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ABSTRACT: Nearly all studies of and available data for pressure-dependent
reactions focus on pure bath gases. Of the comparatively fewer studies on bath
gas mixtures, important to combustion and planetary atmospheres, nearly all
focus on single-channel reactions. The present study explores, and seeks
reliable representations of, bath gas mixture effects on multichannel reactions.
Analytical and numerical solutions of the master equation here reveal several
unique manifestations of mixture effects for multichannel reactions, including
behavior completely opposite to trends observed for single-channel reactions.
The most common way of evaluating mixture rate constants from data for
pure components, the classic linear mixture rule, is found to yield errors exceeding a factor of ∼10. A new linear mixture rule
based on the reduced pressure, instead of the absolute pressure, is found to be accurate within ∼30% for rate constants (and
∼50% for the branching ratio). A new nonlinear mixture rule that additionally incorporates analytically derived activity
coefficients is found to be accurate within ∼10% for rate constants and branching ratios. These new mixture rules are therefore
recommended for use in fundamental and applied chemical kinetics investigations of reacting mixtures, including reacting flow
codes and experimental interpretations of third-body efficiencies.

■ INTRODUCTION

A substantial fraction of the reactions that occur in combustion
and planetary atmospheres proceed through rovibrationally
excited intermediate complexes (i.e., “complex-forming” or
“pressure-dependent” reactions). The fate of these complexes,
and in turn the phenomelogical behavior that emerges from
these reactions, is governed by the competition between
reaction (unimolecular decomposition/isomerization1−9 and
even bimolecular reaction10−16) and energy transfer via
collisions with the surrounding bath gas.
Most typical colliders in practice are generally “weak”, in the

sense that they transfer only a limited amount of energy per
collision.4,17,18 Consequently, except in the high-pressure limit,
rate constants for complex-forming reactions are often different
for different bath gases, which may transfer different amounts
of energy on average in collisions. In many practical mixtures,
there are multiple components with varied energy transfer
characteristics present in sizable fractions, especially in
combustion where many fuels (e.g., CH4) and products (e.g.,
H2O and CO2), known to be much stronger colliders than O2
and N2 in air, are present in sufficient amounts to contribute
significantly to collisional energy transfer.
The vast majority of experimental and theoretical studies of

and available data for rate constants of complex-forming
reactions, however, mainly focus on reactions in pure bath
gases. Thereafter, rate constants in mixtures are almost always
evaluated via a “mixture rule”, which estimates the rate
constant in the mixture from available data for rate constants in

pure bath gases. Such mixture rules both comprise important
elements of reacting flow codes19−24 and play a role in
experimental determinations of third-body efficencies.25,25−28

Therefore, quantifying, and improving, the accuracy and
generality of mixture rules in representing multicomponent
pressure dependence is of great significance to fundamental
and applied chemical kinetics investigations.
Understanding mixture effects has historically been a subject

of considerable attention for single-channel, single-well
unimolecular reactions.29−41 These studies identified a number
of key trends regarding mixture effects for single-channel
reactions that provide useful insights when rate constants are
predicted and experimental data are interpreted in mixtures.
First of all, the rate constant in a mixture is, in general, not a
simple linear sum of the contributions of individual
components, thus implying a nonlinear mixture rule.29,30

Second, the classic linear mixture rule (cf. LMR,P in Table 2)
always underestimates the rate constant in the mixture,30 i.e.,
any nonzero deviations from the classic linear mixture rule are
always positive. Third, deviations from the classic linear
mixture rule are generally larger when mixture components
have greater differences in their energy transfer characteristics.
Fourth, deviations of the classic linear mixture rule (LMR,P)
peak in the intermediate falloff regime, reaching errors of
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∼60% compared to master equation calculations for H + O2
(+M) = HO2 (+M).41 By contrast, two newly proposed
reduced-pressure-based mixture rules (cf. LMR,R and NMR,R
in Table 2) reduce the maximum deviations to within ∼10%
(LMR,R) and ∼3% (NMR,R).41

Even though nearly all previous studies on mixture effects
have focused on single-channel, single-well reactions, many, if
not most, important complex-forming reactions proceed
through multiple wells and/or multiple channels. In our
previous work,42 we assessed the performance of various
mixture rules for the multichannel allyl + HO2 reaction and
explored the implications of mixture effects for this reaction for
combustion modeling. We found that, for this reaction,
generalized versions of the reduced-pressure mixture rules
developed for single-channel reactions41 better reproduced
master equation calculations than the classic linear mixture
rule. In general, however, compared to single-channel
reactions, considerably less is known about both mixture
effects and general applicability of mixture rules for multi-
channel reactions.
As will be demonstrated below, certain trends and

conclusions regarding mixture effects drawn from single-
channel, single-well reactions are not directly transferable to
their multichannel counterparts. In fact, naive application of
these conclusions to multichannel reactions, in many cases, can
lead to entirely opposite behavior than observed. For example,
in contrast to the conclusions for single-channel systems, we
find that the classic linear mixture rule overestimates, rather
than underestimates, rate constants for some channels;
additionally, deviations from the linear mixture rule in the
low-pressure limit for some channels show a nonmonotonic,
rather than monotonic, dependence on the average energy
transferred per collision. Furthermore, the maximum devia-
tions from mixture rules can be considerably more
pronounced, reaching a factor of ∼10. In general, under-
standing the key trends, and origins, of mixture effects for
multichannel reactions requires further attention, especially
given the importance of reliable mixture rules for accurate
kinetic modeling and experimental interpretations in mixtures.
Here, we present analytical solutions to the master equation

in the low-pressure limit for a multichannel reaction in a
multicomponent bath gas in order to derive activity
coefficients, f i, that can be used in the most accurate nonlinear
mixture rules (Table 2). This analysis extends previous
derivations of activity coefficients by Troe29 for a single-
channel reaction in a two-component bath gas to an arbitrary
N-channel reaction in an M-component bath gas. We then
compare the performance of the classic linear mixture rule and
two newly proposed, reduced-pressure-based mixture rules
against numerical solutions of master equation for form-
aldehyde (CH2O) decomposition, a prototypical multichannel
reaction. In the accompanying discussion, we use the analytical
and numerical solutions to explain the observed trends and
understand the observed differences from those of single-
channel reactions.

■ ANALYTICAL AND COMPUTATIONAL METHODS
Analytical Solutions of the Master Equation in the

Low-Pressure Limit. The section below presents analytical
solutions to the master equation in the low-pressure limit for a
single-well multichannel unimolecular reaction taking place in
a multicomponent mixture. The analysis builds on previous
analytical solutions to the master equation in the low-pressure

limit for single-channel reactions in a two-component collider
by Troe29 and for two-channel reactions in a single-component
collider by Just and Troe.43 The first section below presents
analysis for a multichannel reaction with an arbitrary number
of channels in a single-component bath gas, in order to obtain
expressions for channel-specific rate constants for a given
single-component bath gas. The second section then presents
analysis for a multichannel reaction with an arbitrary number
of channels in a bath gas consisting of an arbitrary number of
components, in order to determine how the channel-specific
rate constants in the bath gas mixture are related to channel-
specific rate constants of each bath gas component in isolation.
The analysis below, similar to previous analyses,29,43,44

considers an energy-resolved master equation for a reactant
highly diluted in an inert bath gas.

