 — 2ab + b2. The figure results demonstrate that the expression «/a2 — 2ab + b2, representing
the direct RBM estimate (2.14), stagnates around /€, which is about 1078 in IEEE double-precision. Direct usage of \/(a — b)?
does not suffer from this stagnation. This motivates the need for a robust approach to handle this case. One approach is
described in [12], and we describe a new method in the next two sections that also circumvents this issue.

3.2. Anew evaluation of the residual norm

An intuitive explanation of our approach is as follows: Fix u and consider the right-hand side expre5510n in(3.1). We
define f (-; w) = fj (s w) + fL(:; w), where fj (-; p) is a component of f(-; u) that is parallel to a(uN ,sm)and fi(; u)isa
component that is perpendicular to a(u,{,\/ , -3 iu). Therefore, Eq. (3.1) can be rewritten as

sl eacy = ([0 3 m) = iy G2 )] + 1)y

Our improvement to the standard evaluation (2.14) computes the residual norm above by the following observation: Since
the two separated terms under the norm are perpendicular, we can separate them via the Pythagorean theorem. We now
present the details; writing the residual norm as a norm in X* instead of in the dual (X*V), we have

s m)llxacy Z@f (w)? — ZZ@q s (32)

q=1 m=1 XN

Assume that ;' > Q;N, which is a reasonable assumption in the RBM framework. We introduce the following subspace in
the Hilbert space X*V:

Vy ::span{L}, R o S ﬁ,?f},
Defining VNL as the XV -orthogonal complement of Vy, then let Py be the X*V-orthogonal projection onto Vy, and let Pﬁ be
the orthogonal projection onto VNL.

We are now ready to state a preliminary result:

Lemma 3.2. The dual norm of the residual (3.2) has the form

2 2

¥ Q N
IvG: mloey = || D O (w)Pyiee Zof Puct =Y 04 (WudLh| (3.3)

q=1 XN q=1 m=1 XN
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Proof. The result is a fairly straightforward computation in least-squares problems. We have

) Q N
oG =)0l =) > Odmunn

q=1 q=1 m=1
¥ ¥ W N

=S efmpict+ [ Y ofmPvet — 3" Ol
q=1 q=1 q=1 m=1

Note that the first term is an element of P,# and the second term in parenthesis is an element of Py. The conclusion follows
from the Pythagorean theorem. O

This Lemma yields a computational procedure that ameliorates finite-precision loss of significance in numerical imple-
mentations.

3.2.1. Implementation and offline-online decomposition

In this section we treat elements of XV as Euclidean vectors in R?" and identify the norm | - ||y~ with the standard ¢2
norm || - ||. When the norm || - ||y~ is different than the £2 norm, the below discussion would proceed by inserting Gramian
square root matrices in appropriate places so that the resulting weighted ¢2 norm equals the norm on X*.

The discretized version of £%, € XV, is £%, a A" x 1 vector. Similarly, we let ¢1 € RV denote the vector representation of
1. We use the £2, vectors to define a matrix 5 and its associated column-pivoted reduced QR factorization:

B= (z;, R Y. zga) e RV,
BZ = OR o X= R./\/’xrank(B) R e Rranl((B)xQﬂN

where Z € R®N*@N js 3 permutation matrix obtained from the column-pivoted reduced QR factorization above. Define
¢ () the column vector

N T
cw) = (0J(ruly, -.., O, ..., O wudy, -..0%8 () € REN.

Finally, define Vy C XV as the column space of ©, along with some associated projection matrices:
Vy :=range (Q), Py =0, Py =1—Py=WW".

We remark that we allow the column space of Q to be less than the number of columns of B through, e.g. a rank-revealing
QR factorization. In cases where this rank deficiency is utilized, this makes our algorithm more online-efficient than that
of [ 12], where a Gram-Schmidt step with re-iteration is used on the full dimension of the column space. With Vit as the RV -
orthogonal complement of Vy, then Py orthogonally projects onto Vy, and P,# orthogonally projects onto Vﬁ. The columns
of W € RN *(QN-rank(®) gre formed from any orthonormal basis for Vi-. We can now state conclusion of Lemma 3.2 in terms
of vectors and matrices:

Theorem 3.3. The dual norm of the residual (3.2) can be evaluated by

2 2
& Y
G )y = | D Of W' + |y~ Of(m)Q" ¢t — R2TE(w) | - (34)
q=1 q=1

Proof. The second term in this result equals the second term in (3.3) due to the fact that " @ = I and that QT is an isometric
map on the range of Q:

