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Abstract

The reconstruction of a discrete surface from a point

cloud is a fundamental geometry processing problem that

has been studied for decades, with many methods devel-

oped. We propose the use of a deep neural network as a

geometric prior for surface reconstruction. Specifically, we

overfit a neural network representing a local chart parame-

terization to part of an input point cloud using the Wasser-

stein distance as a measure of approximation. By jointly

fitting many such networks to overlapping parts of the point

cloud, while enforcing a consistency condition, we compute

a manifold atlas. By sampling this atlas, we can produce a

dense reconstruction of the surface approximating the input

cloud. The entire procedure does not require any training

data or explicit regularization, yet, we show that it is able

to perform remarkably well: not introducing typical overfit-

ting artifacts, and approximating sharp features closely at

the same time. We experimentally show that this geomet-

ric prior produces good results for both man-made objects

containing sharp features and smoother organic objects, as

well as noisy inputs. We compare our method with a number

of well-known reconstruction methods on a standard sur-

face reconstruction benchmark.

1. Introduction

3D geometry is commonly acquired in the form of col-

lections of (possibly incomplete) range images (laser scan-

ning, structured light, etc) or measurements of more com-

plex structure (LIDAR). Unordered set of points (point

clouds) is a commonly used representation of combined

registered results of scanning objects or scenes. Point

clouds can be obtained in other ways, e.g., by sampling an

implicit surface using ray casting. Computing a continu-

ous representation of a surface from the discrete point cloud

(e.g., a polygonal mesh, an implicit surface, or a set of pa-

rameteric patches) in way that is robust to noise, and yet

retains critical surface features and approximates the sam-

pled surface well, is a pervasive and challenging problem.

Different approaches have been proposed, mostly

grouped into several categories: (1) using the points to de-

fine a volumetric scalar function whose 0 level-set corre-

sponds to the desired surface, (2) attempt to ”connect the

dots” in a globally consistent way to create a mesh, (3) fit a

set of primitive shapes so that the boundary of their union

is close to the point cloud, and (4) fit a set of patches to the

point cloud approximating the surface.

We propose a novel method, based, on the one hand, on

constructing a manifold atlas commonly used in differen-

tial geometry to define a surface, and, on the other hand, on

observed remarkable properties of deep image priors [37],

using an overfitted neural network for interpolation. We

define a set of 2D parametrizations, each one mapping a

square in parametric space to a region of a surface, ensur-

ing consistency between neighbouring patches. This prob-

lem is inherently ambiguous: there are many possible valid

parametrizations, and only a small subset will correspond to

a faithful representation of the underlying surface. We com-

pute each parametrization by overfiting a network to a part

of the point cloud, while enforcing consistency conditions

between different patches. We observe that the result is a

reconstruction which is superior quantitatively and qualita-

tively to commonly used surface reconstruction methods.

We use the Wasserstein distance as a training loss, which

is naturally robust to outliers, and has the added advantage

of providing us explicit correspondences between the para-

metric domain coordinates and the fitted points, allowing us

to explicitly measure, and thus minimize, the disagreement

between neighbouring patches covering a surface.

We use a standard shape reconstruction benchmark to

compare our method with 12 competing methods, showing

that, despite the conceptual simplicity of our algorithm, our

reconstructions are superior in terms of quantitative and vi-

sual quality.
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2. Related work

Geometric Deep Learning A variety of architectures

were proposed for geometric applications. A few work with

point clouds as input; in most cases however, these methods

are designed for classification or segmentation tasks. One

of the first examples are PointNet [33] and PointNet++ [34]

originally designed for classification and segmentation, us-

ing a set-based neural architecture [39, 36]. PCPNet [14]

is version of PointNet architecture, for estimation of local

shape properties. A number of learning architectures for

3D geometry work with voxel data converting input point

clouds to this form (e.g., [38]). The closest problems these

types of networks solve is shape completion and point cloud

upsampling.

Shape completion is considered, e.g., in [9], where vol-

umetric CNN is used to predict a very course shape com-

pletion, which is then refined using data-driven local shape

synthesis on small volumetric patches. [16], follows a

somewhat similar approach, combining multiview and vol-

umetric low-resolution global data at a first stage, and using

a volumetric network to synthesize local patches to obtain

higher resolution. Neither of these methods aims to achieve

high-quality surface reconstruction.

PU-Net, described in [41], is to the best of our knowl-

edge, the only learning-based work addressing point cloud

upsampling directly. The method proceeds by splitting in-

put shapes into patches and learning hierarchical features

using PointNet++ type architecture. Then feature aggrega-

tion and expansion is used to perform point set expansion in

feature space, followed by the (upsampled) point set recon-

struction.

In contrast to other methods, the untrained networks in

our method take parametric coordinates in square paramet-

ric domains as inputs and produce surface points as output.

An important exception is the recent work [12] defining an

architecture, AtlasNet, in which the decoder part is simi-

lar to ours, but with some important distinctions discussed

in Section 3. Finally, [4] studied the ability of neural net-

works to approximate low-dimensional manifolds, showing

that even two-layer ReLU networks have remarkable abil-

ity to encode smooth structures with near-optimal number

of parameters. In our setting, we rely on overparametrisa-

tion and leverage the implicit optimization bias of gradient

descent.

