Advances in Applied Mathematics and Mechanics DOL 10.4208 /aamm.OA-2018-0188
Adv. Appl. Math. Mech,, Vol. 11, Ne. 1, pp. 1-19 October 2019

A Reduced Basis Method for the Nonlinear
Poisson-Boltzmann Equation

Lijie Ji', Yanlai Chen®* and Zhenli Xu®

1 School of Mathematical Sciences, Shanghai Jino Tong University, Shanghai 200240,
China

2 Department of Mathematics, University of Massachusetts Dartmouth, 285 Old
Westport Road, North Dartmouth, MA 02747, USA

3 School of Mathematical Sciences, Instifute of Natural Sciences and Key Laboratory of
Scientific and Engineering Computing (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China

Received 29 August 2018; Accepted (in revised version) 8 January 2019

Abstract. In numerical simulations of many charged systems at the micro/nano scale,
a common theme is the repeated resolution of the Poisson-Boltzmann equation. This
task proves challenging, if not entirely infeasible, largely due to the nonlinearity of
the equation and the high dimensionality of the physical and parametric domains
with the latter emulating the system configuration. In this paper, we for the first time
adapt a mathematically rigorous and computationally efficient model order reduction
paradigm, the so-called reduced basis method (RBM), to mitigate this challenge. We
adopt a finite difference method as the mandatory underlying scheme to produce the
high-fidelity numerical solutions of the Poisson-Boltzmann equation upon which the
fast RBM algorithm is built and its performance is measured against. Numerical tests
presented in this paper demonstrate the high efficiency and accuracy of the fast al-
gorithm, the reliability of its error estimation, as well as its capability in effectively
capturing the boundary layer.
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1 Introduction

Fast numerical algorithms for solving parametrized partial differential equations (PDEs)
have attracted wide-spread interest in recent years, particularly in engineering applica-
tions due to many control, optimization and design problems requiring repeated simu-
lation of certain parametrized PDEs. Traditional numerical methods solve the equation
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for each necessary parameter value and thus obtaining the solution ensemble for the
whole parameter space is potentially time-consuming if not entirely infeasible. This is
an especially onerous task if the physical and/or parametric domain are of high dimen-
sions. It is therefore imperative to design efficient and accurate reduced order modeling
techniques for these scenarios capable of realizing negligible marginal (i.e., per param-
eter value) computational cost. The reduced basis method (RBM) provides a rigorous
and highly efficient platform to achieve this exact goal. It was first introduced for non-
linear structure problem [1,35] in 1970s and has been later analyzed and extended to
solve many problems such as linear evolutionary equation [21], viscous Burgers equa-
tion [41], Navier-Stokes equations [14] and harmonic Maxwell’s equation [10,11] just to
name a few. Interested readers are referred to the review papers [19,37] and recent mono-
graphs [22,36] for a systematic description of the RBM.

One such parametric scenario we are concerned in this paper is the simulation of
the electrostatic interaction which is essential for many systems in physical, biological
and materials sciences [16,30,42] at the nano/micro scale. These include, for example,
biopolymers, colloidal suspensions and electrochemical energy devices. The Poisson-
Boltzmann (PB) theory [3,7,15,17] plays a fundamental role in understanding the electro-
static phenomenon in such systems. It subjects the electric potential of a charged system
at the equilibrium state to a nonlinear elliptic equation with the the Boltzmann distribu-
tion for the ionic densities. The numerical solution of the B equation has been widely
studied in literature [2,34] and the numerical solvers are implemented in many popular
software packages such as Delphi and APBS for practical simulations. However, one of-
ten needs to solve the PB equation repeatedly to determine certain physical quantities of
interest (Qol) which are usually dependent on a wide range of parameters delineating
e.g., the boundary voltage, the geometric length and the Debye length. Particular ex-
amples of such Qols include the electrochemical capacitance, the current-voltage relation
and the free-energy calculation etc.