2 2

|
Me

¥ Q N
YO wIPNCt = Y Y0 (W) UL, OF (RYPNC! — BE ()
qg=1

qg=1 m=1 XN

Q
Il
-

I
e

Of(r)2Q"C" — QRZ"C (n)

a
Il
—_

2

I
e

Of(m)Q"'c! — R2"E ()

a
Il
—-
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That the first term in the result equals the first term in (3.3) is the result of a similar computation but using W instead of Q:
2 2

o o
> ol wrc| = |w)_ejmmw'e
9=1 q=1

2

&
=Y _efmw'e| . o
q=1

The theorem above immediately reveals an offline-online decomposition: The w-independent parts of the formula
involve the matrix products

wlcd, o', Rz,
none of which have any dimensions dependent on N, but are simply dependent on N and Q,. Thus, these matrices may be
precomputed and stored independent of u. One p-dependent component involves the affine coefficients @ﬁ(u), which are
scalar and thus easy to compute. Finally, the coefficients ¢ (x) can be computed explicitly via the affine coefficients @J(u)
and from the RBM approximation uﬁf in (2.9). Since computing RBM approximation is A’-independent, the entire residual

norm computation via (3.4) is A’-independent in the online phase. We denote Ay(p)in (2.12) with residual norm computed
via this new approach by &(u; n).

3.3. Aresidual-free error indicator

Much of the RBM algorithm is dependent on rigor of the inequality in (2.12). However, in practical situations one may
not have access to such a computable a posteriori error estimator. This happens, for instance, with sufficiently complicated
nonlinear pPDE’s for which mathematical analysis is difficult or infeasible. In other situations, a rigorous error estimate like
(2.12) may exist, but is not easily computable in a A/-independent fashion due to nonlinearity of the pPDE. In this case, the
offline parameter selection portion of the RBM algorithm may be so expensive as to outweigh any computational saving
gained during the online phase.

In either of the cases above, one still hopes to use an efficient model-order reduction strategy like RBM, but with an
understanding that mathematically rigorous error certification may be lost.

A strategy for devising an error estimate for such a case is the subject of this section. While presumably one always
has access to the pPDE residual, one could then use ||ry(-; )| o as an error estimator that is not mathematically rigorous.
However, this estimator may also not be A/-independent, so that such an estimator is both non-rigorous and expensive.

The alternative we suggest is as follows: recall expression (2.9) that expresses the RBM approximation uﬂ,‘f (w) in terms of

the snapshots u™¥'(u™),n = 1, ..., N, via the expansion coefficients {”%(IL)}Ll- As indicated, these expansion coefficients
are functions of u, and play role of basis functions. Furthermore, they satisfy
u)j\l\{n (IL") = dn.m, (3.5)

where §, 1, is the Kronecker delta. The above property is a direct consequence of condition (2.7) that defines the RBM solution.
Therefore, the coefficient functions uﬁfn (+) are actually cardinal Lagrange interpolants associated to the space of functions
defined by their span. Note that, given any g, the cost of evaluation of these cardinal functions does not depend on A/, since
these coefficients are computed from the RBM solution.

We now rephrase the essential portion of the offline RBM phase: given the current parameter values p', ..., u" along
with the current subspace of parameter-dependent functions

span {uy; (), ..., ufn()} .

can we compute the next parameter value uN*1? Abstractly, this can be interpreted as an interpolation problem to find a
nested sequence of interpolation points p/, w*!, . .., associated to a nested sequence of function spaces.

We consider one potential solution to this problem, inspired by concepts in polynomial approximation. We take the next
point uN*+1 as the point that maximizes a function of these cardinal interpolants:

N
An(p) = (Z \uNNm(u)!>. (36)
m=1

The above function is simply the Lebesgue function from interpolation theory (i.e., the norm of an interpolation operator)..
Note that evaluation of this function depends only on the RBM solution, and does not directly involve computation of residual
norms, nor does it require mathematically rigorous a posteriori error estimates. We show in Lemma 3.4 that Ay does indeed
match the behavior of ex(p); it is therefore quite useful in selecting RBM parameter values to compute snapshots. However,
the relationship between ey and Ay involves a multiplicative scaling constant that is in general an uncomputable best
approximation error. Since we cannot compute this scaling constant, we cannot certify the error committed by parameter
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values picked with this method. However, we show in our numerical results section that choosing parameter samples via
greedy maximization of (3.6) empirically produces results comparable to using the RBM error estimate (2.12). Our ongoing
work seeks to “certify” the surrogate error generated via this approach. A simple approach for approximating a lower bound
for ey can be [[uV (uN*1) — uﬁ/( N+1)||x, which is a computable quantity requiring no additional PDE simulations in the RBM
context. Naturally, the effectiveness of this and related approaches will need to be carefully studied in the future.

