
ar
X

iv
:1

8
0
8
.0

9
6
5
5
v
2
  
[q

u
an

t-
p
h
] 

 2
3
 J

u
n
 2

0
1
9

On Quantum Chosen-Ciphertext Attacks

and Learning with Errors

Gorjan Alagic1, Stacey Jeffery2, Maris Ozols3, and Alexander Poremba4

1 QuICS, University of Maryland, and NIST, Gaithersburg, MD, USA
2 QuSoft and CWI, Amsterdam, Netherlands

3 QuSoft and University of Amsterdam, Amsterdam, Netherlands
4 Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA

Abstract. Large-scale quantum computing is a significant threat to classical public-key cryptography.
In strong “quantum access” security models, numerous symmetric-key cryptosystems are also vulner-
able. We consider classical encryption in a model which grants the adversary quantum oracle access
to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge)
queries only. We define this model formally using appropriate notions of ciphertext indistinguishability
and semantic security (which are equivalent by standard arguments) and call it QCCA1 in analogy to
the classical CCA1 security model. Using a bound on quantum random-access codes, we show that the
standard PRF- and PRP-based encryption schemes are QCCA1-secure when instantiated with quantum-
secure primitives.
We then revisit standard IND-CPA-secure Learning with Errors (LWE) encryption and show that leaking
just one quantum decryption query (and no other queries or leakage of any kind) allows the adversary
to recover the full secret key with constant success probability. In the classical setting, by contrast,
recovering the key uses a linear number of decryption queries, and this is optimal. The algorithm at
the core of our attack is a (large-modulus version of) the well-known Bernstein-Vazirani algorithm. We
emphasize that our results should not be interpreted as a weakness of these cryptosystems in their
stated security setting (i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that,
if these cryptosystems are exposed to chosen-ciphertext attacks (e.g., as a result of deployment in an
inappropriate real-world setting) then quantum attacks are even more devastating than classical ones.

1 Introduction

1.1 Background

Large-scale quantum computers pose a dramatic threat to classical cryptography. The ability of
such devices to run Shor’s efficient quantum factoring algorithm (and its variants) would lead
to devastation of the currently deployed public-key cryptography infrastructure [CJL+16; Sho94].
This threat has led to significant work on so-called “post-quantum” alternatives, where a prominent
category is occupied by cryptosystems based on the Learning with Errors (LWE) problem of solving
noisy linear equations over Zq [Reg05] and its variants [CJL+16; NIS17].

In addition to motivating significant work on post-quantum cryptosystems, the threat of quan-
tum computers has also spurred general research on secure classical cryptography in the presence
of quantum adversaries. One area in particular explores strong security models where a quantum
adversary gains precise quantum control over portions of a classical cryptosystem. In such models,
a number of basic symmetric-key primitives can be broken by simple quantum attacks based on
Simon’s algorithm [KM10; KM12; KLL+16; SS17; Sim97]. It is unclear if the assumption behind
these models is plausible for typical physical implementations of symmetric-key cryptography. How-
ever, attacks which involve quantumly querying a classical function are always available in scenarios
where the adversary has access to a circuit for the relevant function. This is the case for hashing,
public-key encryption, and circuit obfuscation. Moreover, understanding this model is crucial for
gauging the degree to which any physical device involved in cryptography must be resistant to



reverse engineering or forced quantum behavior (consider, e.g., the so-called “frozen smart card”
example [GHS16]). For instance, one may reasonably ask: what happens to the security of a classical
cryptosystem when the device leaks only a single quantum query to the adversary?

When deciding which functions the adversary might have (quantum) access to, it is worth recall-
ing the classical setting. For classical symmetric-key encryption, a standard approach considers the
security of cryptosystems when exposed to so-called chosen-plaintext attacks (CPA). This notion
encompasses all attacks in which an adversary attempts to defeat security (by, e.g., distinguish-
ing ciphertexts or extracting key information) using oracle access to the function which encrypts
plaintexts with the secret key. This approach has been highly successful in developing cryptosys-
tems secure against a wide range of realistic real-world attacks. An analogous class, the so-called
chosen-ciphertext attacks (CCA), are attacks in which the adversary can make use of oracle access
to decryption. For example, a well-known attack due to Bleichenbacher [Ble98] only requires access
to an oracle that decides if the input ciphertext is encrypted according to a particular RSA stan-
dard. We will consider analogues of both CPA and CCA attacks, in which the relevant functions are
quantumly accessible to the adversary.

Prior works have formalized the quantum-accessible model for classical cryptography in several
settings, including unforgeable message authentication codes and digital signatures [BZ13b; BZ13a],
encryption secure against quantum chosen-plaintext attacks (QCPA) [BJ15; GHS16], and encryption
secure against adaptive quantum chosen-ciphertext attacks (QCCA2) [BZ13b].

1.2 Our Contributions

The model. In this work, we consider a quantum-secure model of encryption called QCCA1. This
model grants non-adaptive access to the decryption oracle, and is thus intermediate between QCPA

and QCCA2. Studying weaker and intermediate models is a standard and useful practice in theo-
retical cryptography. In fact, CPA and CCA2 are intermediate models themselves, since they are
both strictly weaker than authenticated encryption. Our particular intermediate model is naturally
motivated: it is sufficent for a new and interesting quantum attack on LWE encryption.

As is typical, the challenge in QCCA1 can be semantic, or take the form of an indistinguisha-
bility test. This leads to natural security notions for symmetric-key encryption, which we call
IND-QCCA1 and SEM-QCCA1, respectively. Following previous works, it is straightforward to de-
fine both IND-QCCA1 and SEM-QCCA1 formally, and prove that they are equivalent [BJ15; GHS16;
BZ13b].

We then prove IND-QCCA1 security for two symmetric-key encryption schemes, based on stan-
dard assumptions. Specifically, we show that the standard encryption schemes based on quantum-
secure pseudorandom functions (QPRF) and quantum-secure pseudorandom permutations (QPRP)
are both IND-QCCA1. We remark that both QPRFs and QPRPs can be constructed from quantum-
secure one-way functions [Zha12; Zha16]. Our security proofs use a novel technique, in which we
control the amount of information that the adversary can extract from the oracles and store in
their internal quantum state (prior to the challenge) by means of a certain bound on quantum
random-access codes.

A quantum-query attack on LWE. We then revisit the aforementioned question: what happens to
a post-quantum cryptosystem if it leaks a single quantum query? Our main result is that stan-
dard IND-CPA-secure LWE-based encryption schemes can be completely broken using only a single
quantum decryption query and no other queries or leakage of any kind. In our attack, the adver-
sary recovers the complete secret key with constant success probability. In standard bit-by-bit LWE
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encryption, a single classical decryption query can yield at most one bit of the secret key; the clas-
sical analogue of our attack thus requires n log q queries. The attack is essentially an application
of a modulo-q variant of the Bernstein-Vazirani algorithm [BV97]. Our new analysis shows that
this algorithm correctly recovers the key with constant success probability, despite the decryption
function only returning an inner product which is rounded to one of two values. We show that the
attack applies to four variants of standard IND-CPA-secure LWE-based encryption: the symmetric-
key and public-key systems originally described by Regev [Reg05], the FrodoPKE scheme5 [LP11;
ABD+17], and standard Ring-LWE [LPR13a; LPR13b].

Important caveats. Our results challenge the idea that LWE is unconditionally “just as secure”
quantumly as it is classically. Nonetheless, the reader is cautioned to interpret our work carefully.
Our results do not indicate a weakness in LWE (or any LWE-based cryptosystem) in the stan-
dard post-quantum security model. Since it is widely believed that quantum-algorithmic attacks
will need to be launched over purely classical channels, post-quantum security does not allow for
quantum queries to encryption or decryption oracles. Moreover, while our attack does offer a dra-
matic quantum speedup (i.e., one query vs. linear queries), the classical attack is already efficient.
The schemes we attack are already insecure in the classical chosen-ciphertext setting, but can be
modified to achieve chosen-ciphertext security [FO99].

Related work. We remark that Grilo, Kerenidis and Zijlstra recently observed that a version of
LWE with so-called “quantum samples” can be solved efficiently (as a learning problem) using
Bernstein-Vazirani [GKZ17]. Our result, by contrast, demonstrates an actual cryptographic attack
on standard cryptosystems based on LWE, in a plausible security setting. Moreover, in terms of
solving the learning problem, our analysis shows that constant success probability is achievable
with only a single query, whereas [GKZ17] require a number of queries which is at least linear
in the modulus q. In particular, our cryptographic attack succeeds with a single query even for
superpolynomial modulus.

1.3 Technical summary of results

Security model and basic definitions. First, we set down the basic QCCA1 security model,
adapting the ideas of [BZ13a; GHS16]. Recall that an encryption scheme is a tripleΠ = (KeyGen,Enc,Dec)
of algorithms (key generation, encryption, and decryption, respectively) satisfying Deck(Enck(m)) =
m for any key k ← KeyGen and message m. In what follows, all oracles are quantum, meaning that
a function f is accessed via the unitary operator |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. We define ciphertext
indistinguishability and semantic security as follows.

Definition 1 (informal). Π is IND-QCCA1 if no quantum polynomial-time algorithm (QPT) A
can succeed at the following experiment with probability better than 1/2 + negl(n).

1. A key k ← KeyGen(1n) and a uniformly random bit b $←−{0, 1} are generated; A gets access to
oracles Enck and Deck, and outputs (m0,m1);

2. A receives Enck(mb) and gets access to an oracle for Enck only, and outputs a bit b′; A wins if
b = b′.

Definition 2 (informal). Consider the following game with a QPT A.
5 FrodoPKE is an IND-CPA-secure building block in the IND-CCA2-secure post-quantum cryptosystem
“FrodoKEM” [ABD+17]. Our results do not affect the post-quantum security of Frodo and do not contradict
the CCA2 security of FrodoKEM.
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1. A key k ← KeyGen(1n) is generated; A gets access to oracles Enck, Deck and outputs circuits
(Samp, h, f);

2. Sample m ← Samp; A receives h(m), Enck(m), and access to an oracle for Enck only, and
outputs a string s; A wins if s = f(m).