In this work, we propose a reduced basis method for the parametrized nonlinear PB
equation. Model order reduction for nonlinear equations is often realized by linearization
techniques [44] or polynomial approximations, among others. One frequently-used tool
is the empirical interpolation method (EIM) [5,18] which is crucial to facilitate the offline-
online decomposition, a hallmark feature of RBM to realize the negligible marginal com-
putational cost. This paper extends the RBM for the nonlinear PB equation by approx-
imating the nonlinear exponential term with a Taylor expansion form [39]. This leads
to a linear equation in each calculation step. Realizing a partial offline-online decom-
position, the method promises high accuracy due to the avoidance of the EIM error. It
is noted that this work only focuses on the mean-field PB equation which is limited to
describe phenomena when many-body interactions are important. The extension of our
work to the modified PB equations such as those including correlation and steric effects
(see, e.g., [32] and references therein) is of great interest due to the complex electrostatic
phenomena they model and the drastically different nonlinearity contained therein. The
successful application of the RBM will be reported in the future. We also note that Kweyu
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et al. [28,29] has recently extended the RBM to the linearized I’B equation for electrostatic
solvation calculations of the biomolecules. To the best of our knowledge, this paper is the
first attempt of solving the fully nonlinear equation with rapid nonlinearity by the RBM.

The paper is organized as follows. In Section 2, we introduce the basic RB algorithm.
Detailed description of the PB model, the FDM scheme used to obtain our high-fidelity
approximation, how we apply RB to the nonlinear PB equation and its computational
analysis are provided in Section 3. In Section 4, we show numerical results in both one
and two physical dimensional spaces to demonstrate the accuracy and efficiency of our
reduced model. Finally, concluding remarks are drawn in Section 5.

2 Overview of the reduced basis method

The reduced basis method is a fast algorithm for computing a certified surrogate to the
highly accurate but potentially expensive numerical solution (termed high-fidelity truth
approximation in this context) of a system dependent on a P-dimensional parameter

peDCRE.

It is particularly useful for the many-query or real-time simulation context where an ini-
tial investment may pay off through repeated simulations with significantly less (at times
negligible) marginal cost at a later stage. An essential tool is the offline-online decomposi-
tion process. The offline phase is devoted to construct the RB space, denoted by Wy (with
N being its dimension and usually much smaller than the number of degrees of freedom
for the high-fidelity truth approximation). During the online stage, an RB approximation
for any given parameter value y in the prescribed domain 7 is sought from the space
Wy. We remark that the RB approximations do not necessarily have low-fidelity. In fact,
they often match the accuracy of the high-fidelity approximation with a rather small N.
Since the online solver (of various dimensions) is invoked repeatedly offline to con-
struct the RB space Wy through a greedy algorithm, we present here the crucial online
solver for a linear PDE and postpone the construction of the RB space until when we
describe the RBM for the nonlinear PB equation for completeness of that section. In-
deed, consider a linear elliptic PDE, L(p)u(x,y) = f(x,y), with the operator (and/or the
right hand side) parametrized by p. Let A" be the number of degrees of freedom for
a well-defined and accurate numerical scheme (termed truth solver in the RB context)
discretizing this equation. The numerical approximation u? (3) is the solution of

Lyr(p)u? = £, 1)

which can be understood as deriving from a collocation formulation, I s (p)u? (x,y) =
f(x,y) for certain {x,y)’s, or a Galerkin scheme, & (", v) = f(v) for ¥v. A critical as-
sumption for the operator [,/ is that it is affine with respect to (the functions of) the



4 L.J.Ji Y. L. Chen and Z. L. Xu / Adv. Appl. Math. Mech., 11 (2019), pp. 1-19

parameter. That is, it can be written as,
< q
Liv=Y By, (22)
=1

where L?\f is a parameter-independent operator and coefficient function B; depends on
parameter . We note that, when the condition (2.2} is violated (e.g., the parameter de-
pendence is not affine or the equation is nonlinear, that is, (2.1) becomes L wu ) =1,
special care needs to be taken to facilitate the design of RBM. Indeed, EIM [5,18] will be
applied to recover the affine dependence and/ or linearization techniques will be in place
to transform the nonlinear solves into a sequence of linear solves. The RBM is built upon
this discrete solution and its accuracy is also measured against it, as opposed to the exact
solution of the equation L{p)u{x,y) = f(x,y). For that reason, the solution of Eq. (2.1) is
considered “exact” from the perspective of RBM and thus called the high-fidelity truth
approximation. For simplicity of exposition, we shall drop the superscript \ in the re-
mainder of the paper as we will not make any reference to the exact solution of the PDE.