We emphasize that this procedure is similar to, but distinct from, empirical interpolation procedures [18]. In empirical
interpolation, one essentially has an (N + 1)-dimensional space with N points, and uses the discrepancy between the (N+1)-
dimensional space and the N points to pick the (N + 1)st point. We cannot do this here since the (N + 1)-dimensional
space depends explicitly on the sought point uN*'. Thus, our strategy using the objective (3.6) circumvents the needs for
identification of the higher-dimensional space.

3.3.1. Characterization of Ay _
We now motivate the choice of Ay(p) as an error indicator. We introduce the space of XV -valued functions in L°(D):

L (D XN) {U D — XV ’ l[ullpoo (p xay < 00} l[ull oo (p x27y = Sug lu(p)llx -
ne

A subspace of particular interest is those functions in L* (D, XV ) whose p-variation is prescribed by the cardinal functions

N .
U+

N
Uy = {u: Zymuﬁfn(u) | v eXN] c L™ (p,xV).
m=1
Note that the RBM solution is in Uy, and the truth solution is in L* (D, XV):
u} € Uy, wWoer® (D,XN).

The former is true by inspection of (2.9), and the latter is true because of the truth discretization versions of the uniform
ellipticity and continuity assumptions (2.2a) - (2.2c). The following result then applies.

Lemma 3.4. Let |ley(p)llxr = ”u{\,\f(u) — uN(;L)HXN be the RBM error committed at parameter value p. Then

len(lixr < (14 An(p)) en(u™),

where ey is the best approximation error.

0= [0l

Proof. The result is an exercise in a pointwise version of Lebesgue’s Lemma for projective approximations. We first define
two operators. The first, Py : L (D, X') — Uy, is the interpolative projection operator defined by

N
Z uNm I, veLoo(D,XN).

m=1

The second operator is 8, : L (D, X') — XV, corresponding to point-evaluation at u € D:

Suv = v(p), vel® (D,XN) .
Note that
pyuY Zu uNm n) = uﬁf(u).

Now let v be any element in Uy, so that Pyv = v. Then

len(m)llxa = Jlun () — u™ ()| ynr < un’ () = v() |y + o) — 1N ()| o
=Py [t = o] (W) ga + 0¥ () = v() | x
= [JouPy [ = o] [ n + [0 () = ()|
< [T+ [8uPu ][] [ = v oo ey - 3.7
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where |6, Py || is the induced operator norm. We can directly compute

|8uPu] = sup  [[8uPvw]n
lwlioo(p xN')=
N

= sup > ol (mw(p™)

lwlloo(p xAH)=1 || ;p =7 xN
N

<) sup Jw(e™)

me1 Hw”LOO('DVXN):‘l

N
<Y Junn(m)] = An(p),

Using the above in (3.7) and infimizing over v yields
len(rlllxw < [14 A inf o —u | ny = [14+ An(w)] en(™). O

Lemma 3.4 states that, relative to the best approximant from Uy, the RBM solution u,{}/ commits a p-pointwise error that
scales monotonically with A n(m). This is, essentially, a generalization of Lebesgue’s Lemma in approximation theory.

Therefore, at any iteration n, the function A,(p) gives a qualitative indication of the error at u, and so choosing a new
snapshot parameter ™! at the maximum of this function is a greedy function that indirectly seeks to minimize the RBM
error. However, it does not provide a certifiable error since we cannot compute the value of ey. Furthermore, our Lemma
shows only that our residual-free error estimate is an upper bound for the true error; a rigorous procedure would also
establish that our error estimate is a lower bound. Without this lower bound guarantee, one can contrive situations where
our error estimate chooses parameter values that are not indicative of RBM subspace quality. However, we have not observed
this in any examples we have tried. Our analysis cannot currently exclude the possibility of such pathological problems, and
our ongoing work seeks to establish a lower bound estimate that would rigorously justify our residual-free objective.