Multichannel Reactions in a Single-Component Bath
Gas. The time evolution of the concentration of reactants with
vibrational energy E, denoted by n(E,t), in a pure inert bath
gas, Mi, under conditions where reverse reactions from
bimolecular products to reactant can be ignored (which is
actually not so restrictive, as discussed below), can be
described by the master equation

∫= ·[ ] ′ · ′ ′−

·[ ]· − ·

+∞
Z M P E E n E t E

Z M n E t k E n E t

( , ) ( , ) d

( , ) ( ) ( , )

n E t
t i i i

i i

d ( , )
d 0

p (1)

where Zi is the collision frequency between the reactant and Mi
(taken to be energy-independent as is common), [Mi] is the
concentration of pure inert bath gas consisting of only species
i, Pi(E,E′) is the probability that a given collision between the
reactant and Mi induces a transition from the reactant with
energy E′ to that with energy E such that Zi·Pi(E,E′) gives the
second-order collisional energy transfer rate constants ki(E,E′),
and kp(E) is the total microcanonical decomposition rate
constant of the reactant with energy E, is the sum of the N
channel-specific rate constants, kp,j(E), i.e., kp(E) = ∑jkp,j(E).
Detailed balance for ki(E,E′) then requires that

· ′ · ′ = · ′ ·Z P E E f E Z P E E f E( , ) ( ) ( , ) ( )i i i i (2)

where f(E) denotes the Boltzmann (thermal equilibrium)
distribution

∫
ρ

ρ
=

−

′ − ′ ′
+∞f E

E E k T

E E k T E
( )

( ) exp( / )

( ) exp( / ) d
B

B0 (3)

with the density of states of the reactant, ρ(E), the Boltzmann
constant, kB, and the temperature, T.
Upon introducing a nonequilibrium population factor,

hi(E,t), which measures the deviation of the normalized
population of the reactant at a given time from the thermal
equilibrium distribution, f(E),44

∫
=

′ ′·
+∞h E t

n E t

n E t E f E
( , )

( , )

( , ) d ( )
i

0 (4)

the master equation (1) can be recast using eqs 2 and 4 as

∫= ·[ ] ′ · ′ ′

− ·[ ] + − ·

+∞h E t
t

Z M P E E h E t E

Z M k E k h E t

d ( , )
d

( , ) ( , ) d

( ( ) ) ( , )

i
i i i i

i i i

0

p (5)

where the pseudo-first-order rate constant for total decom-
position k is defined as

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.8b10581
J. Phys. Chem. A 2019, 123, 631−649

632

http://dx.doi.org/10.1021/acs.jpca.8b10581
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Under conditions where a phenomenological description
applies, the time scale for reaction, 1/k, is sufficiently long
relative to time scales for internal energy relaxation that there is
a period over which the reaction proceeds with a time-
independent rate constant suitable for use in phenomeno-
logical kinetic models. During this period for single-well
decomposition reactions, the nonequilibrium population factor
has reached a quasi-steady-state distribution, i.e., dhi(E,t)/
dt ≈ 0. Under such conditions, the decomposition rate, k, is
usually much less than the collision rate, Zi·[Mi], such that (Zi·
[Mi]−k) ≈ Zi·[Mi]. (Similarly, under such conditions,
decomposition rate constants calculated neglecting reverse
reactions are also applicable to situations where reverse
reactions are non-negligible, as discussed elsewhere.45−47)
For reactants with energies below the lowest decomposition

threshold E01
† , E < E01

† (i.e., stable states), the microcanonical
rate is identically zero, kp(E) = 0. Likewise, for reactants with
energies above the lowest decomposition threshold, E > E01

†

(i.e., unstable stables), the microcanonical rate is nonzero and
in the low-pressure limit, where the collision rate approaches
zero, the microcanonical rate greatly exceeds the collision rate
and (Zi·[Mi] + kp(E)) ≈ kp(E). Consequently, in the low-
pressure limit, the quasi-steady-state distribution for the
nonequilibrium population factor becomes

∫

∫
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Equation 7 can be further simplified by recognizing that in
the low-pressure limit, as per eq 7, hi(E>E01

† ) ≪ hi(E<E01
† ) and

the upper limits of integration are effectively truncated from
+∞ to E01

† yielding44
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Once a collisional energy transfer probability function,
Pi(E′,E), is specified, eq 8 can be used to calculate the quasi-
steady-state nonequilibrium population factor, hi(E), in the
low-pressure limit and the channel-specific rate constants for
each of the N channels can be calculated via43

∫=
+∞

†
k k E h E f E E( ) ( ) ( ) dj i

E
j i, p,

01 (9)

The commonly employed exponential-down model is used
here to describe the collisional energy transfer function to
facilitate analytical solutions that permit straightforward
interpretations and to allow compatibility of the activity
coefficients so-obtained with the vast majority of calculated
rate constants (which use the same model). (In reality,
collisional energy transfer functions with more complex E
dependence as well as J, angular momentum, dependence have
been shown to better represent results from experimental

measurements and trajectory calculations.4,8,17,48−53 Improved
quantification of mixture effects in the future would be
achieved using more representative collisional energy transfer
functions, particularly as more becomes known about their
associated parameters for different bath gases.)
In the exponential-down model, the collisional energy

transfer probability function, Pi(E′,E), describing down
collisions for the ith collider is given by

η α
′ = − − ′ > ′P E E

E E
E E( , )

1
expi

i

i
k
jjjjj

y
{
zzzzz (10)

where η is a normalization constant such that the integral of
Pi(E′,E) over all E is unity and αi is the average energy
transferred per down collision (E > E′). The collisional energy
transfer probability function, Pi(E,E′), for up collisions (E <
E′) is then prescribed by detailed balance eq 2. Assuming that
αi is sufficiently small relative to energies of interest to kinetics
(e.g., those near E01

† ), as is often the case, then integrals with
lower integration limits of 0 can be well approximated by
integrals with lower integration limits of −∞.44 Furthermore,
assuming that the energy dependence of the density of states,
ρ(E), near the lowest decomposition threshold can be
reasonably approximated locally as an exponential function of
E characterized by a factor FE describing the energy
dependence of the density of states
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then the collisional energy transfer probability function,
Pi(E′,E), can be expressed as44
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where γi is the average energy transferred per up collision and
detailed balance eq 2 dictates that αi and γi are related through
a weighted Boltzmann factor,44 FEkBT:

γ α α= +F k T F k T/( )i i E i EB B (14)

Equations 8 and 13 suggest a solution for hi(E) for E < E01
† of

the form44

= − · −
−

≤
†

†h E C
E E

D
E E( ) 1 expi

01
01

i

k
jjjjj

y

{
zzzzz

(15)

where substitution of eq 15 into eq 8 for E < E01
† yields values

for the coefficients of C = αi/(αi + FEkBT) and D = FEkBT.
Further substitution of eq 15 with these coefficients into eq 8
for E > E01

† yields the nonequilibrium population factor above
the decomposition threshold, altogether resulting in
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Finally, by substituting eq 16 into eq 9, the channel-specific
rate constant for the jth decomposition channel in a single
component collider i can be expressed as

∫α
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Multichannel Reactions in Multicomponent Bath
Gases. The master equation can be expressed for the same
single-well multichannel reaction taking place instead in a bath
gas consisting of M different components given by

∫∑
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where the subscript i refers to the ith component of the bath
gas. Following a similar analysis to that above, eq 18 can be
recast in terms of the nonequilibrium population factor, h(E,t),
defined in eq 4, viz.
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and, in the low-pressure limit, the quasi-steady-state non-
equilibrium population factor, h(E), becomes

∫
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where X̂i = Zi[Mi]/∑nZn[Mn] is the collision-frequency-
weighted mole fraction for the ith collider. Again, eqs 13 and
20, suggest a solution for E < E01

† of the form
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and substitution of eq 21 into eq 20 suggests that the
coefficients Ci and Di must satisfy
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The coefficients can be found by first solving for M roots of
the first equation for which Di > 0 and then substituting these
values for each Di into the second equation to yield a linear
system with respect to the pre-exponential coefficients Ci
whereby each Ci can be found. (Note that the number of
each possible Ci and Di equals the total number of mixture
components, but each does not necessarily, and often does not,
correspond to any individual component.) Further substitution
of eq 21 and these coefficients into eq 20 for E > E01

† yields the
nonequilibrium population factor above the decomposition
threshold, altogether giving
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By substitution of eq 23 into eq 9, the channel-specific rate
constant for the jth decomposition channel in the bath gas
mixture, kj,mix, can be expressed as
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Recognizing the second term in large brackets as the
corresponding channel-specific rate constant in a bath gas
consisting of the ith component in isolation, kj,i (cf. eq 17), the
rate constant in the mixture can be related to rate constants in
the constituent components in isolation through

∑=
=

k k fj
i

M

j i i,mix
1

,
(25)

where each activity coefficient,29 f i, is given by
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k
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y