The online process of the RBM is as follows. Assuming that we have identified N
parameter values {#',--, 4"} and the corresponding high-fidelity truth approximations
u, =uM (@), 1<n<N. With a slight abuse of notation, we do not differentiate these
functions and their discrete vectors. These vectors constitute the basis space of the RBM,
written in the form of a matrix, Wy = i1, -, un]| ERM*N, One expresses the RB approxi-
mation as a linear combination of the basis vectors. That is, we have

f[(,u) — WNC(F‘);' (2'3)

where c(p) €RY is the RB coefficient vector. These coefficients are sought by satisfying
the ansatz of the PDE. Therefore, we substitute this combination into Eq. (2.1} to obtain a
linear algebra system,
A(p)c(p) = f, (2.4)
where A () =Ly Wy is a A” x N matrix, f € R" is a column vector and A/ > N.
Coefficients c(p) can be obtained by the least-squares method leading to a Petrov-

Galerkin approach. One can also resort to the following Galerkin approach to identify
c(p) as a solution of the following (reduced) linear system:

B{p)c(p) = fn. (2.5)

Here B(p) is the RB matrix of dimension N x N and fy is the RB vector of dimension N,
which are expressed as follows,

B(p) =WiLa()Wy,  fulp) =Wif. (2.6)

Obviously, this is an energy projection into the RB space span{u,:1 <n <N}. Solving
equation (2.5) is much cheaper than solving Eq. (2.1) and system (2.5) is an order reduc-
tion in comparison to system (2.1).
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3 Poisson-Boltzmann equation and its reduced model

3.1 Poisson-Boltzmann model and the high-fidelity approximation

Poisson-Boltzmann is a mean-field theory describing the equilibrium distribution of
charged systems [13,27,31,43], which has been widely used in biomolecular solvation, mi-
crofluidic devices and charged soft materials. Typically, one considers a symmetric binary
electrolyte between two parallel electrodes positioned at locations marked by X =+Ix
with the extremes of the other direction marked ¥==Ly. The PB equation for the electric
potential ¢ is written as,

V- (eV¢) =2zecosinh(fzed) —py, (3.1)

where ¢ is the dielectric permittivity, £ze is the charge of an cation or anion, § is the
inverse thermal energy, co is the bulk concentration and py is the density of the fixed
charge.

Without loss of generality, we let the computational domain be a 2D square by setting
Lx =Ly =L. We further set x = X /I, y=Y/L, e = e being a constant, & = zefip and
g§=py/(2zeco). Then Eq. (3.1) becomes the following dimensionless PB equation,

DV2®=sinh®+¢(x,y), (3.2)

where D=(/p /L)Z, Ip=1/+/87m{z2co is the Debye screening length and £5=8¢?/ (4 mew)
is the Bjerrum length in water solvent. The Laplace operator V2 is with respect to the
new coordinates (x,y) and the computational domain in (x,y) is now Q=[-1,1]2. We
introduce the following boundary conditions,

S(x=+1y)=1V, (3.3a)
dy®(x,y ==+1)=0. (3.3b)

Here, the first boundary condition represents the fixed boundary voltages on the left and
right electrodes and the second one characterizes a state of low dielectric permittivity at
top and bottom boundaries y = +-1. HEq. (3.2} is thus the PB equation parametrized by

u:=[D, V],

a vector-valued parameter. We intend to devise a RBM for its rapid resolution for scenar-
ios when it needs to be solved repeatedly for a wide range of y values. More parameters
may be considered resulting in a higher-dimensional . The offline phase will then po-
tentially suffer from the curse of dimensionality, prompting the active research area of
offline enhancement for RBM. Existing approaches toward this end include multistage
greedy algorithm [38], training set adaptivity and adaptive parameter domain partition-
ing [20], random greedy sampling [23], greedy sampling acceleration through nonlinear
optimization [40] and multi-level greedy algorithm based on adaptive construction of
surrogate training sets [26].
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3.1.1 The iterative truth solver