Surface Reconstruction is an established research area

dating back at least to the early 1990s (e.g, [17]); [6] is

a recent comprehensive survey of the area. We focus our

discussion on the techniques that we use for comparison,

which are a superset of those included in the surface re-

construction benchmark of Berger et al [5]. Berger tested

10 different techniques in their paper; we will follow their

nomenclature. They separate techniques into four main cat-

egories: indicator function, point-set surfaces, multi-level

partition of unity, and scattered point meshing.

Indicator function techniques define a scalar function in

space that can be used for testing if a given point is in-

side or outside the surface. There are multiple ways to

define such a function from which a surface is generated

by isocontouring. Poisson surface reconstruction (Pois-

son) [21] inverts the gradient operator by solving a Pois-

son equation to define the indicator function. Fourier sur-

face reconstruction (Fourier) [20] represents the indicator

function in the Fourier basis, while Wavelet surface recon-

struction (Wavelet) [27] employs a Haar or a Daubechies

(4-tap) basis. Screened Poisson surface reconstruction

(Screened) [22] is an extension of [21] that incorporates

point constraints to avoid over smoothing of the earlier tech-

nique. This technique is not considered in [5], but is con-

sidered by us.

Point-set surfaces [2] define a projection operator that

moves points in space to a point on the surface, where the

surface is defined to be the collection of stationary points of

the projection operator. Providing a definition of the projec-

tion operators are beyond the scope of our paper (see [5]).

In our experiments, we have used simple point set surfaces

(SPSS) [1], implicit moving least squares (IMLS) [24], and

algebraic point set surfaces (APSS) [13].

Edge-Aware Point Set Resampling (EAR) [18] (also not

considered in [5], but considered by us) works by first com-

puting reliable normals away from potential singularities,

followed by a resampling step with a novel bilateral filter

towards surface singularities. Reconstruction can be done

using different techniques on the resulting augmented point

set with normals.

Multi-level Partition of Unity defines an implicit func-

tion by integrating weight function of a set of input points.

The original approach of [29] (MPU) uses linear functions

as low-order implicits, while [28] (MPUSm) defines differ-

ential operators directly on the MPU function. The method

of [31] (RBF) uses compactly-supported radial basis func-

tions.

Scattered Point Meshing [30] (Scattered) grows

weighted spheres around points in order to determine the

connectivity in the output triangle mesh.

The work in [32] uses a manifold-based approach to a

direct construction of a global parametrization from a set

of range images (a point cloud, or any other surface repre-

sentation, can be converted to such a set by projection to

multiple planes). It uses range images as charts with pro-

jections as chart maps; our method computes chart maps by

fitting. [40] jointly optimizes for connectivity and geome-

try to produce a single mesh for an entire input point cloud.

In contrast, our method produces a global chart map using

only a local optimization procedure.
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Figure 1. Overview of our proposed surface reconstruction archi-

tecture. An input point cloud X is split into overlapping patches

Xp, where a local chart ϕp(v) = φ(v, θp) is obtained via the min-

imisation of a Wasserstein loss L̃(θ) (2). The local charts are made

globally consistent thanks to the correspondences arising during

the Wasserstein loss minimization (Section 3.2)
.

Deep Image Prior Our approach is inspired, in part, by

the deep image prior. [37] demonstrated that an untrained

deep network can be overfitted to input data producing

a remarkably high-quality upsampling and even hole fill-

ing without training, with the convolutional neural network

structure acting as a regularizer. Our approach to surface re-

construction is similar, in that we use untrained networks to

represent individual chart embedding functions. However,

an important difference is that our loss function measures

geometric similarity.

3. Method

Our method for surface reconstruction uses a set of deep

ReLU networks to obtain local charts or parametrizations

(Section 3.1). These parameterizations are then made con-

sistent with each other on the parts where they overlap (Sec-

tion 3.2). The networks are trained using the 2-Wasserstein

distance as a loss function. The overall architecture of our

technique is illustrated in Figure 1.

In the following, we denote by S a smooth surface (pos-

sibly with a boundary) in R
3. The goal of surface recon-

struction is to estimate S from a possibly noisy point cloud

X = {xi = yi +wi; yi ∈ S; i ≤ N}, where wi models the

acquisition noise.

3.1. Local Parametrization Model

Let us first consider the reconstruction of a given neigh-

borhood of S around a point p, denoted as Up, from the cor-

responding point cloud Xp = X ∩ Up. If Up is sufficiently

small, from the implicit function theorem, one can charac-

terize Up ∩ S as the image of the open square V = (0, 1)2

by a differentiable mapping ϕ : V → Up.

We propose to approximate ϕ using a neural network,

φ(·; θp) : V → R
3, where θp is a vector of parameters, that

we fit so that the image of φ approximates Up ∩ S . For that

purpose, we first consider a sample {v1, . . . , vn} of n =
|Xp| points in V using a Poisson disk distribution, and the

associated Earth Movers or 2-Wasserstein Distance (EMD)

between {φ(vi; θp) : i = 1 . . . n} and Xp = {x1 . . . , xn}:

L(θ) = inf
π∈Πn

∑

i≤n

‖φ(vi; θ)− xπ(i)‖
2. (1)

where Πn is the set of permutations of n points. The

computation of the EMD in (1) requires solving a linear

assignment problem, which can be done in O(n3) using,

for instance, the Hungarian algorithm [25]. Since this is

prohibitive for typical values of n, we rely instead on the

Sinkhorn regularized distance [8]:

L̃(θ) = min
P∈Pn

∑

i,j≤n

Pi,j‖φ(vj ; θ)− xi‖
2 − λ−1H(P ) (2)

where Pn is the set of n × n bi-stochastic matrices and

H(P ) is the entropy, H(P ) = −
∑

i,j Pij logPij . This

distance provably approximates the Wasserstein metric as

λ → ∞ and can be computed in near-linear time [3]. Fig-

ure 13 in the supplemental material shows the effect of vary-

ing the regularization parameter λ on the results.