4. Numerical results

In this section, we present numerical examples to demonstrate the accuracy and efficiency of the proposed two new
approaches. The difference between all these approaches appears only in how parameter values g/ are selected for use in
the RBM algorithm. We have three approaches to compare: (i) The standard RBM strategy that uses Ay(u) for the greedy
objective as defined in (2.12) with the residual norm computed using (2.14). (ii) The RBM strategy that again uses Ay (i)
from (2.12) as the greedy objective, but now uses the formula (3.3) to compute the residual norm. (iii) The greedy objective
is Ay(u), as defined in (3.6).

Since the parameter values selected by each of these three procedures is different, we use the subscripti = 1, 2, 3, to
differentiate quantities for these methods. We denote these error bounds are &(u) fori = 1, 2, 3. More specifically,
&1(p) = Ayn(p)definedin(2.12) (4.1)
In(-S Ny . .
&p) = ”N(Nw, where ||ry(+; p)ll(x»ry is computed in (3.3) (4.2)
opp(n)
&m) = An(p) (4.3)

Note that the first two approaches have rigorous error certification values. We use ul{,\f gi(u) to denote the RBM

approximation using greedy strategy i, for i = 1, 2, 3. Since the focus of this paper is on the computation of [[ry(-; &)ll(xAy
for £1 and &, and the elimination thereof for £3, we compute a{g’ (w) through direct resolution of the eigenvalue problems.
We test the three implementations on three problems, and present the results respectively in each subsection below.

4.1. Two cases with 1-dimensional parameter

We first test the three RB methods on the following equations with one parameter.
(1+ uX)u +uyy =e*™ on £2. (4.4a)
(1 4+ €)Xy + 1y = ™ on 2. (4.4b)

The first equation has continuous dependence on the parameter while the second has discontinuous dependence by having

) = sin (1 - Sign(u))g) . wen.
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Fig. 2. Results for one-parameter case (4.4a): The comparison of the three approaches (Left) and a demonstration that the residual-free error indicator
matches with the true error well (Right).
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Fig. 3. The Lagrange shape functions.

We take the physical domain as £2 = [—1, 1] x [—1, 1] and impose homogeneous Dirichlet boundary conditions on 952.
The truth approximation is a spectral Chebyshev collocation method based on 50 degrees of freedom for each direction.
The parameter domain D for u is taken to be [—0.995, 0.995], and the training set &\, a uniform Cartesian grid with 512
equally spaced points.

We show in Fig. 2 (left) the history of convergence for the three approaches. The classical approach stagnates before
reaching the square root of machine epsilon as expected. However, both new approaches have worst-case error estimate and
corresponding exact error converging further toward machine accuracy. It is worth noting that the residual-free function
An(p) used in the greedy scheme for method i = 3 is not a rigorous error bound. However, the RB space built from its
maximizers has similar approximation properties, as confirmed by the cyan curve in Fig. 2 (left). The fact that An captures
the pattern of the true error as the parameter u varies is shown in Fig. 2 (right). Here the black Zm(,u) curve is multiplied
by 10~ to achieve better alignment with the error curve. Finally, we show in Fig. 3 the 10 Lagrange shape functions uﬁ{ﬂt)
as implicitly defined in (2.9) and (2.7) when a 10-dimensional RB space is used.

The Lagrange shape functions used in the residual-free method inherit the structure dictated by the PDE. For example,
they are discontinuous if the PDE enforces this. The second example (4.4b) has discontinuous parameter dependence, and we
show the associated Lagrange shape functions for this case in Fig. 4. The results show both that convergence is not directly
affected by the discontinuity since the Lagrange functions now inherit discontinuous dependence from the PDE.
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Fig. 4. Results for the one-dimensional case with discontinuous dependence on parameter (4.4b). Top left demonstrates us the comparison of histories of
convergence for the three approaches. Top right demonstrates that the residual-free error indicator roughly matches with the true error well even when
the parametric dependence is discontinuous. Note that while error minima locations are successfully predicted, the maximum location(s) may be different.
The bottom figure shows discontinuous Lagrange functions that are necessary for the RB solution to approximate the truth solution well.

4.2. The first 2-dimensional test case

As afirst test case with 2-dimensional parameter, we consider the following equation whose solution space ends up being
well approximated by a 40-dimensional RBM surrogate.