Before the discussion of the RBM, let us describe a finite-difference solver for the nonlin-
ear PB equation. Numerical methods for nonlinear PB equations have been widely stud-
ied [4,6,8,33,34]. In this paper, we use the similar technique as Shestakov et al. [39], which
solves the nonlinear equation by iteratively transforming it into a linear one through trun-
cating the Taylor series. Let &, be the approximate solution at the mth iterative step, then
for the solution at the (m-+1)th step, the nonlinear term sinh®,, | is approximated by,

sinh®,,. 1 ~sinh®,; + (cosh®,, ) (D 1 — Py 3.4)
and the PB equation then becomes,
—DV2®,,, 1+ (cosh®y, )&, | = (cosh®y, ) Py —sinh Dy, — g(x,1). (3.5)

We then use the second-order five-point central difference scheme to approximate V2,
leading to a linear system for ®,,. 1. To describe this system, we denote by N the total
number of grid points discretizing the physical domain. The number of free nodes, i.e,,
those in the interior of the domain and on boundaries i = £1 is denoted by Nj. This
means that there are A’ — N nodes on boundaries x = +1 for which the corresponding
potential values are specified. Let £ (3; ) be the discretized operator for approximating
the left hand side of Eq. (3.5) and Neumann boundary condition (3.3b). Let ® be the
(No x 1) vector representing the discretized function ®(x,y). The numerical scheme can
then be written as

ﬁN(ﬂFqu)ism—}-l:F((bm)/ (3.6)

for n=0,1,---. Here [ discretizes the right hand side of equation (3.5) and incorporates
the Dirichlet boundary condition (3.3a). The iterative algorithm for solving (3.2} is sum-
marized in Algorithm 1 and the resulting solution ®{#) is called the high-fidelity truth
approximation corresponding to parameter p in the RBM framework. Note that Eq. (3.6),
being linear, is in fact only a tool for solving the noninear equation (3.2). Indeed, each
resolution of (3.2) for a given y amounts to a sequence of solves of (3.6). In other words,
we are solving the full nonlinear PB equation, not a linearized one. The RB scheme is
then built for the nonlinear PB equation.

Algorithm 1 [terative solver for the nonlinear B equation (3.2).

1: Initialize potential distribution &g, m =0 and the tolerance 3y —=1.
2: while 6, >10"" do

3 Solving the linear system of equations (3.6);

4 Set 5m+1:|‘®m+1*®m‘|oo}

5 Setm—m-+1;

6: (I)( ,u) =Py,
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3.1.2 The quantity of interest

For most parametric systems, there are frequently quantities of interest which are nothing
but functions of the parameter(s) describing the system. These Qols are often calculated
as functionals of the field variable, i.e., solution of the PDE modeling the system. There-
fore, the efficient resolution of these field variables immediately leads to that of the Qol.

The electrochemical systems [12] of interest in this paper are no exceptions. Indeed,
we are concerned with the total differential capacitance of the symmetric electrolyte. It is
defined as C =y /2, where (; is the differential capacitance of the left electrode defined
by

do(V) | 0P
v with U(V)ng(x

where (V) is the surface charge density at the left electrode. ®(x) is the average electric
potential which is simply ®(x) if the physical domain is one-dimensional and, for 2D, is
nothing but

CL= —-1),

&(x)= flldb(x,y)dy.