We choose φ to be a MLP with the half-rectified activa-

tion function:

φ(v; θ) = θKReLU(θK−1ReLU . . .ReLU(θ1v)),

where θi, i = 1 . . .K, are per-layer weight matrices. This

choice of activation function implies that we are fitting a

piece-wise linear approximation to Xp. We choose to over-

parametrize the network such that the total number of train-

able parameters T = dim(θ1) + · · ·+ dim(θK), where dim

refers to the total number of entries in the matrix, satisfies

T ≫ 3n, which is the number of constraints.

Under such overparametrized conditions, one verifies

that gradient-descent converges to zero-loss in polynomial

time for least-squares regression tasks [10]. By observing

that

min
θ

L̃(θ) = min
P∈Pn

min
θ

L̃(θ;P ), with

L̃(θ;P ) =
∑

i,j≤n

Pi,j‖φ(vj ; θ)− xi‖
2 − λ−1H(P ),

and that L̃(θ;P ) is convex with respect to P , it follows that

gradient-descent can find global minimsers of L̃ in polyno-

mial time.

As λ → ∞, the entropic constraint disappears, which

implies that by setting P to any arbitrary permutation ma-

trix Π, we can still obtain zero loss (minθ L̃(θ,Π) = 0). In

other words, the model has enough capacity to produce any



arbitrary correspondence between the points {vi}i and the

targets {xi}i in the limit λ → ∞. A priori, this is an unde-

sirable property of our model, since it would allow highly

oscillatory and irregular surface reconstructions. However,

our experiments (Section 4) reveal that the gradient-descent

optimization of L̃ remarkably biases the model towards so-

lutions with no apparent oscillation. This implicit regular-

isation property is reminiscent of similar phenomena en-

joyed by gradient-descent in logistic regression [35, 15] or

matrix factorization [26]. In our context, gradient-descent

appears to be favoring solutions with small complexity,

measured for instance in terms of the Lipschitz constant of

φθ, without the need of explicit regularization. We leave the

theoretical analysis of such inductive bias for future work

(Section 5). Note that, in practice, we set λ to a large value,

which may have an extra regularizing effect.

3.2. Building a Global Atlas

Section 3.1 described a procedure to obtain a local chart

around a point p ∈ S , with parametric domain Vp and its

associated fitted parametrization ϕp = φ(·; θ∗p) : Vp →

R
3. In this section, we describe how to construct an atlas

{(Vq, ϕq); q ∈ Q} by appropriately selecting a set of an-

chor points Q and by ensuring consistency between charts.

Consistency. To define atlas consistency more precisely,

we need to separate the notions of parametric coordinate-

assignment and surface approximation, since the local chart

functions ϕp define both. We say that two charts p and q

overlap, if Xp,q = Xp ∩ Xq 6= ∅. Each discrete chart ϕα is

equipped with a permutation πα, assigning indices of points

in Xp to indices of parametric positions in Vp. Two overlap-

ping charts p and q are consistent on the surface samples

if

ϕq(vπ−1
q (i); θq) = ϕp(vπ−1

p (i); θp), ∀xi ∈ Xp ∩ Xq

i.e., for any point in the patch overlap, the values of the two

chart maps at corresponding parametric values coincide. If

all chart maps are interpolating, then consistency is guaran-

teed by construction, but this is in general not the case. We

enforce consistency explicitly by minimizing a consistency

loss (4).

Constructing the Atlas. We construct the set of patch

centers Q using Poisson disk sampling [7] of X , with a

specified radius, r. For each q ∈ Q, we first extract a neigh-

borhood Xq by intersecting a ball of radius cr centered at

q with X (X ∩ B(q; cr)), where c > 1 is another hyper-

parameter. To reduce boundary effects, we consider a larger

radius c̃ > c and use X̃q := X ∩ B(q; c̃r) to fit the local

chart for Xq . In general, the intersection of S with the ball

B(q; c̃r) consists of multiple connected components, possi-

bly of nontrivial genus. We use the heuristic described be-

low to filter out points we expect to be on a different sheet

from the ball center q.

To ensure consistency as defined above, we fit the charts

in two phases. In the first phase, we locally fit each chart

to its associated points. In the second phase, we compute a

joint fitting of all pairs of overlapping charts.

Let (θp, πp) and (θq, πq) denote the parameters and per-

mutations of the patches p and q respectively at some iter-

ation of the optimization. We compute the first local fitting

phase as

min
θp

inf
πp

∑

i≤|Xp|

‖φ(vi; θp)− xπp(i)‖
2. (3)

We define the set of indices of parametric points in chart

p of the intersection Xp,q as

Tpq = {i|xπp(i) ∈ Xp,q},

where Tqp is the corresponding set in chart q. The map

between indices of corresponding parametric points in two

patches is given by: πp→q := πq ◦ π
−1
p : Tpq → Tqp.