Then Π is SEM-QCCA1 if for every QPT A there exists a QPT S with the same winning probability
but which does not get Enck(m) in step 2.

Theorem 1. A classical symmetric-key encryption scheme is IND-QCCA1 if and only if it is
SEM-QCCA1.

Secure constructions. Next, we show that standard pseudorandom-function-based encryption
is QCCA1-secure, provided that the underlying PRF is quantum-secure (i.e., is a QPRF.) A QPRF

can be constructed from any quantum-secure one-way function, or directly from the LWE assump-
tion [Zha12]. Given a PRF f = {fk}k, define PRFscheme[f ] to be the scheme which encrypts a
plaintext m using randomness r via Enck(m; r) = (r, fk(r)⊕m) and decrypts in the obvious way.

Theorem 2. If f is a QPRF, then PRFscheme[f ] is IND-QCCA1-secure.

We also analyze a standard permutation-based scheme. Quantum-secure PRPs (i.e., QPRPs)
can be obtained from quantum-secure one-way functions [Zha16]. Given a PRP P = {Pk}k, define
PRPscheme[P ] to be the scheme that encrypts a plaintext m using randomness r via Enck(m; r) =
Pk(m||r), where || denotes concatenation; to decrypt, one applies P−1

k and discards the randomness
bits.

Theorem 3. If P is a QPRP, then PRPscheme[P ] is IND-QCCA1-secure.

We briefly describe our proof techniques for Theorems 2 and 3. In the indistinguishability
game, the adversary can use the decryption oracle prior to the challenge to (quantumly) encode
information about the relevant pseudorandom function instance (i.e., fk or Pk) in their private,
poly-sized quantum memory. From this point of view, establishing security means showing that this
encoded information cannot help the adversary compute the value of the relevant function at the
particular randomness used in the challenge. To prove this, we use a bound on quantum random
access codes (QRAC). Informally, a QRAC is a mapping from N -bit strings x to d-dimensional
quantum states ̺x, such that given ̺x, and any index j ∈ [N ], the bit xj can be recovered with
some probability px,j = 1

2 + ǫx,j. The average bias of such a code is the expected value of ǫx,j,
over uniform x and j. A QRAC with shared randomness further allows the encoding and decoding
procedures to both depend on some random variable.

Lemma 1. The average bias of a quantum random access code with shared randomness that encodes
N bits into a d-dimensional quantum state is O(

√

N−1 log d). In particular, if N = 2n and d =
2poly(n) the bias is O(2−n/2 poly(n)).

Key recovery against LWE. Our attack on LWE encryption will make use of a new analysis
of the performance of a large-modulus variant of the Bernstein-Vazirani algorithm [BV97], in the
presence of a certain type of “rounding” noise.
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Quantum algorithm for linear rounding functions. In the simplest case we analyze, the oracle
outputs 0 if the inner product is small, and 1 otherwise. Specifically, given integers n ≥ 1 and
q ≥ 2, define a keyed family of (binary) linear rounding functions, LRFk,q : Z

n
q −→ {0, 1}, with key

k ∈ Z
n
q , as follows:

LRFk,q(x) :=

{

0 if |〈x,k〉| ≤ ⌊ q4⌋,
1 otherwise.

Here 〈·, ·〉 denotes the inner product modulo q. Our main technical contribution is the following.

Theorem 4 (informal). There exists a quantum algorithm which runs in time O(n), makes one
quantum query to LRFk,q (with q ≥ 2 and unknown k ∈ Z

n
q ), and outputs k with probability

4/π2 −O(1/q).

We also show that the same algorithm succeeds against more generalized function classes, in
which the oracle indicates which “segment” of Zq the exact inner product belongs to.

One quantum query against LWE. Finally, we revisit our central question of interest: what happens
to a post-quantum cryptosystem if it leaks a single quantum query? We show that, in standard
LWE-based schemes, the decryption function can (with some simple modifications) be viewed as a
special case of a linear rounding function, as above. In standard symmetric-key or public-key LWE,
for instance, we decrypt a ciphertext (a, c) ∈ Z

n+1
q with key k by outputting 0 if |c− 〈a,k〉| ≤

⌊ q
4

⌋

and 1 otherwise. In standard Ring-LWE, we decrypt a ciphertext (u, v) with key k (here u, v, k are
polynomials in Zq[x]/〈xn + 1〉) by outputting 0 if the constant coefficient of v − k · u is small, and
1 otherwise.

Each of these schemes is secure against adversaries with classical encryption oracle access, under
the LWE assumption. If adversaries also gain classical decryption access, then it’s not hard to see
that a linear number of queries is necessary and sufficient to recover the private key. Our main
result is that, by contrast, only a single quantum decryption query is required to achieve this total
break. Indeed, in all three constructions described above, one can use the decryption oracle to build
an associated oracle for a linear rounding function which hides the secret key. The following can
then be shown using Theorem 4.

Theorem 5 (informal). Let Π be standard LWE or standard Ring-LWE encryption (either symmetric-
key, or public-key.) Let n be the security parameter. Then there is an efficient quantum algorithm
that runs in time O(n), uses one quantum query to the decryption function Deck of Π,and outputs
the secret key with constant probability.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we outline preliminary ideas
that we will make use of, including cryptographic concepts, and notions from quantum algorithms.
In Section 3, we define the QCCA1 model, including the two equivalent versions IND-QCCA1 and
SEM-QCCA1. In Section 4, we define the PRF and PRP scheme, and show that they are IND-QCCA1-
secure. In Section 5, we show how a generalization of the Bernstein-Vazirani algorithm works with
probability bounded from below by a constant, even when the oracle outputs rounded values. In
Section 6, we use the results of Section 5 to prove that a single quantum decryption query is enough
to recover the secret key in various versions of LWE-encryption; we also observe a similar result for
a model in which the adversary can make one quantum encryption query with partial access to the
randomness register.
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2 Preliminaries

2.1 Basic notation and conventions

Selecting an element x uniformly at random from a finite set X will be written as x $←−X. If we are
generating a vector or matrix with entries in Zq by sampling each entry independently according
to a distribution χ on Zq, we will write, e.g., v

χ←−Z
n
q . Given a matrix A, AT will denote the

transpose of A. We will view elements v of Zn
q as column vectors; the notation vT then denotes the

corresponding row vector. The notation negl(n) denotes some function of n which is smaller than
every inverse-polynomial. We denote the concatenation of strings x and y by x||y. We abbreviate
classical probabilistic polynomial-time algorithms as PPT algorithms. By quantum algorithm (or
QPT) we mean a polynomial-time uniform family of quantum circuits, where each circuit in the
family is described by a sequence of unitary gates and measurements. In general, such an algorithm
may receive (mixed) quantum states as inputs and produce (mixed) quantum states as outputs.
Sometimes we will restrict QPTs implicitly; for example, if we write Pr[A(1n) = 1] for a QPT A, it
is implicit that we are only considering those QPTs that output a single classical bit.

Every function f : {0, 1}m → {0, 1}ℓ determines a unitary operator Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉
on m + ℓ qubits where x ∈ {0, 1}m and y ∈ {0, 1}ℓ. In this work, when we say that a quantum
algorithm A gets (adaptive) oracle access to f (written Af ), we mean that A can apply the oracle
unitary Uf .

Recall that a symmetric-key encryption scheme is a triple of classical probabilistic algorithms
(KeyGen,Enc,Dec) whose run-times are polynomial in some security parameter n. Such a scheme
must satisfy the following property: when a key k is sampled by running KeyGen(1n), then it
holds that Deck(Enck(m)) = m for all m except with negligible probability in n. In this work, all
encryption schemes will be fixed-length, i.e., the length of the message m will be a fixed (at most
polynomial) function of n.

Since the security notions we study are unachievable in the information-theoretic setting, all
adversaries will be modeled by QPTs. When security experiments require multiple rounds of inter-
action with the adversary, it is implicit that A is split into multiple QPTs (one for each round), and
that these algorithms forward their internal (quantum) state to the next algorithm in the sequence.

2.2 Quantum-secure pseudorandomness

Let f : {0, 1}n ×{0, 1}m → {0, 1}ℓ be an efficiently computable function, where n,m, ℓ are integers
and where f defines a family of functions {fk}k∈{0,1}n with fk(x) = f(k, x). We say f is a quantum-
secure pseudorandom function (or QPRF) if, for every QPT A,

∣

∣

∣

∣

∣

Pr
k

$←− {0,1}n

[

Afk(1n) = 1
]

− Pr
g

$←− Fℓ
m

[Ag(1n) = 1]

∣

∣

∣

∣

∣

≤ negl(n) . (1)

Here Fℓ
m denotes the set of all functions from {0, 1}m to {0, 1}ℓ. The standard method for con-

structing a pseudorandom function from a one-way function produces a QPRF, provided that the
one-way function is quantum-secure [GL89; GGM86; Zha12].

A quantum-secure pseudorandom permutation is a a bijective function family of quantum-secure
pseudorandom functions. More specifically, consider a function P : {0, 1}n × {0, 1}m → {0, 1}m,
where n and m are integers, such that each function Pk(x) = P (k, x) in the corresponding family
{Pk}k∈{0,1}n is bijective. We say P is a quantum-secure pseudorandom permutation (or QPRP) if,
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for every QPT A with access to both the function and its inverse,
∣

∣

∣

∣

∣

Pr
k

$←− {0,1}n

[

APk,P
−1

k (1n) = 1
]

− Pr
π

$←− Pm

[

Aπ,π−1

(1n) = 1
]

∣

∣

∣

∣

∣

≤ negl(n) , (2)

where Pm denotes the set of permutations over m-bit strings. One can construct QPRPs from
quantum-secure one-way functions [Zha16].