{
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Interestingly, as shown by eq 26, the activity coefficient for
the ith collider, f i, only depends on the properties of colliders
and mixture composition and is the same for each channel. (In
fact, for a two-component mixture (M = 2), eqs 22 and 26
yield the same activity coefficients as previously derived by
Troe29 for a single-channel reaction in a two-component
mixture, shown in the Supporting Information). However, eqs
25 and 26 do not imply that the deviations from the linear
mixture rule will be the same magnitude, or even the same sign,
for each channel because each collider may have a different
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fractional contribution to each channel. In fact, the results
below indicate that the linear mixture rule underestimates the
rate constant for the lower energy channel whereas it
overestimates the rate constant for the higher energy channel
in the low-pressure limit. In general, the activity coefficients, f i,
are nonunity quantities as long as M > 1, such that, except in
special cases, eqs 25 and 26 imply a nonlinear, rather than
linear, mixture rule (consistent with previous studies on single-
channel systems29,30,41).
Before investigating these limiting cases, it is helpful to

transform eq 22 into

∑
+ −

̂ =
α

α
α

α= + +

X
1

1
1

m
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which indicates that Di = FEkBT is always a root to this
equation. It can also be further shown that all positive roots of
Di must not greater than FEkBT (otherwise the summation
would be smaller than unity). Similarly, on this basis, at least
one term in the bracket in front of X̂m in eq 27 must be
negative (otherwise the summation would be greater than
unity). That is, ∀ Di ≠ FEkBT (as the term in the bracket in eq
27 for Di = FEkBT is always unity), where ∀ Di ≠ FEkBT
denotes “for all Di not equal to FEkBT”, there must exist some q
∈ {1, 2, ..., M} such that

+ −
<

α

α

α

α+ +

1

1
0

F k T D

F k T

F k T D( ) ( )
q

q E i

q E

q E i

2

B

2
B

B
2 (28)

Solving the quadratic inequality eq 28 yields an upper bound
for each Di ≠ FEkBT of γq for some q. Given that γi < FEkBT ∀ i
(cf. eq 14), γmax (where γmax = max{γi|i=1,2,...,M}) is an upper
bound for all Di ≠ FEkBT. Similarly, there must exist some
other q ∈ {1, 2, ..., M} such that the term in the bracket in eq
27 in front of X̂q is positive. Repeating the same procedure for
the corresponding inequality gives a lower bound for Di of
γmin ∀ Di ≠ FEkBT (where γmin = min{γi|i=1,2,...,M}). Taking
the intersection of two domains implies that all Di’s other than
FEkBT are bounded in the range

γ γ∈ [ ]D ,i min max (29)

The following limiting cases are interesting to explore:
(1) If all the colliders have identical exponential-down

factors but different collision frequencies, i.e., α1 = α2 = ··· = αM
= α but Zi ≠ Zj for i ≠ j, eq 27 becomes
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α α α
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Given that ∑m=1
M X̂m = 1, the preceding term in eq 30 must also

equal 1. In this case, one can solve for Di explicity, which yields
only one existing root equal to Di = FEkBT. From the
expression for Ci in eq 22, the corresponding Ci can be shown
to be Ci = (FEkBT)/(α + FEkBT). Therefore, h(E) in eq 23
below E01

† equivalently reduces to its single-component
counterpart hi(E) of eq 16. (After all, in the low-pressure
limit, the subthreshold energy distribution is independent of
the collision rate, which is the only difference among colliders
with the same α.) Likewise, the activity coefficients of eq 26
reduce to unity, such that the linear mixture rule is exact.
(2) If the strong-collision limit holds for all colliders in the

mixture such that αi ≫ FEkBT for i = 1, 2, ..., M, we have γi =

(αiFEkBT)/(αi + FEkBT) → FEkBT ∀ i and from eq 29 it follows
that Di → FEkBT ∀ i. Similarly, given that Di/(γm−Di) → ±∞,
eq 22 implies that Ci → 0 ∀ i (otherwise the summation would
approach ±∞ rather than −1). As a result, h(E) = 1 below E01

† ,
which is simply the thermally equilibrated Boltzmann
distribution f(E) (equivalent to the single-component strong
collision limit), such that differences in αi among mixture
components have no significant impact on the energy
distribution. Therefore, according to eq 26, all f i approach
unity to yield a linear mixture rule kj,mix ≈ ∑ikj,i.
(3) If the weak-collision limit is instead achieved for all

colliders, i.e., αi ≪ FEkBT ∀ i, then γi =
α

α +
F k T
F k T

i E

i E

B

B
→ αi ≪ FEkBT

∀ i. Given the bounds for Di’s other than FEkBT in eq 29, all Di
≠ FEkBT in eq 21 would approach zero. Furthermore, if one
takes D1 = FEkBT, then the constraint on Ci from eq 22 can be
rewritten as
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Subtracting eq 31 for i where γi = γmax from eq 31 for i where
γi = γmin then yields
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where given that γi/FEkBT → 0 ∀ i in the weak collision limit,
the denominators in both terms on the right-hand side
approach unity and therefore the entire right-hand side
approaches zero in the weak collision limit. From eq 29,
since Ci ≥ 0 ∀ i, it follows that all the terms in the first
summation are positive and all the terms in the second
summation are negative, such that all terms on the left-hand
side are positive. Therefore, eq 32 requires that Ci → 0 ∀ i ≠ 1,
which together with eq 31 requires that C1 → 1 in the weak
collision limit. As a result, h(E) → 1 − exp(−(E01

† − E)/
FEkBT) below E01

† , which collapses onto its single-component
counterpart hi(E) in the weak collision limit. Interestingly,
from numerical solutions with decreasing ratios of αi/FEkBT, it
appears that activity coefficients do not approach unity but
deviations of the linear mixture rule still approach zero for all
channels in the weak collision limit (cf. Figure 3c below).

Numerical Solutions of the Master Equation. To
demonstrate the key features of mixture effects and assess
mixture rules for multichannel reactions, the CH2O system
(Figure 1), a single-well two-channel system often used as a

Figure 1. Potential energy surface of the CH2O system.54
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prototypical multichannel reaction, is selected as a case study.
Master equation calculations are performed using the PAPR-
MESS code9 using the potential energy surface from
Klippenstein.54 Similar to many other decomposition systems,
CH2O decomposition can occur through a lower energy tight
transition state to produce two stable products (H2 + CO,
labeled p1) or through a higher energy loose transition state to
produce two radicals (H + HCO, labeled p2). (For simplicity
and due to the fact that it was not part of the potential energy
surface54 used here, roaming of the H + HCO channel to
produce H2 + CO was not included here, though we expect
that the effect of roaming,55−58 which is most prevalent at
energies just above the dissociation threshold, on mixture
behavior would essentially serve to increase the effective
energy difference between the two channels.) The most
accurate treatment would be obtained from two-dimensional
master equation simulations employing ab initio calculated
properties for both energy and angular momentum transfer.8

However, since such data are not yet available, the present
calculations employ the common exponential-down model (eq
13) for the collisional energy transfer function and the
Lennard-Jones model for the collision frequency for each
collider. This treatment also affords consistency among
analytical and numerical solutions to enable straightforward
comparisons, permits straightforward interpretations of
mixture effects, and allows compatibility with the vast majority
of calculated rate constants (which use the same model).
The results below consider two-component mixtures of a

weaker collider (A) and a stronger collider (B) with the
properties shown in Table 1. The weaker collider (A) is

described by Lennard-Jones parameters of σ = 3.330 Å and ϵ =
94.9 cm−1 and exponential-down parameters that are
consistent with those used in our previous study on the
single-channel HO2 system.41 The stronger collider (B) is
considered to yield a total decomposition rate constant in the
low-pressure limit, k0, which is 20 times higher than that for A
(also consistent with those considered in the single-channel
study41) at the considered temperature (2000 K). For context,
a third-body efficiency of ∼20 has been suggested for H2O
relative to Ar,25−27,59 for example. The stronger collider is
considered to have either higher Z (collider B1) or α (collider
B2), to allow a more straightforward comparison of the distinct
effects due to Z and α. For simplicity in terms of understanding
mixture effects and assessing mixture rules, the results
presented in the first three subsections of the Results and
Discussion do not include tunneling (which, since H2 + CO
lies below the bottom of the CH2O well, yields nonzero kp(E)
values for all energies and results in an ill-defined low-pressure
limit60). The effects of including tunneling (using an Eckart
tunneling correction in the calculations54) on mixture behavior
are considered in the last subsection of the Results and
Discussion.
Mixture Rules. Three mixture rules are investigated in the