Equipped with this correspondence, we compute the sec-

ond joint fitting phase between all patch pairs as:

min
θp,θq

inf
πp,πq

∑

i∈Tp;q

‖φ(vi; θp)− φ(vπp→q(i); θq)‖
2. (4)

Observe that by the triangle inequality,

‖φ(vi; θp)− φ(vπp→q(i); θq)‖ ≤‖φ(vi; θp)− xπp(i)‖+

‖φ(vπp→q(i); θq)− xπp(i)‖.

Therefore, the joint fitting term (4) is bounded by the sum

of two separate fitting terms (3) for each patch (note that

xπp(i) = xπq(πp→q(i))). Consistent transitions are thus en-

forced by the original Wasserstein loss if the charts are in-

terpolating, i.e. φ(vi; θp) = xπp(i) for all i, p. However,

in presence of noisy point clouds, the joint fitting phase en-

ables a smooth transition between local charts without re-

quiring an exact fit through the noisy samples.

If the Sinkhorn distance is used instead of the EMD, then

we project the stochastic matrices Pq , Pq′ to the nearest per-

mutation matrix by setting to one the maximum entry in

each row.

Filtering Sample Sets Xr. In our experiments, we choose

the ball radius to be sufficiently small to avoid most of the

artifacts related to fitting patches to separate sheets of the

surface-intersection with B(q; cr). The radius can be easily

chosen adaptively, although at a significant computational

cost, by replacing a ball by several smaller balls whenever
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Figure 2. Single patch fitting with uv-mapping illustrated with a

checkerboard texture.
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Figure 3. Evolution of single-patch reconstruction as the loss L̃(θ)
is minimised. The jumps in the loss are a side-effect of the adaptive

gradient descent scheme ADAM.

the quality of the fit is bad. Instead, we use a cheaper heuris-

tic to eliminate points from each set that are likely to be on

a different sheet: We assume that the input point cloud X
also contains normals. If normals are unavailable, they can

be easily estimated using standard local fitting techniques.

We then discard all vertices in each Xp whose normals form

an angle greater than a fixed threshold α with respect to the

normal at the center. In all our experiments (Section 4) we

used r = 2.5% of the bounding box diagonal enclosing the

point cloud, c = 1.5 c̃ = 1.5, α = 100 degrees.

4. Experiments

Experimental Setup. We run our experiments on a com-

puting node with an Intel(R) Xeon(R) CPU E5-2690 v4,

256 GBgb of memory, and 4 NVIDIA Tesla P40 GPUs. The

runtime of our algorithm are considerably higher than com-

peting methods, requiring around 0.45 minutes per patch,

for a total of up to 6.5 hours to optimize an the entire model.

We optimize the losses (3) and (4) using the ADAM

[23] implementation in PyTorch with default parameters.

Specifically for ADAM, we use a learning rate of 10−3,

β = (0.9, 0.999), ǫ = 10−8, and no weight decay. For the

Sinkhorn loss, we use a regularization parameter, λ = 1000.

For the networks, φ, we use an MLP with fully connected

layer sizes: (2, 128, 256, 512, 512, 3) and ReLU activa-

tions. Our reference implementation is available at https:

//github.com/fwilliams/deep-geometric-prior.

Single Patch Fitting. Our first experiment shows the be-

haviour of a single-patch network overfitted on a complex

point cloud (Figure 2 left). Our result is a tight fit to the

point cloud. An important side effect of our construction is

an explicit local surface parametrization, which can be used

to compute surface curvature, normals, or to apply an image

onto the surface as a texture map (Figure 2 right).

Figure 3 shows the evolution of the fitting and of the pa-

rameterisation ϕθ as the optimization of L̃(θ) progresses.

We observe that the optimization path follows a trajectory

where φθ does not exhibit distortions, supporting the hy-

pothesis that gradient descent biases towards solutions with

low complexity.

Global Consistency. As described in Section 3.2, recon-

structing an entire surface from local charts requires consis-

tent transitions, leading to the formulation in (3) and (4)

which reinforces consistency across overlapping patches.

Figure 5 illustrates the effect of adding the extra consistency

terms. We verify that these terms significantly improve the

consistency.

Surface Reconstruction Benchmark. To evaluate quan-

titatively the performance of our complete reconstruction

pipeline, we use the setup proposed by [5], using the first

set of range scans for each of the 5 benchmark models. Fig-

ure 4 shows the results (and percentage error) of our method

on the five models of the benchmark. We compare our re-

sults against the baseline methods described in Section 2,

and use the following metrics to evaluate the quality of the

reconstruction: Let X denote the input point cloud. From

the ground-truth surface S and the reconstruction Ŝ , we ob-

tain two dense point clouds that we denote respectively by

Y and Ŷ . We consider

dinp→rec(i) = min
ŷj∈Ŷ ‖xi − ŷj‖ , i ≤ |X |,

drec→GT(j) = minyk∈Y ‖ŷj − yk‖ , j ≤ |Ŷ|. (5)

That is, drec→GT measures a notion of precision of the re-

construction, while dinp→rec measures a notion of recall.