2.3 Quantum random access codes

A quantum random access code (QRAC) is a two-party scheme for the following scenario involving
two parties Alice and Bob [Nay99]:

1. Alice gets x ∈ {0, 1}N and encodes it as a d-dimensional quantum state ̺x.
2. Bob receives ̺x from Alice, and some index i ∈ {1, . . . , N}, and is asked to recover the i-th bit

of x, by performing some measurement on ̺x.
3. They win if Bob’s output agrees with xi and lose otherwise.

We can view a QRAC scheme as a pair of (not necessarily efficient) quantum algorithms: one for
encoding, and another for decoding. We remark that the definition of a QRAC does not require
a bound on the number of qubits; the interesting question is with what parameters a QRAC can
actually exist.

A variation of the above scenario allows Alice and Bob to use shared randomness in their encod-
ing and decoding operations [ALM+08]. Hence, Alice and Bob can pursue probabilistic strategies
with access to the same random variable.

Define the average bias of a QRAC with shared randomness as ǫ = pwin− 1/2, where pwin is the
winning probability averaged over x $←−{0, 1}N and i $←−{1, . . . , N}.

2.4 Quantum Fourier transform

For any positive integer q, the quantum Fourier transform over Zq is defined by the operation

QFTZq |x〉 =
1√
q

∑

y∈Zq

ωx·y
q |y〉,

where ωq = e
2πi
q . Due to early work by Kitaev [Kit95], this variant of the Fourier transform can

be implemented using quantum phase estimation in complexity polynomial in log q. An improved
approximate implementation of this operation is due to Hales and Hallgren [HH00].

3 The QCCA1 security model

3.1 Quantum oracles

In our setting, adversaries will (at various times) have quantum oracle access to the classical func-
tions Enck and Deck. The case of the deterministic decryption function Deck is simple: the adversary
gets access to the unitary operator UDeck : |c〉|m〉 7→ |c〉|m ⊕ Deck(c)〉. For encryption, to satisfy
IND-CPA security, Enck must be probabilistic and thus does not correspond to any single unitary
operator. Instead, each encryption oracle call of the adversary will be answered by applying a
unitary sampled uniformly from the family {UEnck,r}r where

UEnck,r : |m〉|c〉 7→ |m〉|c⊕ Enck(m; r)〉

7



and r varies over all the possible values of the randomness register of Enck. Note that, since Enck
and Deck are required to be probabilistic polynomial-time algorithms provided by the underlying
classical symmetric-key encryption scheme, both UEnck,r and UDeck correspond to efficient and
reversible quantum operations. For the sake of brevity, we adopt the convenient notation Enck and
Deck to refer to the above quantum oracles for encryption and decryption respectively.

3.2 Ciphertext indistinguishability

We now define indistinguishability of encryptions (for classical, symmetric-key schemes) against
non-adaptive quantum chosen-ciphertext attacks.

Definition 3 (IND-QCCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, A a QPT, and
n the security parameter. Define IndGame(Π,A, n) as follows.

1. Setup: A key k ← KeyGen(1n) and a bit b $←−{0, 1} are generated;
2. Pre-challenge: A gets access to oracles Enck and Deck, and outputs (m0,m1);
3. Challenge: A gets Enck(mb) and access to Enck only, and outputs a bit b′;
4. Resolution: A wins if b = b′.

Then Π has indistinguishable encryptions under non-adaptive quantum chosen ciphertext attack
(or is IND-QCCA1) if, for every QPT A,

Pr[A wins IndGame(Π,A, n)] ≤ 1/2 + negl(n) .

By inspection, one immediately sees that our definition lies between the established notions
of IND-QCPA and IND-QCCA2 [BJ15; GHS16; BZ13b]. It will later be convenient to work with a
variant of the game IndGame, which we now define.

Definition 4 (IndGame′). We define the experiment IndGame′(Π,A, n) just as IndGame(Π,A, n),
except that in the pre-challenge phase A only outputs a single message m, and in the challenge
phase A receives Enck(m) if b = 0, and Enck(x) for a uniformly random message x if b = 1.

Working with IndGame′ rather than IndGame does not change security. Specifically (as we show
in Appendix A), Π is IND-QCCA1 if and only if, for every QPT A, Pr[A wins IndGame′(Π,A, n)] ≤
1/2 + negl(n) .

3.3 Semantic security

In semantic security, rather than choosing a pair of challenge plaintexts, the adversary chooses
a challenge template: a triple of circuits (Samp, h, f), where Samp outputs plaintexts from some
distribution DSamp, and h and f are functions with domain the support of DSamp. The intuition
is that Samp is a distribution of plaintexts m for which the adversary, if given information h(m)
about m together with an encryption of m, can produce some new information f(m).

Definition 5 (SEM-QCCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, and consider
the experiment SemGame(b) (with parameter b ∈ {real, sim}) with a QPT A, defined as follows.

1. Setup: A key k ← KeyGen(1n) is generated;
2. Pre-challenge: A gets access to oracles Enck and Deck, and outputs a challenge template (Samp, h, f);
3. Challenge: A plaintext m $←− Samp is generated; A receives h(m) and gets access to an oracle for

Enck only; if b = real, A also receives Enck(m); A outputs a string s;
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4. Resolution: A wins if s = f(m).

Π has semantic security under non-adaptive quantum chosen ciphertext attack (or is SEM-QCCA1)
if, for every QPT A, there exists a QPT S such that the challenge templates output by A and S are
identically distributed, and

∣

∣Pr[A wins SemGame(real)]− Pr[S wins SemGame(sim)]
∣

∣ ≤ negl(n) .

Our definition is a straightforward modification of SEM-QCPA [GHS16; BZ13b]; the modification
is to give A and S oracle access to Deck in the pre-challenge phase.

Theorem 6. Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme. Then, Π is
IND-QCCA1-secure if and only if Π is SEM-QCCA1-secure.

The classical proof of the above (see, e.g., [Gol09]) carries over directly to the quantum case.
This was already observed for the case of QCPA by [GHS16], and extends straightforwardly to the
case where both the adversary and the simulator gain oracle access to Deck in the pre-challenge
phase.6

4 Secure Constructions

4.1 PRF scheme

Let us first recall the standard symmetric-key encryption based on pseudorandom functions.

Construction 1 (PRF scheme) Let n be the security parameter and let f : {0, 1}n × {0, 1}n −→
{0, 1}n be an efficient family of functions {fk}k. Then, the symmetric-key encryption scheme
PRFscheme[f ] = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: output k $←−{0, 1}n;
2. Enc: to encrypt m ∈ {0, 1}n, choose r $←−{0, 1}n and output (r, fk(r)⊕m);
3. Dec: to decrypt (r, c) ∈ {0, 1}n × {0, 1}n, output c⊕ fk(r);

For simplicity, we chose a particularly simple set of parameters for the PRF, so that key length,
input size, and output size are all equal to the security parameter. It is straightforward to check
that the definition (and our results below) are valid for arbitrary polynomial-size parameter choices.

We show that the above scheme satisfies QCCA1, provided that the underlying PRF is secure
against quantum queries.

Theorem 7. If f is a QPRF, then PRFscheme[f ] is IND-QCCA1-secure.

Proof. Fix a QPT adversary A against Π := PRFscheme[f ] = (KeyGen,Enc,Dec) and let n denote
the security parameter. It will be convenient to split A into the pre-challenge algorithm A1 and the
challenge algorithm A2.

We will work with the single-message variant of IndGame, IndGame′, described below as Game 0.
In Appendix A, we show that Π is IND-QCCA1 if and only if no QPT adversary can win IndGame′

with non-negligible bias. We first show that a version of IndGame′ where we replace f with a random
function, called Game 1 below, is indistinguishable from IndGame′, so that the winning probabilities
cannot differ by a non-negligible amount. We then prove that no adversary can win Game 1 with
non-negligible bias by showing how any adversary for Game 1 can be used to make a quantum
random access code with the same bias.
6 In fact, the proof works even if Deck access is maintained during the challenge, so the result is really that
IND-QCCA2 is equivalent to SEM-QCCA2.

9



1n A1

|ψ〉

m∗

Φb
c∗ A2 b′

Enck Deck Enck

Fig. 1. IndGame
′ from Definition 4.

Game 0: This is the game IndGame′(Π,A, n), which we briefly review for convenience (see also
Figure 1). In the pre-challenge phase, A1 gets access to oracles Enck and Deck, and outputs a
message m∗ while keeping a private state |ψ〉 for the challenge phase. In the challenge phase, a
random bit b $←−{0, 1} is sampled, and A2 is run on input |ψ〉 and a challenge ciphertext

c∗ := Φb(m
∗) :=

{

Enck(m
∗) if b = 0,

Enck(x) if b = 1.

Here Enck(x) := (r∗, fk(r∗) ⊕ x) where r∗ and x are sampled uniformly at random. In the
challenge phase, A2 only has access to Enck and must output a bit b′. A wins if δbb′ = 1, so we
call δbb′ the outcome of the game.

Game 1: This is the same game as Game 0, except we replace fk with a uniformly random
function F : {0, 1}n → {0, 1}n.