present work as summarized in Table 2. The classic linear

mixture rule30 (LMR,P) approximates the rate constant of the
jth channel in the mixture, kj(T,P,X̲), as a linear sum of the rate
constants of the jth channel for each component at the given
pressure, kj,i(T,P), weighted by their mole fractions in the
mixture, Xi. Conceptually, LMR,P assumes that the contribu-
tion of each collider to the rate constant in the mixture is
similar to its corresponding fractional contribution in a bath
gas composed of only that collider at the given pressure. In the
other two newly proposed mixture rules, the contributions of
each component to the rate constant in the mixture are
evaluated at the same reduced pressure, R (which, for a single-
component system, is defined as R = k0(T)[M]/k∞(T) with
the low- and high-pressure limit total decomposition rate
constants, k0(T) and k∞(T), and the total concentration, [M]),
rather than absolute pressure, P, of the mixture. The reduced
pressure, R, is a nondimensional pressure that serves as a
quantitative measure of the extent of falloff from low- to high-
pressure limit.61,62 As indicated in the Results and Discussion
below, the reduced pressure, R, serves as a more appropriate
basis for evaluating the contributions of each component to the
rate constant in the mixture for two reasons. First, rate
constants for different components are much more similar
when evaluated at the same reduced pressure than the same
absolute pressure.63 Second, as shown for single-channel
reactions41 and in the figures below, the quasi-steady-state
distributions of the reactant during reaction in different
components are much more similar at the same reduced
pressure than the same absolute pressure. Since the
contribution of the ith component to the rate constant in
the mixture is influenced by the quasi-steady-state distribution
attained in the mixture, the contribution of each component to
the rate constant in the mixture is better represented by the
contribution of each component evaluated at the same reduced
pressure than at the same absolute pressure.
The linear mixture rule in reduced pressure (LMR,R)

approximates the rate constant of the jth channel in the
mixture, kj(T,P,X̲), as a linear sum of the rate constants of the
jth channel for each component at the same reduced pressure,
kj,i(T,R), weighted by their fractional contributions to the
reduced pressure, X̃i. Consistent with our other work,42 the

Table 1. Energy Transfer Parameters for Considered
Colliders

Zi/ZA αi (cm)−1 k0,i/k0,A

collider A 1 50 × (T/298)0.85 1
collider B1 20 50 × (T/298)0.85 20
collider B2 1 408 × (T/298)0.85 20

Table 2. Mixture Rules for Multicomponent Pressure
Dependencea

LMR,P ∑̲ =
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aSubscripts j and i refer to the jth channel and the ith mixture
component, respectively. bActivity coefficients, f i(T,X), in NMR,R are
calculated via eq 26.
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reduced pressure is based on the total decomposition rate
constants, rather than the channel-specific rate constants, in
the low-pressure limit. (This definition is also consistent with
our previous mixture rules presented for single-channel
systems41 where this additional specification was not
necessary.) While LMR,R is in fact a linear mixture rule and
collapses onto LMR,P in the low-pressure limit, LMR,R
generally provides a significantly more accurate representation
in the intermediate falloff regime (e.g., as observed else-
where41,42 and below). The nonlinear mixture rule in reduced
pressure (NMR,R) is similar to that for LMR,R except that the
reduced pressure calculation additionally incorporates the
activity coefficients for each component, which accounts for
the nonlinearities in the low-pressure limit discussed above. (It
is perhaps worth noting that these mixture rules, when
implemented for a single-channel system, reduce to those
presented in our earlier work on single-channel systems.41)
Before applying the reduced pressure mixture rules (LMR,R

and NMR,R), the rate constants for the jth decomposition
channel in the ith component, kj,i(T,P), are mapped onto a
reduced-pressure scale, kj,i(T,RLMR). Thereafter, to apply
LMR,R, the reduced pressure of mixture, RLMR, and fractional
contribution of each component to the reduced pressure of the
mixture, X̃i,LMR, for a given pressure, temperature, and mixture
composition are first calculated from the low- and high-
pressure limit total decomposition rate constants, k0 and k∞,
for each component and their corresponding mole fractions.
Finally, the rate constants for the jth channel in the mixture,
kj,LMR,R, are calculated via the summation over kj,i(T,RLMR)
weighted by X̃i,LMR. For NMR,R, the activity coefficients for
each component, f i(T,X̲), are calculated prior to calculation of
the reduced pressure of the mixture, RNMR, and the fractional
contribution of each component to the reduced pressure of the
mixture, X̃i,NMR.

■ RESULTS AND DISCUSSION
The results and discussion below present various aspects of
mixture effects for the multichannel CH2O reaction. As
discussed above in the section on Numerical Solutions of the
Master Equation, the first three subsections below do not
include tunneling (which results in an ill-defined low-pressure
limit for this reaction60). The first of these subsections explores
nonlinear mixture behavior in the low-pressure limit and its
dependence on various characteristics of the collider mixture
and reaction system. The second and third subsections,
respectively, focus on the effects of different collision
frequencies and different average energies transferred per
collision among the colliders in the mixture across various
pressures. The fourth and final subsection below explores
mixture behavior when tunneling is considered in the
numerical solutions.
Nonlinear Mixture Behavior in the Low-Pressure

Limit. As an example of nonlinear mixture behavior in the
low-pressure limit, Figure 2a presents deviations of the classic
linear mixture rule (LMR,P) from solutions to the master
equation across various mixture compositions of collider A and
B2 (which have different average energies transferred per
collision). Results are shown for both analytical and numerical
solutions to the master equation, which are in very close
agreement, for unimolecular reactions from CH2O to H2 + CO
(p1), to H + HCO (p2), and to either decomposition channel
(total). Similar to single-channel reaction results,29,30 Figure 2a
reveals deviations from the linear mixture rule, reaching peak

magnitudes at lower mole fractions of the stronger collider,
where the contributions of each component to the rate
constant are comparable. In contrast to single-channel
reactions, nonzero deviations from the linear mixture rule are
not strictly positive for the channel-specific rate constants. In
fact, the linear mixture rule overestimates the rate constants in
the mixture for the higher energy channel (p2). Reinspection
of the proof30 that led to the conclusion for single-channel
reactions that k ≥ kLMR reveals that the inequality in general
applies to the slowest chemically significant eigenvalue rather
than rate constants for a particular channel. Here, for a single-
well multichannel reaction, the slowest (and only) chemically
significant eigenvalue corresponds to the total decomposition
rate constant. In fact, more generally, it can be expected that all
previous trends for rate constants in mixtures for single-
channel reactions should also apply to the total rate constants
in mixtures for multichannel reactions.
Figure 2b shows the chemically significant eigenvector, ΛCSE,

for pure A, pure B2, and mixtures of A and B2. For single-well
reactions, the only chemically significant eigenvector corre-
sponds to the quasi-state distribution attained during reaction,
i.e., ΛCSE = h(E) f(E). Similar to results for single-channel
reactions, the quasi-steady-state energy distributions achieved
in mixtures of A and B2 are different than those achieved for
either of the two pure components, where the quasi-steady-
state population near the lowest decomposition threshold is

Figure 2. Nonlinear mixture behavior in the low-pressure limit for the
CH2O system (excluding tunneling) for various two-component
mixtures of A and B2 (Table 1) at 2000 K: (a) comparison of
numerically (solid lines) and analytically (dashed lines) calculated
unimolecular rate constants and those estimated by LMR,P (Table 2);
(b) chemically significant eigenvectors ΛCSE.
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preferentially depleted for weaker colliders (as discussed
elsewhere44). Consistent with eq 16, the quasi-steady-state
population at energies just below the dissociation threshold is
higher for pure B2, which has a higher average energy
transferred per collision, than for pure A. (Conceptually, weak
collisions preferentially deplete the states just below the
dissociation threshold because they can only excite reactive
complexes above the decomposition threshold from reactant
energies just below the lowest decomposition threshold; in
contrast, infinitely strong colliders can excite reactive
complexes above the decomposition threshold equally from
all reactant energies and so deplete all states equally, such that
the quasi-steady-state energy distribution below the decom-
position threshold is the same as the Boltzmann distribution.)
Accordingly, the quasi-steady-state population at energies just
below the dissociation threshold in the mixture will be higher
than that for pure A but lower than that for pure B.
As indicated by supra-unity activity coefficients for A and

subunity activity coefficients for B2, A serves to weaken the
ability of B2 to induce collisions above the dissociation
threshold to yield reaction by depleting near-threshold
populations and, likewise, B2 serves to strengthen the ability
of A to induce collisions above the dissociation threshold by
maintaining higher near-threshold populations. Since each
component has different fractional contributions to rate
constants for different channels, these interactions can have
different effects for different channels (even though the activity
coefficients are channel-independent). In particular, this can
lead to negative deviations from the linear mixture rule for rate
constants to the higher energy channel, for which B2 is almost
exclusively responsible (consistent with expectations based on
the fact that k02/k0 ∼ exp(−(E02† − E01

† )/α)) for pure weak
components43). For this case, A contributes minimally to the
higher energy channel but serves to reduce the effectiveness of
B2 in inducing collisions above E02

† by depleting the states just
below the dissociation threshold (similar to increasing the
difference between E02

† and E01
† ), thus requiring collisions

transferring more energy to excite reactants above E02
† .