For the one-dimensional case, one can derive an explicit expression for the differential
capacitance Cy, by solving the PB equation. Indeed, integrating Eq. (3.2) from x to 0 gives

®_ jﬁsmh @) (37)

then one has, by utilizing the boundary condition, that = —2\/58i1’1h(—V/ 2), which

means,

do v
CLf—W—\/ECOSh (ﬂ (3.8)

3.2 Reduced basis method for the Poisson-Boltzmann equation

As shown in the overview, the online procedure of the RBM algorithm is to find the coef-
ficients of the surrogate solution in the reduced basis space. Indeed, the N dimensional
coefficient vector c(y) is sought by asking the resulting surrogate solution to satisfy the
PDE (3.6) weakly in the RB space,

o

A(pt;®) 1 (1) =WEE ($,), m=01,-, (39)

at every iteration. Here, ,,.1(p) denotes the m 1" iterate of the RB coefficient vector
c(p) and @y, is the m™ iterate of the RB solution,

B () = Wyem (). (3.10)

Note that A(p;®,) = Wk £ (3@ )Wy depends on the current iterate of the RB solution
D ().
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Thus, we have to rely on an online (reduced) iterative solver as well. This iterative
procedure for solving the coefficient c(y) is summarized in Algorithm 2 for any given
parameter ¢ with the final RB surrogate approximation denoted by c(y).

Algorithm 2 RB approximation for nonlinear B equation, c(p) =RBM_PB(Wyx,u).

1: Initialize the potential distribution &y, j =0, and the tolerance dy —1.
2: while §; >10"% do
3: Form the coefficient matrix A and WI:GF at each jth iteration.

4 Solve for ¢jy1 from (3.9).
5: (I)j+1 :WNC]'+1.

6 G =P =Pl

7 ] = j+1

8: C(}J) =Cj.

The full offline algorithm for constructing RB basis space Wy is realized with standard
greedy algorithm [22,36,37], which exploits a rigorous (albeit costly) a posteriori error esti-
mator. We first discretize the parameter domain D by a sufficiently fine training set Ztrain.
We remark that a priori information, if available, can be leveraged for this discretization.
For example, if i follows certain probability distribution, Eyj, could be obtained by sam-
pling the parameter domain 10 according to the probability density function. The REM
algorithm is independent of how Ep,in is obtained. The greedy algorithm then starts
by selecting the first parameter ‘ul randomly from E.in and obtaining its corresponding
high-fidelity truth approximation &(u') from Algorithm 1 to form a (one-dimensional) RB
space Wy = {d(u!)}. Next, we solve Fq. (3.9} to obtain an RB approximation & () for
each parameter in Hy,in together with an error bound Aj(y). The greedy choice for the
(i +1)th parameter (i=1,---,N —1) is made by

# i —arg max A;(p). (3.11)

HSErain

The error bound is traditionally residual-based (i.e., (F — L (1) ®(s))-based) [22,36,37],

_IF=La(m) @)l
Brs(p)

where Brp(p) is the smallest eigenvalue of Lu(p)¥ Lir(pe). For simplicity, we compute
it from the linear part of the operator (3.5). This stability constant is usually calculated
by the Successive Constraint Method (SCM) [9, 24,25] which is not necessary as the pa-
rameter dependence of the eigenvalue is obvious. After obtaining the (i-+1)th high-
fidelity truth approximation ®(z'*1) from Algorithm 1, we augment the RB space by
Wi, 1 =GS(W, @(p 1)), where GS(W, ® (1)) denotes a Gram-Schmidt orthogonaliza-
tion procedure of the new vector ij)(,ui*l) with respect to the previously selected and

Ai(p)

, (3.12)
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Algorithm 3 Reduced basis greedy sampling algorithm.

. Choose g! randomly in Ein and solve ®(p!) from Algorithm 1

. Initialize Wy = { & () },

.For N=2,... Ny

Solvec(p) from Algorithm. 2 and calculate Ay _1 () for all p € Byain
FindpN =argmaxgez,., An—1(p)

Solved(pN) from Algorithm 1 and orthogonalizeWy =GS(Wy 1, (1)).
. End For

oUW N RS

orthogonalized basis vectors in W;. The detailed numerical scheme is described in Algo-
rithm 3.

With the greedy sampling algorithm, we still have to form and solve, in each iteration,
the smaller RB systems in Step 3 for all ¢ in the training set. While solving the RB system
is inexpensive, forming it can be much more expensive. However, for a particular set of
parametrized linear systems, the RB system can be formed efficiently. The technique is
an offline-online decomposition which is the topic of the next subsection.