First, we show that for any adversary A, the outcome whenA playsGame 0 is at most negligibly
different from the outcome when A plays Game 1. We do this by constructing a quantum oracle
distinguisher D that distinguishes between the QPRF {fk}k and a true random function, with
distinguishing advantage

∣

∣Pr[1← Game 0]− Pr[1← Game 1]
∣

∣,

which must then be negligible since f is a QPRF. The distinguisher D gets quantum oracle access to
a function g, which is either fk, for a random k, or a random function, and proceeds by simulating
A playing IndGame′ as follows:

1. Run A1, answering encryption queries using classical calls to g in place of fk, and answering
decryption queries using quantum oracle calls to g:

|r〉|c〉|m〉 7→ |r〉|c〉|m⊕ c〉 7→ |r〉|c〉|m⊕ c⊕ g(r)〉 ;

2. Simulate the challenge phase by sampling b $←−{0, 1} and encrypting the challenge using g in
place of fk; run A2 and simulate encryption queries as before;

3. When A2 outputs b′, output δbb′ .

It remains to show that no QPT adversary can win Game 1 with non-negligible probability. To
do this, we design a quantum random access code from any adversary, and use the lower bound on
the bias given in Lemma 1.

Intuition. We first give some intuition. In an encryption query, the adversary, either A1 or A2,
queries a message, or a superposition of messages

∑

m |m〉, and gets back
∑

m |m〉|r,m⊕ F (r)〉 for
a random r, from which he can easily get a sample (r, F (r)). Thus, in essence, an encryption query
is just classically sampling a random point of F .

In a decryption query, which is only available to A1, the adversary sends a ciphertext, or a
superposition of ciphertexts,

∑

r,c |r, c〉 and gets back
∑

r,c |r, c〉|c⊕F (r)〉, from which he can learn

10



∑

r |r, F (r)〉. Thus, a decryption query allows A1 to query F , in superposition. Later in the challenge
phase, A2 gets an encryption (r∗,m⊕ F (r∗)) and must decide if m = m∗. Since A2 no longer has
access to the decryption oracle, which allows him to query F , there seem to be two possible ways
A2 could learn F (r∗):

1. A2 gets lucky in one of his at most poly(n) many queries to Enck and happens to sample
(r∗, F (r∗));

2. Or, the adversary is somehow able to use what he learned while he had access to Deck, and
thus F , to learn F (r∗), meaning that the poly(n)-sized quantum memory A1 sends to A2, that
can depend on queries to F , but which cannot depend on r∗, allows A2 to learn F (r∗).

The first possibility is exponentially unlikely, since there are 2n possibilities for r∗. As we will see
shortly, the second possibility would imply a very strong quantum random access code. It would
essentially allow A1 to interact with F , which contains 2n values, and make a state, which must
necessarily be of polynomial size, such that A2 can use that state to recover F (r∗) for any of the
2n possible values of r∗, with high probability. We now formalize this intuition. To clarify notation,
we will use boldface to denote the shared randomness bitstrings.

Bits to be encoded:

b1, . . . , b2n ∈ {0, 1}

Bit to be recovered:

j ∈ {1, . . . , 2n}

Shared randomness:

s,y1, . . . ,y2n , r1, . . . , rℓ ∈ {0, 1}
n

QRAC Encoding QRAC Decoding

A1 A2

b′

m (r,m⊕ f̃(r))

Enc query

r
$
←−{0, 1}

n

(r, c) c⊕ f̃(r)

Dec query

mi (ri,mi ⊕ f̃(ri))

i-th Enc query

f̃(r1), . . . , f̃(rℓ)

|ψ〉

m∗

Φj

c∗

(j,m∗ ⊕ yj)

f̃(r) :=

{

yr if br = 0

yr ⊕ s if br = 1

Fig. 2. Quantum random access code construction for the PRF scheme.

Construction of a quantum random access code. LetA be a QPT adversary with winning probability
p. Let ℓ = poly(n) be an upper bound on the number of queries made by A2. Recall that a random
access code consists of an encoding procedure that takes (in this case) 2n bits b1, . . . , b2n , and
outputs a state ̺ of dimension (in this case) 2poly(n), such that a decoding procedure, given ̺ and
an index j ∈ {1, . . . , 2n} outputs bj with some success probability. We define a quantum random
access code as follows (see also Figure 2).

Encoding. Let b1, . . . , b2n ∈ {0, 1} be the string to be encoded. Let s,y1, . . . ,y2n ∈ {0, 1}n be
given by the first n(1 + 2n) bits of the shared randomness, and let r1, . . . , rℓ ∈ {0, 1}n be the
next ℓn bits. Define a function f̃ : {0, 1}n → {0, 1}n as follows. For r ∈ {0, 1}n, we will slightly
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abuse notation by letting r denote the corresponding integer value between 1 and 2n. Define
f̃(r) = yr ⊕ brs. Run A1, answering encryption and decryption queries using f̃ in place of F .
Let m∗ and |ψ〉 be the outputs of A1 (see Figure 1). Output ̺ = (|ψ〉,m∗, f̃(r1), . . . , f̃(rℓ)).

Decoding. Let j ∈ {1, . . . , 2n} be the index of the bit to be decoded (so given ̺ as above, the
goal is to recover bj). Decoding will make use of the values s,y1, . . . ,y2n , r1, . . . , rℓ given by
the shared randomness. Upon receiving a query j ∈ {1, . . . , 2n}, run A2 with inputs |ψ〉 and
(j,m∗ ⊕ yj). On A2’s i-th encryption oracle call, use randomness ri, so that if the input to the

oracle is |m, c〉, the state returned is |m, c⊕ (ri,m⊕ f̃(ri))〉 (note that f̃(ri) is given as part of
̺). Return the bit b′ output by A2.

Average bias of the code. We claim that the average probability of decoding correctly, taken over
all choices of b1, . . . , b2n ∈ {0, 1} and j ∈ {1, . . . , 2n}, is exactly p, the success probability of A.
To see this, first note that from A’s perspective, this is exactly Game 1: the function f̃ is a
uniformly random function, and the queries are responded to just as in Game 1. Further, note that
if bj = 0, then m∗ ⊕ yj = m∗ ⊕ f̃(j), so the correct guess for A2 would be 0, and if bj = 1, then

m∗ ⊕ yj = m∗ ⊕ f̃(j) ⊕ s = x⊕ f̃(j) for the uniformly random string x = m∗ ⊕ s, so the correct
guess for A2 would be 1.

Therefore, the average bias of the code is p − 1/2. We also observe that ̺ has dimension at
most 2poly(n), since |ψ〉 must be a poly(n)-qubit state (A1 only runs for poly(n) time), and ℓ, the
number of queries made by A2 must be poly(n), since A2 only runs for poly(n) time. As this code
encodes 2n bits into a state of dimension 2poly(n), by Lemma 1 (proven in Appendix A), the bias is
O(2−n/2 poly(n)) = negl(n), so p ≤ 1

2 + negl(n). ⊓⊔

4.2 PRP scheme

We now prove the IND-QCCA1 security of a standard encryption scheme based on pseudorandom
permutations.

Construction 2 (PRP scheme) Let n be the security parameter and let P : {0, 1}n×{0, 1}2n −→
{0, 1}2n be an efficient family of permutations {Pk}k. Then, the symmetric-key encryption scheme
PRPscheme[f ] = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: output k $←−{0, 1}n;
2. Enc: to encrypt m ∈ {0, 1}n, choose r $←−{0, 1}n and output Pk(m||r);
3. Dec: to decrypt c ∈ {0, 1}2n, output the first n bits of P−1

k (c).

As before, we chose a simple set of parameters; in general, the randomness length, plaintext
length, and security parameter can be related by arbitrary polynomials.

Theorem 8. If P is a QPRP, then PRPscheme[P ] is IND-QCCA1-secure.

Proof. We follow a similar proof strategy as with the PRF scheme. Fix a QPT adversary A against
Π := PRPscheme[P ] = (KeyGen,Enc,Dec) and let n denote the security parameter. We have that Π
is IND-QCCA1 if and only if no QPT adversary can win IndGame′ with non-negligible bias. First, we
show that a version of IndGame′ where we replace P with a random permutation, described below
as Game 1, is indistinguishable from IndGame′, so that the winning probabilities cannot differ by
a non-negligible amount. We then prove that no adversary can win Game 1 with non-negligible
bias, by showing how any adversary for Game 1 can be used to make a quantum random access
code with the same bias.
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Game 0: In the pre-challenge phase, A1 gets access to oracles Enck and Deck. In the challenge
phase, A1 outputs m and its private data |ψ〉; a random bit b $←−{0, 1} is sampled, and A2 is
run on input |ψ〉 and a challenge ciphertext

c∗ :=

{

Enck(m
∗) = Pk(m

∗||r∗) if b = 0,

Enck(x) = Pk(x||r∗) if b = 1,

where r∗ $←−{0, 1}n and x is sampled uniformly at random. In the challenge phase, A2 has oracle
access to Enck only and outputs a bit b′. The outcome of the game is simply the bit δbb′ .

Game 1: This is the same game as Game 0, except we now replace Pk with a perfectly random
permutation π : {0, 1}2n → {0, 1}2n.

We show that for any adversary A, the outcome when A plays Game 0 is at most negligibly
different from the outcome when A plays Game 1. We construct a quantum oracle distinguisher D
that distinguishes between Pk and a perfectly random permutation, with distinguishing advantage

|Pr[1← Game 0]− Pr[1← Game 1]| ,

which must then be negligible since Pk is a QPRP. Here, the distinguisher D receives quantum
oracle access to a function ϕ, which is either Pk for a random k, or a random permutation π, and
proceeds by simulating A playing IndGame′ as follows:

1. Run A1, answering encryption queries using oracle calls to ϕ in place of Pk, where for a given
input and via randomness r,

Enc : |m〉|c〉 7→ |m〉|c ⊕ ϕ(m||r)〉.

Answer decryption queries using quantum oracle calls to ϕ̃−1, a function that first computes
ϕ−1 but then (analogous to the PRP construction) discards the last n bits of the pre-image
corresponding to the randomness, i.e.