To explore trends with characteristics of the collider mixture
and reaction system, the maximum deviations of LMR,P for
channel-specific rate constants in the low-pressure limit are
quantified in Figure 3 as functions of various collider mixture
and system properties. Again, results are shown for both
analytical and numerical solutions to the master equation. The
small difference (<5%) between analytical and numerical
solutions across a wide range of collider and reaction system
characteristics suggest general applicability of the activity
coefficients in representing nonlinear mixture behavior in low-
pressure limit (for use in NMR,R for example). From panels
a−d of Figure 3, it is also clear that in the low-pressure limit:
(a) The linear mixture rule is exact for mixtures composed of

colliders with differing collision frequencies but the same
average energy transferred per collision, consistent with
conclusions based on the analytical solutions of the master
equation above.
(b) Differences in average energies transferred per collision

among colliders have significant influences on deviations of
LMR,P for all channels. Consistent with previous work on
single-channel reactions, the deviations of LMR,P for the total
rate constant are larger for larger differences in the average
energies transferred per collision between the two components.
Deviations of LMR,P for rate constants for the lower energy
channel (p1), which dominates the total rate constant, are

similar to those for the total rate constant though are slightly
larger, given that A, whose activity coefficient is supra-unity,
has a larger fractional contribution to kp1 than to k0. By
contrast, deviations of LMR,P for rate constants for the higher

Figure 3. Deviations of LMR,P from numerical solutions (solid lines)
and analytical solutions (dashed lines) of the master equation for
channel-specific rate constants in the low-pressure limit for the CH2O
system (excluding tunneling) at 2000 K as a function of (a) ratio of
collision frequencies of A and B, ZB/ZA (for αA = αB = 50(T/298
K)0.85 cm−1), (b) ratio of average energies transferred per down
collision for A and B, αB/αA (for αA = 50(T/298 K)0.85 cm−1), (c)
ratio of average energies transferred per down collision to the
weighted Boltzmann factor, αA/FEkBT (for αB/αA = 8), and (d) ratio
of differences in decomposition threshold energies for each channel,
ΔE† = E02

† − E01
† , to the weighted Boltzmann factor, ΔE†/FEkBT (for

fixed E01
† , αA = 50(T/298 K)0.85 cm−1, and αB = 408(T/298 K)0.85

cm−1).
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energy channel (p2) exhibit a nonmonotonic dependence on
αB/αA where the magnitude of the deviations first grow with
increasing αB/αA though eventually decay with increasing αB/
αA as B approaches the strong collision limit (αB/FEkBT → ∞,
for fixed αA). Consequently, as per eq 26, the activity
coefficient f B for B, which dominates the rate constant to the
higher channel, approaches unity. Conceptually, as the stronger
collider B approaches the strong-collision limit, the ability of B
to excite reactive complexes above the higher decomposition
threshold, E02

† , is no longer hampered by the fact that collisions
by the weaker collider A have preferentially depleted the states
near the lowest decomposition threshold, E01

† .
(c) The maximum deviations of LMR,P have a non-

monotonic dependence on the ratio of the average energy
transferred per down collision of A to the weighted Boltzmann
factor, αA/FEkBT (with fixed αB/αA = 8), for all channels. The
maximum deviations peak at moderate αA/FEkBT ratios (near
∼0.1 in this case) and then approach zero for all channels as
αA/FEkBT → 0 (the weak collision limit) and αA/FEkBT → ∞
(the strong collision limit). In both limits, the quasi-steady-

state distribution below the decomposition threshold is
independent of collider properties and is thus same for A
and B, with h(E) = 1 − exp[−(E01

† − E)/FEkBT] in the weak
collision limit and h(E) = 1 in the strong collision limit, as per
eq 16, as discussed above.
(d) The maximum deviations of LMR,P for only the

channel-specific rate constants depend on the difference in
decomposition thresholds for each channel, ΔE† = E02

† − E01
†

(at fixed E01
† ), whereas the maximum deviations for the total

rate constant do not. For small differences between the
decomposition thresholds, ΔE†, maximum deviations of
LMR,P for p1, which proceeds through a tight transition
state, are higher than those for the total rate constant since the
fractional contribution of A, whose activity coefficient is supra-
unity, to kp1 is higher than that to k0 (or kp2). For larger
differences between the decomposition thresholds, ΔE†, k0 is
dominated by kp1 such that the deviations become similar for
k0 and kp1. For the p2 channel, the maximum deviations
monotonically decrease to subunity values with increasing
differences in the decomposition thresholds, ΔE†, eventually

Figure 4. Comparisons of numerically calculated unimolecular rate constants and those estimated by various mixture rules (Table 2) at 2000 K for
the CH2O system (excluding tunneling) across various pressures for various two-component mixtures of A and B1 (Table 1). Different mixture
rules are plotted in different rows: LMR,P (first row); LMR,R (second row); NMR,R (third row). Different channels are plotted in different
columns: total reaction, ktot (first column); H2 + CO, kp1 (second column); H + HCO, kp2 (third column).
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reaching a plateau at larger ΔE† with a value near that of the
activity coefficient for B (which dominates kp2 at the mole
fractions of maximum deviation) as XB → 0.
Effect of Differing Collision Frequencies across

Various Pressures. Figures 4−6 show results for various
mixtures of A and B1, which have the same α but different Zi

(Table 1). Comparisons of rate constants numerically
calculated from the master equation and those estimated by
various mixture rules in Table 2 are shown for unimolecular

reactions from CH2O to H2 + CO (p1), H + HCO (p2), and
to either decomposition channel (total) in Figure 4. Quasi-
steady-state energy distributions are shown in Figure 5.
Because colliders with different Zi but the same α yield

master equations (cf. eq 1) that differ only in terms of the
collision rate, Zi[Mi], the quasi-steady-state distribution and
the rate constant for any channel are identical for B1 (which
has a collision frequency 20 times higher than that for A) at
some pressure to A at a 20 times higher pressure. Therefore,
when evaluated at the same reduced pressure, all results for any
mixture of A and B1 are identical, as observed in Figure 5;

Figure 5. Chemically significant eigenvectors ΛCSE (corresponding to
the quasi-steady-state distribution during reaction) at 2000 K for the
CH2O system (excluding tunneling) for various two-component
mixtures of A + B1 for (a) the low-pressure limit (P = 10−5 atm, R ≈
1.7 × 10−8), (b) lower intermediate pressures (P = 10−2 atm, R ≈ 1.7
× 10−5) that yield maximum (negative) LMR,P deviation for kp2, and
(c) higher intermediate pressures (P = 103 atm, R ≈ 1.7) that yield
maximum positive LMR,P deviation for kp2. The solid line denotes
ΛCSE for the mixture, dotted lines denote ΛCSE for pure components
evaluated at the same P as the mixture, and dashed lines (which
overlap with the solid line) denote ΛCSE evaluated at the same R as the
mixture.