3.2.1 Offline-online computational procedure

To describe this procedure, we revisit the original FDM scheme (3.6) for the nonlinear B
equation. £ () and F() are the discretized operator and the right hand side vector.
For the purpose of forming the RB operator A(x) in Eq. (3.9) efficiently, we decompose
L () at each mith iteration as follows

L (p:@m) = DL+ L3 (). (313)

Here, Dﬁjlv is the first part (—DV?) of Eq. (3.5) having an explicit p-dependence (note
#=(D,V)) butis $,-independent

Do 1 (X 1,¥%) — 2P 1 (05, 95) + L1 (11, Y1)
(ﬁjl\f(pﬂﬁl) (xj:yk) = : h2 : !
X
Doy 1037, 05-1) = 2P 1 (X05) + P 1 (%) Y51) 314
- h% I ( M )

while £3,(z;®,,) denotes the second part of Eq. (3.5) that depends on both y and @,
When applied to &, 1, it produces

(3 (33 B) gt ) (x11) = 0SB (s (35,0)) B 1 (7,9,
Here h, =2/N,, hy =2/N,, with Ny and N, being the number of intervals in x-direction

and y-direction, respectively. After this decomposition, A(p;®,,) can be written as

At Dy ) = W Lpr(p50) Wiy = AL (1) + Ax (4: D), (3.15)
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where

A1(p) =DWE LW,
Ax(p;®y) = WE L3 (11 D1) Wi

Below is a summary of the decomposition and the operation count that each step takes.

¢ Realizing W?\}[Z}VWN is p-independent, we precompute it by gradually populating
this N x N matrix as we identify the RB bases in the space Wy one by one. In-
deed, when the ith basis is determined, we populate the ith row and ith column of
Wi L4 Wy This step takes O(N?) operations.

o Update A5(3#;®,,) and the right hand vector WLF(®,,) at each iteration of the on-
line procedure. This step takes @ (NoN) operations.

¢ Invert the RB matrix A(y) with O(N?) operations.
o Form ® (i) = Wyc(p) after each iteration, taking (}{ Ny N) operations.

Therefore, the total operation count of the online stage is
O(NoNHN?).

Although having J\/b—dependence which can be eliminated by the Empirical Interpola-
tion Method [5,18], we note that the dependence is linear and it still produces an ap-
proximation much faster than the original FDM scheme. From complexity analysis, this
is possible because the coefficient matrix for the case with two-dimensional physical do-
main in Algorithm 1 is an Ny % Ny banded matrix with a band width 2N, —1. The fact
that Ng=(Ny—1)(Ny+1) is often very large and N is typically very small and in partic-
ular N < N, are an indicator that our RB algorithm will be much faster than the iterative
truth solver. This is indeed corroborated in the next section where we present numerical
results.

4 Numerical examples

In this section, we show numerical results in both one- and two-dimensional spaces to
demonstrate the performance of the proposed RBM algorithm. The common parameter
space D2 (D, V) is taken to be D = [0.082,04%] x [0,5], which is discretized by a so-called
training set

E={D|vDe(0.08:0.02:04)} x {(0:0.25:5)}.
We also define a testing set

Best— { D[V D € (0.085:0.01:0.395) } x {(0.4:0.5:4.4)},
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which in particular does not intersect with the training set. Here, the notation a:h:b de-
notes an equidistant discretization of the interval [a,b] by elements of size h. In addition,
we let E(N) represent the maximum relative error over all g in Zies of the reduced basis
solution using N basis functions in comparison to the high-fidelity truth approximation

E(N) = max {1 @) = () oo/ 1P| Loz o)) (4.1)
where
||| (R0 L2 (2)) = @) ] -
Lastly, we let

RE(N) —max Ay (),

pel

represent the maximum error bound over the discretized set & when N parameters are
selected.