Dec : |c〉|m〉 7→ |c〉|m⊕ ϕ̃−1(c)〉.

2. Simulate the challenge phase by sampling b $←−{0, 1} and encrypting using a randomness r∗

together with a classical call to ϕ in place of Pk; run A2 and simulate encryption queries as
before.

3. When A2 outputs b′, output δbb′ .

It remains to show that no QPT adversary can win Game 1 with non-negligible probability.
To do this, we will again design a random access code from any adversary’s strategy with success
probability p, and use the lower bound on the bias given in Lemma 1. We will then construct a
QRAC with bias negl(n) from this adversary, and hence conclude that p ≤ 1

2 + negl(n).

Construction of a quantum random access code. LetA be a QPT adversary with winning probability
p and let ℓ = poly(n) be an upper bound on the number of queries made by A2. When constructing
a QRAC for the PRP scheme, we shall also assume for simplicity that both the encoder and decoder
share a random permutation (as part of the shared randomness). According to the well known
coupon collector’s problem, it is sufficient for the encoder and decoder to share around N ln(N)
random strings on average, where N denotes the number of distinct random strings required to
make up the desired permutation. We define a quantum random access code as follows (see also
Figure 3).
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Bits to be encoded:

b1, . . . , b2n ∈ {0, 1}

Bit to be recovered:

j ∈ {1, . . . , 2n}

Shared randomness:

s,y1, . . . ,y2n , r1, . . . , rℓ

QRAC Encoding QRAC Decoding

A1 A2

b′

m P̃ (m||r)

Enc query

r
$
←−{0, 1}

n

c P̃−1(c)

Dec query

mi P̃ (mi||ri) = ymi⊕bris||ri

i-th Enc query

br1
, . . . , brℓ

|ψ〉

m∗

Φj

c∗

ym∗||j

P̃ (x||r) :=

{

yx||r if br = 0

yx⊕s||r if br = 1

Fig. 3. Quantum random access code construction for the PRP scheme.

Encoding. Let b1, . . . , b2n ∈ {0, 1} be the string to be encoded and let the shared randomness be
given by a random string s together with a random permutation y = y1, . . . ,y22n ∈ {0, 1}2n
and a set of random strings r1, . . . , rℓ ∈ {0, 1}n. Using b1, . . . , b2n , we define a new random
permutation by letting P̃ (x||r) := yx⊕brs||r (P̃ remains a permutation7). Run A1 by answering

encryption and decryption queries using P̃ in place of π (for decryption, use P̃−1 and discard
the last n bits). Let m∗ and |ψ〉 be the outputs of A1. Then, output ̺ = (|ψ〉,m∗, br1 , . . . , brl).

Decoding. Let j ∈ {1, . . . , 2n} be the index of the bit to be decoded; so given ̺ as above, we
will recover bj by making use of the shared randomness defined above. Upon receiving a query
j ∈ {1, . . . , 2n}, run A2 with inputs |ψ〉 and c∗ = ym∗||j. Return the bit b′ output by A2.

Average bias of the code. We claim that the average probability of decoding correctly, taken over
all choices of b1, . . . , b2n ∈ {0, 1} and j ∈ {1, . . . , 2n}, is exactly p, the success probability of A. To
see this, first note that from A’s perspective, this is exactly Game 1: the function P̃ is a uniformly
random permutation, and the queries are responded to just as in Game 1. Further, note that if
bj = 0, the challenge amounts to P̃ (m∗||j) = ym∗||j, so the correct guess for A2 would be 0, and if
bj = 1, then yx||j is an encryption of a uniformly random string x = m∗ ⊕ s, so the correct guess
for A2 would be 1.

Therefore, the average bias of the code is p − 1/2. We now proceed with a similar analysis as
with the PRF scheme. Note that ̺ has dimension at most 2poly(n), since |ψ〉 must be a poly(n)-qubit
state (A1 only runs for poly(n) time), and ℓ, the number of queries made by A2 must be poly(n),
since A2 only runs for poly(n) time. As this code encodes 2n bits into a state of dimension 2poly(n),
by Lemma 1, the bias is O(2−n/2 poly(n)) = negl(n), so p ≤ 1

2 + negl(n). ⊓⊔

7 Since P̃ (x||r) = P̃ (x′||r′) ⇐⇒ yx⊕brs||r
= yx′⊕b

r′
s||r′ ⇐⇒ (r = r′) ∧ (x = x′)
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5 Quantum algorithm for linear rounding functions
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+
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. . .

a
−

1

b− (cb− q)

I0(a, b) I1(a, b) Ic−2(a, b) Ic−1(a, b)

Fig. 4. Dividing Zq into c = ⌈q/b⌉ blocks, starting from a. The first c− 1 blocks, labelled I0(a, b), . . . , Ic−2(a, b), have
size b and the last, labelled Ic−1(a, b), contains the remaining b− (cb − q) ≤ b elements of Zq.

In this section, we analyze the performance of the Bernstein-Vazirani algorithm [BV97] with a
modified version of the oracle. While the original oracle computes the inner product modulo q, our
version only gives partial information about it by rounding its value to one of ⌈q/b⌉ blocks of size
b, for some b ∈ {1, . . . , q − 1} (if b does not divide q, one of the blocks will have size < b).

Definition 6. Let n ≥ 1 be an integer and q ≥ 2 be an integer modulus. Let a ∈ Zq, b ∈ Zq \ {0}
and c := ⌈q/b⌉. We partition Zq into c disjoint blocks (most of them of size b) starting from a as
follows (see Figure 4):

Iv(a, b) :=

{

{a+ vb, . . . , a+ vb+ b− 1} if v ∈ {0, . . . , c− 2},
{a+ vb, . . . , a+ q − 1} if v = c− 1.

Based on this partition, we define a family LRFk,a,b : Z
n
q −→ Zc of keyed linear rounding functions,

with key k ∈ Z
n
q , as follows:

LRFk,a,b(x) := v if 〈x,k〉 ∈ Iv(a, b).

Algorithm 1: Bernstein-Vazirani for linear rounding functions

Parameters: n, q, b ∈ {1, . . . , q − 1}, c = ⌈q/b⌉.
Input : Quantum oracle ULRF : |x〉|z〉 7→ |x〉|z + LRFk,a,b(x) (mod c)〉 where

x ∈ Z
n
q , z ∈ Zc and LRFk,a,b is the rounded inner product function for

some unknown k ∈ Z
n
q and a ∈ Zq.

Output : String k̃ ∈ Z
n
q such that k̃ = k with high probability.

1. Prepare the uniform superposition and append 1√
c

∑c−1
z=0 ω

z
c |z〉 where ωc = e2πi/c:

1√
qn

∑

x∈Zn
q

|x〉 ⊗ 1√
c

c−1
∑

z=0

ωz
c |z〉.

2. Query the oracle ULRF for LRFk,a,b to obtain
1√
qn

∑

x∈Zn
q

ω
−LRFk,a,b(x)
c |x〉 ⊗ 1√

c

c−1
∑

z=0

ωz
c |z〉.

3. Discard the last register and apply the quantum Fourier transform QFT⊗n
Zq

.

4. Measure in the computational basis and output the outcome k̃.
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The following theorem shows that the modulo-q variant of the Bernstein-Vazirani algorithm
(Algorithm 1) can recover k with constant probability of success by using only a single quantum
query to LRFk,a,b.

Theorem 9. Let ULRF be the quantum oracle for the linear rounding function LRFk,a,b with modulus
q ≥ 2, block size b ∈ {1, . . . , q − 1}, and an unknown a ∈ {0, . . . , q − 1}, and unknown key k ∈ Z

n
q

such that k has at least one entry that is a unit modulo q. Let c = ⌈q/b⌉ and d = cb− q. By making
one query to the oracle ULRF, Algorithm 1 recovers the key k with probability at least 4/π2−O(d/q).

Proof. For an integer m, let ωm = e2πi/m. Several times in this proof, we will make use of the

identity
∑ℓ−1

z=0 ω
rz
m = ω

r(ℓ−1)/2
m

(

sin(ℓrπ/m)
sin(rπ/m)

)

.

Let c = ⌈q/b⌉. Throughout this proof, let LRF(x) = LRFk,a,b(x). By querying with 1√
c

∑c−1
z=0 ω

z
c |z〉

in the second register, we are using the standard phase kickback technique, which puts the output
of the oracle directly into the phase:

|x〉 1√
c

c−1
∑

z=0

ωz
c |z〉

ULRF7−→ |x〉 1√
c

c−1
∑

z=0

ωz
c |z + LRF(x) (mod c)〉

= |x〉 1√
c

c−1
∑

z=0

ωz−LRF(x)
c |z〉 = ω−LRF(x)

c |x〉 1√
c

c−1
∑

z=0

ωz
c |z〉.

Thus, after querying the uniform superposition over the cipherspace with 1√
c

∑c−1
z=0 ω

z
c |z〉 in the

second register, we arrive at the state

1√
qn

∑

x∈Zn
q

ω−LRF(x)
c |x〉 1√

c

c−1
∑

z=0

ωz
c |z〉.

Note that ωc = ω
q/c
q . If we discard the last register and apply QFT⊗n

Zq
, we get

|ψ〉 = 1

qn

∑

y∈Zn
q

∑

x∈Zn
q

ω−(q/c)LRF(x)+〈x,y〉
q |y〉.