Figure 6. Comparisons of numerically calculated bimolecular rate
constants (kp2→p1) from H + HCO (p2) to H2 + CO (p1) and those
estimated by various mixture rules (Table 2) at 2000 K for the CH2O
system (excluding tunneling) across various pressures for various two-
component mixtures of A and B1 (Table 1). Different mixture rules
are plotted in different rows: LMR,P (first row); LMR,R (second
row); NMR,R (third row). Deviations for various mixture rules for
other bimolecular channels (i.e., total bimolecular reaction, kbi,tot, and
H + HCO to CH2O, kp2→w) are included in the Supporting
Information.
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similarly, LMR,R and NMR,R are exact at all pressures and
mole fractions, as observed in Figures 4 and 6.
By contrast, quasi-steady-state distributions and rate

constants for A, B1, and their mixtures are considerably
different when evaluated at the same absolute pressure.
Likewise, as demonstrated in Figure 4, while the classic linear
mixture rule (LMR,P) is exact in the low-pressure limit (for
mixtures of bath gases with the same α, as discussed above)
and the high-pressure limit (which is pressure- and
composition-independent for thermally activated reactions),
LMR,P differs substantially from master equation calculations
in the intermediate falloff regime, with errors reaching an order
of magnitude for some channels.
The deviations are asymmetric with respect to XB1 and peak

at lower XB1 values, where the contributions of each
component to the overall reaction are comparable. Across
the entire intermediate falloff regime, LMR,P always under-
estimates kp1 and ktot, predicting rate constants that are too low
by ∼40%. For kp2, LMR,P overestimates kp2 at lower
intermediate pressures, predicting rate constants that are too
high by a factor of ∼10, and then underestimates kp2 at higher
intermediate pressures, predicting rate constants that are too
low by ∼40%. While the maximum deviations of LMR,P of
∼40% for kp1 and ktot are of comparable magnitude to those
observed previously for single-channel reactions,41 the
maximum deviations of LMR,P for kp2 are considerably higher
than those observed for single-channel reactions.
Interestingly, while LMR,P strictly underestimates rate

constants for the total reaction,30 LMR,P can underestimate
or overestimate channel-specific rate constants depending on
the channel and the pressure. The direction of the deviations
can be rationalized on the basis of the quasi-steady-state
distributions attained in the pure components and mixtures as
well as how rate constants scale with pressure in different
pressure regimes.
As shown in Figure 5a, in the low-pressure limit, where

collision rates are much less than decomposition rates,
collisions are not able to sustain finite populations above the
lowest dissociation threshold due to rapid depletion of these
states by decomposition. Consequently, all collisions that
excite reactants above E01

† result in reaction, such that the rate
of collisions to excite CH2O above E0 j

† is the rate-limiting step
for each jth channel. The rate of collisions to excite CH2O
above E0 j

† is proportional to both the total collision rate, which
always scales linearly with P, and the probability that a given
collision will excite CH2O above E0 j

† , which is independent of
P in the low-pressure limit since ΛCSE is independent of P.
Consequently, k scales linearly with P. Similarly, since A and
B1 yield the same ΛCSE in the low-pressure limit, the likelihood
that collision with A (or B1) will excite CH2O above E0 j

† is the
same in the mixture as it is for pure A (or B1). Therefore, as
indicated in Figure 4, there is no deviation of LMR,P for any
channel in the low-pressure limit.
As the pressure increases, and concomitantly the collision

rate increases, collisions are increasingly able to compete with
decomposition and are able to sustain substantial populations
at higher energies, as shown in Figure 5b,c. At all pressures
beyond the low-pressure limit, not all complexes excited above
E01
† by collisions lead to reaction (given that down collisions

can remove CH2O at E > E01
† in addition to decomposition).

Consequently, the rate of collisions to excite CH2O above E01
†

is no longer the only rate-limiting step for the total reaction or
the reaction to H2 + CO (p1). As a result, both ktot and kp1

scale less than linearly with P. Evaluating the quasi-steady-state
distribution, ktot, and kp1 for pure B1 at the same P rather than
same R as the mixture serves to overestimate the population of
CH2O above E01

† and the associated decrease in the
effectiveness of collisions by B1 in inducing total reaction or
reaction to H2 + CO (p1). The contribution of B1, which is
dominant for XB ≳ 0.05, to ktot and kp1 in the mixture, if
evaluated at the same P, is underestimated relative to its
predicted contribution if evaluated at the same R. Therefore, as
indicated in Figure 4, LMR,P underestimates ktot and kp1 in the
mixture for intermediate pressures.
At lower intermediate pressures, as shown in Figure 5b,

there are substantial populations only for states with E < E02
† ,

whereas states with E > E02
† are still completely depleted by

reactions. For this range of pressures, all complexes excited
above E02

† by collisions undergo decomposition (via either
channel). Consequently, the rate of collisions to excite CH2O
above E02

† is still the rate-limiting step. The rate of collisions to
excite CH2O above E02

† is proportional to both the total
collision rate, which always scales linearly with P, and the
probability that a given collision will excite CH2O above E02

† ,
which also increases with P (since higher collision rates can
sustain finite populations at energies closer to E02

† ). In this
pressure regime, kp2 has a greater than linear dependence on P,
as discussed elsewhere.64,65 Evaluating the quasi-steady-state
distribution and kp2 for pure B1 at the same P (10−2 atm),
rather than the same R (1.7 × 10−4), as for the mixture serves
to overestimate the CH2O population above E01

† and the
associated increased likelihood of a given collision by B1
exciting CH2O above E02

† . The contribution of B1, which is
dominant for XB ≳ 0.05, to kp2 in the mixture, if evaluated at
the same P, is overestimated relative to its predicted
contribution if evaluated at the same R. Therfore, as indicated
in Figure 4, LMR,P overestimates kp2 in the mixture at this
pressure.
At higher intermediate pressures, collisions are able to

sustain finite populations even above E02
† , as shown in Figure

5c. At these and higher pressures, not all complexes excited
above E02

† by collisions lead to reaction (given that down
collisions can remove CH2O at E > E02

† in addition to
decomposition). Consequently, the rate of collisions to excite
CH2O above E02

† is no longer the only rate-limiting step for the
reaction to H + HCO (p2). As a result, kp2 has a less than
linear dependence on P. Evaluating the quasi-steady-state
distribution and kp2 for pure B1 at the same P rather than same
R as the mixture serves to overestimate the population of
CH2O above E02

† and the associated decrease in the
effectiveness of collisions of B1 in inducing reaction to H +
HCO (p2). The contribution of B1, which is dominant for XB
≳ 0.05, to kp2 in the mixture, if evaluated at the same P, is
underestimated relative to its predicted contribution if
evaluated at the same R. As indicated in Figure 4, LMR,P
underestimates kp2 in the mixture for higher intermediate
pressures.
In the high-pressure limit, where collision rates are much

larger than decomposition rates, collisions are able to maintain
Boltzmann populations at all energies. Collisions are no longer
rate-limiting at all. Consequently, all rate constants are
independent of P and mixture composition.
Comparisons of rate constants numerically calculated from

the master equation and those estimated by various mixture
rules in Table 2 are shown in Figure 6 for bimolecular
reactions from H + HCO proceeding via chemically activated
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CH2O to form H2 + CO (with rate constant kp2→p1). (Note
that even for the bimolecular reactions the total unimolecular
rate constant is still used for calculating R for the mixture in
LMR,R and NMR,R.) While LMR,P is exact in the low-
pressure limit for kp2→p1 (where kp2→p1 is pressure- and
composition-independent), kp2→p1 estimated by LMR,P
increasingly differs from that calculated numerically as pressure
increases. At pressures above the low-pressure limit, a finite
fraction of the chemically activated CH2O are stabilized to
thermal CH2O instead of promptly decomposing. This fraction
grows with increasing P, such that kp2→p1 decreases with P,
scaling with 1/P in the high-pressure limit. With increasing
pressure, LMR,P increasingly overestimates kp2→p1 in the
mixture. By contrast, as observed for unimolecular decom-
position channels, Figure 6 shows that LMR,R and NMR,R are
exact for the (“well-skipping”) chemically activated channel,
kp2→p1, across the entire pressure range for mixtures of A and
B1, suggesting that summing the contributions of mixture
components evaluated at the same R (calculated on the basis of
the total unimolecular rate constants, cf. Table 2) is also a

useful basis for evaluating bimolecular channels (including
“well-skipping” chemically activated channels) in LMR,R and
NMR,R.