4.1 One dimensional space

We consider the PB equation (3.2) with source ¢(x,) =0. The problem reduces to one
dimension thanks to the homogeneity in the y direction. The high-fidelity truth approxi-
mation ¢ is obtained with a central finite difference scheme in Algorithm 1. The physical
domain [—1,1] is divided into N, cells by N’ =N, +1 grid points.

Fig. 1(a) displays the relative errors of the RB solution when different partition num-
bers N, =1000,2000,4000 and 8000 are used for the high-fidelity truth approximation.
One clearly observes exponential convergence of the error with respect to the number of
reduced bases. For this one-dimensional problem, using N =12 basis functions is enough
for the error E(N) to reach ~107° which is of the same magnitude as the high-fidelity
truth approximation error. Fig. 1(b) shows the sample solutions ®(x;u=(D,2)), i.e., the
potential distributions at different D values with V =2 and N, =10,000.

The nonlinear PBE has a boundary layer near each boundary where the voltage is
applied. The width of these layers are about @(+/D). In addition, since V dictates the
Dirichlet boundary, it is clear that the smaller D is and the larger V is, the stronger the
boundary-layer is. This is a manifestation of the nonlinearity of the PB equation. It pro-
vides an intuitive account of why the parameter locations for the chosen RB snapshots,
shown in Fig. 1(d), cluster around the upper-left corner of the parameter domain with
smaller D and larger V values. More basis are needed to resolve the boundary layer to a
high accuracy in the regime of smaller D and larger V. In addition, most of the selected
parameters are on the boundaries, i.e.,, when V =0 or 5 and VD =0.08 or 0.4, the latter
denoted by the left (D = 0.0064) and the right (D = 0.16) vertical lines.



12 L.J.Ji Y. L. Chen and Z. L. Xu / Adv. Appl. Math. Mech., 11 (2019), pp. 1-19

1°

0%

Relative Error
Potential Distribution

,d
<
T

—_
=]
=
[
=
—
)
—
4]

=
2
£
= ]
1
)
0 1 P P
0 0.04 0.08 012 0.16
D
(d)

Figure 1: (a) The maximum relative errors of RB approximations E(N) versus N. (b) Potential distributions
at representative D values with V =2. (c) Maximum error estimators of RB approximation ARE™ versus N. (d)
The location of the selected parameters where the reduced bases are computed.

Now we fix Ny = 10,000 and study the effectivity of the RB model. We show the
comparison of A%2*(N) and the RB relative error E(N) in Fig. 1(c) and the selected pa-
rameters’ locations in Fig. 1(d). It is noted that the error estimator is decreasing with
similar exponential speed as the error even though the error is calculated in a stronger
norm (L) than that for the residual in the error estimator.

Next, we report the result on calculating the total differential capacitance for the sym-
metric electrolyte. The numerical surface charge density ¢ is calculated by,

AP (xp) —3P(x1) —P(x3)
2h

upon which the differential capacitance is obtained. We take VD =0.08:0.005:04, V =
0:002:2 and N =16 to calculate a surrogate differential capacitance. Fig. 2(a) shows

4.2)

c=Do,®(x=-1)=D
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Figure 2: (a) Differential capacitance C evaluated by REM as a function of the voltage V and +/D . (b) The
error of the differential capacitance as function of V, VD,

the capacitance, with ® evaluated by RBM as a function of the boundary voltage V and
/D, while Fig. 2(b) shows the error surface. Here Error = (oee_CREM, e fopatonlated
through expression (3.8) and CReM represent differential capacitance calculated by RBM
through expression (4.2). It can be observed that the RBM is very accurate even with a
small number of bases (N =16).

4.2 Two dimensional space

In this section, we solve a two dimensional PB equation (3.2) with the fixed charge
g(x,y) =exp[—50{x*+y?)]. The total number of nodes for the central-difference scheme
in Algorithm 1 is A = (Ny+1)(Ny+1) and the number of unknown nodes is Ay =
(Ny—1){Ny+1). The boundary conditions on y = £1 are approximated by the central
difference scheme.

We first show representative RB approximations & when D= 0.04, Ny = Ny =200 in
Fig. 3. It can be observed that when the applied voltage is smaller, the variation of the
potential distribution @ is stronger.