We then perform a complete measurement in the computational basis. The probability of obtaining
the key k is given by

|〈k|ψ〉|2 =

∣

∣

∣

∣

∣

∣

1

qn

∑

x∈Zn
q

ω
− q

c
LRF(x)+〈x,k〉

q

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

1

qn

c−1
∑

v=0

ω
− q

c
v

q

∑

x∈Zn
q :LRF(x)=v

ω〈x,k〉
q

∣

∣

∣

∣

∣

∣

2

. (3)

We are assuming that k has at least one entry that is a unit modulo q. For simplicity, suppose that
entry is kn. Let k1:n−1 denote the first n− 1 entries of k. Then, for any v ∈ {0, . . . , c− 2}:

∑

x∈Zn
q :LRF(x)=v

ω〈x,k〉
q =

∑

x∈Zn
q :〈x,k〉∈Iv(a,b)

ω〈x,k〉
q

=
∑

y∈Zn−1
q

ω〈y,k1:n−1〉
q

∑

xn∈Zq:
xnkn∈Iv(a−〈y,k1:n−1〉,b)

ωxnkn
q . (4)
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(Recall the definition of Iv(a, b) from Definition 6). Since kn is a unit, for each z ∈ Iv(a−〈y,k1:n−1〉),
there is a unique xn ∈ Zq such that xnkn = z. Thus, for a fixed y ∈ Z

n−1
q , letting a′ = a−〈y,k1:n−1〉,

we have:
∑

xn∈Zq:xnkn∈Iv(a′,b)
ωxnkn
q =

a′+(v+1)b−1
∑

z=a′+vb

ωz
q = ωa′+vb

q

b−1
∑

z=0

ωz
q ,

which we can plug into (4) to get:

∑

x∈Zn
q :

LRF(x)=v

ω〈x,k〉
q =

∑

y∈Zn−1
q

ω〈y,k1:n−1〉
q ωa−〈y,k1:n−1〉+vb

q

b−1
∑

z=0

ωz
q = qn−1ωa+vb

q

b−1
∑

z=0

ωz
q . (5)

We can perform a similar analysis for the remaining case when v = c−1. Recall that d = cb− q ≥ 0
so vb = cb− b = d+ q − b = −(b− d) (mod q) and we get

∑

x∈Zn
q :LRF(x)=c−1

ω〈x,k〉
q = qn−1ωa−(b−d)

q

b−d−1
∑

z=0

ωz
q . (6)

This is slightly different from the v < c − 1 case, shown in (5), but very similar. If we substitute
v = c− 1 in (5) and compare it to (6), we get

∣

∣

∣

∣

∣

qn−1ωa−(b−d)
q

b−d−1
∑

z=0

ωz
q − qn−1ωa−(b−d)

q

b−1
∑

z=0

ωz
q

∣

∣

∣

∣

∣

= qn−1

∣

∣

∣

∣

∣

b−1
∑

z=b−d

ωz
q

∣

∣

∣

∣

∣

= qn−1

∣

∣

∣

∣

∣

d−1
∑

z=0

ωz
q

∣

∣

∣

∣

∣

= qn−1

∣

∣

∣

∣

sin(πd/q)

sin(π/q)

∣

∣

∣

∣

≤ qn−1πd/q

2/q
= qn−1π

2
d. (7)

Above, we have used the facts sinx ≤ x, and |sinx| ≥ 2x/π when |x| ≤ π/2. Now, plugging (5) into
(3) for all the v < c− 1 terms, and using (7) and the triangle inequality for the v = c− 1 term, we
get:

|〈k|ψ〉| ≥
∣

∣

∣

∣

∣

1

qn

c−1
∑

v=0

ω−qv/c
q · qn−1ωa+vb

q

b−1
∑

z=0

ωz
q

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

1

qn
ω−q(c−1)/c
q · qn−1π

2
d

∣

∣

∣

∣

=
1

q

∣

∣

∣

∣

∣

c−1
∑

v=0

ωv(b−q/c)
q

sin(bπ/q)

sin(π/q)

∣

∣

∣

∣

∣

− π

2

d

q

=
1

q

sin(bπ/q)

sin(π/q)

∣

∣

∣

∣

∣

c−1
∑

v=0

ωv(b−q/c)
q

∣

∣

∣

∣

∣

− π

2

d

q
. (8)

Since b− q/c = d/c, we can bound the sum as follows:
∣

∣

∣

∣

∣

c−1
∑

v=0

ωv(b−q/c)
q

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c−1
∑

v=0

ωvd/c
q

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

c−1
∑

v=0

cos

(

2π

q

vd

c

)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

c−1
∑

v=0

cos

(

2π

q
d

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

c cos

(

2πd

q

)∣

∣

∣

∣

(9)

≥ c
√

1− (2πd/q)2. (10)
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To get the inequality (9), we used 0 ≤ v ≤ c and the assumption that d/q ≤ 1/4 (if d/q > 1/4,
the claim of the theorem is trivial), which implies that 2πv

c
d
q ≤ π

2 . The last inequality follows from

|cos x| ≥
√
1− x2.

Next, we bound sin(bπ/q)
sin(π/q) . When b/q ≤ 1/2, bπ/q ≤ π/2, so we have sin(bπ/q) ≥ 2b/q. We also

have sin(π/q) ≤ π/q. Thus,
sin(bπ/q)

sin(π/q)
≥ 2b

π
.

On the other hand, when b/q > 1/2, we must have c = 2 and b = q+d
2 . In that case

sin(bπ/q) = sin
π(q + d)

2q
= sin

(

π

2
+
π

2

d

q

)

= cos
πd

2q
≥

√

1−
(

πd

2q

)2

.

Since sin(π/q) ≤ π/q and q ≥ 2b,

sin(bπ/q)

sin(π/q)
≥

√

1−
(

πd
2q

)2

π/q
≥ 2b

π

√

1−O(d/q).

Thus, in both cases, sin(bπ/q)
sin(π/q) ≥ 2b

π

√

1−O(d/q). Plugging this and (10) into (8), we get:

|〈k, ψ〉| ≥ 1

q
· 2b
π

√

1−O(d/q) · c
√

1−O(d/q) −O(d/q)

=
2

π

bc

q
−O(d/q) =

2

π

q + d

q
−O(d/q) =

2

π
−O(d/q),

completing the proof. ⊓⊔

6 Key recovery against LWE

In this section, we consider various LWE-based encryption schemes and show using Theorem 9 that
the decryption key can be efficiently recovered using a single quantum decryption query (Section 6.1,
Section 6.2, and Section 6.3). Then, in Section 6.4, we show that a single quantum encryption query
can be used to recover the secret key in a symmetric-key version of LWE, as long as the querying
algorithm also has control over part of the randomness used in the encryption procedure.

6.1 Key recovery via one decryption query in symmetric-key LWE

Recall the following standard construction of an IND-CPA symmetric-key encryption scheme based
on the LWE assumption [Reg05].

Construction 3 (LWE-SKE [Reg05]) Let n ≥ 1 be an integer, let q ≥ 2 be an integer modulus and
let χ be a discrete and symmetric error distribution. Then, the symmetric-key encryption scheme
LWE-SKE(n, q, χ) = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: output k $←−Z
n
q ;

2. Enck: to encrypt b ∈ {0, 1}, sample a $←−Z
n
q , e

χ←−Zq and output (a, 〈a,k〉+ b
⌊ q
2

⌋

+ e);

3. Deck: to decrypt (a, c), output 0 if |c− 〈a,k〉| ≤
⌊ q
4

⌋

, else output 1.
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As a corollary of Theorem 9, an adversary that is granted a single quantum decryption query
can recover the key with probability at least 4/π2 − o(1):
Corollary 1. There is a quantum algorithm that makes one quantum query to LWE-SKE.Deck and
recovers the entire key k with probability at least 4/π2 − o(1).

Proof. Note that LWE-SKE.Deck coincides with a linear rounding function LRFk′,a,b for a key k′ =
(−k, 1) ∈ Z

n+1
q , which has a unit in its last entry. In particular, b = ⌈q/2⌉, and if q = 3 (mod 4),

a = ⌈q/4⌉, and otherwise, a = −⌊q/4⌋. Thus, by Theorem 9, Algorithm 1 makes one quantum
query to LRFk′,a,b, which can be implemented using one quantum query to LWE-SKE.Deck, and
recovers k′, and thus k, with probability 4/π2 −O(d/q), where d = ⌈q/b⌉b− q ≤ 1. ⊓⊔

Note that the key in this scheme consists of n log q uniformly random bits, and that a classical
decryption query yields at most a single bit of output. It follows that any algorithm making t
classical queries to the decryption oracle recovers the entire key with probability at most 2t−n log q.
A straightforward key-recovery algorithm does in fact achieve this.

6.2 Key recovery via one decryption query in public-key LWE

The key-recovery attack described in Corollary 3 required nothing more than the fact that the
decryption procedure of LWE-SKE is just a linear rounding function whose key contains the decryp-
tion key. As a result, the attack is naturally applicable to other variants of LWE. In this section,
we consider two public-key variants. The first is the standard construction of IND-CPA public-
key encryption based on the LWE assumption, as introduced by Regev [Reg05]. The second is the
IND-CPA-secure public-key encryption scheme FrodoPKE [ABD+17], which is based on a construc-
tion of Lindner and Peikert [LP11]. In both cases, we demonstrate a dramatic speedup in key
recovery using quantum decryption queries.

We emphasize once again that key recovery against these schemes was already possible classically
using a linear number of decryption queries. Our results should thus not be interpreted as a weakness
of these cryptosystems in their stated security setting (i.e., IND-CPA). The proper interpretation
is that, if these cryptosystems are exposed to chosen-ciphertext attacks, then quantum attacks can
be even more devastating than classical ones.

Regev’s public-key scheme. The standard construction of an IND-CPA public-key encryption scheme
based on LWE is the following.