— Uy — (1lyy — pou = —10sin(8x(y — 1)) on £2. (4.5)

The physical domainis 2 = [—1, 1] x [—1, 1] and we impose homogeneous Dirichlet boundary conditions on 9 2. The truth
approximation is a spectral Chebyshev collocation method with Ay, = 50 degrees of freedom in each direction. This means
the truth approximation has dimension /' = NXZ The parameter domain D for (1, (t2) is taken to be [0.1, 4] x [0, 2]. For
the training set Zy.n, we discretize D using a tensorial 129 x 65 uniform Cartesian grid.



1976

Y. Chen, J. Jiang and A. Narayan / Computers and Mathematics with Applications 77 (2019) 1963-1979

The standard algorithm stagnates

The improved algorithm does not stagnate
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Fig. 5. History of convergence for the classical and new approaches for Eq. (4.5). The pictures on the bottom row indicate that residual-free error indicator
roughly matches with the true error well. Note that while error minima locations are successfully predicted, the maximum location(s) may be different.

We present the results in Fig. 5, and observe the same behavior as in the one-dimensional case. Namely, the error estimate
and the true error stagnates when the traditional error estimate is adopted. This stagnation is eliminated by the two newly
proposed approaches. What is more, the error indicator for the residual-free approach tracks the true error across the
parameter domain as well as the one-dimensional case. It thus comes as no surprise that the third approach, albeit without
a certificate, produces RB solution as accurate as the second method.

We show in Fig. 6 the sets of snapshot locations SN for all three methods. To differentiate them, we adopt the notation
Sg, for the sets produced by method i. We overlay the two sets S2° and S0 in the first picture. The larger the marker, the
earlier it is picked by the greedy algorithm. Clearly, the two methods start by selecting the same points before deviating.
The first method starts to clutter points in an unphysical manner and keeps doing so in the same neighborhood of the
parameter domain. This leads to stagnation and potential singularity in the reduced solver. The enhanced approach (ng‘g)
avoids clustering and thus achieves better accuracy. The third, residual-free, approach demonstrates similar behavior.
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Fig. 6. Location of the chose snapshots for the classical approach and the two novel methods for the second 2-dimensional test case.

4.3. The second 2-dimensional test case

The second two-dimensional example has an equation that induces a solution manifold that requires many more
snapshots to achieve small error:

(1 + Xy + (1 + pwoy)uyy = ™ on 0. (4.6)

The parameter domain D here is taken to be [—0.99, 0.99]2. The physical domain £2, boundary condition, truth solver and
its resolution are all the same as the first two-dimensional case. We discretize D using a tensorial 160 x 160 Cartesian grid
with 160 equally-spaced points in each dimension.

The difficulty of this problem stems from the fact that the equation is close to degenerate at the four corners of the
parameter domain. Thus the stability constant approaches zero toward the four corners, making accurate calculation of the
residual norm even more critical. For example, the ratio (2.12) blows up if the denominator (the stability constant) converges
to zero while the numerator stays at the root machine accuracy level. The results are shown in Fig. 7 confirming, again, all
previously stated properties for the two novel approaches. The important role of an accurate residual norm calculation
is apparent, as for example the chosen parameter values are unnecessarily more clustered toward the corners using the
classical approach &;, see top row of Fig. 7.

5. Concluding remarks

We have proposed two novel strategies for computing objective functions in the offline greedy algorithm in the reduced
basis method. Our first strategy is residual-based, and follows standard practice in RBM by defining the objective to be an a
posteriori upper bound for the error committed by a finite element method. This bound requires computation of a residual
norm. In the standard RBM setting, this residual norm is computed in a way that can succumb to loss of significance when
the magnitude of the norm reaches root machine precision. Our residual-based reformulation circumvents this premature
stagnation without any loss in efficiency.

Our second strategy is residual-free, and uses only the RBM coefficients in the greedy objective. The particular function
is the Lebesgue function from interpolation theory. We can provide a theoretical result guaranteeing that the parametric
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Fig. 7. The results for the second test problem.

behavior of this function provides an upper bound for the parametric variation of the error, and thus is a good objective
function for a greedy search. However, the precise connection between the Lebesgue function and the error involves a
parameter-independent multiplicative constant that is an uncomputable best approximation error. Therefore, the residual-
free method can effectively choose parameter values, but it cannot provide error certification without a quantitative
understanding of this best approximation error. Furthermore, we currently lack a result establishing that the residual-free
objective is a lower bound for the true error; the establishment of such a result is a subject of ongoing work.

Our numerical experiments demonstrate that both of our strategies can effectively allow RBM to compute solutions to
an accuracy much closer to machine precision than the classical reduced basis error estimator.
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