Using the same parameter subsets as those in the previous section, we show the RB
relative error E{(N) in Fig. 4(a) and we again observe the convergence for all partition
numbers Ny, Ny, with Ny =N, =200,400,800. We see that, for the RBM solution to approx-
imate the FDM sufficiently closely, a basis number N larger than the one-dimensional
case is necessary. In order to show that when N =20 we are at the FDM accuracy level,
we verify our FDM accuracy in Fig. 4(b). Indeed, we set N, —=200,400,800 and 1,600 with
V =0.1,D =0.04 and take the solutions with N, =1,600 to be the reference and define

Ex(I): H(I)Nx(t;)_(b].GOO(i/)HOO/ 1:1;2;;Nx+1

E, can be viewed as the absolute error at each discrete node in x-direction and the infinite
norm is for the y-direction. The distribution of E; is shown in Fig. 4(b) and clearly we
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Figure 3: Potential distributions for different V' by the RBM. (a) V=0 (b) V=0.1 (c) V=05 (d) V=5.

only need about 20 parameters to reach the high-fidelity relative error ~ 10~° which is
the accuracy level of the FDM solution. The comparison between E(N) and AFZ* when
N, = N, =200, N =20 is shown in Fig. 4(c). Parameter locations for the RB snapshots
are shown in Fig. 4(d) when N, = N, =200,N = 20 and we also find that small voltages
are often selected, which is consistent with the conclusions in Fig. 3. Specifically, most of
selected parameters sit on the boundaries of the parameter domain and the left vertical
line in Fig. 4(d) refers to D =0.0064 and the right one refers to D=0.16,

Next, we report the speedup attributed to the application of the RBM. The final on-
line time consumption comparison is shown in Table 1. Obviously the online time of RB
approximation is smaller than Algorithm 1. This is mainly due to the coefficient matrix
structure of the two dimensional case. It is not a tridiagonal matrix as in the one dimen-
sional case and order reduction is significant for such matrix with a wide band width.
The actual speedup will also depend on a practitioner ‘s implementation of the algorithm
and the adopted computing environment. We note that these tests were performed by
Matlab 2016b on a 64-bit laptop with Windows 10 operating system whose processor
version is Intel(R) Core(TM) i7-6500U CPU @2 50GHz.
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Figure 4: (a) Convergence of RB approximation of different partition numbers at different basis numbers N.
(b) The error accuracy Ex of FDM in x-direction at different partition numbers Ny with V=01, D=0.04. (c)
Maximum error estimators AJY™ at different basis numbers N. {d) Selected parameters’ location.

Finally, as in the one-dimensional case, we report the effectivity of using RBM to
calculate the quantity of interest, namely the differential capacitance. Toward that end,
we take N, = N, =400,0=0.08:0.005:04, V =0.04:0.02:2 and N =20. These results

Table 1: Online computational times at different partition numbers Ny, Ny when V=357, D =0.25%, N=20.

Ny, Ny REM ® FDM @
100 0.0231827 0.2228043
200 0.0960147  1.1668299
400 0.4744200  5.3805034
800 2.0143542  27.2314357
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Figure 5: (a) Differential capacitance C at different voltages V and +/D by RBM. (b) Corresponding error at
different voltages V and V.

are showed in Fig. 5. In particular, the error as shown in Fig. 5(b) is defined in the same
fashion as the one dimensional case. In fact, calculating these differential capacitance
through the RBM is 29 or more times faster than using FDM. This demonstrates that the
RBM approximation is efficient in calculating the parametrized physical quantities such
as the differential capacitance of the electrochemical system.

5 Conclusions

This paper adapts the RB algorithm to solve the parametrized nonlinear PB equation
in both one and two dimensional physical spaces with a two dimensional parameter
space. Though PB equation is non-affine and has exponential nonlinearity, our algorithm
shows good accuracy and the selected parameters’ distribution accurately reflects the
nonlinearity of the PB equation. In future work, we consider further enhancement to the
algorithm including application of EIM achieving total N -independence of the online
solver and a novel approach that achieves the same efficiency without EIM.
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