Effect of Differing Average Energies Transferred per
Collision across Various Pressures. Figures 7−9 shows
results for various mixtures of A and B2, which have the same
Z but different αi (Table 1). Comparisons of rate constants
numerically calculated by the master equation and those
estimated by various mixture rules in Table 2 are shown for
unimolecular reactions from CH2O to H2 + CO (p1), H +
HCO (p2), and to either decomposition channel (total) in
Figure 7. Quasi-steady-state energy distributions are shown in
Figure 8. The results obtained for mixtures of A and B2 are
generally similar to those for mixtures of A and B1 with the
important difference that nonlinearities arise even in the low-
pressure limit for mixtures of A and B2, which have different α
(as discussed above).
Specifically, because colliders with different αi but the same

Z yield master equations (cf. eq 1) that differ in terms of their
collisional energy transfer probability function, Pi(E′,E) (eq

Figure 7. Comparisons of numerically calculated unimolecular rate constants and those estimated by various mixture rules (Table 2) at 2000 K for
the CH2O system (excluding tunneling) across various pressures for various two-component mixtures of A and B2 (Table 1). Different mixture
rules are plotted in different rows: LMR,P (first row); LMR,R (second row); NMR,R (third row). Different channels are plotted in different
columns: total reaction, ktot (first column); H2 + CO, kp1 (second column); H + HCO, kp2 (third column).

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.8b10581
J. Phys. Chem. A 2019, 123, 631−649

642

http://dx.doi.org/10.1021/acs.jpca.8b10581


10), the quasi-steady-state distribution and rate constants for
B2 are not identical to those for A at any pressure below the
high-pressure limit. Therefore, neither LMR,P nor LMR,R is
exact for any pressure below the high-pressure limit.
However, the quasi-steady-state distributions for A, B2, and

their mixtures are much more similar when evaluated at the
same reduced pressure, R, than at the same absolute pressure,
P (Figure 8). Likewise, as shown in Figure 7, deviations of
LMR,R (of up to ∼30%) are considerably lower than those of
LMR,P (of up to ∼50%) and strictly decrease with increasing
pressure. Furthermore, deviations of NMR,R, which accounts
for nonlinearities in the low-pressure limit via the activity
coefficients f i from the analytical solutions above, are even
lower (up to 8%) and peak at intermediate pressures.
It is also worth emphasizing the importance of using the

total unimolecular rate constant, instead of the channel-specific
rate constants, for defining the reduced pressure R used for the
reduced-pressure-based mixture rules for multichannel sys-
tems−use of the channel-specific rate constants instead of the
total unimolecular rate constant for calculating R results in
deviations from numerically calculated rate constants reaching
a factor of 4.
Comparisons of rate constants numerically calculated by the

master equation and those estimated by various mixture rules
(Table 2) are shown in Figure 9 for bimolecular reactions from
H + HCO proceeding via chemically activated CH2O to form
H2 + CO (with rate constant kp2→p1). (Note again that even for
the bimolecular reactions the total unimolecular rate constant

is still used for calculating R for the mixture in LMR,R and
NMR,R.) Similar to observations for mixtures of A and B1,
with increasing pressure above the low-pressure limit, LMR,P
increasingly overestimates kp2→p1 in mixtures of A and B2.
While Figure 6 shows that LMR,R and NMR,R are not quite
exact for (“well-skipping”) chemically activated channels,
kp2→p1, in mixtures of A and B2 (in contrast to mixtures of A
and B1), deviations of LMR,R and NMR,R are relatively
minimal (<3%), similarly suggesting that summing the rate
constant contributions in each mixture component evaluated at
the same R (calculated on the basis of the total unimolecular

Figure 8. Chemically significant eigenvectors ΛCSE (corresponding to
the quasi-steady-state distribution during reaction) at 2000 K for the
CH2O system (excluding tunneling) for various two-component
mixtures of A and B2: (a) low-pressure limit (P = 10−5 atm, R ≈ 1.9 ×
10−8); (b) lower intermediate pressures (P = 10−1 atm, R ≈ 1.9 ×
10−4) that yield maximum LMR,P deviation for kp2.

Figure 9. Comparisons of numerically calculated bimolecular rate
constants (kp2→p1) from H + HCO (p2) to H2 + CO (p1) and those
estimated by various mixture rules (Table 2) at 2000 K for the CH2O
system (excluding tunneling) across various pressures for various two-
component mixtures of A and B2 (Table 1). Different mixture rules
are plotted in different columns: LMR,P (first column); LMR,R
(second column); NMR,R (third column). Deviations for various
mixture rules for other bimolecular channels (i.e., total bimolecular
reaction, kbi,tot and H + HCO to CH2O, kp2→w) are included in the
Supporting Information.
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rate constants even including activity coefficients derived for
unimolecular reactions in the low-pressure limit) is also a
useful basis for evaluating bimolecular channels (including
“well-skipping” chemically activated channels) in LMR,R and
NMR,R.
Effect of Tunneling across Various Pressures. The

effect of quantum tunneling on representing the multi-
component mixture effects were also investigated under the
same conditions as the previous sections. For reaction channels
with intrinsic potential barriers (as for CH2O = H2 + CO),
tunneling produces nonzero kp(E) values even below the
saddle point on potential energy surface. In the case of the
CH2O = H2 + CO channel, since H2 + CO (p1) lies below the
bottom of the CH2O well, kp(E) is nonzero for all energies,
resulting in a rate constant that “falls off forever” with
pressure,60 such that there is no well-defined low-pressure
limit. Without a well-defined low-pressure limit, the reduced
pressure (as required by the better-performing mixture rules,
LMR,R and NMR,R) is also not well-defined in the usual
sense. However, there is reason to believe that evaluating rate
constants at some “effective reduced pressure” may still yield

better predictions for mixtures than evaluating rate constants at
the absolute pressure P. In the results shown below, the
effective reduced pressure is based on a total effective low-
pressure-limit unimolecular rate constant, k0,eff = ktot/[M],
calculated from the total unimolecular rate constants at 10−6

atm (as if it were a pressure where the reaction was actually in
the low-pressure limit); similarly, activity coefficients derived
in the low-pressure limit above are still used for results shown
for NMR,R.
In general, the results for the calculations that consider

tunneling are qualitatively similar to those where tunneling was
excluded, provided that one recognizes that the reaction is in
the intermediate falloff regime even at the lowest pressures.
Comparisons of the various mixture rules of Table 2 against

numerical calculations are shown in Figure 10 for unimolecular
reactions and in Figure 11 for bimolecular reactions for a
mixture of A + B1, which differ only in their Zi. Overall,
deviations of LMR,P exhibit a pressure dependence (both
trends and magnitude) similar to that observed in calculations
where tunneling was not included. However, since the reaction
is in the intermediate falloff regime even at the lowest

Figure 10. Comparisons of numerically calculated unimolecular rate constants and those estimated by various mixture rules (Table 2) at 2000 K for
the CH2O system (including tunneling) across various pressures for various two-component mixtures of A and B1 (Table 1). Different mixture
rules are plotted in different rows: LMR,P (first row); LMR,R (second row); NMR,R (third row). Different channels are plotted in different
columns: total reaction, ktot (first column); H2 + CO, kp1 (second column); H + HCO, kp2 (third column).
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pressures, LMR,P differs from the numerical calculations (by
15%) even at the lowest pressure. Additionally, the maximum
deviations when tunneling is included are higher, reaching a
factor of ∼50, than those without tunneling. By contrast, for
reasons similar to those discussed in the section above for
mixtures of A + B1, LMR,R and NMR,R are exact for all mole
fractions and pressures, indicating that use of an “effective
reduced pressure” is still a useful basis for evaluating rate
constants in mixtures for reactions without well-defined low-
pressure limits.

Comparisons of the various mixture rules of Table 2 against
numerical calculations are shown in Figure 12 for unimolecular
reactions and in Figure 13 for bimolecular reactions for a
mixture of A + B2, which differ only in their αi. Overall,
deviations of LMR,P exhibit trends and magnitudes (reaching
∼60%) similar to those observed in calculations excluding
tunneling. However, since the reaction is in the intermediate
falloff regime (where deviations of LMR,P are largest), the
deviations of LMR,P are slightly larger (∼40% instead of
∼30%) at the lowest pressure. By contrast, deviations of
LMR,R and NMR,R are much smaller (below 10%) across the
entire pressure range. In fact, deviations of LMR,R are smaller
than those observed for calculations excluding tunneling
(where deviations reached ∼30% in the low-pressure limit
and monotonically decreased in magnitude through the
intermediate falloff regime).
Altogether, the results above suggest that use of an “effective

reduced pressure” within LMR,R and NMR,R can still provide
a reasonably accurate means of representing mixture depend-
ence. We expect that such a result may be useful either for
reactions that do not have a well-defined low-pressure limit
(like CH2O decomposition) or for reactions where low-
pressure limit data are not available.