Construction 4 (LWE-PKE [Reg05]) Let m ≥ n ≥ 1 be integers, let q ≥ 2 be an integer mod-
ulus, and let χ be a discrete error distribution over Zq. Then, the public-key encryption scheme
LWE-PKE(n, q, χ) = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: output a secret key sk = k $←−Z
n
q and a public key pk = (A,Ak+e) ∈ Z

m×(n+1)
q , where

A $←−Z
m×n
q , e χ←−Z

m
q , and all arithmetic is done modulo q.

2. Enc: to encrypt b ∈ {0, 1}, pick a random v ∈ {0, 1}m with Hamming weight roughly m/2 and
output (vTA,vT(Ak + e) + b⌊ q2⌋) ∈ Z

n+1
q , where vT denotes the transpose of v.

3. Dec: to decrypt (a, c), output 0 if |c− 〈a, sk〉| ≤
⌊ q
4

⌋

, else output 1.

Although the encryption is now done in a public-key manner, all that matters for our purposes is
the decryption procedure, which is identical to the symmetric-key case, LWE-SKE. We thus have
the following corollary, whose proof is identical to that of Corollary 3:

Corollary 2. There is a quantum algorithm that makes one quantum query to LWE-PKE.Decsk
and recovers the entire key sk with probability at least 4/π2 − o(1).
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Frodo public-key scheme. Next, we consider the IND-CPA-secure public-key encryption scheme
FrodoPKE, which is based on a construction by Lindner and Peikert [LP11]. Compared to LWE-PKE,
this scheme significantly reduces the key-size and achieves better security estimates than the initial
proposal by Regev [Reg05]. For a detailed discussion of FrodoPKE, we refer to [ABD+17]. We present
the entire scheme for completeness, but the important part for our purposes is the decryption
procedure.

Construction 5 (FrodoPKE [ABD+17]) Let n, m̄, n̄ be integer parameters, let q ≥ 2 be an inte-
ger power of 2, let B denote the number of bits used for encoding, and let χ be a discrete symmetric
error distribution. The public-key encryption scheme FrodoPKE = (KeyGen,Enc,Dec) is defined as
follows:

1. KeyGen: generate a matrix A $←−Z
n×n
q and matrices S,E χ←−Z

n×n̄
q ; compute B = AS + E ∈

Z
n×n̄
q ; output the key-pair (pk, sk) with public key pk = (A,B) and secret key sk = S.

2. Enc: to encrypt m ∈ {0, 1}B·m̄·n̄ (encoded as a matrix M ∈ Z
m̄×n̄
q with each entry having 0s

in all but the B most significant bits) with public key pk, sample error matrices S′,E′ χ←−Z
m̄×n
q

and E′′ χ←−Z
m̄×n̄
q ; compute C1 = S′A+E′ ∈ Z

m̄×n
q and C2 = M + S′B +E′′ ∈ Z

m̄×n̄
q ; output

the ciphertext (C1,C2).
3. Dec: to decrypt (C1,C2) ∈ Z

m̄×n
q × Z

m̄×n̄
q with secret-key sk = S, compute M = C2 −C1S ∈

Z
m̄×n̄
q . For each (i, j) ∈ [m̄]× [n̄], output the first B bits of Mi,j.

We now show how to recover m̄ of the n̄ columns of the secret key S using a single quantum
query to FrodoPKE.DecS. If m̄ = n̄, as in sample parameters given in [ABD+17], then this algorithm
recovers S completely.

Theorem 10. There exists a quantum algorithm that makes one quantum query to FrodoPKE.DecS
and recovers any choice of m̄ of the n̄ columns of S. For each of the chosen columns, if that column
has at least one odd entry, then the algorithm succeeds in recovering the column with probability at
least 4/π2.

Proof. Let s1, . . . , sn̄ be the columns of S. Let U denote the map:

U : |c〉|z1〉 . . . |zn̄〉 7→ |c〉|z1 + LRFs1,0,q/2B (c)〉 . . . |zn̄ + LRFsn̄,0,q/2B (c)〉,

for any c ∈ Z
n
q and z1, . . . , zn̄ ∈ Z2B . We first argue that one call to FrodoKEM.DecS can be used to

implement U⊗m̄. Then we show that one call to U can be used to recover any choice of the columns
of S with probability 4/π2, as long as it has at least one entry that is odd.

Let Trunc : Zq 7→ Z2B denote the map that takes x ∈ Zq to the integer represented by the B
most significant bits of the binary representation of x. We have, for any C1 ∈ Z

m̄×n
q , C2 = 0m̄×n̄,

and any {zi,j}i∈[m̄],j∈[n̄] ⊆ Z2B :

UFrodoKEM.Dec : |C1〉|0m̄·n̄〉
⊗

i∈[m̄],j∈[n̄]
|zi,j〉 7→ |C1〉|0m̄·n̄〉

⊗

i∈[m̄],j∈[n̄]
|zi,j + Trunc([C1S]i,j)〉. (11)

Above, [C1S]i,j represents the ij-th entry of C1S. If c1, . . . , cm̄ denote the rows of C1, then
[C1S]i,j = 〈ci, sj〉. Thus, Trunc([C1S]i,j) = LRFsj ,0,q/2B (c

i), the linear rounding function with

block size b = q/2B , which is an integer since q is a power of 2, and a = 0. Note that we have also
assumed that the plaintext is subtracted rather than added to the last register; this is purely for
convenience of analysis, and can easily be accounted for by adjusting Algorithm 1 (e.g., by using
inverse-QFT instead of QFT.)
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Discarding the second register (containing C2 = 0), the right-hand side of (11) becomes

|c1〉 . . . |cm̄〉
⊗

i∈[m̄],j∈[n̄]
|zi,j + LRFsj ,0,q/2B (c

i)〉. (12)

Reordering the registers of (12), we get:

⊗

i∈[m̄]



|ci〉
⊗

j∈[n̄]
|zi,j + LRFsj ,0,q/2B(c

i)〉



 = U⊗m̄





⊗

i∈[m̄]

|ci〉
⊗

j∈[n̄]
|zi,j〉



 .

Thus, we can implement U⊗m̄ using a single call to FrodoKEM.DecS.
Next we show that for any particular j ∈ [n̄], a single call to U can be used to recover sj, the

j-th column of S, with probability at least 4/π2, as long as at least one entry of sj is odd. To do
this, we show how one use of U can be used to implement one phase query to LRFsj ,0,q/2B . Then
the result follows from the proof of Theorem 9.

Let |ϕ〉 = 2−B/2
∑2B−1

z=0 |z〉, and define

|φj〉 = |ϕ〉⊗(j−1) ⊗ 1√
2B

2B−1
∑

z=0

ωz
2B |z〉 ⊗ |ϕ〉⊗(n̄−j).

Then for any c ∈ Z
n
q , we have:

1√
2B

2B−1
∑

z=0

|z + LRFsi,0,q/2B (c)〉 =
1√
2B

2B−1
∑

z=0

|z〉 = |ϕ〉,

since addition here is modulo 2B , and

1√
2B

2B−1
∑

z=0

ωz
2B |z + LRFsj ,0,q/2B(c)〉 =

1√
2B

2B−1
∑

z=0

ω
z−LRF

sj ,0,q/2B
(c)

2B
|z〉.

Thus:

U(|c〉|φj〉) = |c〉|ϕ〉⊗(j−1) ⊗ 1√
2B

2B−1
∑

z=0

ω
z−LRF

sj ,0,q/2B
(c)

2B
|z〉 ⊗ |ϕ〉⊗(n̄−j)

= ω
−LRF

sj,0,q/2B
(c)

2B
|c〉|φj〉.

Thus, by the proof of Theorem 9, if we apply U to q−n/2
∑

c∈Zn
q
|c〉|φj〉, Fourier transform the first

register, and then measure, assuming sj has at least one entry that is a unit8 we will measure sj

with probability at least π2/4−O(d/q), where d = q/2B⌈q/(q/2B)⌉ − q = 0.
Thus, if we want to recover columns j1, . . . jm̄ of S, we apply our procedure for U⊗m̄, which

costs one query to FrodoKEM.DecS, to the state

∑

c∈Zn
q

1√
qn
|c〉|φj1〉 ⊗ · · · ⊗

∑

c∈Zn
q

1√
qn
|c〉|φjm̄〉,

Fourier transform each of the c registers, and then measure. ⊓⊔
8 since q is a power of 2, this is just an odd number
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6.3 Key recovery via one decryption query in public-key Ring-LWE

Next, we analyze key-recovery with a single quantum decryption query against Ring-LWE encryp-
tion. Unlike the plain LWE-based encryption schemes we considered in the previous sections, Ring-
LWE encryption uses noisy samples over a polynomial ring. In the following, we consider the basic,
bit-by-bit Ring-LWE public-key encryption scheme introduced in [LPR13a; LPR13b]. It is based on
the rings R = Z[x]/〈xn + 1〉 and Rq := R/qR = Zq[x]/〈xn + 1〉 for some power-of-two integer n
and poly(n)-bounded prime modulus q. The details of the error distribution χ below will not be
relevant to our results.

Construction 6 (Ring-LWE-PKE [LPR13a; LPR13b]) Let n ≥ 1 be an integer, let q ≥ 2 be
an integer modulus, and let χ be an error distribution over R. The public-key encryption scheme
Ring-LWE-PKE = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: sample a $←−Rq and e, s χ←−R; output sk = s and pk = (a, c = a · s+ e (mod q)) ∈ R2
q .

2. Enc: to encrypt b ∈ {0, 1}, sample r, e1, e2
χ←−R and output a ciphertext pair (u, v) ∈ R2

q, where
u = a · r + e1 (mod q) and v = c · r + e2 + b⌊q/2⌋ (mod q).

3. Dec: to decrypt (u, v), compute v − u · s = (r · e− s · e1 + e2) + b⌊q/2⌋ (mod q) ∈ Rq; output 0
if the constant term of the polynomial is closer to 0 than ⌊q/2⌋, else output 1.