Whereas drec→GT is an indication of overall quality, it does

not penalize the methods for not covering undersampled re-

gions of the input. Figure 6 illustrates these one-sided corre-

spondence measures. A naive reconstruction that copies the

input satisfies dinp→rec ≡ 0 but since in general the input

point cloud consists of noisy measurements, we will have

dinp→GT > 0.
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Figure 4. Fitted points on the different models of the benchmark, the color illustrates the error with respect to the ground truth.
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colors due to the disagreeing patches. After optimization (right)
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Figure 6. Diagram illustrating the evaluation measures we use to

compare different reconstructions.
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Figure 7. Percentage of fitted vertices (y-axis, log scale) to reach

a given error (dinp→rec, x-axis) for different methods. The errors

are computed from the fitted surface to the ground truth. The plots

for the remaining models of the dataset are provided in the supple-

mentary document.

Figures 7 and 8 show respectively the percentage of ver-

tices of Ŷ and X such that drec→GT and dinp→rec is below

a given error.

Our technique outperforms all the technique we tested,
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Figure 8. Percentage of fitted vertices (y-axis) to reach a given er-

ror (drec→GT), x-axis) for different methods. The errors are mea-

sured as distance from the input data to the fitted surface. The

plots for the remaining models of the dataset are provided in the

supplementary document.

EAR Ours

Figure 9. EAR (left) versus Ours (right). The input point cloud

contains noise which is smoothed out by our reconstruction (while

preserving sharp features quite well) but interpolated by EAR. The

result is that EAR produces spurious points and visible artifacts.

and it is on par with the state-of-the art EAR method [19],

which achieves a similar score for these 5 models. But, as

we will discuss in the next paragraph, EAR is unable to cope

with noisy inputs. This is a remarkable result considering

that our method, differently from all the others, produces an

explicit parametrization of the surface, which can be resam-

pled at arbitrary resolutions, used for texture mapping, or to

compute analytic normals and curvature values.

EAR is an interpolative method, which by construction

satisfies X ⊂ Ŷ . It follows that the noise in the measure-

ments is necessarily transferred to the surface reconstruc-
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Figure 10. Example of reconstruction on extreme conditions for

our method versus the most representative traditional methods.

The red dots in the Reference are the input points for the recon-

struction.

tion. Figure 9 illustrates that our deep geometric prior pre-

serves the sharp structures while successfully denoising the

input point cloud. The mathematical analysis of such im-

plicit regularisation is a fascinating direction of future work.

Noise and Sharp Features. As discussed above, the be-

havior of surface reconstruction methods is particularly

challenging in the presence of sharp features and noise in

the input measurements. We performed two additional ex-

periments to compare the behaviour of our architecture with

the most representative traditional methods on both noisy

point clouds and models with sharp features. Schreened

Poisson Surface Reconstruction [22] (Figure 10, left) is very

robust to noise, but fails at capturing sharp features. EAR

(Figure 10, middle) is the opposite: it captures sharp fea-

tures accurately, but being an interpolatory method fails

at reconstructing noisy inputs, thus introducing spurious

points and regions during the reconstruction. Our method

(Figure 10, right) does not suffer from these limitations, ro-

bustly fitting noisy inputs and capturing sharp features.

Generating a Triangle Mesh. Our method generates

a collection of local charts, which can be sampled

at an arbitrary resolution. We can generate a trian-

gle mesh by using off-the-shelf-techniques such as Pois-

son Surface Reconstruction [22] on our dense point

clouds. We provide meshes reconstructed in this way

for all the benchmark models at https://github.com/

fwilliams/deep-geometric-prior.

Comparison with AtlasNet [12]. Our atlas construction

is related to the AtlasNet model introduced in [12]. Atlas-

Chamfer

Wasserstein (w/ Sinkhorn)

Figure 11. Surface reconstruction of stacked cubes using a sin-

gle chart, with two different choices of metric. We verify

that the Wasserstein metric, even with the Sinkhorn entropy-

regularization, provides a more uniform parametrisation, as well

as bijective correspondences between overlapping charts.

Net is a data-driven reconstruction method using an autoen-

coder architecture. While their emphasis was on leverag-

ing semantic similarity of shapes and images on several 3D

tasks, we focus on high-fidelity point cloud reconstruction

in data-sparse regimes, i.e. in absence of any training data.

Our main contribution is to show that in such regimes, an

even simpler neural network yields state-of-the-art results

on surface reconstruction. We also note the following es-

sential differences between our method and AtlasNet.

• No Learning: Our model does not require any training

data, and, as a result, we do not need to consider an

autoencoder architecture with specific encoders.

• Transition Functions: Since we have pointwise cor-

respondences, we can define a transition function be-

tween overlapping patches Vp and Vq by consistently

triangulating corresponding parametric points in Vp

and Vq . In contrast, AtlasNet does not have such corre-

spondences and thus does not produce a true manifold

atlas.

• Patch Selection: We partition the input into point-sets

Xp that we fit separately. While it is theoretically at-

tractive to attempt to fit each patch to the whole set as

it is done in AtlasNet, and let the algorithm figure out

the patch partition automatically, in practice the diffi-

culty of the optimization problem leads to unsatisfac-

tory results. In other words, AtlasNet is approximating

a global matching whereas our model only requires lo-

cal matchings within each patch.
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Figure 12. Comparison with Atlasnet. Top: drec→GT and dinp→rec

cumulative histograms. Bottom: surface reconstruction visualiza-

tion. Observe that local charts do not have consistent transitions in

the Atlasnet output.