■ CONCLUSIONS
The master equation was solved analytically and numerically
for a multichannel reaction in a bath gas mixture to explore
mixture behavior and mixture rules for multichannel reactions.
The analytical solutions extend previous derivations of single-
channel reactions in a two-component mixture to an N-
channel reaction in an M-component mixture. The analytical
solutions agree very well with numerical solutions for the H2 +
CO = CH2O = H + HCO reaction as a case study.
With regard to general trends for multichannel reactions, the

results indicate the following in the low-pressure limit:
(1) Similar to rate constants for single-channel reactions,

rate constants for multichannel reaction systems in general
follow a nonlinear, rather than linear, mixture rule (eqs 22, 25,
and 26). The origin of this nonlinearity is related to the fact
that the quasi-steady-state distribution in the mixture may
differ from that in the pure bath gases, such that each mixture
component interacts with a different distribution of reactants
in the mixture than when pure. This nonlinear mixture rule is
found to approach a linear mixture rule in the following special
cases, where the quasi-steady-state distribution below the
lowest decomposition threshold is the same in the mixture and
its components when pure: (a) all components share the same
α (but may differ in Zi); (b) the strong collision limit (all αi/
FEkBT ≫ 1); (c) the weak collision limit (all αi/FEkBT ≪ 1).
(2) Similar to single-channel reactions, the nonlinear

interactions among mixture components can be well
represented through activity coefficients, f i, which describe
how the contribution of each component is affected by the
presence of the other components (eq 26). Interestingly, in the
multichannel case, the results indicate that the activity
coefficients are the same for every channel (at least for the
energy transfer model used in the present study). However, the
effect of these activity coefficients on the rate constant may be
different for each channel, given that different components
may have different fractional contributions to the rate
constants for each channel.
(3) In contrast to single-channel reactions, the linear

mixture rule does not strictly underestimate the rate constant

Figure 11. Comparisons of numerically calculated bimolecular rate
constants (kp2→p1) from H + HCO (p2) to H2 + CO (p1) and those
estimated by various mixture rules (Table 2) at 2000 K for the CH2O
system (including tunneling) across various pressures for various two-
component mixtures of A and B1 (Table 1). Different mixture rules
are plotted in different rows: LMR,P (first row); LMR,R (second
row); NMR,R (third row). Deviations for various mixture rules for
other bimolecular channels (i.e., total bimolecular reaction, kbi,tot, and
H + HCO to CH2O, kp2→w) are included in the Supporting
Information.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.8b10581
J. Phys. Chem. A 2019, 123, 631−649

645

http://dx.doi.org/10.1021/acs.jpca.8b10581


in the mixture. Reinspection of the proof that rate constants for
single-channel reactions are always underestimated by the
linear mixture rule30 reveals that the conclusion applies to the
total rate constant for multichannel reactions. However, the
linear mixture rule may underestimate or overestimate the
channel-specific rate constants in the mixture depending on the
channel (and the pressure).
(4) In contrast to single-channel reactions, the magnitude of

the deviations from the linear mixture rule are not necessarily
larger for larger differences in αi among the colliders. For
example, the magnitude of the deviations nonmonotonically
depends on the differences in αi between the colliders.
(5) The magnitude of the deviations from the linear mixture

rule for some channels is larger, reaching ∼30%, than those for
the total rate constant, reaching ∼10%. Furthermore, the sign
of the deviations can be different for each channel, yielding
errors in branching ratios among channels that reach ∼50%.
(6) Analytical solutions of the master equation are in very

good agreement with numerical solutions. This result indicates
that the analytically derived activity coefficients provide an

accurate representation of the nonlinear interactions among
mixture components and, therefore, provide a reliable
foundation for nonlinear mixture rules in the low-pressure
limit.
With regard to general trends for multichannel reactions, the

results also indicate the following across various pressures:
(1) Similar to results in single-channel reactions, the

magnitude of deviations of the classic linear mixture rule
(LMR,P) is largest in the intermediate falloff regime for all
decomposition channels. The magnitude of LMR,P deviations
for chemically activated reactions, which are influenced by the
bath gas only at pressures above the low-pressure limit, is
largest in the high-pressure limit. Deviations of LMR,P are
observed for mixtures of colliders with different Zi and/or
different αi.
(2) In contrast to single-channel reactions, the sign of

deviations of the classic linear mixture rule (LMR,P) for some
channel-specific rate constants can be different in different
pressure regimes. For example, LMR,P overestimates kp2 at

Figure 12. Comparisons of numerically calculated unimolecular rate constants and those estimated by various mixture rules (Table 2) at 2000 K for
the CH2O system (including tunneling) across various pressures for various two-component mixtures of A and B2 (Table 1). Different mixture
rules are plotted in different rows: LMR,P (first row); LMR,R (second row); NMR,R (third row). Different channels are plotted in different
columns: total reaction ktot (first column); H2 + CO, kp1 (second column); H + HCO, kp2 (third column).
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lower intermediate pressures but underestimates kp2 at higher
intermediate pressures.
(3) The magnitude of the deviations from the classic linear

mixture rule (LMR,P) for some channels is larger (reaching a
factor of ∼50) than those for the total rate constant (reaching
∼50%).
(4) Similar to results for single-channel reactions, new

reduced-pressure-based mixture rules yield much better
estimates of all decomposition and chemically activated rate
constants in mixtures across all pressures, especially in the
intermediate falloff regime. The linear reduced-pressure-based

mixture rule (LMR,R) and nonlinear reduced-pressure-based
mixture rule (NMR,R) are exact for all channels and all
pressures for mixtures of components that differ only in Zi but
share the same α. For mixtures of components with different
αi, deviations of LMR,R are highest in the low-pressure limit,
where they reach ∼30% for some channels; deviations of
NMR,R are essentially zero in the low-pressure limit and peak
in the intermediate falloff regime, where they reach ∼10% for
some channels.
(5) In the new reduced-pressure-based mixture rules, when

the rate constant for any channel is evaluated, including for
chemically activated reactions, the reduced pressure is
calculated according to the total decomposition rate constant
rather than the channel-specific rate constants. (Use of the
channel-specific rate constants instead was found to yield
LMR,R deviations reaching a factor of ∼4.) Similarly, use of an
“effective low-pressure limit” total decomposition rate constant
rather than the exact low-pressure limit total decomposition
rate constant was also found to be an effective basis for
evaluating mixture rate constants, as observed for the results
where tunneling, which leads to an ill-defined low-pressure
limit, was included in the calculations.
These new mixture rules are therefore recommended for use

in fundamental and applied chemical kinetics investigations of
reacting mixtures, including reacting flow codes and exper-
imental interpretations of third-body efficiencies. For proper
implementations of reduced-pressure-based mixture rules, it is
recommended that future studies reporting channel-specific
pressure-dependent rate constants for pure components,
kj,i(T,P), also report, where possible, the total decomposition
rate constants in the low- and high-pressure limits, k0,i(T) and
k∞(T). Furthermore, for implementation of the most accurate
NMR,R, it is recommended that those studies also report αi
and Zi for each collider and FE(T) for the reaction as per eq 11.
In the meantime, mixture rules should be considered a
significant structural uncertainty in chemical kinetics simu-
lations and uncertainty quantification,66−69 as discussed
elsewhere.69

While the present calculations use the commonly employed
exponential-down model to facilitate straightforward inter-
pretations of the analytical solutions and to allow compatibility
with the vast majority of calculated rate constants, which use
the same model, improved quantification of mixture effects in
future studies could be attained by using energy and angular
momentum transfer functions determined via trajectory
calculations and/or experimental measurements within a two-
dimensional master equation. Naturally, as with rate constant
calculations for even single-component bath gases for many
pressure-dependent reactions, such mixture studies await such
data to become available for a wider variety of bath gases and
reactant complexes.
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