We note that our choice of placing single-bit encryption in the constant term of the polynomial
is somewhat arbitrary. Indeed, it is straightforward to extend our results to encryption with respect
to other monomials. We show the following corollary to Theorem 9.

Corollary 3. There is a quantum algorithm that makes one quantum query to Ring-LWE-PKE.Decs
and recovers the entire key s with probability at least 4/π2 − o(1).

Proof. We first analyze the decryption function. Let (p)0 denote the constant term of a polynomial
p ∈ Rq. Then, for any two polynomials u =

∑n−1
j=0 ujx

j and s =
∑n−1

j=0 sjx
j ∈ Rq, we can identify

the constant term of u · s as

(u · s)0 = u0s0 +

n−1
∑

j=1

ujsn−jx
jxn−j ≡ u0s0 − u1sn−1 − u2sn−2 − . . .− un−1s1 (mod q), (13)

since xn ≡ −1 in Rq. We show that the outcome of Ring-LWE-PKE.Decs(u, v) coincides with a
binary linear rounding function over Z

n
q . Let u, s ∈ Z

n
q denote the coefficient vectors of u, s ∈ Rq

respectively, and define a constant polynomial v ≡ v0 ∈ Rq and vector u′ := (u, v0) ∈ Z
n+1
q , for

some v0 ∈ Zq. Consequently, Ring-LWE-PKE.Decs(u, v0) rounds the inner product 〈u′, s′〉, where
s′ = (−s0 (mod q), sn−1, . . . , s1, 1). Thus, we can run the Bernstein-Vazirani algorithm for binary
linear rounding functions on a uniform superposition over Z

n
q and recover s from s′ with simple

classical post-processing. Note also that any choice of isomorphism between Rq and Z
n
q necessarily

preserves the inner product in Eq.(13), and thus any measurement outcome can be mapped back
to the standard basis prior to post-processing – independently of the actual ring representation
used in practice. By Theorem 9, Algorithm 1 makes one quantum query to LRFs′,q, which can be
implemented using one quantum query to Ring-LWE-PKE.Decs, and recovers s′, and thus s, with
probability 4/π2 − o(1). ⊓⊔

6.4 Key recovery via a randomness-access query

While a linear number of classical decryption queries can be used to break LWE-based schemes,
we have shown that only a single quantum decryption query is required. A natural question to ask
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is whether a similar statement can be made for encryption queries. Classically, it is known that
the symmetric key version of LWE described in Construction 3, LWE-SKE, can be broken using
a linear number of classical encryption queries when the adversary is also allowed to choose the
randomness used by the query: the adversary simply uses e = 0 each time, with a taking n linearly
independent values. In case the adversary is allowed to make quantum encryption queries with
randomness access, a single quantum query suffice to recover the entire key with non-negligible
probability, even when the adversary only has control over a part of the randomness used by
the encryption: the randomness used to prepare vectors a, but not the randomness used to select
the error e. Specifically, the adversary is given quantum oracle access to the randomness-access
encryption oracle URA

Enck
such that, on input (b;a), the adversary receives

EncRAk (b;a) = (a, 〈a,k〉+ b ⌊q/2⌋+ e),

where e ← χ. We extend this to a quantum randomness-access oracle by answering each element
of the superposition using i.i.d. errors ea ← χ:

URA
Enck

: |m〉|a〉|c〉 7→ |m〉|a〉|c⊕ EncRAk (m; a)〉.

This model is identical to the noisy learning model considered by Grilo et al. [GKZ17] and thus
matches the original proposal by Bshouty and Jackson [BJ98].

First, it is not hard to see that algorithms making classical queries to the above oracle can
extract at most log q bits of key from each query (specifically, from the last component of the
ciphertext), and thus still require a linear number of queries to recover the complete key with
non-negligible probability.

On the other hand, by a slight generalization of the proof of Theorem IV.1 from Ref. [GKZ17],
we can recover the entire key with inverse polynomial success probability using a single query to
URA
Enck

as long as the noise magniture η is polynomial in n, since ϕ(q) = Ω(q/ log log q), for Euler’s
totient function ϕ.

Theorem 11. Consider LWE-SKE(n, q, χ) with an arbitrary integer modulus 2 ≤ q ≤ exp(n) and
a symmetric error distribution χ of noise magnitude η. Then, there exists a quantum algorithm that
makes one query to a randomness-accessible quantum encryption oracle for LWE-SKE(n, q, χ) and
recovers the entire key with probability at least ϕ(q)/(24ηq) − o(1).

Finally, in a different model in which a single error e ← χ is used for every branch of the
superposition of a single query (independent of a) we can recover k using a single query to
the randomness access encryption oracle: simply query |0〉 1√

qn

∑

a∈Zn
q
|a〉 1√

q

∑q−1
z=0 ω

z
q |z〉 to get

|0〉 1√
qn

∑

a∈Zn
q
ω
−〈a,k〉
q |a〉 1√

q

∑q−1
z=0 ω

z
q |z + e〉, apply the quantum Fourier transform to the second

register, and then measure the second register to get k with probability 1.
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A Appendix

Bound for quantum random access codes. Recall that a quantum random access code (QRAC)
is the following scenario involving two parties, Alice and Bob [Nay99]:

• Alice receives an N -bit string x and encodes it as a quantum state ̺x.
• Bob receives ̺x from Alice and is asked to recover the i-th bit of x, for some i ∈ {1, . . . , N}, by

measuring the state.
• They win if Bob’s output agrees with xi and lose otherwise.

A variation of this scenario allows Alice and Bob to use shared randomness in their encoding
and decoding operations [ALM+08] (note that shared randomness per se does not allow them to
communicate).

We are interested in bounding the average bias ǫ = pwin − 1/2 of a quantum random access
code with shared randomness, where pwin is the winning probability averaged over x $←−{0, 1}N and
i $←−{1, . . . , N}.

Lemma 2. The average bias of a quantum random access code with shared randomness that encodes
N bits into a d-dimensional quantum state is O(

√

N−1 log d). In particular, if N = 2n and d =
2poly(n) the bias is O(2−n/2 poly(n)).
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Proof. A quantum random access code with shared randomness that encodes N bits into a d-
dimensional quantum state is specified by the following:

• a shared random variable λ,
• for each x ∈ {0, 1}N , a d-dimensional quantum state ̺λx encoding x,
• for each i ∈ {0, . . . , N}, an observable Mλ

i for recovering the i-th bit.

Formally, ̺λx and Mλ
i are d × d Hermitian matrices such that ̺λx ≥ 0, Tr̺λx = 1, and ‖Mλ

i ‖ ≤ 1
where ‖Mλ

i ‖ denotes the operator norm of Mλ
i . Note that both ̺λx and Mλ

i depend on the shared
random variable λ, meaning that Alice and Bob can coordinate their strategies.

The bias of correctly guessing xi, for a given x and i, is (−1)xiTr(̺λxM
λ
i )/2. If the average bias of

the code is ǫ then Eλ Ex,i(−1)xiTr(̺λxM
λ
i ) ≥ 2ǫ. We can rearrange this expression and upper bound

each term using its operator norm, and then apply the noncommutative Khintchine inequality
[Tom74]:

Eλ Ex
1

N
Tr

(

̺λx

N
∑

i=1

(−1)xiMλ
i

)

≤ Eλ Ex
1

N
‖

N
∑

i=1

(−1)xiMλ
i ‖

≤ Eλ
1

N
c
√

N log d = c

√

log d

N
,

for some constant c. In other words,

ǫ ≤ c

2

√

log d

N
.

In the particular case we are interested in, d = 2poly(n) and N = 2n so

ǫ ≤ c

2

√

poly(n)

2n
,

completing the proof. ⊓⊔

Equivalence of QCCA1 models. Recall that the IND-QCCA1 notion is based on the security
game IndGame defined in Definition 3. In the alternative security game IndGame′ (see Definition 4),
the adversary provides only one plaintext m and must decide if the challenge is an encryption of
m or an encryption of a random string. In this section, we prove the following:

Proposition 1. An encryption scheme Π is IND-QCCA1 if and only if for every QPT A,

Pr[A wins IndGame′(Π,A, n)] ≤ 1/2 + negl(n) .

Proof. Fix a scheme Π. For one direction, suppose Π is IND-QCCA1 and let A be an adversary
against IndGame′. Define an adversary A0 against IndGame as follows: (i.) run A until it out-
puts a challenge plaintext m, (ii.) sample random r and output (m, r), (iii.) run the rest of A
and output what it outputs. The output distribution of IndGame′(Π,A, n) is then identical to
IndGame(Π,A0, n), which in turn must be negligibly close to uniform by IND-QCCA1 security of
Π.

For the other direction, suppose no adversary can win IndGame′ with probability better than
1/2, and let B be an adversary against IndGame. Now, define two adversaries B0 and B1 against
IndGame′ as follows. The adversary Bc does: (i.) run B until it outputs a challenge (m0,m1), (ii.)
outputmc, (iii.) run the rest of B and output what it outputs. Note that the pre-challenge algorithm
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is identical for B, B0, and B1; define random variables M0, M1 and R given by the two challenges
and a uniformly random plaintext, respectively. The post-challenge algorithm is also identical for
all three adversaries; call it C. The advantage of B over random guessing is then bounded by

‖C(Enck(M0))− C(Enck(M1))‖1
= ‖C(Enck(M0))− C(Enck(M1))− C(Enck(R)) + C(Enck(R))‖1
≤ ‖C(Enck(M0))− C(Enck(R))‖1 + ‖C(Enck(M1))− C(Enck(R))‖1
≤ negl(n) ,

where the last inequality follows from our initial assumption, applied to both B0 and B1. It follows
that Π is IND-QCCA1. ⊓⊔
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