• Wasserstein vs. Chamfer Distance: As discussed

above, the EMD automatically provides transition

maps across local charts. AtlasNet considers instead

the Chamfer distance between point clouds, which

is more efficient to compute but sacrifices the abil-

ity to construct bijections in the overlapping regions.

Moreover, as illustrated in Figure 11, we observe that

Chamfer distances may result in distortion effects even

within local charts.

• Chart Consistency: We explicitly enforce consis-

tency (4) which has a significant effect on quality, as

illustrated in Section 4, whereas AtlasNet does not pro-

duce a real manifold atlas, since it has no definition of

transition maps.

We provide quantitative and qualitative comparisons to

assess the impact of our architecture choices by adapting

AtlasNet to a data-free setting. In this setting, we overfit At-

lasNet on a single model with the same number of patches

used for our method. Figure 12 reports both drec→GT and

dinp→rec cumulative histograms on a twisted cube surface

using 10 local charts. We verify that when the Atlasnet

architecture is trained to fit the surface using our experi-

mental setup, it is clearly outperformed both quantitatively

and qualitatively by our deep geometric prior. We empha-

size however that AtlasNet is designed as a data-driven ap-

proach, and as such it can leverage semantic information

from large training sets.

5. Discussion

Neural networks – particularly in the overparametrised

regime – are remarkably efficient at curve fitting in high-

dimensional spaces. Despite recent progress in understand-

ing the dynamics of gradient descent in such regimes, their

ability to learn and generalize by overcoming the curse

of dimensionality remains a major mystery. In this pa-

per, we bypass this high-dimensional regime and concen-

trate on a standard low-dimensional interpolation problem:

surface reconstruction. We demonstrate that in this regime

neural networks also have an intriguing capacity to recon-

struct complex signal structures while providing robustness

to noise.

Our model is remarkably simple, combining two key

principles: (i) construct local piece-wise linear charts by

means of a vanilla ReLU fully-connected network, and (ii)

use Wasserstein distances in each neighborhood, enabling

consistent transitions across local charts. The resulting ar-

chitecture, when combined with gradient descent, provides

a “deep geometric prior” that is shown to outperform exist-

ing surface-reconstruction methods, which rely on domain-

specific geometric assumptions. The theoretical analysis of

this deep geometric prior is our next focus, which should

address questions such as how the geometry of the surface

informs the design the neural network architecture, or why

is gradient descent biasing towards locally regular recon-

structions.

Despite these promising directions, we also note the lim-

itations our approach is facing. In particular, our method

is currently substantially more expensive than alternatives.

One natural possibility to accelerate it, would be to train a

separate neural network model to provide an efficient ini-

tialization for the local chart minimisation (2), similarly as

in neural sparse coders [11]. Another important question for

future research is the adaptive patch selection, which would

leverage the benefits of multiscale approximations.
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Figure 13. Effect of the parameter λ on the reconstruction and the loss W2.

Figure 14. Example of reconstruction form Kinect data (red dots).

A. Supplementary Experiments

A.1. Effect of the parameter λ

In Figure 13, we demonstrate the effect of varying the

Sinkhorn regularization parameter on the final reconstruc-

tion of a surface. Smaller values of λ yield a better approxi-

mation of the Wasserstein distance, and thus, produce better

reconstructions of the original points.

A.2. Kinect reconstruction

To demonstrate the effectiveness of our technique on re-

constructing point clouds with large quantities of noise and

highly non-uniform sampling, we reconstruct a raw point

cloud acquired with a Kinect V2 (Figure 14). In spite of

the challenging input, we are still able to produce a smooth

reconstruction approximating the geometry of the original

object.

A.3. Surface Reconstruction Benchmark

We provide cumulative histograms for the results of the

Surface Reconstruction Benchmark [5] on all 5 models

shown in Figure 4. Figures 15 and 16 show respectively

the percentage of vertices of Ŷ and X such that drec→GT

and dinp→rec is below a given error.

A.4. Surface Reconstruction Benchmark Statistics

In addition to the cumulative histograms above, we tabu-

late the mean, standard deviation, and maximum values for

each method and model in the benchmark. Table 1 show

the distance from the input to the reconstruction (dinp→rec)

and Table 2 show the distance from the reconstruction to the

input (drec→GT).
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Figure 15. Percentage of fitted vertices (y-axis, log scale) to reach a certain error level (x-axis) for different methods. The errors are

computed from the fitted surface to the ground truth.
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Figure 16. Percentage of fitted vertices (y-axis) to reach a certain error level (x-axis) for different methods. The errors are measured as

distance from the input data to the fitted surface.



min avg std max

A
n

ch
o

r

Apss 1.32e-05 8.78e-04 8.78e-04 9.21e-03

Ear 3.30e-09 3.18e-07 3.18e-07 7.75e-07

Fourier 8.95e-06 1.34e-03 1.34e-03 1.34e-01

Imls 1.11e-05 9.00e-04 9.00e-04 9.43e-03

Mpu 4.07e-06 8.73e-04 8.73e-04 8.45e-03

Mpusmooth 9.50e-06 9.13e-04 9.13e-04 1.06e-02

Poisson 1.09e-05 1.63e-03 1.63e-03 1.17e-01

Screen Poisson 6.99e-06 7.45e-04 7.45e-04 1.79e-02

Rbf 1.46e-05 8.61e-04 8.61e-04 9.89e-03

Scattered 1.33e-05 8.18e-04 8.18e-04 1.06e-02

Spss 8.67e-06 1.03e-03 1.03e-03 1.06e-02

Wavelet 8.30e-06 2.19e-03 2.19e-03 6.27e-02

Our 4.91e-06 7.21e-04 7.21e-04 2.55e-02

D
ar

at
ec

h

Apss 9.98e-06 7.87e-04 7.87e-04 1.05e-02

Ear 1.34e-09 2.79e-07 2.79e-07 8.18e-07

Fourier 7.86e-06 1.06e-03 1.06e-03 1.94e-02

Imls 5.73e-06 8.35e-04 8.35e-04 1.05e-02

Mpu 5.33e-06 8.47e-04 8.47e-04 8.55e-03

Mpusmooth 9.87e-06 9.31e-04 9.31e-04 1.87e-02

Poisson 1.28e-05 1.58e-03 1.58e-03 3.18e-02

Screen Poisson 3.80e-06 6.98e-04 6.98e-04 1.72e-02

Rbf 2.12e-06 7.52e-04 7.52e-04 1.08e-02

Scattered 7.48e-06 6.97e-04 6.97e-04 1.70e-02

Spss 8.36e-06 1.12e-03 1.12e-03 1.12e-02

Wavelet 6.13e-06 1.88e-03 1.88e-03 2.27e-02

Our 5.30e-06 4.23e-04 4.23e-04 1.79e-02

D
c

Apss 6.20e-06 4.98e-04 4.98e-04 1.45e-02

Ear 9.81e-10 3.18e-07 3.18e-07 8.28e-07

Fourier 7.69e-06 6.23e-04 6.23e-04 2.65e-02

Imls 9.09e-06 5.88e-04 5.88e-04 1.43e-02

Mpu 1.07e-05 5.54e-04 5.54e-04 7.08e-03

Mpusmooth 8.10e-06 6.14e-04 6.14e-04 2.75e-02

Poisson 6.76e-06 1.02e-03 1.02e-03 2.63e-02

Screen Poisson 7.12e-06 4.34e-04 4.34e-04 2.70e-02

Rbf 9.15e-06 6.40e-04 6.40e-04 2.77e-02

Scattered 4.45e-06 5.20e-04 5.20e-04 2.69e-02

Spss 3.76e-06 7.66e-04 7.66e-04 1.55e-02

Wavelet 1.76e-05 1.82e-03 1.82e-03 2.68e-02

Our 6.10e-06 3.98e-04 3.98e-04 2.48e-02

G
ar

g
o
y

le

Apss 7.80e-06 5.62e-04 5.62e-04 6.92e-03

Ear 1.73e-09 3.18e-07 3.18e-07 7.52e-07

Fourier 3.94e-06 7.02e-04 7.02e-04 2.55e-02

Imls 8.39e-06 6.09e-04 6.09e-04 6.49e-03

Mpu 1.10e-05 6.27e-04 6.27e-04 6.75e-03

Mpusmooth 4.57e-06 7.25e-04 7.25e-04 8.81e-03

Poisson 1.20e-05 1.05e-03 1.05e-03 2.73e-02

Screen Poisson 1.04e-05 4.87e-04 4.87e-04 1.81e-02

Rbf 6.44e-06 7.30e-04 7.30e-04 5.86e-03

Scattered 7.73e-06 5.78e-04 5.78e-04 1.03e-02

Spss 5.30e-06 7.74e-04 7.74e-04 1.34e-02

Wavelet 1.14e-05 1.56e-03 1.56e-03 2.73e-02

Our 5.40e-06 4.50e-04 4.50e-04 1.81e-02

L
o

rd
Q

u
as

Apss 8.64e-06 4.76e-04 4.76e-04 7.55e-03

Ear 1.05e-09 3.22e-07 3.22e-07 8.91e-07

Fourier 1.15e-05 5.64e-04 5.64e-04 1.79e-02

Imls 8.29e-06 5.29e-04 5.29e-04 8.60e-03

Mpu 7.94e-06 5.44e-04 5.44e-04 5.01e-03

Mpusmooth 1.07e-05 5.70e-04 5.70e-04 8.18e-03

Poisson 5.70e-06 8.24e-04 8.24e-04 4.38e-02

Screen Poisson 4.74e-06 4.29e-04 4.29e-04 1.08e-02

Rbf 1.01e-05 6.48e-04 6.48e-04 7.27e-03

Scattered 6.72e-06 4.88e-04 4.88e-04 1.69e-02

Spss 6.66e-06 6.03e-04 6.03e-04 7.66e-03

Wavelet 9.27e-06 1.49e-03 1.49e-03 4.71e-02

Our 1.38e-06 4.15e-04 4.15e-04 2.14e-02

Table 1. Distance from the input to the reconstruction.

min avg std max

A
n

ch
o

r

Apss 6.28e-06 1.79e-03 1.79e-03 2.80e-02

Ear 4.96e-06 1.53e-03 1.53e-03 9.93e-03

Fourier 1.45e-06 2.01e-03 2.01e-03 6.59e-02

Imls 6.49e-06 1.92e-03 1.92e-03 2.82e-02

Mpu 2.23e-06 2.08e-03 2.08e-03 4.59e-02

Mpusmooth 4.81e-06 1.87e-03 1.87e-03 3.66e-02

Poisson 8.75e-06 2.27e-03 2.27e-03 6.59e-02

Screen Poisson 7.12e-06 2.15e-03 2.15e-03 6.59e-02

Rbf 1.62e-06 2.98e-03 2.98e-03 6.60e-02

Scattered 4.30e-06 2.16e-03 2.16e-03 6.57e-02

Spss 4.15e-06 4.39e-03 4.39e-03 9.00e-02

Wavelet 5.36e-06 3.01e-03 3.01e-03 6.59e-02

Our 3.82e-06 1.53e-03 1.53e-03 9.69e-03

D
ar

at
ec

h

Apss 2.18e-06 1.68e-03 1.68e-03 2.16e-02

Ear 3.15e-06 1.50e-03 1.50e-03 1.68e-02

Fourier 4.68e-06 2.39e-03 2.39e-03 5.98e-02

Imls 3.46e-06 1.79e-03 1.79e-03 2.36e-02

Mpu 5.25e-06 2.06e-03 2.06e-03 4.11e-02

Mpusmooth 5.98e-06 2.14e-03 2.14e-03 4.92e-02

Poisson 3.25e-06 2.98e-03 2.98e-03 6.83e-02

Screen Poisson 4.30e-06 2.42e-03 2.42e-03 6.47e-02

Rbf 2.28e-06 3.59e-03 3.59e-03 6.44e-02

Scattered 5.40e-06 1.60e-03 1.60e-03 1.81e-02

Spss 5.99e-06 2.73e-03 2.73e-03 7.66e-02

Wavelet 4.04e-06 3.29e-03 3.29e-03 5.04e-02

Our 1.96e-06 1.51e-03 1.51e-03 1.67e-02
D

c

Apss 5.53e-06 1.68e-03 1.68e-03 2.87e-02

Ear 2.54e-06 1.32e-03 1.32e-03 2.46e-02

Fourier 3.51e-06 1.60e-03 1.60e-03 2.53e-02

Imls 6.12e-06 1.75e-03 1.75e-03 2.93e-02

Mpu 3.98e-06 1.53e-03 1.53e-03 3.84e-02

Mpusmooth 3.51e-06 1.47e-03 1.47e-03 1.64e-02

Poisson 5.86e-06 1.87e-03 1.87e-03 2.53e-02

Screen Poisson 3.96e-06 1.49e-03 1.49e-03 2.25e-02

Rbf 1.15e-06 1.55e-03 1.55e-03 3.01e-02

Scattered 5.26e-06 1.89e-03 1.89e-03 5.27e-02

Spss 5.12e-06 1.96e-03 1.96e-03 2.93e-02

Wavelet 4.70e-06 2.63e-03 2.63e-03 2.56e-02

Our 3.10e-06 1.31e-03 1.31e-03 1.51e-02

G
ar

g
o
y

le

Apss 2.64e-06 1.50e-03 1.50e-03 3.41e-02

Ear 4.04e-06 1.22e-03 1.22e-03 8.81e-03

Fourier 2.29e-06 1.37e-03 1.37e-03 2.15e-02

Imls 2.11e-06 1.71e-03 1.71e-03 4.37e-02

Mpu 4.60e-06 1.57e-03 1.57e-03 2.98e-02

Mpusmooth 1.20e-06 1.37e-03 1.37e-03 2.17e-02

Poisson 6.48e-06 1.57e-03 1.57e-03 2.17e-02

Screen Poisson 2.82e-06 1.30e-03 1.30e-03 2.09e-02

Rbf 3.19e-06 7.66e-03 7.66e-03 9.17e-02

Scattered 2.48e-06 1.36e-03 1.36e-03 2.17e-02

Spss 5.03e-06 1.85e-03 1.85e-03 4.65e-02

Wavelet 4.79e-06 1.89e-03 1.89e-03 2.11e-02

Our 2.34e-06 1.19e-03 1.19e-03 1.45e-02

L
o

rd
Q

u
as

Apss 3.90e-06 1.24e-03 1.24e-03 2.14e-02

Ear 2.26e-06 1.14e-03 1.14e-03 7.49e-03

Fourier 5.01e-06 1.30e-03 1.30e-03 1.96e-02

Imls 3.30e-06 1.31e-03 1.31e-03 2.36e-02

Mpu 2.30e-06 1.35e-03 1.35e-03 2.94e-02

Mpusmooth 4.70e-06 1.28e-03 1.28e-03 1.54e-02

Poisson 1.91e-06 1.39e-03 1.39e-03 1.94e-02

Screen Poisson 2.07e-06 1.24e-03 1.24e-03 1.62e-02

Rbf 2.26e-06 1.29e-03 1.29e-03 1.80e-02

Scattered 4.48e-06 1.17e-03 1.17e-03 1.32e-02

Spss 1.49e-06 1.38e-03 1.38e-03 2.28e-02

Wavelet 4.42e-06 1.87e-03 1.87e-03 1.52e-02

Our 3.94e-06 1.14e-03 1.14e-03 8.74e-03

Table 2. Distance from the reconstruction to the input.


